1
|
DiMario RJ, Kophs AN, Apalla AJA, Schnable JN, Cousins AB. Multiple highly expressed phosphoenolpyruvate carboxylase genes have divergent enzyme kinetic properties in two C4 grasses. ANNALS OF BOTANY 2023; 132:413-428. [PMID: 37675505 PMCID: PMC10667006 DOI: 10.1093/aob/mcad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Phosphoenolpyruvate (PEP) carboxylase (PEPC) catalyses the irreversible carboxylation of PEP with bicarbonate to produce oxaloacetate. This reaction powers the carbon-concentrating mechanism (CCM) in plants that perform C4 photosynthesis. This CCM is generally driven by a single PEPC gene product that is highly expressed in the cytosol of mesophyll cells. We found two C4 grasses, Panicum miliaceum and Echinochloa colona, that each have two highly expressed PEPC genes. We characterized the kinetic properties of the two most abundant PEPCs in E. colona and P. miliaceum to better understand how the enzyme's amino acid structure influences its function. METHODS Coding sequences of the two most abundant PEPC proteins in E. colona and P. miliaceum were synthesized by GenScript and were inserted into bacteria expression plasmids. Point mutations resulting in substitutions at conserved amino acid residues (e.g. N-terminal serine and residue 890) were created via site-directed PCR mutagenesis. The kinetic properties of semi-purified plant PEPCs from Escherichia coli were analysed using membrane-inlet mass spectrometry and a spectrophotometric enzyme-coupled reaction. KEY RESULTS The two most abundant P. miliaceum PEPCs (PmPPC1 and PmPPC2) have similar sequence identities (>95 %), and as a result had similar kinetic properties. The two most abundant E. colona PEPCs (EcPPC1 and EcPPC2) had identities of ~78 % and had significantly different kinetic properties. The PmPPCs and EcPPCs had different responses to allosteric inhibitors and activators, and substitutions at the conserved N-terminal serine and residue 890 resulted in significantly altered responses to allosteric regulators. CONCLUSIONS The two, significantly expressed C4Ppc genes in P. miliaceum were probably the result of genomes combining from two closely related C4Panicum species. We found natural variation in PEPC's sensitivity to allosteric inhibition that seems to bypass the conserved 890 residue, suggesting alternative evolutionary pathways for increased malate tolerance and other kinetic properties.
Collapse
Affiliation(s)
- Robert J DiMario
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ashley N Kophs
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Anthony J A Apalla
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - James N Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
2
|
Aldous SH, Weise SE, Sharkey TD, Waldera-Lupa DM, Stühler K, Mallmann J, Groth G, Gowik U, Westhoff P, Arsova B. Evolution of the Phosphoenolpyruvate Carboxylase Protein Kinase Family in C3 and C4 Flaveria spp. PLANT PHYSIOLOGY 2014; 165:1076-1091. [PMID: 24850859 PMCID: PMC4081323 DOI: 10.1104/pp.114.240283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/20/2014] [Indexed: 05/04/2023]
Abstract
The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode.
Collapse
Affiliation(s)
- Sophia H Aldous
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Sean E Weise
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Thomas D Sharkey
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Daniel M Waldera-Lupa
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Kai Stühler
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Julia Mallmann
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Georg Groth
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Udo Gowik
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| | - Borjana Arsova
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen (S.H.A., J.M., U.G., P.W., B.A.), Molecular Proteomics Laboratory (D.M.W.-L., K.S.), and Biochemische Pflanzenphysiologie (G.G.), Heinrich-Heine-Universität, 40225 Duesseldorf, Germany;Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.E.W., T.D.S.); andCluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, 40225 Duesseldorf, Germany (K.S., G.G., U.G., P.W., B.A.)
| |
Collapse
|
3
|
Monreal JA, Arias-Baldrich C, Tossi V, Feria AB, Rubio-Casal A, García-Mata C, Lamattina L, García-Mauriño S. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity. PLANTA 2013; 238:859-69. [PMID: 23913013 DOI: 10.1007/s00425-013-1933-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/17/2013] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C₄ phosphoenolpyruvate carboxylase (C₄ PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.
Collapse
Affiliation(s)
- José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Li T, Xu SL, Oses-Prieto JA, Putil S, Xu P, Wang RJ, Li KH, Maltby DA, An LH, Burlingame AL, Deng ZP, Wang ZY. Proteomics analysis reveals post-translational mechanisms for cold-induced metabolic changes in Arabidopsis. MOLECULAR PLANT 2011; 4:361-74. [PMID: 21242321 PMCID: PMC3063518 DOI: 10.1093/mp/ssq078] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 05/21/2023]
Abstract
Cold-induced changes of gene expression and metabolism are critical for plants to survive freezing. Largely by changing gene expression, exposure to a period of non-freezing low temperatures increases plant tolerance to freezing-a phenomenon known as cold acclimation. Cold also induces rapid metabolic changes, which provide instant protection before temperature drops below freezing point. The molecular mechanisms for such rapid metabolic responses to cold remain largely unknown. Here, we use two-dimensional difference gel electrophoresis (2-D DIGE) analysis of sub-cellular fractions of Arabidopsis thaliana proteome coupled with spot identification by tandem mass spectrometry to identify early cold-responsive proteins in Arabidopsis. These proteins include four enzymes involved in starch degradation, three HSP100 proteins, several proteins in the tricarboxylic acid cycle, and sucrose metabolism. Upon cold treatment, the Disproportionating Enzyme 2 (DPE2), a cytosolic transglucosidase metabolizing maltose to glucose, increased rapidly in the centrifugation pellet fraction and decreased in the soluble fraction. Consistent with cold-induced inactivation of DPE2 enzymatic activity, the dpe2 mutant showed increased freezing tolerance without affecting the C-repeat binding transcription factor (CBF) transcriptional pathway. These results support a model that cold-induced inactivation of DPE2 leads to rapid accumulation of maltose, which is a cold-induced compatible solute that protects cells from freezing damage. This study provides evidence for a key role of rapid post-translational regulation of carbohydrate metabolic enzymes in plant protection against sudden temperature drop.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Sunita Putil
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Peng Xu
- Institute of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050016, China
| | - Rui-Ju Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - David A. Maltby
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Liz-He An
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Zhi-Ping Deng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- To whom correspondence should be addressed. E-mail of Dr. Zhi-Yong Wang: , email of Dr. Zhi-Ping Deng:
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- To whom correspondence should be addressed. E-mail of Dr. Zhi-Yong Wang: , email of Dr. Zhi-Ping Deng:
| |
Collapse
|
5
|
Feria AB, Alvarez R, Cochereau L, Vidal J, García-Mauriño S, Echevarría C. Regulation of phosphoenolpyruvate carboxylase phosphorylation by metabolites and abscisic acid during the development and germination of barley seeds. PLANT PHYSIOLOGY 2008; 148:761-74. [PMID: 18753284 PMCID: PMC2556803 DOI: 10.1104/pp.108.124982] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 05/20/2023]
Abstract
During barley (Hordeum vulgare) seed development, phosphoenolpyruvate carboxylase (PEPC) activity increased and PEPC-specific antibodies revealed housekeeping (103-kD) and inducible (108-kD) subunits. Bacterial-type PEPC fragments were immunologically detected in denatured protein extracts from dry and imbibed conditions; however, on nondenaturing gels, the activity of the recently reported octameric PEPC (in castor [Ricinus communis] oil seeds) was not detected. The phosphorylation state of the PEPC, as judged by l-malate 50% inhibition of initial activity values, phosphoprotein chromatography, and immunodetection of the phosphorylated N terminus, was found to be high between 8 and 18 d postanthesis (DPA) and during imbibition. In contrast, the enzyme appeared to be in a low phosphorylation state from 20 DPA up to dry seed. The time course of 32/36-kD, Ca(2+)-independent PEPC kinase activity exhibited a substantial increase after 30 DPA that did not coincide with the PEPC phosphorylation profile. This kinase was found to be inhibited by l-malate and not by putative protein inhibitors, and the PEPC phosphorylation status correlated with high glucose-6-phosphate to malate ratios, thereby suggesting an in vivo metabolic control of the kinase. PEPC phosphorylation was also regulated by photosynthate supply at 11 DPA. In addition, when fed exogenously to imbibing seeds, abscisic acid significantly increased PEPC kinase activity. This was further enhanced by the cytosolic protein synthesis inhibitor cycloheximide but blocked by protease inhibitors, thereby suggesting that the phytohormone acts on the stability of the kinase. We propose that a similar abscisic acid-dependent effect may contribute to produce the increase in PEPC kinase activity during desiccation stages.
