1
|
Tamargo SB, Bui Thanh T, Pérez M, Otero O, Oliva HR, Falero G, Pérez JL, Cedré MB, Okuskhanova E, Thiruvengadam M, Shariati MA, Sierra GVG. Nanocochleates containing N-Octylglicoside extracted Vibrio cholerae antigens elicited high vibriocidal antibodies titers after intragastric immunization in a mice model. Microb Pathog 2021; 156:104902. [PMID: 33930421 DOI: 10.1016/j.micpath.2021.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 09/30/2022]
Abstract
Biological detergents are used in research laboratories, to extract or solubilize proteins from cell membranes. In order to evaluate the ability to extract antigens from the bacterial cell surface of the wild Vibrio cholerae strain C7258 and study their immunogenic potential by forming proteoliposomes and cochleate and preserving their immunogenicity, the non-ionic detergent, n-Octylglucoside (n-OG), and the Zwitterionic detergent (3-cholamidopropyl dimethylammonio 1-propanesulfonate; CHAPS) were tested in concentrations between 5 and 15%. The anionic detergent sodium deoxycholate (DOC) was used as a reference. Electrophoretic, immunochemical and electron microscopy techniques have characterized the extracts and their chromatographic fractions. With CHAPS and n-OG detergents in concentrations between 5 and 15%, a higher yield was obtained in the extraction of proteins and lipopolysaccharides (LPS) and other components from the bacterial surface compared to 10% DOC. When using 10% DOC, 15% CHAPS and n-OG between 5 and 15%, stable proteoliposomes were formed, of average size between 82 and 93 nm in diameter, with known proportions of proteins, LPS and other components. In some of the concentrations, liposomes were formed with almost pure proteins. Some cholera outer membrane proteins like the 17 kDa protein, which corresponds to the mannose-sensitive hemagglutinin (MSHA), which mediates the adhesion to the brush border of the small intestine and the outer membrane protein U (OMPU) were identified with monoclonal antibodies (mAbs) and purified. The fundamental components of liposomes, proteins and LPS, retained their molecular weights, when compared with known standards and by processing programs of electrophoretic profiles and their antigenicity, without alterations due to the extraction procedure, as could be verified by immune identification techniques with monoclonal antibodies in the case of LPS, significant antigens in this pathogen. The main purpose of the present work was to show that a new anticholera vaccine formulation based on cochleates, containing selected protein and LPS fraction extracted by detergents, is able to elicit protective high titers of bactericidal antibodies after intragastric immunization in the mice model. The objective was achieved.
Collapse
Affiliation(s)
- S B Tamargo
- Latin American School of Medicine, Havana, Cuba; Jiangxi Institute of Biological Products, Ji'An, China
| | - T Bui Thanh
- Pharmacy and Foods Institute, University of Havana, Cuba
| | - M Pérez
- Pharmacy and Foods Institute, University of Havana, Cuba
| | - O Otero
- Finlay Institute for Vaccines, Havana City, Cuba
| | - H R Oliva
- Finlay Institute for Vaccines, Havana City, Cuba
| | - G Falero
- Finlay Institute for Vaccines, Havana City, Cuba
| | - J L Pérez
- Finlay Institute for Vaccines, Havana City, Cuba
| | - M B Cedré
- Finlay Institute for Vaccines, Havana City, Cuba
| | - E Okuskhanova
- Shakarim State University of Semey, Semey, 071412, Kazakhstan
| | - M Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - M A Shariati
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University, Orel City, 302026, Russia; K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation; Kazakh Research Institute of Processing and Food Industry (Semey Branch), Kazakhstan
| | - G V G Sierra
- Group of Biotechnology and Pharmaceutical Industries of Cuba (BioCubaFarma), Havana, Cuba; Jiangxi Institute of Biological Products, Ji'An, China.
| |
Collapse
|
2
|
Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020; 10:561296. [PMID: 33123494 PMCID: PMC7574455 DOI: 10.3389/fcimb.2020.561296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cholera is an acute secretory diarrhoeal disease caused by the bacterium Vibrio cholerae. The key determinants of cholera pathogenicity, cholera toxin (CT), and toxin co-regulated pilus (TCP) are part of the genome of two horizontally acquired Mobile Genetic Elements (MGEs), CTXΦ, and Vibrio pathogenicity island 1 (VPI-1), respectively. Besides, V. cholerae genome harbors several others MGEs that provide antimicrobial resistance, metabolic functions, and other fitness traits. VPI-1, one of the most well characterized genomic island (GI), deserved a special attention, because (i) it encodes many of the virulence factors that facilitate development of cholera (ii) it is essential for the acquisition of CTXΦ and production of CT, and (iii) it is crucial for colonization of V. cholerae in the host intestine. Nevertheless, VPI-1 is ubiquitously present in all the epidemic V. cholerae strains. Therefore, to understand the role of MGEs in the evolution of cholera pathogen from a natural aquatic habitat, it is important to understand the VPI-1 encoded functions, their acquisition and possible mode of dissemination. In this review, we have therefore discussed our present understanding of the different functions of VPI-1 those are associated with virulence, important for toxin production and essential for the disease development.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization. PLoS Pathog 2016; 12:e1005570. [PMID: 27070545 PMCID: PMC4829181 DOI: 10.1371/journal.ppat.1005570] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023] Open
Abstract
The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR’s genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters. The transcription factor ToxR initiates a virulence regulatory cascade required for V. cholerae to express essential host colonization factors and cause disease. Genome-wide expression studies suggest that ToxR regulates many genes important for V. cholerae pathogenesis, yet our knowledge of the direct regulon controlled by ToxR is limited to just four genes. Here, we determine ToxR’s genome-wide DNA-binding profile and show that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors. Our results suggest that ToxR has gained regulatory control over important acquired elements that not only drive V. cholerae pathogenesis, but also define the major transitions of V. cholerae pandemic lineages. We demonstrate that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS for control of critical colonization functions. This regulatory interaction is the major role of ToxR in V. cholerae colonization, since deletion of hns abrogates the need for ToxR in V. cholerae host colonization. By comparing the genome-wide binding profiles of ToxR and other critical virulence regulators, we show that, despite similar predicted DNA binding requirements, ToxR is unique in its global control of progenitor-encoded and acquired genes. Our results suggest that factors in addition to primary DNA structure determine selection of ToxR binding sites.
Collapse
Affiliation(s)
- Misha I. Kazi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron R. Conrado
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alexandra R. Mey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Bryan W. Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Enterotoxigenic Escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infect Immun 2013; 82:509-21. [PMID: 24478067 DOI: 10.1128/iai.01106-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of death due to diarrheal illness among young children in developing countries, and there is currently no effective vaccine. Many elements of ETEC pathogenesis are still poorly defined. Here we demonstrate that YghJ, a secreted ETEC antigen identified in immunoproteomic studies using convalescent patient sera, is required for efficient access to small intestinal enterocytes and for the optimal delivery of heat-labile toxin (LT). Furthermore, YghJ is a highly conserved metalloprotease that influences intestinal colonization of ETEC by degrading the major mucins in the small intestine, MUC2 and MUC3. Genes encoding YghJ and its cognate type II secretion system (T2SS), which also secretes LT, are highly conserved in ETEC and exist in other enteric pathogens, including other diarrheagenic E. coli and Vibrio cholerae bacteria, suggesting that this mucin-degrading enzyme may represent a shared virulence feature of these important pathogens.
Collapse
|
5
|
Johnson CN. Fitness factors in vibrios: a mini-review. MICROBIAL ECOLOGY 2013; 65:826-851. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.
Collapse
Affiliation(s)
- Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Dunstan RA, Heinz E, Wijeyewickrema LC, Pike RN, Purcell AW, Evans TJ, Praszkier J, Robins-Browne RM, Strugnell RA, Korotkov KV, Lithgow T. Assembly of the type II secretion system such as found in Vibrio cholerae depends on the novel Pilotin AspS. PLoS Pathog 2013; 9:e1003117. [PMID: 23326233 PMCID: PMC3542185 DOI: 10.1371/journal.ppat.1003117] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/20/2012] [Indexed: 12/18/2022] Open
Abstract
The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS. The type 2 secretion system (T2SS) is a sophisticated, multi-component molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. In Vibrio cholerae, for example, the T2SS mediates the secretion of cholera toxin. We find that there are three distinct forms of T2SS, based on the sequence characteristics of the secretin. A targeting paradigm, developed for the Klebsiella-type secretin PulD, could not previously be applied to the T2SS in Vibrio cholerae and many other bacterial species whose genomes encode no homolog of the crucial targeting factor PulS (also called OutS, EtpO or GspS). Using bioinformatics we find, remarkably, that these bacteria have instead evolved a structurally distinct protein to serve in place of PulS. We crystallized and solved the structure of this distinct factor, AspS, measured its activity in novel assays for T2SS assembly, and show that the protein is essential for the function of the Vibrio-type T2SS. A structural homolog of AspS found here in Pseudomonas suggests widespread use of the pilotin-secretin targeting paradigm for T2SS assembly.
