1
|
Ehmke L, Hause G, Klösgen RB, Bennewitz B. Preparation of physiologically active inside-out vesicles from plant inner mitochondrial membranes. FRONTIERS IN PLANT SCIENCE 2023; 14:1216227. [PMID: 37441180 PMCID: PMC10333538 DOI: 10.3389/fpls.2023.1216227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
For many metabolites, the major barrier between cytosol and mitochondrial matrix is the inner membrane of mitochondria, the site of the respiratory electron transport chain. In consequence, it houses numerous transporters which facilitate the controlled exchange of metabolites, ions, and even proteins between these cellular compartments. While their import into the organelle can be studied with isolated mitochondria or mitoplasts, the analysis of their export from the matrix into the intermembrane space or even the cytosol demands for more sophisticated approaches. Among those, inside-out inner membrane vesicles are particularly useful, since they allow the direct presentation of the potential export substrates to the membrane without prior import into the organelle. Here we present a protocol for the isolation of such inside-out vesicles of the inner membrane of plant mitochondria based on repeated freeze/thaw-cycles of freshly prepared mitoplasts. Electron microscopy and Western analysis could show that the majority of the vesicles have single envelope membranes in an inside-out topology. The vesicles are furthermore physiologically active, as demonstrated by assays measuring the enzymatic activities of Complex I (NADH dehydrogenase), Complex V (ATP synthase) and the mitochondrial processing peptidase (MPP) associated with Complex III. Hence, the method presented here provides a good basis for further studies of the inner mitochondrial membrane and mitochondrial export processes.
Collapse
Affiliation(s)
- Leander Ehmke
- Institute of Biology-Plant Physiology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Ralf Bernd Klösgen
- Institute of Biology-Plant Physiology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Bationa Bennewitz
- Institute of Biology-Plant Physiology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
2
|
Yang H, Xue Y, Li B, Lin Y, Li H, Guo Z, Li W, Fu Z, Ding D, Tang J. The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex. MOLECULAR PLANT 2022; 15:872-886. [PMID: 35272047 DOI: 10.1016/j.molp.2022.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Cytoplasmic male sterility (CMS) is a powerful tool for the exploitation of hybrid heterosis and the study of signaling and interactions between the nucleus and the cytoplasm. C-type CMS (CMS-C) in maize has long been used in hybrid seed production, but the underlying sterility factor and its mechanism of action remain unclear. In this study, we demonstrate that the mitochondrial gene atp6c confers male sterility in CMS-C maize. The ATP6C protein shows stronger interactions with ATP8 and ATP9 than ATP6 during the assembly of F1Fo-ATP synthase (F-type ATP synthase, ATPase), thereby reducing the quantity and activity of assembled F1Fo-ATP synthase. By contrast, the quantity and activity of the F1' component are increased in CMS-C lines. Reduced F1Fo-ATP synthase activity causes accumulation of excess protons in the inner membrane space of the mitochondria, triggering a burst of reactive oxygen species (ROS), premature programmed cell death of the tapetal cells, and pollen abortion. Collectively, our study identifies a chimeric mitochondrial gene (ATP6C) that causes CMS in maize and documents the contribution of ATP6C to F1Fo-ATP synthase assembly, thereby providing novel insights into the molecular mechanisms of male sterility in plants.
Collapse
Affiliation(s)
- Huili Yang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yadong Xue
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| | - Bing Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yanan Lin
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haochuan Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China; The Shennong Laboratory, Zhengzhou, China.
| |
Collapse
|
3
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Wang B, Farooq Z, Chu L, Liu J, Wang H, Guo J, Tu J, Ma C, Dai C, Wen J, Shen J, Fu T, Yi B. High-generation near-isogenic lines combined with multi-omics to study the mechanism of polima cytoplasmic male sterility. BMC PLANT BIOLOGY 2021; 21:130. [PMID: 33673810 PMCID: PMC7934456 DOI: 10.1186/s12870-021-02852-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/24/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS), which naturally exists in higher plants, is a useful mechanism for analyzing nuclear and mitochondrial genome functions and identifying the role of mitochondrial genes in the plant growth and development. Polima (pol) CMS is the most universally valued male sterility type in oil-seed rape. Previous studies have described the pol CMS restorer gene Rfp and the sterility-inducing gene orf224 in oil-seed rape, located in mitochondria. However, the mechanism of fertility restoration and infertility remains unknown. Moreover, it is still unknown how the fecundity restorer gene interferes with the sterility gene, provokes the sterility gene to lose its function, and leads to fertility restoration. RESULT In this study, we used multi-omics joint analysis to discover candidate genes that interact with the sterility gene orf224 and the restorer gene Rfp of pol CMS to provide theoretical support for the occurrence and restoration mechanisms of sterility. Via multi-omics analysis, we screened 24 differential genes encoding proteins related to RNA editing, respiratory electron transport chain, anther development, energy transport, tapetum development, and oxidative phosphorylation. Using a yeast two-hybrid assay, we obtained a total of seven Rfp interaction proteins, with orf224 protein covering five interaction proteins. CONCLUSIONS We propose that Rfp and its interacting protein cleave the transcript of atp6/orf224, causing the infertility gene to lose its function and restore fertility. When Rfp is not cleaved, orf224 poisons the tapetum cells and anther development-related proteins, resulting in pol CMS mitochondrial dysfunction and male infertility. The data from the joint analysis of multiple omics provided information on pol CMS's potential molecular mechanism and will help breed B. napus hybrids.