Collapse
Affiliation(s)
- Ana-Belén Feria
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Monreal JA, Feria AB, Vinardell JM, Vidal J, Echevarría C, García-Mauriño S. ABA modulates the degradation of phosphoenolpyruvate carboxylase kinase in sorghum leaves. FEBS Lett 2007; 581:3468-72. [PMID: 17618627 DOI: 10.1016/j.febslet.2007.06.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/21/2007] [Indexed: 11/25/2022]
Abstract
Salt stresses strongly enhance the phosphoenolpyruvate carboxylase kinase (PEPC-k) activity of sorghum leaves. This work shows that (1) abscisic acid (ABA) increased the rise in kinase activity in illuminated leaf disks of the non-stressed plant, (2) ABA decreased the disappearance of PEPC-k activity in the dark, (3) two PEPC-k genes expressed in sorghum leaves, PPCK1 and PPCK2, were not up-regulated by the phytohormone and, (4) ABA effects were mimicked by MG132, a powerful inhibitor of the ubiquitin-proteasome pathway. Collectively these data support a role for the ubiquitin-proteasome pathway in the rapid turnover of PEPC-k. The negative control by ABA on this pathway might account for the increase of kinase activity observed in salt-treated plants.
Collapse
Affiliation(s)
- José Antonio Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Bailey KJ, Gray JE, Walker RP, Leegood RC. Coordinate regulation of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and CO2 during C4 photosynthesis. PLANT PHYSIOLOGY 2007; 144:479-86. [PMID: 17337522 PMCID: PMC1913779 DOI: 10.1104/pp.106.093013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The aim of this study was to investigate the relationship between the phosphorylation and activation states of phosphoenolpyruvate carboxykinase (PEPCK) and to investigate how the phosphorylation states of PEPCK and phosphoenolpyruvate carboxylase (PEPC) are coordinated in response to light intensity and CO(2) concentration during photosynthesis in leaves of the C(4) plant Guinea grass (Panicum maximum). There was a linear, reciprocal relationship between the phosphorylation state of PEPCK and its activation state, determined in a selective assay that distinguishes phosphorylated from nonphosphorylated forms of the enzyme. At high photon flux density and high CO(2) (750 microL L(-1)), PEPC was maximally phosphorylated and PEPCK maximally dephosphorylated within 1 h of illumination. The phosphorylation state of both enzymes did not saturate until high light intensities (about 1,400 micromol quanta m(-2) s(-1)) were reached. After illumination at lower light intensities and CO(2) concentrations, the overall change in phosphorylation state was smaller and it took longer for the change in phosphorylation state to occur. Phosphorylation states of PEPC and PEPCK showed a strikingly similar, but inverse, pattern in relation to changes in light and CO(2). The protein phosphatase inhibitor, okadaic acid, promoted the phosphorylation of both enzymes. The protein synthesis inhibitor, cycloheximide, blocked dark phosphorylation of PEPCK. The data show that PEPC and PEPCK phosphorylation states are closely coordinated in vivo, despite being located in the mesophyll and bundle sheath cells, respectively.
Collapse
Affiliation(s)
- Karen J Bailey
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
8
|
Monreal JA, López-Baena FJ, Vidal J, Echevarría C, García-Mauriño S. Effect of LiCl on phosphoenolpyruvate carboxylase kinase and the phosphorylation of phosphoenolpyruvate carboxylase in leaf disks and leaves of Sorghum vulgare. PLANTA 2007; 225:801-12. [PMID: 16983537 DOI: 10.1007/s00425-006-0391-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 08/22/2006] [Indexed: 05/11/2023]
Abstract
In the present work, the effect of LiCl on phosphoenolpyruvate carboxylase kinase (PEPCase-k), C4 phosphoenolpyruvate carboxylase (PEPCase: EC 4.1.1.31) and its phosphorylation process has been investigated in illuminated leaf disks and leaves of the C4 plant Sorghum vulgare. Although this salt induced severe damages to older leaves, it did not significantly alter the physiological parameters (photosynthesis, transpiration rate, intercellular CO2 concentration) of young leaves. An immunological approach was used to demonstrate that the PEPCase-k protein accumulated rapidly in illuminated leaf tissues, consistent with the increase in its catalytic activity. In vivo, LiCl was shown to strongly enhance the light effect on PEPCase-k protein content, this process being dependent on protein synthesis. In marked contrast, the salt was found to inhibit the PEPCase-k activity in reconstituted assays and to decrease the C4 PEPCase content and phosphorylation state in LiCl treated plants. Short-term (15 min) LiCl treatment increased IP3 levels, PPCK gene expression, and PEPCase-k accumulation. Extending the treatment (1 h) markedly decreased IP3 and PPCK gene expression, while PEPCase-k activity was kept high. The cytosolic protein synthesis inhibitor cycloheximide (CHX), which blocked the light-dependent up-regulation of the kinase in control plants, was found not to be active on this process in preilluminated, LiCl-treated leaves. This suggested that the salt causes the kinase turnover to be altered, presumably by decreasing degradation of the corresponding polypeptide. Taken together, these results establish PEPCase-k and PEPCase phosphorylation as lithium targets in higher plants and that this salt can provide a means to investigate further the organization and functioning of the cascade controlling the activity of both enzymes.