Collapse
Affiliation(s)
- Rhys A. Dunstan
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Eva Heinz
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
- Victorian Bioinformatics Consortium, Monash University, Melbourne, Australia
| | | | - Robert N. Pike
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Timothy J. Evans
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Judyta Praszkier
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
- Monash Institute of Medical Research, Melbourne, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (KVK); (TL)
| | - Trevor Lithgow
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
- * E-mail: (KVK); (TL)
| |
Collapse
|
7
|
Roux N, Spagnolo J, de Bentzmann S. Neglected but amazingly diverse type IVb pili. Res Microbiol 2012; 163:659-73. [PMID: 23103334 DOI: 10.1016/j.resmic.2012.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/19/2012] [Indexed: 01/12/2023]
Abstract
This review provides an overview of current knowledge concerning type IVb pili in Gram-negative bacteria. The number of these pili identified is steadily increasing with genome sequencing and mining studies, but studies of these pili are somewhat uneven, because their expression is tightly regulated and the signals or regulators controlling expression need to be identified. However, as illustrated here, they have a number of interesting functional, assembly-related and regulatory features.
Collapse
Affiliation(s)
- Nicolas Roux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255 - Aix Marseille University, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402, cédex 20, Marseille, France
| | | | | |
Collapse
|
8
|
YghG (GspSβ) is a novel pilot protein required for localization of the GspSβ type II secretion system secretin of enterotoxigenic Escherichia coli. Infect Immun 2012; 80:2608-22. [PMID: 22585966 DOI: 10.1128/iai.06394-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) pathotype, characterized by the prototypical strain H10407, is a leading cause of morbidity and mortality in the developing world. A major virulence factor of ETEC is the type II secretion system (T2SS) responsible for secretion of the diarrheagenic heat-labile enterotoxin (LT). In this study, we have characterized the two type II secretion systems, designated alpha (T2SS(α)) and beta (T2SS(β)), encoded in the H10407 genome and describe the prevalence of both systems in other E. coli pathotypes. Under laboratory conditions, the T2SS(β) is assembled and functional in the secretion of LT into culture supernatant, whereas the T2SS(α) is not. Insertional inactivation of the three genes located upstream of gspC(β) (yghJ, pppA, and yghG) in the atypical T2SS(β) operon revealed that YghJ is not required for assembly of the GspD(β) secretin or secretion of LT, that PppA is likely the prepilin peptidase required for the function of T2SS(β), and that YghG is required for assembly of the GspD(β) secretin and thus function of the T2SS(β). Mutational and physiological analysis further demonstrated that YghG (redesignated GspS(β)) is a novel outer membrane pilotin protein that is integral for assembly of the T2SS(β) by localizing GspD(β) to the outer membrane, whereupon GspD(β) forms the macromolecular secretin multimer through which T2SS(β) substrates are translocated.
Collapse
|
9
|
Nakjang S, Ndeh DA, Wipat A, Bolam DN, Hirt RP. A novel extracellular metallopeptidase domain shared by animal host-associated mutualistic and pathogenic microbes. PLoS One 2012; 7:e30287. [PMID: 22299034 PMCID: PMC3267712 DOI: 10.1371/journal.pone.0030287] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/16/2011] [Indexed: 12/20/2022] Open
Abstract
The mucosal microbiota is recognised as an important factor for our health, with many disease states linked to imbalances in the normal community structure. Hence, there is considerable interest in identifying the molecular basis of human-microbe interactions. In this work we investigated the capacity of microbes to thrive on mucosal surfaces, either as mutualists, commensals or pathogens, using comparative genomics to identify co-occurring molecular traits. We identified a novel domain we named M60-like/PF13402 (new Pfam entry PF13402), which was detected mainly among proteins from animal host mucosa-associated prokaryotic and eukaryotic microbes ranging from mutualists to pathogens. Lateral gene transfers between distantly related microbes explained their shared M60-like/PF13402 domain. The novel domain is characterised by a zinc-metallopeptidase-like motif and is distantly related to known viral enhancin zinc-metallopeptidases. Signal peptides and/or cell surface anchoring features were detected in most microbial M60-like/PF13402 domain-containing proteins, indicating that these proteins target an extracellular substrate. A significant subset of these putative peptidases was further characterised by the presence of associated domains belonging to carbohydrate-binding module family 5/12, 32 and 51 and other glycan-binding domains, suggesting that these novel proteases are targeted to complex glycoproteins such as mucins. An in vitro mucinase assay demonstrated degradation of mammalian mucins by a recombinant form of an M60-like/PF13402-containing protein from the gut mutualist Bacteroides thetaiotaomicron. This study reveals that M60-like domains are peptidases targeting host glycoproteins. These peptidases likely play an important role in successful colonisation of both vertebrate mucosal surfaces and the invertebrate digestive tract by both mutualistic and pathogenic microbes. Moreover, 141 entries across various peptidase families described in the MEROPS database were also identified with carbohydrate-binding modules defining a new functional context for these glycan-binding domains and providing opportunities to engineer proteases targeting specific glycoproteins for both biomedical and industrial applications.
Collapse
Affiliation(s)
- Sirintra Nakjang
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Didier A. Ndeh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anil Wipat
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David N. Bolam
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert P. Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One 2010; 5:e8801. [PMID: 20098708 PMCID: PMC2808357 DOI: 10.1371/journal.pone.0008801] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/14/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation. METHODS In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12. CONCLUSION This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies.
Collapse
|
11
|
Bhowmik P, Bag PK, Hajra TK, De R, Sarkar P, Ramamurthy T. Pathogenic potential of Aeromonas hydrophila isolated from surface waters in Kolkata, India. J Med Microbiol 2009; 58:1549-1558. [DOI: 10.1099/jmm.0.014316-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the genus Aeromonas (family Aeromonadaceae) are medically important, Gram-negative, rod-shaped micro-organisms and are ubiquitous in aquatic environments. Aeromonas species are increasingly recognized as enteric pathogens; they possess several virulence factors associated with human disease, and represent a serious public health concern. In the present study, putative virulence traits of Aeromonas hydrophila isolates collected from different natural surface waters of Kolkata, India, were compared with a group of clinical isolates from the same geographical area using tissue culture and PCR assays. Enteropathogenic potential was investigated in the mouse model. Of the 21 environmental isolates tested, the majority showed cytotoxicity to HeLa cells (81 %), haemolysin production (71 %) and serum resistance properties (90 %), and they all exhibited multi-drug resistance. Some of the isolates induced fluid accumulation (FA ratio≥100), damage to the gut and an inflammatory reaction in the mouse intestine; these effects were comparable to those of clinical strains of A. hydrophila and toxigenic Vibrio cholerae. Interestingly, two of the isolates evoked a cell vacuolation effect in HeLa cells, and were also able to induce FA. These findings demonstrate the presence of potentially pathogenic and multi-drug-resistant A. hydrophila in the surface waters, thereby indicating a significant risk to public health. Continuous monitoring of surface waters is important to identify potential water-borne pathogens and to reduce the health risk caused by the genus Aeromonas.
Collapse
Affiliation(s)
- Poulami Bhowmik
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Prasanta K. Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Tapas K. Hajra
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Rituparna De
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700 010, India
| | - Pradipto Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700 010, India
| |
Collapse
|
12
|
Vibrio cholerae Interactions with the Gastrointestinal Tract: Lessons from Animal Studies. Curr Top Microbiol Immunol 2009; 337:37-59. [DOI: 10.1007/978-3-642-01846-6_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Putative virulence traits and pathogenicity of Vibrio cholerae Non-O1, Non-O139 isolates from surface waters in Kolkata, India. Appl Environ Microbiol 2008; 74:5635-44. [PMID: 18641168 DOI: 10.1128/aem.00029-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae non-O1, non-O139 was isolated from natural surface waters from different sites sampled in diarrhea endemic zones in Kolkata, India. Twenty-one of these isolates were randomly selected and included in the characterization. The multiserogroup isolates were compared by their virulence traits with a group of clinical non-O1, non-O139 isolates from the same geographic area. Of the 21 environmental isolates, 6 and 14 strains belonged to Heiberg groups I and II, respectively. Three of the environmental isolates showed resistance to 2,2-diamine-6,7-diisopropylpteridine phosphate. All of the non-O1, non-O139 strains were positive for toxR, and except for one environmental isolate, none of them were positive for tcpA in the PCR assay. None of the isolates were positive for genes encoding cholera toxin (ctxA), heat-stable toxin (est), heat-labile toxin (elt), and Shiga toxin variants (stx) of Escherichia coli. Additionally, except for one environmental isolate (PC32), all were positive for the gene encoding El Tor hemolysin (hly). The culture supernatants of 86% (18 of 21) of the environmental isolates showed a distinct cytotoxic effect on HeLa cells, and some of these strains also produced cell-rounding factor. The lipase, protease, and cell-associated hemagglutination activities and serum resistance properties of the environmental and clinical isolates did not differ much. However, seven environmental isolates exhibited very high hemolytic activities (80 to 100%), while none of the clinical strains belonged to this group. The environmental isolates manifested three adherence patterns, namely, carpet-like, diffuse, and aggregative adherence, and the clinical isolates showed diffuse adherence on HeLa cells. Of the 11 environmental isolates tested for enteropathogenic potential, 8 (73%) induced positive fluid accumulation (>/=100) in a mouse model, and the reactivities of these isolates were comparable to those of clinical strains of non-O1, non-O139 and toxigenic O139 V. cholerae. Comparison of the counts of the colonized environmental and clinical strains in the mouse intestine showed that the organisms of both groups had similar colonizing efficiencies. These findings indicate the presence of potentially pathogenic V. cholerae non-O1, non-O139 strains in surface waters of the studied sites in Kolkata.