Collapse
Affiliation(s)
- Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zunaira Farooq
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Chu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Zhang H, Wang B, Li B, Lin Y, Yang H, Ding D, Xue Y, Tang J. Comparative proteomic analysis of mitochondrial proteins from maize CMS-C sterile, maintainer and restorer anthers. THE PLANT GENOME 2020; 13:e20022. [PMID: 33016607 DOI: 10.1002/tpg2.20022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The maize C system of cytoplasmic male sterility (CMS) and its fertility restoration gene Rf4 have been widely used for maize hybrid production; however, the underlying mechanism is still uncertain. The sterility factor functions in mitochondria, where it interacts directly or indirectly with the restorer. Mitoproteomics can capture all participants involved in CMS and restoration at the organelle level. In the present study, we identified and quantified anther mitochondrial proteins from CMS, maintainer and restorer lines. We obtained 14,528 unique peptides belonging to 3,369 proteins. Comparative analysis of 1840 high-confidence proteins revealed 68 were differentially accumulated proteins likely involved in CMS or its restoration within mitochondria. These proteins were mainly associated with fatty acid metabolism, amino acid metabolism and protein-processing pathways. These results suggest that an energy deficiency caused by the sterility factor hinders other proteins or protein complexes required for pollen development through nuclear-mitochondrial interaction. The restorer factor may boost the energy generation by activating alternative metabolic pathways and by improving the post-translation processing efficiency of proteins in energy-producing complexes to restore pollen fertility. Our findings may aid detailed molecular analysis and contribute to a better understanding of maize CMS-C restoration and sterility.
Collapse
Affiliation(s)
- Huaisheng Zhang
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Bin Wang
- College of Agronomy, Henan Science and Technology University, Luoyang, China
| | - Bing Li
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Yanan Lin
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Huili Yang
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Dong Ding
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Yadong Xue
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| | - Jihua Tang
- College of Agronomy, National Key Laboratory of Crop Science in Wheat and Maize, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Heng S, Gao J, Wei C, Chen F, Li X, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Transcript levels of orf288 are associated with the hau cytoplasmic male sterility system and altered nuclear gene expression in Brassica juncea. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:455-466. [PMID: 29301015 PMCID: PMC5853284 DOI: 10.1093/jxb/erx443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 05/22/2023]
Abstract
Cytoplasmic male sterility (CMS) is primarily caused by chimeric genes located in the mitochondrial genomes. In Brassica juncea, orf288 has been identified as a CMS-associated gene in the hau CMS line; however, neither the specific abortive stage nor the molecular function of the gene have been determined. We therefore characterized the hau CMS line, and found that defective mitochondria affect the development of archesporial cells during the L2 stage, leading to male sterility. The expression level of the orf288 transcript was higher in the male-sterility line than in the fertility-restorer line, although no significant differences were apparent at the protein level. The toxicity region of ORF288 was found to be located near the N-terminus and repressed growth of Escherichia coli. However, transgenic expression of different portions of ORF288 indicated that the region that causes male sterility resides between amino acids 73 and 288, the expression of which in E. coli did not result in growth inhibition. Transcriptome analysis revealed a wide range of genes involved in anther development and mitochondrial function that were differentially expressed in the hau CMS line. This study provides new insights into the hau CMS mechanism by which orf288 affects the fertility of Brassica juncea.
Collapse
Affiliation(s)
- Shuangping Heng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, P.R. China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chao Wei
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Fengyi Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xianwen Li
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, P.R. China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
- Correspondence:
| |
Collapse
|
7
|
Heng S, Gao J, Wei C, Chen F, Li X, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J. Transcript levels of orf288 are associated with the hau cytoplasmic male sterility system and altered nuclear gene expression in Brassica juncea. JOURNAL OF EXPERIMENTAL BOTANY 2018. [PMID: 29301015 DOI: 10.5061/dryad.9s68p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cytoplasmic male sterility (CMS) is primarily caused by chimeric genes located in the mitochondrial genomes. In Brassica juncea, orf288 has been identified as a CMS-associated gene in the hau CMS line; however, neither the specific abortive stage nor the molecular function of the gene have been determined. We therefore characterized the hau CMS line, and found that defective mitochondria affect the development of archesporial cells during the L2 stage, leading to male sterility. The expression level of the orf288 transcript was higher in the male-sterility line than in the fertility-restorer line, although no significant differences were apparent at the protein level. The toxicity region of ORF288 was found to be located near the N-terminus and repressed growth of Escherichia coli. However, transgenic expression of different portions of ORF288 indicated that the region that causes male sterility resides between amino acids 73 and 288, the expression of which in E. coli did not result in growth inhibition. Transcriptome analysis revealed a wide range of genes involved in anther development and mitochondrial function that were differentially expressed in the hau CMS line. This study provides new insights into the hau CMS mechanism by which orf288 affects the fertility of Brassica juncea.
Collapse
Affiliation(s)
- Shuangping Heng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, P.R. China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chao Wei
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Fengyi Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xianwen Li
- College of Life Science, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, P.R. China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
8
|
Hu J, Huang W, Huang Q, Qin X, Yu C, Wang L, Li S, Zhu R, Zhu Y. Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 2014; 19 Pt B:282-8. [PMID: 24566371 DOI: 10.1016/j.mito.2014.02.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/09/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
Mitochondria are essential organelles in cells not only because they supply over 90% of the cell's energy but also because their dysfunction is associated with disease. Owing to the importance of mitochondria, there are many questions about mitochondria that must be answered. Cytoplasmic male sterility (CMS) is a mysterious natural phenomenon, and the mechanism of the origin of CMS is unknown. Despite successful utilization of CMS and restoration of fertility (Rf) in practice, the underlying mechanisms of these processes remain elusive. This review summarizes the genes involved in CMS and Rf, with a special focus on recent studies reporting the mechanisms of the CMS and Rf pathways, and concludes with potential working models.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Qi Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Xiaojian Qin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Changchun Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Lili Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Hubei 430072, China.
| |
Collapse
|
9
|
Abstract
In plants, male sterility can be caused either by mitochondrial genes with coupled nuclear genes or by nuclear genes alone; the resulting conditions are known as cytoplasmic male sterility (CMS) and genic male sterility (GMS), respectively. CMS and GMS facilitate hybrid seed production for many crops and thus allow breeders to harness yield gains associated with hybrid vigor (heterosis). In CMS, layers of interaction between mitochondrial and nuclear genes control its male specificity, occurrence, and restoration of fertility. Environment-sensitive GMS (EGMS) mutants may involve epigenetic control by noncoding RNAs and can revert to fertility under different growth conditions, making them useful breeding materials in the hybrid seed industry. Here, we review recent research on CMS and EGMS systems in crops, summarize general models of male sterility and fertility restoration, and discuss the evolutionary significance of these reproductive systems.