Collapse
Affiliation(s)
- José Antonio Monreal
- Departamento de Biologia Vegetal, Facultad de Biologia, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Seville, Spain.
| | | | | | | | | |
Collapse
|
9
|
Vidal J, Pierre JN, Gousset-Dupont A, Lebouteiller B, Meimoun P, Monreal JA, Feria Bourrellier A, García-Mauriño S, Echevarría C. Calcium et contrôle de la photosynthèse C 4. Med Sci (Paris) 2007; 23:18-20. [PMID: 17212923 DOI: 10.1051/medsci/200723118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jean Vidal
- Institut de Biotechnologie des Plantes, Université de Paris-Sud, UMR CNRS 8618 et GDR 2688, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shenton M, Fontaine V, Hartwell J, Marsh JT, Jenkins GI, Nimmo HG. Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:45-53. [PMID: 16925599 DOI: 10.1111/j.1365-313x.2006.02850.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have examined the complexity of the phosphoenolpyruvate carboxylase kinase (PPCK) gene family in the C(4) monocots maize and sorghum. Maize contains at least four PPCK genes. The encoded proteins are similar to other phosphoenolpyruvate carboxylase (PEPC) kinases, in that they comprise a protein kinase domain with minimal extensions, except that two of the proteins contain unusual acidic insertions. The spatial and temporal expression patterns of the genes provide information about their presumed functions. Expression of ZmPPCK1 in leaves is mesophyll cell-specific and light-induced, indicating that it encodes the PEPC kinase that is responsible for the phosphorylation of leaf PEPC during C(4) photosynthesis. Surprisingly, ZmPPCK2 is expressed in leaf bundle sheath cells, preferentially in the dark. This suggests that a main function of the ZmPPCK2 gene product is to allow PEPC to function anaplerotically in bundle sheath cells in the dark without interfering with the C(4) cycle. ZmPPCK2, ZmPPCK3 and ZmPPCK4 are all induced by exposure of tissue to cycloheximide, whereas ZmPPCK1 is not. This suggests that the ZmPPCK2, ZmPPCK3 and ZmPPCK4 genes share the property that their expression is controlled by a rapidly turning over repressor. Sequence and expression data show that sorghum contains orthologues of ZmPPCK1 and ZmPPCK2.
Collapse
Affiliation(s)
- Matt Shenton
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
11
|
Agetsuma M, Furumoto T, Yanagisawa S, Izui K. The ubiquitin-proteasome pathway is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4 photosynthesis. PLANT & CELL PHYSIOLOGY 2005; 46:389-398. [PMID: 15695455 DOI: 10.1093/pcp/pci043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In C4 photosynthesis, phosphoenolpyruvate carboxylase (PEPC) is the enzyme responsible for catalyzing the primary fixation of atmospheric CO2. The activity of PEPC is regulated diurnally by reversible phosphorylation. PEPC kinase (PEPCk), a protein kinase involved in this phosphorylation, is highly specific for PEPC and consists of only the core domain of protein kinase. Owing to its extremely low abundance in cells, analysis of its regulatory mechanism at the protein level has been difficult. Here we employed a transient expression system using maize mesophyll protoplasts. The PEPCk protein with a FLAG tag could be expressed correctly and detected with high sensitivity. Rapid degradation of PEPCk protein was confirmed and shown to be blocked by MG132, a 26S proteasome inhibitor. Furthermore, MG132 enhanced accumulation of PEPCk with increased molecular sizes at about 8 kDa intervals. Using anti-ubiquitin antibody, this increase was shown to be due to ubiquitination. This is the first report to show the involvement of the ubiquitin-proteasome pathway in PEPCk turnover. The occurrence of PEPCks with higher molecular sizes, which was noted previously with cell extracts from various plants, was also suggested to be due to ubiquitination of native PEPCk.
Collapse
Affiliation(s)
- Masakazu Agetsuma
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | | | | |
Collapse
|
12
|
Control of the phosphorylation of phosphoenolpyruvate carboxylase in higher plants. Arch Biochem Biophys 2003; 414:189-96. [PMID: 12781770 DOI: 10.1016/s0003-9861(03)00115-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phosphoenolpyruvate (PEP) carboxylase is regulated by reversible phosphorylation in higher plants. Recently several genes encoding PEP carboxylase kinase have been cloned. The purpose of this article is to assess the contribution that information on the structure and expression of these genes is making to our understanding of the posttranslational control of PEP carboxylase activity.
Collapse
|
13
|
Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC. The Arabidopsis CDPK-SnRK superfamily of protein kinases. PLANT PHYSIOLOGY 2003; 132:666-80. [PMID: 12805596 PMCID: PMC167006 DOI: 10.1104/pp.102.011999] [Citation(s) in RCA: 669] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 10/02/2002] [Accepted: 02/17/2003] [Indexed: 05/17/2023]
Abstract
The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants.
Collapse
Affiliation(s)
- Estelle M Hrabak
- Department of Plant Biology and Program in Genetics, University of New Hampshire, 46 College Road, Durham 03824, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alvarez R, García-Mauriño S, Feria AB, Vidal J, Echevarría C. A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase. PLANT PHYSIOLOGY 2003; 132:1097-1106. [PMID: 12805637 PMCID: PMC167047 DOI: 10.1104/pp.103.023937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 03/25/2003] [Accepted: 03/25/2003] [Indexed: 05/24/2023]
Abstract
Higher plant phosphoenolpyruvate carboxylase (PEPC) is subject to in vivo phosphorylation of a regulatory serine located in the N-terminal domain of the protein. Studies using synthetic peptide substrates and mutated phosphorylation domain photosynthetic PEPC (C4 PEPC) suggested that the interaction of phosphoenolpyruvate carboxylase kinase (PEPCk) with its target was not restricted to this domain. However, no further information was available as to where PEPCk-C4 PEPC interactions take place. In this work, we have studied the possible interaction of the conserved 19-amino acid C-terminal sequence of sorghum (Sorghum vulgare Pers cv Tamaran) C4 PEPC with PEPCk. In reconstituted assays, a C-terminal synthetic peptide containing this sequence (peptide C19) was found to inhibit the phosphorylation reaction by the partially purified Ca2+-independent PEPCk (50% inhibition of initial activity = 230 microm). This effect was highly specific because peptide C19 did not alter C4 PEPC phosphorylation by either a partially purified sorghum leaf Ca2+-dependent protein kinase or the catalytic subunit of mammalian protein kinase A. In addition, the Ca2+-independent PEPCk was partially but significantly retained in affinity chromatography using a peptide C19 agarose column. Because peptide C15 (peptide C19 lacking the last four amino acids, QNTG) also inhibited C4 PEPC phosphorylation, it was concluded that the amino acid sequence downstream from the QNTG motif was responsible for the inhibitory effect. Specific antibodies raised against peptide C19 revealed that native C4 PEPC could be in two different conformational states. The results are discussed in relation with the reported crystal structure of the bacterial (Escherichia coli) and plant (maize [Zea mays]) enzymes.
Collapse
Affiliation(s)
- Rosario Alvarez
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes Number 6, Spain
| | | | | | | | | |
Collapse
|
15
|
Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC. The Arabidopsis CDPK-SnRK superfamily of protein kinases. PLANT PHYSIOLOGY 2003; 132:666-680. [PMID: 12805596 DOI: 10.1104/pp.102.011999.666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants.