Collapse
|
14
|
Lee AY, Park SG, Jang M, Cho S, Myung PK, Kim YR, Rhee JH, Lee DH, Park BC. Proteomic analysis of pathogenic bacteriumVibrio vulnificus. Proteomics 2006; 6:1283-9. [PMID: 16421934 DOI: 10.1002/pmic.200500393] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study we have constructed a proteome reference map of the pathogenic bacterium Vibrio vulnificus. From the reference map, we identified several virulence-related proteins, such as ToxR and ToxS, as well as numerous proteins involved in diverse cellular functions. To search for additional virulence-related proteins, we compared the whole proteomes from the wild-type and toxR mutant of V. vulnificus and found that several proteins were up- or down-regulated in the toxR mutant. We suggest that these differentially regulated proteins whose expression is coordinately controlled by a virulence regulator ToxR, some of which are already implicated in virulence, play roles in the pathogenesis of V. vulnificus.
Collapse
Affiliation(s)
- Ah Young Lee
- Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Withey JH, Dirita VJ. Vibrio cholerae ToxT independently activates the divergently transcribed aldA and tagA genes. J Bacteriol 2005; 187:7890-900. [PMID: 16291662 PMCID: PMC1291258 DOI: 10.1128/jb.187.23.7890-7900.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Vibrio cholerae ToxT regulon includes the genes encoding cholera toxin (CT) and the toxin-coregulated pilus (TCP), which are the major virulence factors required for causing cholera disease and colonizing the upper small intestine of the host, respectively. The genes encoding CT, ctxAB, and the genes encoding the components of the TCP, tcpA to tcpJ, are organized within operons, upstream of which are DNA binding sites for the transcriptional activator ToxT. ToxT is a member of the large AraC/XylS family of transcriptional regulators and also activates transcription of five other genes whose roles in V. cholerae pathogenesis, if any, are poorly understood. acfA and acfD are divergently transcribed genes required for efficient colonization of the intestine. Transcriptional activation of acfA and acfD requires a pair of central ToxT binding sites in an inverted-repeat configuration for ToxT-directed transcription of both genes. tcpI has an unknown role in pathogenesis. aldA and tagA are divergently transcribed genes that also have unknown roles in pathogenesis. In this study, we map the aldA and tagA promoters and identify the ToxT binding sites upstream of each gene. Our results suggest that two ToxT binding sites in an inverted-repeat configuration are required for ToxT-directed transcription of tagA and that a single ToxT binding site is required for ToxT-directed transcription of aldA. Furthermore, to direct transcription of tagA and aldA, ToxT uses independent binding regions upstream of each gene, in contrast to what we previously found for the divergently transcribed acfA and acfD genes, which share ToxT binding sites between the two genes.
Collapse
Affiliation(s)
- Jeffrey H Withey
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, 48109-0614, USA
| | | |
Collapse
|
16
|
Withey JH, DiRita VJ. Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation. Mol Microbiol 2005; 56:1062-77. [PMID: 15853890 DOI: 10.1111/j.1365-2958.2005.04589.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gram-negative bacterium Vibrio cholerae is the infectious agent responsible for the disease Asiatic cholera. The genes required for V. cholerae virulence, such as those encoding the cholera toxin (CT) and toxin-coregulated pilus (TCP), are controlled by a cascade of transcriptional activators. Ultimately, the direct transcriptional activator of the majority of V. cholerae virulence genes is the AraC/XylS family member ToxT protein, the expression of which is activated by the ToxR and TcpP proteins. Previous studies have identified the DNA sites to which ToxT binds upstream of the ctx operon, encoding CT, and the tcpA operon, encoding, among other products, the major subunit of the TCP. These known ToxT binding sites are seemingly dissimilar in sequence other than being A/T rich. Further results suggested that ctx and tcpA each has a pair of ToxT binding sites arranged in a direct repeat orientation upstream of the core promoter elements. In this work, using both transcriptional lacZ fusions and in vitro copper-phenanthroline footprinting experiments, we have identified the ToxT binding sites between the divergently transcribed acfA and acfD genes, which encode components of the accessory colonization factor required for efficient intestinal colonization by V. cholerae. Our results indicate that ToxT binds to a pair of DNA sites between acfA and acfD in an inverted repeat orientation. Moreover, a mutational analysis of the ToxT binding sites indicates that both binding sites are required by ToxT for transcriptional activation of both acfA and acfD. Using copper-phenanthroline footprinting to assess the occupancy of ToxT on DNA having mutations in one of these binding sites, we found that protection by ToxT of the unaltered binding site was not affected, whereas protection by ToxT of the mutant binding site was significantly reduced in the region of the mutations. The results of further footprinting experiments using DNA templates having +5 bp and +10 bp insertions between the two ToxT binding sites indicate that both binding sites are occupied by ToxT regardless of their positions relative to each other. Based on these results, we propose that ToxT binds independently to two DNA sites between acfA and acfD to activate transcription of both genes.
Collapse
Affiliation(s)
- Jeffrey H Withey
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0614, USA
| | | |
Collapse
|
17
|
Reguera G, Kolter R. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 2005; 187:3551-5. [PMID: 15866944 PMCID: PMC1112007 DOI: 10.1128/jb.187.10.3551-3555.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP- biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place.
Collapse
Affiliation(s)
- Gemma Reguera
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
18
|
Bose N, Taylor RK. Identification of a TcpC-TcpQ outer membrane complex involved in the biogenesis of the toxin-coregulated pilus of Vibrio cholerae. J Bacteriol 2005; 187:2225-32. [PMID: 15774863 PMCID: PMC1065220 DOI: 10.1128/jb.187.7.2225-2232.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of tcp mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a tcpC deletion strain). Complementation of the tcpQ deletion restored TcpC levels and TCP formation, and similarly, complementation of tcpC restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65 degrees C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane.
Collapse
Affiliation(s)
- Niranjan Bose
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
19
|
Faruque SM, Nair GB, Mekalanos JJ. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 2005; 23:723-41. [PMID: 15585131 DOI: 10.1089/dna.2004.23.723] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio cholerae, a Gram-negative bacterium belonging to the gamma-subdivision of the family Proteobacteriaceae is the etiologic agent of cholera, a devastating diarrheal disease which occurs frequently as epidemics. Any bacterial species encountering a broad spectrum of environments during the course of its life cycle is likely to develop complex regulatory systems and stress adaptation mechanisms to best survive in each environment encountered. Toxigenic V. cholerae, which has evolved from environmental nonpathogenic V. cholerae by acquisition of virulence genes, represents a paradigm for this process in that this organism naturally exists in an aquatic environment but infects human beings and cause cholera. The V. cholerae genome, which is comprised of two independent circular mega-replicons, carries the genetic determinants for the bacterium to survive both in an aquatic environment as well as in the human intestinal environment. Pathogenesis of V. cholerae involves coordinated expression of different sets of virulence associated genes, and the synergistic action of their gene products. Although the acquisition of major virulence genes and association between V. cholerae and its human host appears to be recent, and reflects a simple pathogenic strategy, the establishment of a productive infection involves the expression of many more genes that are crucial for survival and adaptation of the bacterium in the host, as well as for its onward transmission and epidemic spread. While a few of the virulence gene clusters involved directly with cholera pathogenesis have been characterized, the potential exists for identification of yet new genes which may influence the stress adaptation, pathogenesis, and epidemiological characteristics of V. cholerae. Coevolution of bacteria and mobile genetic elements (plasmids, transposons, pathogenicity islands, and phages) can determine environmental survival and pathogenic interactions between bacteria and their hosts. Besides horizontal gene transfer mediated by genetic elements and phages, the evolution of pathogenic V. cholerae involves a combination of selection mechanisms both in the host and in the environment. The occurrence of periodic epidemics of cholera in endemic areas appear to enhance this process.