Collapse
Affiliation(s)
- Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources
| | | |
Collapse
|
10
|
Dahan J, Mireau H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol 2013; 10:1469-76. [PMID: 23872480 DOI: 10.4161/rna.25568] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the last years, a number of nuclear genes restoring cytoplasmic male sterility (CMS) have been cloned in various crop species. The majority of these genes have been shown to encode pentatricopeptide repeat proteins (PPR) that act by specifically suppressing the expression of sterility-causing mitochondrial transcripts. Functional analysis of these proteins has indicated that the inhibitory effects of restoring PPR (Rf-PPR) proteins involve various mechanisms, including RNA cleavage, RNA destabilization, or translation inhibition. Cross-species sequence comparison of PPR protein complements revealed that most plant genomes encode 10-30 Rf-like (RFL) proteins sharing high-sequence similarity with the identified Rf-PPRs from crops. Evolutionary analyses further showed that they constitute a monophyletic group apart in the PPR family, with peculiar evolution dynamic and constraints. Here we review recent data on RF-PPRs and present the latest discoveries on the RFL family, with prospects on the functionality and evolution of this peculiar subclass of PPR.
Collapse
Affiliation(s)
- Jennifer Dahan
- INRA; UMR1318; Institut Jean-Pierre Bourgin; RD10; Versailles, France; AgroParisTech; Institut Jean-Pierre Bourgin; RD10; Versailles, France
| | - Hakim Mireau
- INRA; UMR1318; Institut Jean-Pierre Bourgin; RD10; Versailles, France; AgroParisTech; Institut Jean-Pierre Bourgin; RD10; Versailles, France
| |
Collapse
|
11
|
Liu H, Cui P, Zhan K, Lin Q, Zhuo G, Guo X, Ding F, Yang W, Liu D, Hu S, Yu J, Zhang A. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genomics 2011; 12:163. [PMID: 21443807 PMCID: PMC3079663 DOI: 10.1186/1471-2164-12-163] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 03/29/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. RESULTS The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. CONCLUSION The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.
Collapse
Affiliation(s)
- Huitao Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Inceoglu AB, Kamita SG, Hammock BD. Genetically modified baculoviruses: a historical overview and future outlook. Adv Virus Res 2006; 68:323-60. [PMID: 16997016 DOI: 10.1016/s0065-3527(06)68009-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The concept of using genetic engineering to improve the natural insecticidal activity of baculoviruses emerged during the 1980s. Both academic and industrial laboratories have since invested a great deal of effort to generate genetically modified (GM) or recombinant baculoviruses with dramatically improved speeds of kill. Optimal production methodologies and formulations have also been developed, and the safety and ecology of the recombinant baculoviruses have been thoroughly investigated. Unfortunately, the initial excitement that was generated by these technologies was tempered when industry made a critical decision to not complete the registration process of GM baculoviruses for pest insect control. In this chapter, we summarize the developments in the field from a historical perspective and provide our opinions as to the current status and future potential of the technology. We will argue that GM baculoviruses are valuable and viable tools for pest insect control both alone and in combination with wild-type viruses. We believe that these highly effective biopesticides still have a bright future in modern agriculture as public awareness and acceptance of GM organisms, including GM baculoviruses, increases.
Collapse
Affiliation(s)
- A Bora Inceoglu
- Department of Entomology and Cancer Research Center University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
13
|
Duroc Y, Gaillard C, Hiard S, Defrance MC, Pelletier G, Budar F. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie 2005; 87:1089-100. [PMID: 15979231 DOI: 10.1016/j.biochi.2005.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 05/20/2005] [Accepted: 05/20/2005] [Indexed: 11/24/2022]
Abstract
In cytoplasmic male sterility (CMS), original mitochondrial genes contribute to sex determinism by provoking pollen abortion. The function of the encoded proteins remains unclear. We studied the ORF138 protein, responsible for the 'Ogura' CMS, which is both used in hybrid seed production and present in natural populations. We analyzed the biochemical and structural properties of this protein in male-sterile plants and in E. coli. We showed that this protein spontaneously forms dimers in vitro. Truncated variants of the protein, containing either the hydrophobic or the hydrophilic moiety, also spontaneously dimerize. By fractionating mitochondria, we showed that ORF138 was strongly associated with the inner mitochondrial membrane of male-sterile plants. Our results also strongly suggest that ORF138 forms oligomers in male-sterile plant mitochondria. In E. coli, ORF138 was associated with the plasma membrane, as shown by membrane fractionation, and formed oligomers. The production of this protein strongly inhibited bacterial growth, but not by inhibiting respiration. The observed toxic effects required both the hydrophilic and hydrophobic moieties of the protein.
Collapse
Affiliation(s)
- Yann Duroc
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, INRA, Route de Saint-Cyr, 78026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Liu F, Cui X, Horner HT, Weiner H, Schnable PS. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. THE PLANT CELL 2001; 13:1063-78. [PMID: 11340182 PMCID: PMC135560 DOI: 10.1105/tpc.13.5.1063] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2000] [Accepted: 03/04/2001] [Indexed: 05/18/2023]
Abstract
Some plant cytoplasms express novel mitochondrial genes that cause male sterility. Nuclear genes that disrupt the accumulation of the corresponding mitochondrial gene products can restore fertility to such plants. The Texas (T) cytoplasm mitochondrial genome of maize expresses a novel protein, URF13, which is necessary for T cytoplasm-induced male sterility. Working in concert, functional alleles of two nuclear genes, rf1 and rf2, can restore fertility to T cytoplasm plants. Rf1 alleles, but not Rf2 alleles, reduce the accumulation of URF13. Hence, Rf2 differs from typical nuclear restorers in that it does not alter the accumulation of the mitochondrial protein necessary for T cytoplasm-induced male sterility. This study established that the rf2 gene encodes a soluble protein that accumulates in the mitochondrial matrix. Three independent lines of evidence establish that the RF2 protein is an aldehyde dehydrogenase (ALDH). The finding that T cytoplasm plants that are homozygous for the rf2-R213 allele are male sterile but accumulate normal amounts of RF2 protein that lacks normal mitochondrial (mt) ALDH activity provides strong evidence that rf2-encoded mtALDH activity is required to restore male fertility to T cytoplasm maize. Detailed genetic analyses have established that the rf2 gene also is required for anther development in normal cytoplasm maize. Hence, it appears that the rf2 gene was recruited recently to function as a nuclear restorer. ALDHs typically have very broad substrate specificities. Indeed, the RF2 protein is capable of oxidizing at least three aldehydes. Hence, the specific metabolic pathway(s) within which the rf2-encoded mtALDH acts remains to be discovered.