Collapse
Affiliation(s)
- Estelle M Hrabak
- Department of Plant Biology and Program in Genetics, University of New Hampshire, 46 College Road, Durham 03824, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nobre ACL, Martins AMC, Havt A, Benevides C, Lima AAM, Fonteles MC, Monteiro HSA. Renal effects of supernatant from rat peritoneal macrophages activated by microcystin-LR: role protein mediators. Toxicon 2003; 41:377-81. [PMID: 12565761 DOI: 10.1016/s0041-0101(02)00334-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have demonstrated previously that microcystin-LR promoted some renal alterations using the isolated perfused rat kidney preparation. However, these effects were not proved to be direct or indirect. The aim of the current work is to examine the renal effects promoted by supernatants from rat macrophages stimulated with microcystin-LR and the role of inflammatory mediators. Peritoneal macrophages were collected previously and were incubated for 1h in fresh medium (control) and in medium containing microcystin-LR. Dexamethasone, quinacrine, thalidomide and cycloheximide were administered 30 min before microcystin-LR. Supernatants of macrophages stimulated with or without pharmacological inhibitors were added on the perfused rat kidney model. The infusion of macrophages supernatants stimulated by microcystin-LR caused significant increases in renal vascular resistance (C: 4.93+/-0.33 vs T: 5.15+/-0.21), glomerular filtration rate (C: 0.559+/-0.008 vs T: 0.978+/-0.15) and urinary flow (C: 0.16+/-0.01 vs T: 0.23+/-0.03). Cycloheximide, quinacrine and dexamethasone blocked these effects and thalidomide blocked renal vascular resistance. Macrophages stimulated by microcystin-LR release mediators capable of promoting nephotoxicity in isolated perfused rat kidney. Phospholipase A(2), TNF-alpha and other protein mediators appear to be involved on its renal toxic mechanism.
Collapse
Affiliation(s)
- A C L Nobre
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1127, Fortaleza, CE 60430-270, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Lara MV, Casati P, Andreo CS. CO2-concentrating mechanisms in Egeria densa, a submersed aquatic plant. PHYSIOLOGIA PLANTARUM 2002; 115:487-495. [PMID: 12121454 DOI: 10.1034/j.1399-3054.2002.1150402.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Egeria densa is an aquatic higher plant which has developed different mechanisms to deal with photosynthesis under conditions of low CO2 availability. On the one hand it shows leaf pH-polarity, which has been proposed to be used for bicarbonate utilization. In this way, at high light intensities and low dissolved carbon concentration, this species generates a low pH at the adaxial leaf surface. This acidification shifts the equilibrium HCO3-/CO2 towards CO2, which enters the cell by passive diffusion. By this means, E. densa increases the concentration of CO2 available for photosynthesis inside the cells, when this gas is limiting. On the other hand, under stress conditions resulting from high temperature and high light intensities, it shows a biochemical adaptation with the induction of a C4-like mechanism but without Kranz anatomy. Transfer from low to high temperature and light conditions induces increased levels of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) and NADP-malic enzyme (NADP-ME, EC 1.1.1.40), both key enzymes participating in the Hatch-Slack cycle in plants with C4 metabolism. Moreover, one PEPC isoform, whose synthesis is induced by high temperature and light, is phosphorylated in the light, and changes in kinetic and regulatory properties are correlated with changes in the phosphorylation state of this enzyme. In the present review, we describe these two processes in this submersed angiosperm that appear to help it perform photosynthesis under conditions of extreme temperatures and high light intensities.
Collapse
Affiliation(s)
- María V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531. Rosario, ArgentinadaggerThese authors contributed equally to this work
| | | | | |
Collapse
|
18
|
Bakrim N, Brulfert J, Vidal J, Chollet R. Phosphoenolpyruvate carboxylase kinase is controlled by a similar signaling cascade in CAM and C(4) plants. Biochem Biophys Res Commun 2001; 286:1158-62. [PMID: 11527421 DOI: 10.1006/bbrc.2001.5527] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Crassulacean acid metabolism (CAM) plants, phosphoenolpyruvate carboxylase (PEPC) is subject to day-night regulatory phosphorylation of a conserved serine residue in the plant enzyme's N-terminal domain. The dark increase in PEPC-kinase (PEPC-k) activity is under control of a circadian oscillator, via the enhanced expression of the corresponding gene (1). The signaling cascade leading to PEPC-k up-regulation was investigated in leaves and mesophyll cell protoplasts of the facultative, salt-inducible CAM species, Mesembryanthemum crystallinum. Mesophyll cell protoplasts had the same PEPC-k activity as leaves from which they were prepared (i.e., high at night, low during the day). However, unlike C(4) protoplasts (2), CAM protoplasts did not show marked PEPC-k up-regulation when isolated during the day and treated with a weak base such as NH(4)Cl. Investigations using various pharmacological reagents established the operation, in the darkened CAM leaf, of a PEPC-k cascade including the following components: a phosphoinositide-dependent phospholipase C (PI-PLC), inositol 1,4,5 P (IP(3))-gated tonoplast calcium channels, and a putative Ca(2+)/calmodulin protein kinase. These results suggest that a similar signaling machinery is involved in both C(4) (2, 3) and CAM plants to regulate PEPC-k activity, the phosphorylation state of PEPC, and, thus, carbon flux through this enzyme during CAM photosynthesis.
Collapse
Affiliation(s)
- N Bakrim
- Institut de Biotechnologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Orsay Cedex, 91405, France
| | | | | | | |
Collapse
|
19
|
Nimmo HG, Fontaine V, Hartwell J, Jenkins GI, Nimmo GA, Wilkins MB. PEP carboxylase kinase is a novel protein kinase controlled at the level of expression. THE NEW PHYTOLOGIST 2001; 151:91-97. [PMID: 33873386 DOI: 10.1046/j.1469-8137.2001.00155.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phosphoenolpyruvate (PEP) carboxylase plays a number of key roles in the central metabolism of higher plants. The enzyme is regulated by reversible phosphorylation in response to a range of signals in many different plant tissues. The data discussed here illustrate several novel features of this system. The phosphorylation state of PEP carboxylase is controlled largely by the activity of PEP carboxylase kinase. This enzyme comprises a protein kinase catalytic domain with no regulatory regions. In many systems it is controlled at the level of expression. In C4 plants, expression of PEP carboxylase kinase is light-regulated and involves changes in cytosolic pH, InsP3 and Ca2+ levels. Expression of PEP carboxylase kinase in CAM plants is regulated by a circadian oscillator, perhaps via metabolite control. Some plants contain multiple PEP carboxylase kinase genes, probably with different expression patterns and roles. A newly discovered PEP carboxylase kinase inhibitor protein might facilitate the net dephosphorylation of PEP carboxylase under conditions in which flux through this enzyme is not required.
Collapse
Affiliation(s)
- Hugh G Nimmo
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Véronique Fontaine
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - James Hartwell
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gareth I Jenkins
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gillian A Nimmo
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Malcolm B Wilkins
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
20
|
Lara MV, Casati P, Andreo CS. In vivo phosphorylation of phosphoenolpyruvate carboxylase in Egeria densa, a submersed aquatic species. PLANT & CELL PHYSIOLOGY 2001; 42:441-5. [PMID: 11333316 DOI: 10.1093/pcp/pce052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In vivo phosphorylation of PEPC in Egeria densa was studied using plants at high temperature and in light, and plants kept at low temperature and in light. The isoform induced by high temperature and light was more phosphorylated in the light. Changes in kinetic and regulatory properties correlated with changes in the phosphorylation state of PEPC.