Collapse
Affiliation(s)
- Shah M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh.
| | | | | |
Collapse
|
20
|
Abstract
Intestinal infection with Vibrio cholerae results in the loss of large volumes of watery stool, leading to severe and rapidly progressing dehydration and shock. Without adequate and appropriate rehydration therapy, severe cholera kills about half of affected individuals. Cholera toxin, a potent stimulator of adenylate cyclase, causes the intestine to secrete watery fluid rich in sodium, bicarbonate, and potassium, in volumes far exceeding the intestinal absorptive capacity. Cholera has spread from the Indian subcontinent where it is endemic to involve nearly the whole world seven times during the past 185 years. V cholerae serogroup O1, biotype El Tor, has moved from Asia to cause pandemic disease in Africa and South America during the past 35 years. A new serogroup, O139, appeared in south Asia in 1992, has become endemic there, and threatens to start the next pandemic. Research on case management of cholera led to the development of rehydration therapy for dehydrating diarrhoea in general, including the proper use of intravenous and oral rehydration solutions. Appropriate case management has reduced deaths from diarrhoeal disease by an estimated 3 million per year compared with 20 years ago. Vaccination was thought to have no role for cholera, but new oral vaccines are showing great promise.
Collapse
Affiliation(s)
- David A Sack
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh.
| | | | | | | |
Collapse
|
21
|
Kirn TJ, Bose N, Taylor RK. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 2003; 49:81-92. [PMID: 12823812 DOI: 10.1046/j.1365-2958.2003.03546.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colonization of the human small intestine by Vibrio cholerae requires the type 4 toxin co-regulated pilus (TCP). Genes encoding the structure and biogenesis functions of TCP are organized within an operon located on the Vibrio Pathogenicity Island (VPI). In an effort to elucidate the functions of proteins involved in TCP biogenesis, in frame deletions of all of the genes within the tcp operon coding for putative pilus biogenesis proteins have been constructed and the resulting mutants characterized with respect to the assembly and function of TCP. As a result of this analysis, we have identified the product of one of these genes, tcpF, as a novel secreted colonization factor. Chromosomal deletion of tcpF yields a mutant that retains in vitro phenotypes associated with the assembly of functional TCP yet is severely attenuated for colonization of the infant mouse intestine. Furthermore, we have determined that the mechanism by which TcpF is translocated across the bacterial outer membrane requires the TCP biogenesis machinery and is independent of the type II extracellular protein secretion (EPS) system. These results suggest a dual role for the TCP biogenesis apparatus in V. cholerae pathogenesis and a novel mechanism of intestinal colonization mediated by a soluble factor.
Collapse
Affiliation(s)
- Thomas J Kirn
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, NH 03755, USA
| | | | | |
Collapse
|
22
|
Abstract
Toxigenic Vibrio cholerae is the etiological agent of cholera, an acute dehydrating diarrhea that occurs in epidemic form in many developing countries. Although V. cholerae is a human pathogen, aquatic ecosystems are major habitats of Vibrio species, which includes both pathogenic and nonpathogenic strains that vary in their virulence gene content. V. cholerae belonging to the 01 and 0139 serogroups is commonly known to carry a set of virulence genes necessary for pathogenesis in humans. Recent studies have indicated that virulence genes or their homologues are also dispersed among environmental strains of V. cholerae belonging to diverse serogroups, which appear to constitute an environmental reservoir of virulence genes. Although the definitive roles of the virulence-associated factors in the environment, and the environmental selection pressures for V. cholerae-carrying virulence genes or their homologues is not clear, the potential for origination of new epidemic strains from environmental progenitors seems real. It is likely that the aquatic environment harbors different virulence-associated genes scattered among environmental vibrios, which possess a lower virulence potential than the epidemic strains. The ecosystem comprising the aquatic environment, V. cholerae, genetic elements mediating gene transfer, and the mammalian host appears to support the clustering of critical virulence genes in a proper combination leading to the origination of new V. cholerae strains with epidemic potential.
Collapse
Affiliation(s)
- Shah M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | | |
Collapse
|
23
|
Paton AW, Paton JC. Reactivity of convalescent-phase hemolytic-uremic syndrome patient sera with the megaplasmid-encoded TagA protein of Shiga toxigenic Escherichia coli O157. J Clin Microbiol 2002; 40:1395-9. [PMID: 11923363 PMCID: PMC140373 DOI: 10.1128/jcm.40.4.1395-1399.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cosmid library of Shiga toxigenic Escherichia coli (STEC) O157:H7 strain EDL933 DNA was screened for clones capable of reacting with convalescent-phase serum from a patient with hemolytic-uremic syndrome (HUS), in an attempt to identify candidate virulence genes. One of the immunoreactive clones contained a portion of the large plasmid pO157, and the immunoreactive gene product was identified as TagA. The function of this 898-amino-acid protein is unknown, but it exhibits 42% amino acid sequence identity and 63% similarity to a 312-amino-acid region of a ToxR-regulated lipoprotein of Vibrio cholerae. Antibodies to E. coli O157 TagA were detected in sera from other HUS patients with O157 STEC infection but not in those from patients whose illnesses were caused by other STEC types or in healthy controls. These data demonstrate that TagA is expressed in vivo and provide circumstantial evidence for a role in the pathogenesis of the disease. The tagA gene is present only in STEC strains belonging to serogroup O157, and so antibodies to TagA are a potentially useful serological marker for infections due to such strains.
Collapse
Affiliation(s)
- Adrienne W Paton
- Department of Molecular Biosciences, Adelaide University, Adelaide, S.A., 5005, Australia
| | | |
Collapse
|
24
|
Wang SY, Lauritz J, Jass J, Milton DL. A ToxR homolog from Vibrio anguillarum serotype O1 regulates its own production, bile resistance, and biofilm formation. J Bacteriol 2002; 184:1630-9. [PMID: 11872714 PMCID: PMC134897 DOI: 10.1128/jb.184.6.1630-1639.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ToxR, a transmembrane regulatory protein, has been shown to respond to environmental stimuli. To better understand how the aquatic bacterium Vibrio anguillarum, a fish pathogen, responds to environmental signals that may be necessary for survival in the aquatic and fish environment, toxR and toxS from V. anguillarum serotype O1 were cloned. The deduced protein sequences were 59 and 67% identical to the Vibrio cholerae ToxR and ToxS proteins, respectively. Deletion mutations were made in each gene and functional analyses were done. Virulence analyses using a rainbow trout model showed that only the toxR mutant was slightly decreased in virulence, indicating that ToxR is not a major regulator of virulence factors. The toxR mutant but not the toxS mutant was 20% less motile than the wild type. Like many regulatory proteins, ToxR was shown to negatively regulate its own expression. Outer membrane protein (OMP) preparations from both mutants indicated that ToxR and ToxS positively regulate a 38-kDa OMP. The 38-kDa OMP was shown to be a major OMP, which cross-reacted with an antiserum to OmpU, an outer membrane porin from V. cholerae, and which has an amino terminus 75% identical to that of OmpU. ToxR and to a lesser extent ToxS enhanced resistance to bile. Bile in the growth medium increased expression of the 38-kDa OMP but did not affect expression of ToxR. Interestingly, a toxR mutant forms a better biofilm on a glass surface than the wild type, suggesting a new role for ToxR in the response to environmental stimuli.
Collapse
Affiliation(s)
- Su-Yan Wang
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
25
|
Attridge SR, Fazeli A, Manning PA, Stroeher UH. Isolation and characterization of bacteriophage-resistant mutants of Vibrio cholerae O139. Microb Pathog 2001; 30:237-46. [PMID: 11312617 DOI: 10.1006/mpat.2000.0426] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vibrio cholerae O139 strains produce a capsule which is associated with complement resistance and is used as a receptor by bacteriophage JA1. Spontaneous JA1-resistant mutants were found to have several phenotypes, with loss of capsule and/or O-antigen from the cell surface. Determination of the residual complement resistance and infant mouse colonization potential of each mutant suggested that production of O-antigen is of much greater significance than the presence of capsular material for both of these properties. Two different in vitro assays of complement resistance were compared and the results of one shown to closely reflect the comparative recoveries of bacteria from the colonization experiments. Preliminary complementation studies implicated two rfb region genes, wzz and wbfP, as being essential for the biosynthesis of capsule but not O-antigen.