Collapse
Affiliation(s)
- F Liu
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
15
|
Rhoads DM, Brunner-Neuenschwander B, Levings CS, Siedow JN. Cross-linking and disulfide bond formation of introduced cysteine residues suggest a modified model for the tertiary structure of URF13 in the pore-forming oligomers. Arch Biochem Biophys 1998; 354:158-64. [PMID: 9633611 DOI: 10.1006/abbi.1998.0671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
URF13 is a mitochondrially encoded protein in the inner mitochondrial membrane of maize (Zea mays L.) carrying the cms-T cytoplasm. This protein is responsible for Texas-type cytoplasmic sterility and is a ligand-gated, pore-forming receptor for the pathotoxins of fungal pathogens Bipolaris maydis race T and Phyllosticta maydis. URF13 contains three transmembrane alpha-helices, with amphipathic helices II and III likely involved in pore formation, and is present as oligomers in cms-T maize mitochondria and when expressed in Escherichia coli cells. To study tertiary and quaternary structures of URF13 oligomers, we employed combinations of site-directed mutagenesis and chemical cross-linking. We introduced Cys residues individually into consecutive positions 78-82, believed to be in helix III. We expressed these proteins in E. coli cells and tested for cross-linking through disulfide bond formation or by using Cys-Cys cross-linkers. URF13-R79C, URF13-R81C, and URF13-T82C were cross-linked using Cys-Cys-specific cross-linkers, as were double mutants URF13-C27R/R79C, URF13-C27R/R81C, and URF13-C27R/T82C, indicating that the cross-linking was between introduced Cys residues on adjacent URF13 molecules. Disulfide bond formation, induced by diamide, was seen only in URF13-T82C and URF13-C27R/T82C, indicating that Cys residues introduced into position 82 are closely juxtaposed in the oligomers. Based on these observations, we modified the models for the secondary structure of URF13 and the tertiary structure of the URF13 oligomers. Sequential cross-linking of URF13-R81C oligomers with bismaleimidohexane (Cys-Cys cross-linker) and N,N'-dicyclohexylcarbodiimide (Lys-Asp/Glu cross-linker) suggests that URF13 oligomers consist of an even number of monomers.
Collapse
Affiliation(s)
- D M Rhoads
- Department of Botany, Duke University, Durham, North Carolina 27708-1000, USA.
| | | | | | | |
Collapse
|
16
|
Yoder OC. A Mechanistic View of the Fungal/Plant Interaction Based on Host-Specific Toxin Studies. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-94-011-5218-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
17
|
Dill CL, Wise RP, Schnable PS. Rf8 and Rf* mediate unique T-urf13-transcript accumulation, revealing a conserved motif associated with RNA processing and restoration of pollen fertility in T-cytoplasm maize. Genetics 1997; 147:1367-79. [PMID: 9383077 PMCID: PMC1208258 DOI: 10.1093/genetics/147.3.1367] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rf8 is a newly described nuclear gene that can substitute for Rf1 to partially restore pollen fertility to male-sterile, T-cytoplasm maize. Families segregating for Rf8 were used to investigate the mechanism of this fertility restoration and to compare it to the restoration conditioned by Rf1. Although Rf8 is unlinked to the rf1 locus, it also alters T-urf13 mitochondrial transcript accumulation and reduces the accumulation of the URF13 protein. Like the 1.6- and 0.6-kilobase (kb) T-urf13 transcripts that accumulate in T-cytoplasm plants carrying Rf1, 1.42- and 0.42-kb transcripts accumulate in plants that are partially restored by Rf8. A survey of T-cytoplasm maize lines, inbreds, and F1 hybrids by mitochondrial RNA gel blot analyses revealed that Rf8 is rare in maize germplasm. These surveys revealed the presence of another rare, weak restorer factor, Rf*, which is uniquely associated with the accumulation of 1.4- and 0.4-kb T-urf13 transcripts. Primer extension analyses position the 5' termini of the 1.42/0.42-kb and 1.4/0.4-kb transcripts at +137 and +159 nucleotides, respectively, 3' of the AUG initiation codon of the T-urf13 reading frame. The conserved motif, 5'-CNACNNU-3', overlaps the 5' termini of the Rf1-, Rf8-, and Rf*-associated transcripts and the 380 nucleotide, Rf3-associated orf107 transcript from cytoplasmic male sterility sorghum. These results demonstrate that multiple unlinked, nuclear genes can have similar but distinct effects on the expression of the unique T-urf13 mitochondrial coding sequence to restore pollen fertility to T-cytoplasm maize.