Collapse
Affiliation(s)
- M V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, CONICET, Suipacha 531, 2000 Rosario, Argentina
| | | | | |
Collapse
|
21
|
Ross EJ, Shearman L, Mathiesen M, Zhou YJ, Arredondo-Peter R, Sarath G, Klucas RV. Nonsymbiotic hemoglobins in rice are synthesized during germination and in differentiating cell types. PROTOPLASMA 2001; 218:125-133. [PMID: 11770429 DOI: 10.1007/bf01306602] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nonsymbiotic hemoglobins (ns-Hbs) previously have been found in monocots and dicots; however, very little is known about the tissue and cell type localization as well as the physiological function(s) of these oxygen-binding proteins. We report the immunodetection and immunolocalization of ns-Hbs in rice (Oryza sativa L.) by Western blotting and in situ confocal laser scanning techniques. Ns-Hbs were detected in soluble extracts of different tissues from the developing rice seedling by immunoblotting. Levels of ns-Hbs increased in the germinating seed for the first six days following imbibition and remained relatively constant thereafter. In contrast, ns-Hb levels decreased during leaf maturation. Roots and mesocotyls contained detectable, but low levels of ns-Hbs. Split-seed experiments revealed that ns-Hbs are synthesized de novo during seed germination and are expressed in the absence of any signal originating from the embryo. Immunolocalization of ns-Hbs by confocal microscopy indicated the presence of ns-Hbs primarily in differentiated and differentiating cell types of the developing seedling, such as the aleurone, scutellum, root cap cells, sclerenchyma, and tracheary elements. To our knowledge, this is the first report of the specific cellular localization of these proteins during seedling development.
Collapse
Affiliation(s)
- E J Ross
- Department of Biochemistry, George W. Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Taybi T, Patil S, Chollet R, Cushman JC. A minimal serine/threonine protein kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid metabolism-induced leaves of the common ice plant. PLANT PHYSIOLOGY 2000; 123:1471-82. [PMID: 10938363 PMCID: PMC59103 DOI: 10.1104/pp.123.4.1471] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Accepted: 04/22/2000] [Indexed: 05/17/2023]
Abstract
Plant phosphoenolpyruvate carboxylase (PEPc) activity and allosteric properties are regulated by PEPc kinase (PPcK) through reversible phosphorylation of a specific serine (Ser) residue near the N terminus. We report the molecular cloning of PPcK from the facultative Crassulacean acid metabolism (CAM) common ice plant (Mesembryanthemum crystallinum), using a protein-kinase-targeted differential display reverse transcriptase-polymerase chain reaction approach. M. crystallinum PPcK encodes a minimal, Ca(2+)-independent Ser/threonine protein kinase that is most closely related to calcium-dependent protein kinases, yet lacks both the calmodulin-like and auto-inhibitory domains typical of plant calcium-dependent protein kinase. In the common ice plant PPcK belongs to a small gene family containing two members. McPPcK transcript accumulation is controlled by a circadian oscillator in a light-dependent manner. McPPcK encodes a 31.8-kD polypeptide (279 amino acids), making it among the smallest protein kinases characterized to date. Initial biochemical analysis of the purified, recombinant McPPcK gene product documented that this protein kinase specifically phosphorylates PEPc from CAM and C(4) species at a single, N-terminal Ser (threonine) residue but fails to phosphorylate mutated forms of C(4) PEPc in which this specific site has been changed to tyrosine or aspartate. McPPcK activity was specific for PEPc, Ca(2+)-insensitive, and displayed an alkaline pH optimum. Furthermore, recombinant McPPcK was shown to reverse the sensitivity of PEPc activity to L-malate inhibition in CAM-leaf extracts prepared during the day, but not at night, documenting that PPcK contributes to the circadian regulation of photosynthetic carbon flux in CAM plants.
Collapse
Affiliation(s)
- T Taybi
- Department of Biochemistry and Molecular Biology, 147 Noble Research Center, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | | | |
Collapse
|
23
|
Parvathi K, Bhagwat AS, Ueno Y, Izui K, Raghavendra AS. Illumination increases the affinity of phosphoenolpyruvate carboxylase to bicarbonate in leaves of a C4 plant, Amaranthus hypochondriacus. PLANT & CELL PHYSIOLOGY 2000; 41:905-10. [PMID: 11038050 DOI: 10.1093/pcp/pcd012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Illumination increased markedly the affinity to bicarbonate of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) in leaves of Amaranthus hypochondriacus L., a C4 plant. When leaves were illuminated, the apparent Km for (HCO3-) of PEPC decreased by about 50% concurrent with a 2- to 5-fold increase in Vmax and 3- to 4-fold increase in Ki for malate. The inclusion of ethoxyzolamide, an inhibitor of carbonic anhydrase, during the assay had no effect on kinetic and regulatory properties of PEPC indicating that carbonic anhydrase was not involved during light-induced sensitization of PEPC to HCO3-. Pretreatment of leaf discs with cycloheximide (CHX), a cytosolic protein synthesis inhibitor, suppressed significantly the light-enhanced decrease in apparent Km (HCO3-). Further, in vitro phosphorylation of purified dark-form PEPC by protein kinase A (PKA) decreased the apparent Km (HCO3-) of the enzyme, in addition increasing Ki (malate) as expected. Such changes, due to in vitro phosphorylation of purified PEPC by PKA, occurred only with wild-type PEPC, but not in the mutant form of maize (S15D) which is already a mimic of the phosphorylated enzyme. These results suggest that phosphorylation of the enzyme is important during the sensitization of PEPC to HCO3- by illumination in C4 leaves. Since illumination is expected to increase the cytosolic pH and the availability of dissolved HCO3- in mesophyll cells, the sensitization by light of PEPC to HCO3- could be physiologically quite significant.
Collapse
Affiliation(s)
- K Parvathi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | | | |
Collapse
|
24
|
Coursol S, Giglioli-Guivarc'h N, Vidal J, Pierre JN. An increase in phosphoinositide-specific phospholipase C activity precedes induction of C4 phosphoenolpyruvate carboxylase phosphorylation in illuminated and NH4Cl-treated protoplasts from Digitaria sanguinalis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:497-506. [PMID: 10972876 DOI: 10.1046/j.1365-313x.2000.00819.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A Ca2+-dependent phosphoinositide-specific phospholipase C (PI-PLC) activity has been characterized in the microsomal fraction of Digitaria sanguinalis mesophyll cell protoplasts. Microsomal PI-PLC was found to be inhibited in vitro by a mammalian anti-PLC-delta1 antibody and by the aminosteroide U-73122, an inhibitor of PI-PLC activity in animal cells. In Western blot experiments, the antibody recognized an 85 kDa protein in both microsomal protein extracts from mesophyll protoplasts and rat brain protein extracts containing the authentic enzyme. The involvement of the microsomal PI-PLC in the light-dependent transduction pathway leading to the phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) was investigated in D. sanguinalis protoplasts. A transient increase in the PI-PLC reaction product inositol-1,4,5-trisphosphate (Ins(1,4, 5)P3) was observed in situ during early induction of the C4 PEPC phosphorylation cascade. U-73122, but not the inactive analogue U-73343, efficiently blocked the transient accumulation of Ins(1,4, 5)P3, and both the increase in C4 PEPC kinase activity and C4 PEPC phosphorylation in illuminated and weak base-treated protoplasts. Taken together, these data suggest that PI-PLC-based signalling is a committed step in the cascade controlling the regulation of C4 PEPC phosphorylation in C4 leaves.