Collapse
Affiliation(s)
- S R Attridge
- Department of Molecular Biosciences, Department of Microbiology, AstraZeneca R&D Boston, The University of Adelaide, Medical School, 35 Gatehouse Drive, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
26
|
Bidle KA, Bartlett DH. RNA arbitrarily primed PCR survey of genes regulated by ToxR in the deep-sea bacterium Photobacterium profundum strain SS9. J Bacteriol 2001; 183:1688-93. [PMID: 11160100 PMCID: PMC95054 DOI: 10.1128/jb.183.5.1688-1693.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are currently investigating the role of ToxR-mediated gene regulation in Photobacterium profundum strain SS9. SS9 is a moderately piezophilic ("pressure loving") psychrotolerant marine bacterium belonging to the family Vibrionaceae. In Vibrio cholerae, ToxR is a transmembrane DNA binding protein involved in mediating virulence gene expression in response to various environmental signals. A homolog to V. cholerae ToxR that is necessary for pressure-responsive gene expression of two outer membrane protein-encoding genes was previously found in SS9. To search for additional genes regulated by ToxR in SS9, we have used RNA arbitrarily primed PCR (RAP-PCR) with wild-type and toxR mutant strains of SS9. Seven ToxR-activated transcripts and one ToxR-repressed transcript were identified in this analysis. The cDNAs corresponding to these partial transcripts were cloned and sequenced, and ToxR regulation of their genes was verified. The products of these genes are all predicted to fall into one or both of two functional categories, those whose products alter membrane structure and/or those that are part of a starvation response. The transcript levels of all eight newly identified genes were also characterized as a function of hydrostatic pressure. Various patterns of pressure regulation were observed, indicating that ToxR activation or repression cannot be used to predict the influence of pressure on gene expression in SS9. These results provide further information on the nature of the ToxR regulon in SS9 and indicate that RAP-PCR is a useful approach for the discovery of new genes under the control of global regulatory transcription factors.
Collapse
Affiliation(s)
- K A Bidle
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA
| | | |
Collapse
|
27
|
Chakrabortty A, Das S, Majumdar S, Mukhopadhyay K, Roychoudhury S, Chaudhuri K. Use of RNA arbitrarily primed-PCR fingerprinting to identify Vibrio cholerae genes differentially expressed in the host following infection. Infect Immun 2000; 68:3878-87. [PMID: 10858198 PMCID: PMC101662 DOI: 10.1128/iai.68.7.3878-3887.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1999] [Accepted: 03/31/2000] [Indexed: 01/01/2023] Open
Abstract
Evidence suggests that a repertoire of Vibrio cholerae genes are differentially expressed in vivo, and regulation of virulence factors in vivo may follow a different pathway. Our work was aimed at characterization of in vivo-grown bacteria and identification of genes that are differentially expressed following infection by RNA arbitrarily primed (RAP)-PCR fingerprinting. The ligated rabbit ileal loop model was used. The motility of in vivo-grown bacteria increased by 350% over that of in vitro-grown bacteria. Also, the in vivo-grown cells were more resistant to killing by human serum. By using the RAP-PCR strategy, five differentially expressed transcripts were identified. Two in vitro-induced transcripts encoded polypeptides for the leucine tRNA synthatase and the 50S ribosomal protein, and the three in vivo-induced transcripts encoded the SucA and MurE proteins and a polypeptide of unknown function. MurE is a protein involved in the peptidoglycan biosynthetic pathway. The lytic profiles of in vivo- and in vitro-grown cells suspended in distilled water were compared; the former was found to be slightly less sensitive to lysis. Ultrathin sections of both cells observed under the transmission electron microscope revealed that in contrast to the usual wavy discontinuous membrane structure of the in vitro-grown cells, in vivo-grown cells had a more rigid, clearly visible double-layered structure. The V. cholerae murE gene was cloned and sequenced. The sequence contained an open reading frame of 1,488 nucleotides with its own ribosome-binding site. A plasmid containing the murE gene of V. cholerae was transformed into V. cholerae 569B, and a transformed strain, 569BME, containing the plasmid was obtained. Ultrathin sections of 569BME viewed under a transmission electron microscope revealed a slightly more rigid cell wall than that of wild-type 569B. When V. cholerae 569B and 569BME cells were injected separately into ligated rabbit ileal loops, the transformed cells had a preference for growth in the ileal loops versus laboratory conditions.
Collapse
Affiliation(s)
- A Chakrabortty
- Biophysics Division, Indian Institute of Chemical Biology, Jadavpur, Calcutta-700 032, India
| | | | | | | | | | | |
Collapse
|
28
|
Angelichio MJ, Spector J, Waldor MK, Camilli A. Vibrio cholerae intestinal population dynamics in the suckling mouse model of infection. Infect Immun 1999; 67:3733-9. [PMID: 10417131 PMCID: PMC96647 DOI: 10.1128/iai.67.8.3733-3739.1999] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The suckling mouse has been used as a model to identify Vibrio cholerae intestinal colonization factors for over two decades, yet little is known about the location of recoverable organisms along the gastrointestinal (GI) tract following intragastric inoculation. In the present study, we determined the population dynamics of wild-type and avirulent mutant derivatives of both classical and El Tor biotype strains throughout the entire suckling mouse GI tract at various times after intragastric inoculation. Wild-type strains preferentially colonized the middle small bowel with a sharp demarcation between more proximal segments which had manyfold-fewer recoverable cells. Surprisingly, large and stable populations of viable cells were also recovered from the cecum and large bowel. Strains lacking toxin-coregulated pili (TCP(-)) were cleared from the small bowel; however, an El Tor TCP(-) strain colonized the cecum and large bowel almost as well as the wild-type strain. Strains lacking lipopolysaccharide O antigen (OA(-)) were efficiently cleared from the small bowel at early times but then showed net growth for the remainder of the infections. Moreover, large populations of the OA(-) strains were maintained in the large bowel. These results show that for the El Tor biotype neither TCP nor OA is required for colonization of the suckling mouse large bowel. Finally, similar percent recoveries of wild-type, TCP(-), and OA(-) strains from the small bowel at an early time after infection suggest that TCP and OA are not required for strains of either biotype to resist bactericidal mechanisms in the suckling mouse GI tract.
Collapse
Affiliation(s)
- M J Angelichio
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
29
|
Killeen K, Spriggs D, Mekalanos J. Bacterial mucosal vaccines: Vibrio cholerae as a live attenuated vaccine/vector paradigm. Curr Top Microbiol Immunol 1999; 236:237-54. [PMID: 9893363 DOI: 10.1007/978-3-642-59951-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- K Killeen
- Virus Research Institute, Cambridge, USA
| | | | | |
Collapse
|
30
|
Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 1998; 62:1301-14. [PMID: 9841673 PMCID: PMC98947 DOI: 10.1128/mmbr.62.4.1301-1314.1998] [Citation(s) in RCA: 634] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cholera caused by toxigenic Vibrio cholerae is a major public health problem confronting developing countries, where outbreaks occur in a regular seasonal pattern and are particularly associated with poverty and poor sanitation. The disease is characterized by a devastating watery diarrhea which leads to rapid dehydration, and death occurs in 50 to 70% of untreated patients. Cholera is a waterborne disease, and the importance of water ecology is suggested by the close association of V. cholerae with surface water and the population interacting with the water. Cholera toxin (CT), which is responsible for the profuse diarrhea, is encoded by a lysogenic bacteriophage designated CTXPhi. Although the mechanism by which CT causes diarrhea is known, it is not clear why V. cholerae should infect and elaborate the lethal toxin in the host. Molecular epidemiological surveillance has revealed clonal diversity among toxigenic V. cholerae strains and a continual emergence of new epidemic clones. In view of lysogenic conversion by CTXPhi as a possible mechanism of origination of new toxigenic clones of V. cholerae, it appears that the continual emergence of new toxigenic strains and their selective enrichment during cholera outbreaks constitute an essential component of the natural ecosystem for the evolution of epidemic V. cholerae strains and genetic elements that mediate the transfer of virulence genes. The ecosystem comprising V. cholerae, CTXPhi, the aquatic environment, and the mammalian host offers an understanding of the complex relationship between pathogenesis and the natural selection of a pathogen.
Collapse
Affiliation(s)
- S M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1000, Bangladesh.
| | | | | |
Collapse
|
31
|
Chiang SL, Mekalanos JJ. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol 1998; 27:797-805. [PMID: 9515705 DOI: 10.1046/j.1365-2958.1998.00726.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathogenesis of cholera begins with colonization of the host intestine by Vibrio cholerae. The toxin co-regulated pilus (TCP), a fimbrial structure produced by V. cholerae, is absolutely required for colonization (i.e. the persistence, survival and growth of V. cholerae in the upper intestinal milieu), but many other aspects of the colonization process are not well understood. In this study, we use signature-tagged transposon mutagenesis (STM) to conduct a screen for random insertion mutations that affect colonization in the suckling mouse model for cholera. Of approximately 1100 mutants screened, five mutants (approximately 0.5%) with transposon insertions in TCP biogenesis genes were isolated, validating the use of STM to identify attenuated mutants. Insertions in lipopolysaccharide, biotin and purine biosynthetic genes were also found to cause colonization defects. Similar results were observed for mutations in homologues of pta and ptfA, two genes involved in phosphate transfer. Finally, our screen identified several novel genes, disruption of which also caused colonization defects in the mouse model. These results demonstrate that STM is a powerful method for isolating colonization-defective mutants of V. cholerae.