Collapse
Affiliation(s)
- C L Dill
- Interdepartmental Genetics Program, Department of Plant Pathology, U.S. Department of Agriculture-Agricultural Research Service, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- J D Walton
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing 48824, USA
| |
Collapse
|
19
|
Wise RP, Dill CL, Schnable PS. Mutator-induced mutations of the rf1 nuclear fertility restorer of T-cytoplasm maize alter the accumulation of T-urf13 mitochondrial transcripts. Genetics 1996; 143:1383-94. [PMID: 8807309 PMCID: PMC1207406 DOI: 10.1093/genetics/143.3.1383] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dominant alleles of the rf1 and rf2 nuclear-encoded fertility restorer genes are necessary for restoration of pollen fertility in T-cytoplasm maize. To further characterize fertility restoration mediated by the Rf1 allele, 123,500 gametes derived from plants carrying the Mutator transposable element family were screened for rf1-mutant alleles (rf1-m) Four heritable rf1-m alleles were recovered from these populations. Three rf1-m alleles were derived from the progenitor allele Rf1-IA153 and one was derived from Rf1-Ky21. Cosegregation analysis revealed 5.5- and 2.4-kb Mu1-hybridizing EcoRI restriction fragments in all of the male-sterile and none of the male-fertile plants in families segregating for rf1-m3207 and rf1-m3310, respectively. Mitochondrial RNA gel blot analyses indicated that all four rf1-m alleles in male-sterile plants cosegregated with the altered steady-state accumulation of 1.6- and 0.6-kb T-urf13 transcripts, demonstrating that these transcripts are Rf1 dependent. Plants carrying a leaky mutant, rf1-m7323, revealed variable levels of Rf1-associated, T-urf13 transcripts and the degree of pollen fertility. The ability to obtain rf1-m derivatives from Rf1 indicates that Rf1 alleles produce a functional gene product necessary for the accumulation of specific T-urf13 transcripts in T-cytoplasm maize.
Collapse
Affiliation(s)
- R P Wise
- USDA-Agricultural Research Service, Iowa State University, Ames 50011, USA.
| | | | | |
Collapse
|
20
|
Abstract
The T cytoplasm of maize serves as a model for the nuclear restoration of cytoplasmic male sterility. The rf2 gene, one of two nuclear genes required for fertility restoration in male-sterile T-cytoplasm (cmsT) maize, was cloned. The protein predicted by the rf2 sequence is a putative aldehyde dehydrogenase, which suggests several mechanisms that might explain Rf2-mediated fertility restoration in cmsT maize. Aldehyde dehydrogenase may be involved in the detoxification of acetaldehyde produced by ethanolic fermentation during pollen development, may play a role in energy metabolism, or may interact with URF13, the mitochondrial protein associated with male sterility in cmsT maize.
Collapse
Affiliation(s)
- X Cui
- Department of Zoology and Genetics, Iowa State University, Ames, 50011, USA
| | | | | |
Collapse
|
21
|
Horn R, Hustedt JE, Horstmeyer A, Hahnen J, Zetsche K, Friedt W. The CMS-associated 16 kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male-sterile cytoplasms of sunflower. PLANT MOLECULAR BIOLOGY 1996; 30:523-538. [PMID: 8605303 DOI: 10.1007/bf00049329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In sunflower plants carrying the PET1 cytoplasm male sterility (CMS) is associated with a new open reading frame (orfH522) in the 3'-flanking region of the atpA gene and an additional 16 kDa protein. Twenty-seven male-sterile cytoplasms of different origin were studied for the expression of the 16 kDa protein. In addition to the PET1 cytoplasm nine other male-sterile cytoplasms express the CMS-associated protein. These CMS sources originate from different interspecific crosses, from spontaneously occurring male-sterile plants in wild sunflower and from induced mutagenesis. Polyclonal antisera were raised against fusion proteins which contain 421 bp of the 3'-coding region of orfH522 to verify by immunological methods the identity of the other CMS cytoplasms. The anti-ORFH522 antiserum showed a positive reaction in the immunoblot with all CMS cytoplasms which expressing the 16 kDa protein. Investigations of the mitochondrial DNA demonstrated that all ten CMS cytoplasms which express the 16 kDa protein have the same organization at the atpA locus. OrfH522 as probes gave the same transcript pattern for the investigated CMS cytoplasms, just as for PET1. The MAX1 cytoplasm has an orfH522-related sequence but does not synthesize the 16 kDa protein. Using the sodium carbonate treatment the 16 kDa protein proved to be membrane-bound. Computer analyses predict that the hydrophobic N-terminal region of ORFH522 may form a transmembrane helix functioning as membrane anchor.
Collapse
Affiliation(s)
- R Horn
- Institut für Pflanzenbau und Pflanzenzüchtung I, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Levings III CS, Rhoads DM, Siedow JN. Molecular interactions ofBipolaris maydisT-toxin and maize. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-286] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The toxins (T-toxins) produced by the fungal pathogens Bipolaris maydis race T (BmT) and Phyllosticta maydis (Pm) target the mitochondrial receptor, URF13, in maize (Zea mays L.) plants containing the Texas male-sterile cytoplasm (cms-T). URF13, a 13-kDa protein, is the product of the maize mitochondrial gene T-urf13, which is found only in the mitochondrial genome of cms-T maize and is thought to be responsible for cytoplasmically inherited male sterility and disease susceptibility. Pm-toxin binds specifically to URF13 in a cooperative manner, and Pm- and BmT-toxins compete for the same, or overlapping, binding sites. The binding of T-toxin to URF13 causes rapid permcabilization of the inner mitochondrial membrane, which results in leakage of NAD+and other ions from the matrix. A pore consisting of at least six transmembrane α-helices is required for NAD+leakage. Cross-linking experiments showed that URF13 oligomers are present in the mitochondrial membrane. A model of the secondary structure of URF13 proposes that each monomer contains three transmembrane α-helices. Studies combining site-directed mutagenesis and chemical cross-linking of URF13 expressed by Escherichia coli cells indicate that the oligomers are composed of a central core of helices II that line the center of the URF13 pores. Key words: maize cytoplasmic male sterility, URF13, mitochondrial pores, T-toxin receptor, Bipolaris maydis race T, Phyllosticta maydis, Helminthosporium maydis.