Collapse
Affiliation(s)
- S Coursol
- Institut de Biotechnologie des Plantes, UMR 8618, Université Paris XI, Bâtiment 630, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
25
|
Ueno Y, Imanari E, Emura J, Yoshizawa-Kumagaye K, Nakajima K, Inami K, Shiba T, Sakakibara H, Sugiyama T, Izui K. Immunological analysis of the phosphorylation state of maize C4-form phosphoenolpyruvate carboxylase with specific antibodies raised against a synthetic phosphorylated peptide. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:17-26. [PMID: 10652147 DOI: 10.1046/j.1365-313x.2000.00649.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phosphoenolpyruvate carboxylase (PEPC) isozyme involved in C4 photosynthesis is known to undergo reversible regulatory phosphorylation under illuminated conditions, thereby decreasing the enzyme's sensitivity to its feedback inhibitor, L-malate. For the direct assay of this phosphorylation in intact maize leaves, phosphorylation state-specific antibodies to the C4-form PEPC were prepared. The antibodies were raised in rabbits against a synthetic phosphorylated 15-mer peptide with a sequence corresponding to that flanking the specific site of regulatory phosphorylation (Ser15) and subsequently purified by affinity-chromatography. Specificity of the resulting antibodies to the C4-form PEPC phosphorylated at Ser15 was established on the basis of several criteria. The antibodies did not react with the recombinant root-form of maize PEPC phosphorylated in vitro. By the use of these antibodies, the changes in PEPC phosphorylation state were semi-quantitatively monitored under several physiological conditions. When the changes in PEPC phosphorylation were monitored during the entire day with mature (13-week-old) maize plants grown in the field, phosphorylation started before dawn, reached a maximum by mid-morning, and then decreased before sunset. At midnight dephosphorylation was almost complete. The results suggest that the regulatory phosphorylation of C4-form PEPC in mature maize plants is controlled not only by a light signal but also by some other metabolic signal(s). Under nitrogen-limited conditions the phosphorylation was enhanced even though the level of PEPC protein was decreased. Thus there seems to be some compensatory regulatory mechanism for the phosphorylation.
Collapse
Affiliation(s)
- Y Ueno
- Laboratory of Plant Physiology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GI, Nimmo HG. Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:333-42. [PMID: 10571893 DOI: 10.1046/j.1365-313x.1999.t01-1-00609.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phosphorylation of phosphoenolpyruvate carboxylase plays a key role in the control of plant metabolism. Phosphoenolpyruvate carboxylase kinase is a Ca2+-independent enzyme that is activated by a process involving protein synthesis in response to a range of signals in different plant tissues. The component whose synthesis is required for activation has not previously been identified, nor has the kinase been characterised at a molecular level. We report the cloning of phosphoenolpyruvate carboxylase kinase from the Crassulacean Acid Metabolism plant Kalanchoë fedtschenkoi and the C3 plant Arabidopsis thaliana. Surprisingly, phosphoenolpyruvate carboxylase kinase is a member of the Ca2+/calmodulin-regulated group of protein kinases. However, it lacks the auto-inhibitory region and EF hands of plant Ca2+-dependent protein kinases, explaining its Ca2+-independence. Its sequence is novel in that it comprises only a protein kinase catalytic domain with no regulatory regions; it appears to be the smallest known protein kinase. In K. fedtschenkoi, the abundance of phosphoenolpyruvate carboxylase kinase transcripts increases during leaf development. The transcript level in mature leaves is very low during the photoperiod, reaches a peak in the middle of the dark period and correlates with kinase activity. It exhibits a circadian oscillation in constant conditions. Protein kinases are typically regulated by second messengers, phosphorylation or protein/protein interactions. Phosphoenolpyruvate carboxylase kinase is an exception to this general rule, being controlled only at the level of expression. In K. fedtschenkoi, its expression is controlled both developmentally and by a circadian oscillator.
Collapse
Affiliation(s)
- J Hartwell
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, University of Glasgow, UK
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
C4 plants, including maize, Flaveria, amaranth, sorghum, and an amphibious sedge Eleocharis vivipara, have been employed to elucidate the molecular mechanisms and signaling pathways that control C4 photosynthesis gene expression. Current evidence suggests that pre-existing genes were recruited for the C4 pathway after acquiring potent and surprisingly diverse regulatory elements. This review emphasizes recent advances in our understanding of the creation of C4 genes, the activities of the C4 gene promoters consisting of synergistic and combinatorial enhancers and silencers, the use of 5' and 3' untranslated regions for transcriptional and posttranscriptional regulations, and the function of novel transcription factors. The research has also revealed new insights into unique or universal mechanisms underlying cell-type specificity, coordinate nuclear-chloroplast actions, hormonal, metabolic, stress and light responses, and the control of enzymatic activities by phosphorylation and reductive processes.
Collapse
Affiliation(s)
- Jen Sheen
- Department of Molecular Biology, Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; e-mail:
| |
Collapse
|
28
|
Osuna L, Pierre JN, Gonzalez MC, Alvarez R, Cejudo FJ, Echevarria C, Vidal J. Evidence for a slow-turnover form of the Ca2+-independent phosphoenolpyruvate carboxylase kinase in the aleurone-endosperm tissue of germinating barley seeds. PLANT PHYSIOLOGY 1999; 119:511-20. [PMID: 9952447 PMCID: PMC32128 DOI: 10.1104/pp.119.2.511] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/1998] [Accepted: 10/29/1998] [Indexed: 05/20/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) activity was detected in aleurone-endosperm extracts of barley (Hordeum vulgare) seeds during germination, and specific anti-sorghum (Sorghum bicolor) C4 PEPC polyclonal antibodies immunodecorated constitutive 103-kD and inducible 108-kD PEPC polypeptides in western analysis. The 103- and 108-kD polypeptides were radiolabeled in situ after imbibition for up to 1.5 d in 32P-labeled inorganic phosphate. In vitro phosphorylation by a Ca2+-independent PEPC protein kinase (PK) in crude extracts enhanced the enzyme's velocity and decreased its sensitivity to L-malate at suboptimal pH and [PEP]. Isolated aleurone cell protoplasts contained both phosphorylated PEPC and a Ca2+-independent PEPC-PK that was partially purified by affinity chromatography on blue dextran-agarose. This PK activity was present in dry seeds, and PEPC phosphorylation in situ during imbibition was not affected by the cytosolic protein-synthesis inhibitor cycloheximide, by weak acids, or by various pharmacological reagents that had proven to be effective blockers of the light signal transduction chain and PEPC phosphorylation in C4 mesophyll protoplasts. These collective data support the hypothesis that this Ca2+-independent PEPC-PK was formed during maturation of barley seeds and that its presumed underlying signaling elements were no longer operative during germination.