Collapse
Affiliation(s)
- S L Chiang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Iredell JR, Manning PA. Translocation failure in a type-4 pilin operon: rfb and tcpT mutants in Vibrio cholerae. Gene 1997; 192:71-7. [PMID: 9224876 DOI: 10.1016/s0378-1119(97)00040-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Defined chromosomal mutations that lead to assembly failure of the toxin coregulated pilus (TCP) of Vibrio cholerae provide useful insights into the biogenesis of a type-4 pilus. Mutants in rfb affecting LPS O-antigen biosynthesis, and strains depleted of the cytoplasmic membrane-associated ATP-binding protein TcpT, provide contrasting TCP export-defective phenotypes acting at different locations. Mutants in the perosamine biosynthesis pathway of V. cholerae 569B result in an rfb phenotype with an LPS consisting only of core oligosaccharide and lipid A. Such strains are unable to assemble TCP, and TcpA subunits are found in the periplasm and membrane fractions. In both rfb and tcpT mutants, the export defect is specific and complete. TcpT is a member of a large family of cytoplasmic membrane-associated ATP-binding proteins which are essential in type-4 pilin systems and in many non-pilin outer membrane transporters in Gram-negative bacteria. The behaviour of translocation-arrested TcpA in rfb and tcpT mutants is indistinguishable from that within assembled pilus under a range of conditions including flotation in density gradients, chemical cross-linking, and detergent extraction experiments. From the data presently available, it would appear that TcpA requires TcpT-mediated translocation from the cytoplasmic membrane and that TcpT stabilizes the subunit at or immediately beyond this stage, before crossing the outer membrane.
Collapse
Affiliation(s)
- J R Iredell
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | |
Collapse
|
33
|
Abstract
The toxin co-regulated pilus (TCP) has been identified as a critical colonization factor in both animal models and humans for Vibrio cholerae O1. The major pilin subunit, TcpA (and also TcpB), is similar to type-4 pilins but TCP probably more appropriately belongs to a sub-class which includes the bundle-forming pilus of enteropathogenic Escherichia coli. The genes for TCP biosynthesis and assembly are clustered with the exception of housekeeping functions such as TcpG (=DsbA, a periplasmic disulfide bond epimerase). The nt sequences from El Tor and classical strains show only minor differences corresponding to the major regulatory regions and in TcpA itself. These differences are thought to account for the alternate conditions required for expression of TCP by the two biotypes and the antigenic variation and lack of cross-protection. Aside from the TcpA only a few of the proteins have had their roles in TCP biogenesis defined. Regulation of TCP is controlled by the ToxR regulon via ToxT with a possible involvement of TcpP and the cAMP-CRP system. Experiments using the infant mouse cholera model have now shown that TCP is a colonization factor and protective antigen for both classical and El Tor O1 strains and in the O139 Bengal serotype and that the mannose-sensitive haemagglutinin pilus does not appear to play a comparable role.
Collapse
Affiliation(s)
- P A Manning
- Department of Microbiology and Immunology, University of Adelaide, Australia.
| |
Collapse
|
34
|
Barker A, Manning PA. VlpA of Vibrio cholerae O1: the first bacterial member of the alpha 2-microglobulin lipocalin superfamily. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):1805-1813. [PMID: 9202455 DOI: 10.1099/00221287-143-6-1805] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified a gene, vlpA, which is closely linked to the mfrA,B locus associated with mannose-fucose-resistant haemagglutination. VlpA is an outer-membrane protein which can be labelled with [3H]palmitate and whose processing is globomycin-sensitive, suggesting that it is a lipoprotein. Homology searches revealed that VlpA belongs to the group of lipocalins of the alpha 2-microglobulin superfamily which function as small hydrophobic molecule transporters, and is the first identified bacterial member of this group. Multiple copies of this gene are present in Vibrio cholerae O1 and O139 and Southern hybridization reveals a biotype-specific pattern of fragment sizes. Construction of strains capable of hyperproducing VlpA suggested that it is able to bind haemin with low affinity but this may be due to a simple hydrophobic interaction. Attempts to construct specific mutants in vlpA have been unsuccessful, presumably because of the multiple copies of vlpA genes and their linkage to the VCR element.
Collapse
Affiliation(s)
- Andrew Barker
- Microbial Pathogenesis Unit, Department of Microbiology and Immunology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paul A Manning
- Microbial Pathogenesis Unit, Department of Microbiology and Immunology, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
35
|
Iredell JR, Manning PA. Outer membrane translocation arrest of the TcpA pilin subunit in rfb mutants of Vibrio cholerae O1 strain 569B. J Bacteriol 1997; 179:2038-46. [PMID: 9068652 PMCID: PMC178930 DOI: 10.1128/jb.179.6.2038-2046.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae is a type 4-related fimbrial adhesin and a useful model for the study of type 4 pilus biogenesis and related bacterial macromolecular transport pathways. Transposon mutagenesis of the putative perosamine biosynthesis genes in the rfb operon of V. cholerae 569B eliminates lipopolysaccharide (LPS) O-antigen biosynthesis but also leads to a specific defect in TCP export. Localization of TcpA is made difficult by the hydrophobic nature of this bundle-forming pilin, which floats anomalously in sucrose density gradients, but the processed form of TcpA can be found in membrane and periplasmic fractions prepared from these strains. While TcpA cannot be detected by surface immunogold labelling in transmission electron microscope preparations, EDTA pretreatment facilitates immunofluorescent antibody labelling of whole cells, and ultrathin cryosectioning techniques confirm membrane and periplasmic accumulation of TcpA. Salt and detergent extraction, protease accessibility, and chemical cross-linking experiments suggest that although TcpA has not been assembled on the cell surface, subunit interactions are otherwise identical to those within TCP. In addition, TcpA-mediated fucose-resistant hemagglutination of murine erythrocytes is preserved in whole-cell lysates, suggesting that TcpA has obtained its mature conformation. These data localize a stage of type 4 pilin translocation to the outer membrane, at which stage export failure leads to the accumulation of pilin subunits in a configuration similar to that within the mature fiber. Possible candidates for the outer membrane defect are discussed.
Collapse
Affiliation(s)
- J R Iredell
- Department of Microbiology and Immunology, University of Adelaide, Australia
| | | |
Collapse
|
36
|
|
37
|
Abstract
The toxin coregulated pilus (TCP) is required for Vibrio cholerae to colonize the human intestine. The expression of the pilin gene, tcpA, is dependent upon ToxR and upon ToxT. The toxT gene was recently mapped within the TCP biogenesis gene cluster and shown to be capable of activating a tcpA::TnphoA fusion when cloned in Escherichia coli. In this study, we determined that ToxR/ToxT activation occurs at the level of tcpA transcription. ToxT expressed in E. coli could activate a tcp operon fusion, while ToxR, ToxR with ToxS, or a ToxR-PhoA fusion failed to activate the tcp operon fusion and we could not demonstrate binding of a ToxR extract to the tcpA promoter region in DNA mobility-shift assays. The start site for the regulated promoter was shown by primer extension to lie 75 bp upstream of the first codon of tcpA. An 800-base tcpA message was identified, by Northern analysis, that correlates by size to the distance between the transcriptional start and a hairpin-loop sequence between tcpA and tcpB. The more-sensitive assay of RNase protection analysis demonstrated that a regulated transcript probably extends through the rest of the downstream tcp genes, including toxT and the adjacent accessory colonization factor (acf) genes. An in-frame tcpA deletion, but not a polar tcpA::TnphoA fusion, could be complemented for pilus surface expression by providing tcpA in trans. This evidence suggests that the tcp genes, including toxT, are organized in an operon directly activated by ToxT in a ToxR-dependent manner. Most of the toxT expression under induced conditions requires transcription of the tcpA promoter. Further investigation of how tcp::TnphoA insertions that are polar on toxT expression retain regulation showed that a low basal level of toxT expression is present in toxR and tcp::TnphoA strains. Overall, these observations support the ToxR/ToxT cascade of regulation for tcp. Once induced, toxT expression becomes autoregulatory via the tcp promoter, linking tcp expression to that of additional colonization factors, exotoxin production, and genes of unknown function in cholera pathogenesis.
Collapse
Affiliation(s)
- R C Brown
- University of Tennessee, Health Science Center, Department of Microbiology and Immunology, Memphis 38163, USA
| | | |
Collapse
|
38
|
Barondess JJ, Beckwith J. bor gene of phage lambda, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J Bacteriol 1995; 177:1247-53. [PMID: 7868598 PMCID: PMC176730 DOI: 10.1128/jb.177.5.1247-1253.1995] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
bor is one of two recently identified genes of phage lambda which are expressed during lysogeny and whose products display homology to bacterial virulence proteins. bor is closely related to the iss locus of plasmid CoIV,I-K94, which promotes bacterial resistance to serum complement killing in vitro and virulence in animals. bor has a similar in vitro effect. We show here that the bor gene product is a lipoprotein located in the Escherichia coli outer membrane. We also find that antigenically related proteins are expressed by lysogens of a number of other lambdoid coliphage, in cells carrying the cloned iss gene, and in several clinical isolates of E. coli. These results demonstrate that bor sequences are widespread and present a starting point for mechanistic analysis of bor-mediated serum resistance.