Collapse
|
23
|
Rhoads DM, Levings CS, Siedow JN. URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J Bioenerg Biomembr 1995; 27:437-45. [PMID: 8595979 DOI: 10.1007/bf02110006] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
URF13 is the product of a mitochondrial-encoded gene (T-urf13) found only in maize plants containing the Texas male-sterile cytoplasm (cms-T), and it is thought to be responsible for both cytoplasmic male sterility and the susceptibility of cms-T maize to the fungal pathogens Bipolaris maydis race T and Phyllosticata maydis. Mitochondria isolated from cms-T maize are uniquely sensitive to pathotoxins (T-toxin) produced by these fungi and to methomyl (a commercial insecticide). URF13 acts as a receptor that specifically binds T-toxin to produce hydrophilic pores in the inner mitochondrial membrane. When expressed in Escherichia coli cells, URF13 also forms hydrophilic pores in the plasma membrane if exposed to T-toxin or methomyl. Topological studies established that URF13 contains three membrane-spanning alpha-helices, two of which are amphipathic and can contribute to pore formation. Chemical cross-linking of URF13 was used to demonstrate the existence of URF13 oligomers in cms-T mitochondria and E. coli cells. The ability of the carboxylate-specific reagent, N,N'-dicyclohexycarbodiimide, to cross-link URF13 was used in conjunction with site-directed mutagenesis to establish that the URF13 tetramer has a central core consisting of a four-alpha-helical bundle which undergoes a conformational change after interaction with T-toxin or methomyl. Overall, the experimental evidence indicates that URF13 functions as a ligand-gated, pore-forming T-toxin receptor in cms-T mitochondria.
Collapse
Affiliation(s)
- D M Rhoads
- Department of Botany/Developmental, Cell, and Molecular Biology Group, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | |
Collapse
|
24
|
Chaumont F, Bernier B, Buxant R, Williams ME, Levings CS, Boutry M. Targeting the maize T-urf13 product into tobacco mitochondria confers methomyl sensitivity to mitochondrial respiration. Proc Natl Acad Sci U S A 1995; 92:1167-71. [PMID: 7862654 PMCID: PMC42659 DOI: 10.1073/pnas.92.4.1167] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The URF13 protein, which is encoded by the maize mitochondrial T-urf13 gene, is thought to be responsible for pathotoxin and methomyl sensitivity and male sterility. We have investigated whether T-urf13 confers toxin sensitivity and male sterility when expressed in another plant species. The coding sequence of T-urf13 was fused to a mitochondrial targeting presequence, placed under the control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Plants expressing high levels of URF13 were methomyl sensitive. Subcellular analysis indicated that URF13 is mainly associated with the mitochondria. Adding methomyl to isolated mitochondria stimulated NADH-linked respiration and uncoupled oxidative phosphorylation, indicating that URF13 was imported into the mitochondria, and conferred toxin sensitivity. Most control plants, which expressed the T-urf13c construct lacking the mitochondrial presequence, were methomyl sensitive and contained URF13 in a membrane fraction. Subcellular fractionation by sucrose gradient centrifugation showed that URF13 sedimented at several positions, suggesting the protein is associated with various organelles, including mitochondria. No methomyl effect was observed in isolated mitochondria, however, indicating that URF13 was not imported and did not confer toxin sensitivity to the mitochondria. Thus, URF13 confers toxin sensitivity to transgenic tobacco with or without import into the mitochondria. There was no correlation between the expression of URF13 and male sterility, suggesting either that URF13 does not cause male sterility in transgenic tobacco or that URF13 is not expressed in sufficient amounts in the appropriate anther cells.
Collapse
Affiliation(s)
- F Chaumont
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Krishnasamy S, Makaroff CA. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. PLANT MOLECULAR BIOLOGY 1994; 26:935-46. [PMID: 8000006 DOI: 10.1007/bf00028860] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mitochondrial DNA of plants containing the male sterility-causing Ogura cytoplasm of radish contain a novel gene, orf138, that is transcribed as part of a bicistronic mRNA. Genetic studies have previously linked male sterility with the orf138 locus. To determine if orf138 is expressed at the protein level, and investigate the effect of fertility restoration on ORF138 levels, we have raised antibodies to an ORF138-glutathione S-transferase fusion protein. Anti-ORF138 antibodies detect a 20 kDa protein that is associated with the mitochondrial membrane of sterile Ogura radish plants. Nuclear restoration is accompanied by a dramatic reduction in the amount of this protein in mitochondria of flowers and leaves, but not roots of fertile Ogura radish plants. The presence or absence of fertility restoration genes has no detectable effect on the size, abundance, or RNA editing patterns of orf138 transcripts. These results support genetic studies that have implicated orf138 in Ogura cytoplasmic male sterility and suggest that the restorer genes may be affecting either the translation or stability of ORF138.
Collapse
Affiliation(s)
- S Krishnasamy
- Department of Chemistry, Miami University, Oxford, OH 45056
| | | |
Collapse
|
26
|
Rhoads DM, Kaspi CI, Levings CS, Siedow JN. N,N'-dicyclohexylcarbodiimide cross-linking suggests a central core of helices II in oligomers of URF13, the pore-forming T-toxin receptor of cms-T maize mitochondria. Proc Natl Acad Sci U S A 1994; 91:8253-7. [PMID: 8058790 PMCID: PMC44584 DOI: 10.1073/pnas.91.17.8253] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
URF13 is a mitochondrially encoded, integral membrane protein found only in maize carrying the cms-T cytoplasm. URF13 is associated with cytoplasmic male sterility, Texas type, and causes susceptibility to the fungal pathogens Bipolaris maydis race T and Phyllosticta maydis. URF13 is predicted to contain three transmembrane alpha-helices and is a receptor for the pathotoxins (T-toxins) produced by B. maydis race T and P. maydis. Binding of T-toxin to URF13 leads to membrane permeability. Cross-linking of URF13 oligomers with N,N'-dicyclohexylcarbodiimide (DCCD) protects Escherichia coli cells expressing URF13 and cms-T mitochondria from the permeability caused by T-toxin or methomyl. Using mutated forms of URF13 expressed in E. coli cells, we determined the molecular mechanism of DCCD protection. We separately changed Lys-37 in helix II to isoleucine (K37I-URF13) and Lys-32 in the helix I/helix II loop region to alanine (K32A-URF13). DCCD treatment of K37I-URF13-expressing cells did not protect the cells from permeability caused by T-toxin or methomyl. DCCD cross-linking was greatly reduced in K37I-URF13 and in D39V-URF13-expressing cells, but it was unaffected in K32A-URF13-expressing cells. Binding of methomyl or T-toxin decreases DCCD cross-linking of URF13 oligomers expressed in either E. coli or cms-T mitochondria. We conclude that Asp-39 in helix II is cross-linked by DCCD to Lys-37 in helix II of an adjacent URF13 molecule and that this cross-linking protects against toxin-mediated permeabilization. Our results also indicate that helices II form a central core in URF13 oligomers.