Collapse
Affiliation(s)
- L Osuna
- Departamento de Biologia Vegetal, Facultad de Biologia, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Sevilla, Spain (L.O., R.A., C.E.)
| | | | | | | | | | | | | |
Collapse
|
29
|
Smith LH, Langdale JA, Chollet R. A functional calvin cycle is not indispensable for the light activation of C4 phosphoenolpyruvate carboxylase kinase and its target enzyme in the maize mutant bundle sheath defective2-mutable1. PLANT PHYSIOLOGY 1998; 118:191-197. [PMID: 9733538 PMCID: PMC34856 DOI: 10.1104/pp.118.1.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 06/08/1998] [Indexed: 05/22/2023]
Abstract
We used a pale-green maize (Zea mays L.) mutant that fails to accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to test the working hypothesis that the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) by its Ca2+-insensitive protein-serine/threonine kinase (PEPC kinase) in the C4 mesophyll cytosol depends on cross-talk with a functional Calvin cycle in the bundle sheath. Wild-type (W22) and bundle sheath defective2-mutable1 (bsd2-m1) seeds were grown in a controlled environment chamber at 100 to 130 &mgr;mol m-2 s-1 photosynthetic photon flux density, and leaf tissue was harvested 11 d after sowing, following exposure to various light intensities. Immunoblot analysis showed no major difference in the amount of polypeptide present for several mesophyll- and bundle-sheath-specific photosynthetic enzymes apart from Rubisco, which was either completely absent or very much reduced in the mutant. Similarly, leaf net CO2-exchange analysis and in vitro radiometric Rubisco assays showed that no appreciable carbon fixation was occurring in the mutant. In contrast, the sensitivity of PEPC to malate inhibition in bsd2-m1 leaves decreased significantly with an increase in light intensity, and there was a concomitant increase in PEPC kinase activity, similar to that seen in wild-type leaf tissue. Thus, although bsd2-m1 mutant plants lack an operative Calvin cycle, light activation of PEPC kinase and its target enzyme are not grossly perturbed.
Collapse
Affiliation(s)
- LH Smith
- Department of Biochemistry, University of Nebraska-Lincoln, G.W. Beadle Center, Lincoln, Nebraska 68588-0664 (L.H.S., R.C.)
| | | | | |
Collapse
|
30
|
Zhang XQ, Chollet R. Phosphoenolpyruvate carboxylase protein kinase from soybean root nodules: partial purification, characterization, and up/down-regulation by photosynthate supply from the shoots. Arch Biochem Biophys 1997; 343:260-8. [PMID: 9224739 DOI: 10.1006/abbi.1997.0190] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) kinase was partially purified about 3000-fold from soybean root nodules by a fast-protein liquid chromatography protocol. This protein-serine kinase has an apparent native molecular mass of about 30,000 as estimated by size-exclusion chromatography. Following electrophoresis of this partially purified PEPC-kinase preparation in a denaturing gel containing dephospho maize leaf PEPC as substrate, the in situ renaturation and assay of protein kinase activity revealed two, PEPC-dependent kinase polypeptides with molecular masses of about 32 and 37 kDa. The approximately 32-kDa polypeptide was significantly more active than the approximately 37-kDa catalytic subunit. The activity of this partially purified PEPC kinase, and a less purified sample, was Ca2+-insensitive. This protein kinase preparation was able to phosphorylate purified PEPCs from soybean nodules, maize leaves, and a sorghum recombinant C4 PEPC. In contrast, this PEPC kinase was unable to phosphorylate a phosphorylation-site mutant form of sorghum C4 PEPC (S8Y), two other soybean nodule phosphoproteins [nodulin-26 and nodulin-100 (sucrose synthase)], bovine serum albumin, and histone III-S. Following in vitro phosphorylation of purified dephospho soybean nodule PEPC from stem-girdled plants by the partially purified nodule PEPC kinase, the former's activity and sensitivity to L-malate inhibition increased and decreased, respectively. Notably, the Ca2+-independent PEPC kinase activity in nodules from illuminated plants was markedly greater than that in nodules harvested from plants subjected to stem girdling or prolonged darkness. Furthermore, the kinase activity in nodules was controlled reversibly by illumination and extended darkness pretreatments of the parent plants, suggesting that photosynthate supply from the shoots is likely responsible for these striking changes in PEPC kinase activity observed in planta in the legume nodule.
Collapse
Affiliation(s)
- X Q Zhang
- Department of Biochemistry, George W. Beadle Center, University of Nebraska-Lincoln, 68588-0664, USA
| | | |
Collapse
|
31
|
Li B, Zhang XQ, Chollet R. Phosphoenolpyruvate Carboxylase Kinase in Tobacco Leaves Is Activated by Light in a Similar but Not Identical Way as in Maize. PLANT PHYSIOLOGY 1996; 111:497-505. [PMID: 12226305 PMCID: PMC157860 DOI: 10.1104/pp.111.2.497] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have previously reported the partial purification of a Ca2+- independent phosphoenolpyruvate carboxylase (PEPC) protein-serine/threonine kinase (PEPC-PK) from illuminated leaves of N-sufficient tobacco (Nicotiana tabacum L.) plants (Y.-H. Wang, R. Chollet [1993] FEBS Lett 328: 215-218). We now report that this C3 PEPC-kinase is reversibly light activated in vivo in a time-dependent manner. As the kinase becomes light activated, the activity and L-malate sensitivity of its target protein increases and decreases, respectively. The light activation of tobacco PEPC-PK is prevented by pretreatment of detached leaves with various photosynthesis and cytosolic protein-synthesis inhibitors. Similarly, specific inhibitors of glutamine synthetase block the light activation of tobacco leaf PEPC-kinase under both photorespiratory and nonphotorespiratory conditions. This striking effect is partially and specifically reversed by exogenous glutamine, whereas it has no apparent effect on the light activation of the maize (Zea mays L.) leaf kinase. Using an in situ "activity-gel" phosphorylation assay, we have identified two major Ca2+-independent PEPC-kinase catalytic polypeptides in illuminated tobacco leaves that have the same molecular masses (approximately 30 and 37 kD) as found in illuminated maize leaves. Collectively, these results indicate that the phosphorylation of PEPC in N-sufficient leaves of tobacco (C3) and maize (C4) is regulated through similar but not identical light-signal transduction pathways.