Collapse
Affiliation(s)
- J J Barondess
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
39
|
Abstract
Despite more than a century of study, cholera still presents challenges and surprises to us. Throughout most of the 20th century, cholera was caused by Vibrio cholerae of the O1 serogroup and the disease was largely confined to Asia and Africa. However, the last decade of the 20th century has witnessed two major developments in the history of this disease. In 1991, a massive outbreak of cholera started in South America, the one continent previously untouched by cholera in this century. In 1992, an apparently new pandemic caused by a previously unknown serogroup of V. cholerae (O139) began in India and Bangladesh. The O139 epidemic has been occurring in populations assumed to be largely immune to V. cholerae O1 and has rapidly spread to many countries including the United States. In this review, we discuss all aspects of cholera, including the clinical microbiology, epidemiology, pathogenesis, and clinical features of the disease. Special attention will be paid to the extraordinary advances that have been made in recent years in unravelling the molecular pathogenesis of this infection and in the development of new generations of vaccines to prevent it.
Collapse
Affiliation(s)
- J B Kaper
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore 21201
| | | | | |
Collapse
|
40
|
Waldor MK, Colwell R, Mekalanos JJ. The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci U S A 1994; 91:11388-92. [PMID: 7972070 PMCID: PMC45236 DOI: 10.1073/pnas.91.24.11388] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Vibrio cholerae serogroup O139 emerged on the Indian subcontinent in October 1992 to become the first non-O1 V. cholerae serogroup documented to cause epidemic cholera. Although related to V. cholerae El Tor O1 strains, O139 strains have unique surface structures that include a capsular surface layer and lipopolysaccharide (LPS). Immunoblot analysis of either whole-cell lysates or LPS preparations revealed three electrophoretic forms of the O139 antigen: two slowly migrating forms and one rapidly migrating form that appeared identical to O139 LPS. All three forms of the antigen shared an epitope defined by an O139-specific monoclonal antibody. A serum-sensitive nonencapsulated mutant was isolated that lacks only the slow migrating forms. The slow migrating forms did not stain with silver whereas the rapidly migrating form did, suggesting that the former might constitute highly polymerized O-antigen side-chain molecules that were not covalently bound to core polysaccharide and lipid A (an "O-antigen capsule"). A single transposon insertion resulted in the loss of immunoreactivity of both the LPS and the O-antigen capsule, implying that there are genes common to the biosynthesis of both these macromolecules. The O139 LPS and O-antigen capsule were both important for colonization of the small intestine of the newborn mouse and for serum resistance, demonstrating that both of these forms of the O139 serogroup antigen are virulence factors.
Collapse
Affiliation(s)
- M K Waldor
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
41
|
Abstract
We have characterized a new virulence factor in Bordetella pertussis: serum resistance. Compared with Escherichia coli HB101, wild-type B. pertussis was relatively resistant to classical-pathway, complement-dependent killing by normal human serum. However, a mutant of B. pertussis (BPM2041) which is less virulent in mice and which has Tn5 lac inserted in a previously uncharacterized bvg-regulated gene was found to be at least 10-fold more susceptible to serum killing than the wild type. We have named this locus brk, for Bordetella resistance to killing. We have cloned and sequenced the brk locus, and it encodes two divergently transcribed open reading frames (ORFs), termed BrkA and BrkB. Both ORFs are necessary for serum resistance. Within the 300 bases which separate the two ORFs and upstream of each ORF are putative sites for BvgA binding. BrkA shows 29% identity to pertactin and has two RGD motifs in addition to a conserved proteolytic processing site and an outer membrane targeting signal. Like pertactin, BrkA is involved in adherence and invasion. Despite the similarities, a pertactin mutant was found to be not as sensitive to serum killing as the BrkA or BrkB mutants. BrkB is similar to ORFs in E. coli and Mycobacterium leprae and displays domains of homology to various transporters. On the basis of its hydropathy profile, BrkB is predicted to be a cytoplasmic membrane protein. By Southern blot, brk sequences were found in Bordetella bronchiseptica and Bordetella parapertussis but not in Bordetella avium.
Collapse
Affiliation(s)
- R C Fernandez
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Ohio 45267
| | | |
Collapse
|
42
|
Blanchard KP, Dankert JR. C9-mediated killing of bacterial cells by transferred C5b-8 complexes: transferred C5b-9 complexes are nonbactericidal. Infect Immun 1994; 62:4101-6. [PMID: 7927662 PMCID: PMC303082 DOI: 10.1128/iai.62.10.4101-4106.1994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The formation of the C5b-9 complex on the outer membrane of complement-sensitive cells of Escherichia coli results in inhibition of inner membrane function and the death of the cell. Cells bearing a precursor of the C5b-9 site, the C5b-8 complex, suffer no loss in viability. Antibiotic-sensitive, complement-sensitive donor cells bearing precursor C5b-8 complexes were incubated with equal numbers of antibiotic-resistant, complement-sensitive acceptor cells that had not been exposed to a complement source. This cell mixture was incubated with 5 mM EDTA for 5 min and then with calcium chloride (20 mM) for various times. The excess calcium ion concentration was effectively reduced with additional EDTA, and the cell mixture was washed and resuspended in buffer. The viability of the acceptor cells was assayed by plating on antibiotic-containing media. C9 was added to the mixture, and the mixture was incubated for 10 min at 37 degrees C and then plated as described above. It was found that the acceptor cells were killed by the addition of purified C9 only after incubation with donor cells bearing C5b-8 sites during the transfer procedure. This indicates that precursor C5b-8 sites that support C9-mediated killing could be transferred between cells. No loss in viability was detected for acceptor cells subjected to the procedure described above in the presence of donor cells bearing complete C5b-9 complexes, formed prior to mixing with acceptor cells for the transfer procedure.
Collapse
Affiliation(s)
- K P Blanchard
- Department of Biology, University of Southwestern Louisiana, Lafayette 70504
| | | |
Collapse
|
43
|
Dziejman M, Mekalanos JJ. Analysis of membrane protein interaction: ToxR can dimerize the amino terminus of phage lambda repressor. Mol Microbiol 1994; 13:485-94. [PMID: 7997165 DOI: 10.1111/j.1365-2958.1994.tb00443.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ToxR protein of Vibrio cholerae is an integral membrane protein that co-ordinately regulates virulence determinant expression. ToxR directly activates the cholera toxin operon, but maximal activation is achieved in the presence of ToxS, an integral membrane protein thought to interact with ToxR periplasmic sequences. Studies that substitute alkaline phosphatase sequences for the periplasmic domain of ToxR have led to a model for ToxR activation based on dimerization and ToxS interaction. We constructed lambda-ToxR chimeric proteins using the DNA-binding domain of the phage lambda repressor, which cannot effectively dimerize by itself, to assess the ability of ToxR to form dimers in Escherichia coli. The results suggest that ToxR sequences can propagate dimerization, and that ToxS can influence the ability to dimerize.
Collapse
Affiliation(s)
- M Dziejman
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
44
|
Schifferli DM, Alrutz MA. Permissive linker insertion sites in the outer membrane protein of 987P fimbriae of Escherichia coli. J Bacteriol 1994; 176:1099-110. [PMID: 7906265 PMCID: PMC205162 DOI: 10.1128/jb.176.4.1099-1110.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The FasD protein is essential for the biogenesis of 987P fimbriae of Escherichia coli. In this study, subcellular fractionation was used to demonstrate that FasD is an outer membrane protein. In addition, the accessibility of FasD to proteases established the presence of surface-exposed FasD domains on both sides of the outer membrane. The fasD gene was sequenced, and the deduced amino acid sequence was shown to share homologous domains with a family of outer membrane proteins from various fimbrial systems. Similar to porins, fimbrial outer membrane proteins are relatively polar, lack typical hydrophobic membrane-spanning domains, and posses secondary structures predicted to be rich in turns and amphipathic beta-sheets. On the basis of the experimental data and structural predictions, FasD is postulated to consist essentially of surface-exposed turns and loops and membrane-spanning interacting amphipathic beta-strands. In an attempt to test this prediction, the fasD gene was submitted to random in-frame linker insertion mutagenesis. Preliminary experiments demonstrated that it was possible to produce fasD mutants, whose products remain functional for fimbrial export and assembly. Subsequently, 11 fasD alleles, containing linker inserts encoding beta-turn-inducing residues, were shown to express functional proteins. The insertion sites were designated permissive sites. The inserts used are expected to be least detrimental to the function of FasD when they are inserted into surface-exposed domains not directly involved in fimbrial export. In contrast, FasD is not expected to accommodate such residues in its amphipathic beta-strands without being destabilized in the membrane and losing function. All permissive sites were sequenced and shown to be located in or one residue away from predicted turns. In contrast, 5 of 10 sequenced nonpermissive sites were mapped to predicted amphipathic beta-strands. These results are consistent with the structural predictions for FasD.