Collapse
Affiliation(s)
- D M Rhoads
- Department of Botany, Duke University, Durham, NC 27708
| | | | | | | |
Collapse
|
27
|
Wise RP, Schnable PS. Mapping complementary genes in maize: positioning the rf1 and rf2 nuclear-fertility restorer loci of Texas (T) cytoplasm relative to RFLP and visible markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:785-795. [PMID: 24186179 DOI: 10.1007/bf01253987] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/1993] [Accepted: 12/07/1993] [Indexed: 06/02/2023]
Abstract
There are three major groups of cytoplasmic male-sterile cytoplasms in maize; C (Charrua), S (USDA), and T (Texas). These cytoplasms can be classified by the unique nuclear genes that suppress the male-sterility effects of these cytoplasms and restore pollen fertility. Typically, plants that carry Texas (T) cytoplasm are male fertile only if they carry dominant alleles at two unlinked nuclear restorer loci,rf1 andrf2. To facilitate analysis of T-cytoplasm-mediated male sterility and fertility restoration, we have mappedrf1 andrf2 relative to closely-linked RFLP markers using five populations. Therf1 locus and/or linked visible markers were mapped in four populations; therf2 locus was mapped in two of the populations. Data from the individual populations were joined with the aid of JoinMap software. The resulting consensus maps placerf1 between umc97 and umc92 on chromosome 3 andrf2 between umc153 andsus1 on chromosome 9. Markers that flank therf1 andrf2 loci have been used to identify alleles atrf1 andrf2 in segregating populations. These analyses demonstrate the possibility of tracking separate fertility restorer loci that contribute to a single phenotype.
Collapse
Affiliation(s)
- R P Wise
- Field Crops Research, USDA-Agricultural Research Service and Department of Plant Pathology, Iowa State University, 50011, Ames, IA, USA
| | | |
Collapse
|
28
|
Grelon M, Budar F, Bonhomme S, Pelletier G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:540-7. [PMID: 8208245 DOI: 10.1007/bf00284202] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transcription of a putative mitochondrial gene (orf138) has previously been correlated with Ogura cytoplasmic male-sterility (CMS) in rapeseed cybrids. In this paper, studies performed on a Brassica cybrid with a different organization of the orf138 locus confirm this association. We also show that mitochondria isolated from male-sterile rapeseed plants synthesize a polypeptide of 19 kDa, which is absent in fertile revertants. Antibodies against a glutathione S-transferase-ORF138 fusion protein were raised to establish that this 19 kDa polypeptide is the product of orf138. The anti-ORF138 serum was used to demonstrate that the orf138 translation product occurs only in sterile cybrids and co-purifies with the mitochondrial membrane fraction.
Collapse
Affiliation(s)
- M Grelon
- Laboratoire de Biologie cellulaire, INRA centre de Versailles, France
| | | | | | | |
Collapse
|
29
|
Schnable PS, Wise RP. Recovery of heritable, transposon-induced, mutant alleles of the rf 2 nuclear restorer of T-cytoplasm maize. Genetics 1994; 136:1171-85. [PMID: 7911770 PMCID: PMC1205872 DOI: 10.1093/genetics/136.3.1171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
T (Texas) cytoplasm is associated with a mitochondrial disruption that is phenotypically expressed during microsporogenesis resulting in male sterility. Restoration of pollen fertility in T-cytoplasm maize is controlled by dominant alleles at two unlinked, complementary, nuclear-encoded genes, rf1 and rf2. As a first step in the molecular isolation of the rf2 gene, 178,300 gametes derived from plants that carried the Mutator, Cy or Spm transposon families were screened for rf2 mutant alleles (rf2-m) via their inability to restore pollen fertility to T-cytoplasm male-sterile maize. Seven heritable rf2-m alleles were recovered from these transposon populations. Pedigrees and restriction fragment length polymorphism (RFLP)-based analyses indicated that all seven rf 2-m alleles were derived independently. The ability to obtain rf 2-m derivatives from Rf2 suggests that Rf2 alleles produce a functional product necessary to restore pollen fertility to cmsT. Molecular markets flanking the rf1 and rf2 loci were used to decipher segregation patterns in progenies segregating for the rf2-m alleles. These analyses provided preliminary evidence of a weak, third restorer gene of cmsT that can substitute for Rf1.
Collapse
Affiliation(s)
- P S Schnable
- Department of Agronomy, USDA, Agricultural Research Service, Iowa State University, Ames 50011
| | | |
Collapse
|
30
|
Umbach AL, Siedow JN. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. PLANT PHYSIOLOGY 1993; 103:845-854. [PMID: 12231983 PMCID: PMC159055 DOI: 10.1104/pp.103.3.845] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Evidence for a mixed population of covalently and noncovalently associated dimers of the cyanide-resistant alternative oxidase protein in plant mitochondria is presented. High molecular mass (oxidized) species of the alternative oxidase protein, having masses predicted for homodimers, appeared on immunoblots when the sulfhydryl reductant, dithiothreitol (DTT), was omitted from sodium dodecyl sulfate-polyacrylamide gel sample buffer. These oxidized species were observed in mitochondria from soybean (Glycine max [L.] Merr. cv Ransom), Sauromatum guttatum Schott, and mung bean (Vigna radiata [L.] R. Wilcz). Reduced species of the alternative oxidase were also present in the same mitochondrial samples. The reduced and oxidized species in isolated soybean cotyledon mitochondria could be interconverted by incubation with the sulfhydryl reagents DTT and azodicarboxylic acid bis(dimethylamide) (diamide). Treatment with chemical cross-linkers resulted in cross-linking of the reduced species, indicating a noncovalent dimeric association among the reduced alternative oxidase molecules. Alternative pathway activity of soybean mitochondria increased following reduction of the alternative oxidase protein with DTT and decreased following oxidation with diamide, indicating that electron flow through the alternative pathway is sensitive to the sulfhydryl/disulfide redox poise. In mitochondria from S. guttatum floral appendix tissue, the proportion of the reduced species increased as development progressed through thermogenesis.