Collapse
Affiliation(s)
- D M Schifferli
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia 19104
| | | |
Collapse
|
45
|
Braun V, Wu H. Chapter 14 Lipoproteins, structure, function, biosynthesis and model for protein export. BACTERIAL CELL WALL 1994. [DOI: 10.1016/s0167-7306(08)60417-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Zhang MY, Lövgren A, Low MG, Landén R. Characterization of an avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect Immun 1993; 61:4947-54. [PMID: 7693592 PMCID: PMC281268 DOI: 10.1128/iai.61.12.4947-4954.1993] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis subsp. gelechiae, isolated by Heierson et al. (A. Heierson, I. Sidén, A. Kivaisi, and H. G. Boman, J. Bacteriol. 167:18-24, 1986) as a spontaneous phage-resistant mutant, was further characterized and found to lack the expression of phosphatidylcholine- and phosphatidylinositol-degrading phospholipase C, beta-lactamase, and flagellin because of the absence of corresponding mRNAs. The avirulent mutant was also found to be less efficient in killing insect cells in vitro than the wild type and to have altered behavior in vivo; wild-type B. thuringiensis does not circulate in the insect hemolymph after injection, whereas the avirulent mutant and nonpathogenic control bacteria remain in circulation. Flagella and motility may be important for virulence in the early stages of an infection; mutants with decreased motility appear less virulent when fed to Trichoplusia ni but not when injected. The 50% lethal doses of wild-type strain Bt13 and avirulent mutant strain Bt1302 were estimated to be 0.52 +/- 0.25 and 2,600 +/- 1,300 CFU per injected larva, respectively.
Collapse
Affiliation(s)
- M Y Zhang
- Department of Microbiology, Stockholm University, Sweden
| | | | | | | |
Collapse
|
47
|
Abstract
The outer membrane of Vibrio cholerae contains a maltose-inducible major protein, OmpS (43 kDa), that is common to different isolates. Nucleotide sequence analysis of the corresponding structural gene, ompS, revealed an open reading frame encoding a 412-amino-acid polypeptide. The amino acid sequence of OmpS is similar to that of LamB, the Escherichia coli maltoporin, and to ScrY or Klebsiella pneumoniae, although the antigenic determinants of these proteins are different. The cloned ompS gene complemented an ompS mutation of V. cholerae and the corresponding polypeptide could function as a maltoporin in a LamB- mutant of E. coli. The promoter region of ompS is highly homologous to the malK-lamB promoter of E. coli and the ompS gene is controlled by MalT in E. coli. This indicates that the same kind of regulatory mechanism is used to activate the ompS expression in V. cholerae and malK-lamB expression in E. coli. An ompS-lacZ transcriptional fusion was used to demonstrate a dual control in ompS expression; the ompS gene is responsive to the inducers maltose and trehalose but in their absence it is also expressed in response to growth-phase. These different modes of induction might be of importance during different stages of V. cholerae infection.
Collapse
Affiliation(s)
- H Lång
- Department of Molecular Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences
| | | |
Collapse
|
48
|
Lin Z, Kumagai K, Baba K, Mekalanos JJ, Nishibuchi M. Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J Bacteriol 1993; 175:3844-55. [PMID: 8509337 PMCID: PMC204801 DOI: 10.1128/jb.175.12.3844-3855.1993] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In an effort to identify the regulatory gene controlling the expression of the tdh gene, encoding the thermostable direct hemolysin of Vibrio parahaemolyticus, we examined total DNA of AQ3815 (a Kanagawa phenomenon-positive strain) for sequences homologous to that of the toxR gene of Vibrio cholerae. The extracted DNA gave a weak hybridization signal under reduced-stringency conditions with a toxR-specific DNA probe. Cloning and sequence analysis of the probe-positive sequence revealed an operon (Vp-toxRS) which was highly similar to the toxRS operon of V. cholerae (Vc-toxRS) (52 and 62% similarities in the two genes, respectively). The deduced amino acid sequences of the Vp-toxRS gene products (Vp-ToxRS) contained regions similar to the proposed transmembrane and activity domains of the Vc-toxRS gene products (Vc-ToxRS). All clinical and environmental strains of V. parahaemolyticus examined possessed the Vp-toxRS genes. In the presence of Vp-ToxS, Vp-ToxR promoted expression of the tdh2 gene, one of two tdh genes (tdh1 and tdh2) carried by Kanagawa phenomenon-positive strains. The DNA sequence located 144 bp upstream of the tdh2 coding region was shown to be important for the Vp-ToxR-stimulated expression of the tdh2 gene in an Escherichia coli background. Comparative analysis of AQ3815 and its isogenic Vp-toxR null mutant gave the following results: (i) Vp-ToxR promoted, in an AQ3815 background, expression of the tdh gene to different degrees in various culture media, with KP broth (2% peptone, 0.5% NaCl, 0.03 M KH2PO4, pH 6.2) being most effective (12-fold); (ii) the promotion of tdh gene expression in KP broth was at the level of transcription; and (iii) Vp-ToxR was essential for demonstration of enterotoxic activity of AQ3815 in the rabbit ileal loop, a model previously used to demonstrate thermostable direct hemolysin-mediated enterotoxic activity of AQ3815. These results demonstrate that Vp-ToxR and Vc-ToxR share a strikingly similar function, i.e., direct stimulation at the transcriptional level of the gene encoding a major virulence determinant (enterotoxin) of a Vibrio species.
Collapse
Affiliation(s)
- Z Lin
- Department of Microbiology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
49
|
Losonsky GA, Tacket CO, Wasserman SS, Kaper JB, Levine MM. Secondary Vibrio cholerae-specific cellular antibody responses following wild-type homologous challenge in people vaccinated with CVD 103-HgR live oral cholera vaccine: changes with time and lack of correlation with protection. Infect Immun 1993; 61:729-33. [PMID: 8423098 PMCID: PMC302786 DOI: 10.1128/iai.61.2.729-733.1993] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Peripheral blood immunoglobulin A antibody-secreting-cell (ASC) responses are thought to reflect the mucosal immune response to locally presented antigens. We evaluated the ASC response to cholera toxin (CT) and Inaba lipopolysaccharide (LPS) in 26 North American volunteers following immunization with a single oral dose of live attenuated Vibrio cholerae O1 vaccine strain CVD 103-HgR and again upon homologous wild-type challenge with V. cholerae classical Inaba 569B. Challenge occurred at either 7, 30, or 180 days after vaccination. The CT and LPS ASC responses of volunteers following vaccination (83 and 55%, respectively) were similar in magnitude and frequency to those of unvaccinated controls following wild-type challenge (80 and 60%, respectively [0.1 < or = P < or = 0.9]). The responses were primarily immunoglobulin A. Vaccinated volunteers challenged within 30 days of vaccination had reduced or nondetectable CT and LPS ASC responses. Challenge at 6 months resulted in a heightened ASC response to LPS, confirming the existence of mucosal memory. ASC responses to CT upon challenge at 6 months were detectable but not different from that seen following primary immunization, suggesting that secondary ASC responses to different antigens from a single vaccine operate independently. In spite of these variable ASC responses, the vaccine efficacy was 100% following challenge for all vaccinees. V. cholerae-specific ASC responses following antigenic reexposure gave information on the presence of mucosal B memory cells but did not correlate with protective immunity. As such, these ASC assays will have limited usefulness for evaluating vaccine responders in vaccine field trials in cholera-endemic areas where prior V. cholerae O1 exposure is unknown.
Collapse
Affiliation(s)
- G A Losonsky
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore 21201
| | | | | | | | | |
Collapse
|
50
|
Allaoui A, Sansonetti PJ, Parsot C. MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins. J Bacteriol 1992; 174:7661-9. [PMID: 1332940 PMCID: PMC207479 DOI: 10.1128/jb.174.23.7661-7669.1992] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Shigella flexneri causes bacillary dysentery by invading epithelial cells of the colonic mucosa. The invasion process requires the synthesis and secretion of the virulence plasmid-encoded Ipa proteins. Using TnphoA mutagenesis, we have identified two virulence plasmid genes, mxiJ and mxiM, that encode proteins exported by the general export pathway. Analysis of the MxiJ and MxiM deduced amino acid sequences suggested that mxiJ and mxiM might encode lipoproteins, which was confirmed by [3H]palmitate labeling of MxiJ:PhoA and MxiM:PhoA fusion proteins. A mxiJ mutant was unable to invade HeLa cells, to induce the formation of plaques on confluent monolayers of HeLa cells, and to provoke keratoconjunctivitis in guinea pigs. In addition, secretion of seven polypeptides, including IpaA, IpaB, and IpaC, was abolished in the mxiJ mutant. Sequence comparisons indicated that MxiJ and MxiH, which is encoded by a gene located upstream from mxiJ, are homologous to the Yersinia enterocolitica YscJ and YscF proteins, respectively.
Collapse
Affiliation(s)
- A Allaoui
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 199, Institut Pasteur, Paris, France
| | | | | |
Collapse
|