Collapse
Affiliation(s)
- A. L. Umbach
- Department of Botany, Duke University, Durham, North Carolina 27708-0338
| | | |
Collapse
|
31
|
Levings CS. Thoughts on Cytoplasmic Male Sterility in cms-T Maize. THE PLANT CELL 1993; 5:1285-1290. [PMID: 12271028 PMCID: PMC160361 DOI: 10.1105/tpc.5.10.1285] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- C. S. Levings
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, North Carolina 27695-7614
| |
Collapse
|
32
|
Prioli LM, Huang J, Levings CS. The plant mitochondrial open reading frame orf221 encodes a membrane-bound protein. PLANT MOLECULAR BIOLOGY 1993; 23:287-295. [PMID: 8219065 DOI: 10.1007/bf00029005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have shown that the open reading frame orf221 is an active mitochondrial gene which encodes a novel mitochondrial polypeptide. The orf221 sequence is common to higher plants but absent in animal and fungal mitochondria. A mitochondrial polypeptide with an apparent molecular weight of 21,000 was detected with a polyclonal antibody raised against an ORF221 fusion protein. In organello translation followed by immunoprecipitation with the anti-ORF221 antibody demonstrated that this polypeptide is encoded by the orf221 gene in plant mitochondria. The ORF221 was found to be a mitochondrial membrane protein in normal (N), cms-T, and cms-C cytoplasms of several inbred lines of maize (Zea mays L.) and in other plant species.
Collapse
Affiliation(s)
- L M Prioli
- Departamento de Genética e Evolução, Universidade Estadual de Campinas (UNICAMP), SP, Brasil
| | | | | |
Collapse
|
33
|
Levings CS. Thoughts on Cytoplasmic Male Sterility in cms-T Maize. THE PLANT CELL 1993; 5:1285-1290. [PMID: 12271028 DOI: 10.2307/3869781] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- C. S. Levings
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, North Carolina 27695-7614
| |
Collapse
|
34
|
Korth KL, Levings CS. Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae. Proc Natl Acad Sci U S A 1993; 90:3388-92. [PMID: 8475086 PMCID: PMC46305 DOI: 10.1073/pnas.90.8.3388] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The URF13 protein, which is encoded by the mitochondrial gene T-urf13, is responsible for cytoplasmic male sterility and pathotoxin sensitivity in the Texas male-sterile cytoplasm (cms-T) of maize. Mitochondrial sensitivity to two host-specific fungal toxins (T toxins) is mediated by the interaction of URF13 and T toxins to form pores in the inner mitochondrial membrane. A carbamate insecticide, methomyl, mimics the effects of T toxins on isolated cms-T mitochondria. URF13 was expressed in Spodoptera frugiperda (fall army-worm) cells (Sf9) in culture and in Trichoplusia ni (cabbage looper) larvae with a baculovirus vector. In insect cells, URF13 forms oligomeric structures in the membrane and confers T toxin or methomyl sensitivity. Adding T toxin or methomyl to Sf9 cells producing URF13 causes permeabilization of plasma membranes. In addition, URF13 is toxic to insect cells grown in culture without T toxins or methomyl; even a T-toxin-insensitive mutant form of URF13 is lethal to cell cultures. Baculoviruses expressing URF13 are lethal to T. ni larvae, at times postinjection comparable to those obtained by injecting a baculovirus expressing an insect neurotoxin. This result suggests that URF13 could be useful as a biological control agent for insect pests. Our data indicate that URF13 has two independent mechanisms for toxicity, one that is mediated by T toxin and methomyl and one that is independent of these toxins. Similarly, male sterility and toxin sensitivity in cms-T maize may be due to independent mechanisms.
Collapse
Affiliation(s)
- K L Korth
- Department of Genetics, North Carolina State University, Raleigh 27695-7614
| | | |
Collapse
|
35
|
Kaspi C, Siedow J. Cross-linking of the cms-T maize mitochondrial pore-forming protein URF13 by N,N'-dicyclohexylcarbodiimide and its effect on URF13 sensitivity to fungal toxins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53394-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Glab N, Petit PX, Slonimski PP. Mitochondrial dysfunction in yeast expressing the cytoplasmic male sterility T-urf13 gene from maize: analysis at the population and individual cell level. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:299-308. [PMID: 7679774 DOI: 10.1007/bf00277126] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The urf13TW gene, which is derived from the mitochondrial T-urf13 gene responsible for Texas cytoplasmic male sterility in maize, was expressed in Saccharomyces cerevisiae by targeting its translation product into mitochondria. Analysis by oxygraphy at the population level revealed that in the presence of methomyl the oxygen uptake of intact yeast cells carrying the targeted protein is strongly stimulated only with ethanol as respiratory substrate and not with glycerol, lactate, pyruvate, or acetate. When malate is the substrate oxidized by isolated mitochondria, interaction between the targeted protein and methomyl results in significant inhibition of oxygen uptake. This inhibition is eliminated and oxygen uptake is stimulated by subsequent addition of NAD+. Using 3,3'-dihexyloxacarbocyanine iodide [DiOC6(3)] as probe, interactive laser scanning and flow cytometry, which permit analysis at the individual cell level, demonstrated that specific staining of the mitochondrial compartment is obtained and that DiOC6(3) fluorescence serves as a measure of the membrane potential. Finally, it was shown that, as in T cytoplasm maize mitochondria, HmT toxin and methomyl dissipate the membrane potential of yeast mitochondria that carry the foreign protein. Furthermore, the results suggest that the HmT toxin and methomyl response is related to the plasmid copy number per cell and that the deleterious effect induced by HmT toxin is stronger than that of methomyl.
Collapse
Affiliation(s)
- N Glab
- Centre de Génétique Moléculaire, C.N.R.S. UPR 2420, associé à l'Université Pierre et Marie Curie, Gif sur Yvette, France
| | | | | |
Collapse
|