Collapse
Affiliation(s)
- B. Li
- Department of Biochemistry, University of Nebraska-Lincoln, G. W. Beadle Center, Lincoln, Nebraska 68588-0664
| | | | | |
Collapse
|
32
|
Chollet R, Vidal J, O'Leary MH. PHOSPHOENOLPYRUVATE CARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants. ACTA ACUST UNITED AC 1996; 47:273-298. [PMID: 15012290 DOI: 10.1146/annurev.arplant.47.1.273] [Citation(s) in RCA: 366] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since plant phosphoenolpyruvate carboxylase (PEPC) was last reviewed in the Annual Review of Plant Physiology over a decade ago (O'Leary 1982), significant advances have been made in our knowledge of this oligomeric, cytosolic enzyme. This review highlights this exciting progress in plant PEPC research by focusing on the three major areas of recent investigation: the enzymology of the protein; its posttranslational regulation by reversible protein phosphorylation and opposing metabolite effectors; and the structure, expression, and molecular evolution of the nuclear PEPC genes. It is hoped that the next ten years will be equally enlightening, especially with respect to the three-dimensional structure of the plant enzyme, the molecular analysis of its highly regulated protein-Ser/Thr kinase, and the elucidation of its associated signal-transduction pathways in various plant cell types.
Collapse
Affiliation(s)
- Raymond Chollet
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664, UA CNRS D-1128, Institut de Biotechnologie des Plantes, Universite de Paris-Sud, Orsay Cedex, 91405 France, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0664
| | | | | |
Collapse
|
33
|
Osuna L, Gonzalez MC, Cejudo FJ, Vidal J, Echevarria C. In Vivo and in Vitro Phosphorylation of the Phosphoenolpyruvate Carboxylase from Wheat Seeds during Germination. PLANT PHYSIOLOGY 1996; 111:551-558. [PMID: 12226309 PMCID: PMC157866 DOI: 10.1104/pp.111.2.551] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) activity was detected in the aleurone endosperm of wheat (Triticum aestivum cv Chinese Spring) seeds, and specific anti-Sorghum C4 PEPC polyclonal anti-bodies cross-reacted with 103- and 100-kD polypeptides present in dry seeds and seeds that had imbibed; in addition, a new, 108-kD polypeptide was detected 6 h after imbibition. The use of specific anti-phosphorylation-site immunoglobulin G (APS-IgG) identified the presence of a phosphorylation motif equivalent to that found in other plant PEPCs studied so far. The binding of this APS-IgG to the target protein promoted changes in the properties of seed PEPC similar to those produced by phosphorylation, as previously shown for the recombinant Sorghum leaf C4 PEPC. In desalted seed extracts, an endogenous PEPC kinase activity catalyzed a bona fide phosphorylation of the target protein, as deduced from the immunoinhibition of the in vitro phosphorylation reaction by the APS- IgG. In addition, the major, 103-kD PEPC polypeptide was also shown to be radiolabeled in situ 48 h after imbibition in [32P]orthophosphate. The ratio between optimal (pH 8) and suboptimal (pH 7.3 or 7.1) PEPC activity decreased during germination, thereby suggesting a change in catalytic rate related to an in vivo phosphorylation process. These collective data document that the components needed for the regulatory phosphorylation of PEPC are present and functional during germination of wheat seeds.
Collapse
Affiliation(s)
- L. Osuna
- Departamento de Biologia Vegetal, Facultad de Biologia, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Seville, Spain (L.O., C.E.)
| | | | | | | | | |
Collapse
|
34
|
Giglioli-Guivarc'h N, Pierre JN, Brown S, Chollet R, Vidal J, Gadal P. The Light-Dependent Transduction Pathway Controlling the Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase in Protoplasts from Digitaria sanguinalis. THE PLANT CELL 1996; 8:573-586. [PMID: 12239393 PMCID: PMC161121 DOI: 10.1105/tpc.8.4.573] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) was characterized in extracts from C4 mesophyll protoplasts isolated from Digitaria sanguinalis leaves and shown to display the structural, functional, and regulatory properties typical of a C4 PEPC. In situ increases in the apparent phosphorylation state of the enzyme and the activity of its Ca2+-independent protein-serine kinase were induced by light plus NH4Cl or methylamine. The photosynthesis-related metabolite 3-phosphoglycerate (3-PGA) was used as a substitute for the weak base in these experiments. The early effects of light plus the weak base or 3-PGA treatment were alkalinization of protoplast cytosolic pH, shown by fluorescence cytometry, and calcium mobilization from vacuoles, as suggested by the use of the calcium channel blockers TMB-8 and verapamil. The increases in PEPC kinase activity and the apparent phosphorylation state of PEPC also were blocked in situ by the electron transport and ATP synthesis inhibitors DCMU and gramicidin, respectively, the calcium/calmodulin antagonists W7, W5, and compound 48/80, and the cytosolic protein synthesis inhibitor cycloheximide. These results suggest that the production of ATP and/or NADPH by the illuminated mesophyll chloroplast is required for the activation of the transduction pathway, which presumably includes an upstream Ca2+-dependent protein kinase and a cytosolic protein synthesis event. The collective data support the view that the C4 PEPC light transduction pathway is contained entirely within the mesophyll cell and imply cross-talk between the mesophyll and bundle sheath cells in the form of the photosynthetic metabolite 3-PGA.
Collapse
Affiliation(s)
- N. Giglioli-Guivarc'h
- Institut de Biotechnologie des Plantes, Centre National de la Recherche Scientifique, UA D1128, Universite de Paris-Sud, Batiment 630, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
The Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase: a Cardinal Event in C4 Photosynthesis. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-3-7091-7474-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
37
|
Champigny ML. Integration of photosynthetic carbon and nitrogen metabolism in higher plants. PHOTOSYNTHESIS RESEARCH 1995; 46:117-27. [PMID: 24301574 DOI: 10.1007/bf00020422] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/1995] [Accepted: 07/23/1995] [Indexed: 05/23/2023]
Abstract
Concomitant assimilation of C and N in illuminated leaves requires the regulated partitioning of reductant and photosynthate to sustain the demands of amino acid and carbohydrate biosynthesis. The short-term responses of photosynthesis and photosynthate partitioning to N enrichment in wheat (Triticum aestivum, L.) and maize (Zea mays L.) leaves were studied in order to understand the regulatory strategy employed in higher plants. Transgenic tobacco plants (Tobacco plumbaginifolia) over-expressing NR or with poor NR expression were used to compare plants differing in their capacities for NO3 (-) assimilation. Similar regulatory responses to NO3 (-) were observed in leaves having C4- and C3-type photosynthesis. It was shown that the extra- C needed in the short-term to sustain amino acid synthesis was not provided by an increase in photosynthetic CO2 fixation but rather by a rapid shift in the partitioning of photosynthetic C to amino acid at the expense of sucrose biosynthesis. The modulation of three enzymes was shown to be important in this C and N interaction, namely PEPCase (EC 4.1.1.31), SPS (EC 2.4.1.14) and NADH/NR (EC 1.6.6.1). The first two enzymes were shown to share the common feature of regulatory post-transcriptional NO3 (-)-dependent phosphorylation of their proteins on a seryl-residue. While PEPCase is activated, SPS activity is decreased. In contrast the NR phosphorylation state is unchanged and all N-dependent control of NR activity is regulated at the protein level. A number of arguments support the hypothesis that Gln, the primary product of NO3 (-) assimilation, is the metabolite effector for short-term modulation of PEPCase, and SPS in response to N enrichment. Since a major effect of NO3 (-) on the PEPCase-protein kinase activity in concentrated wheat leaf extracts was demonstrated, the hypothesis is put forward that protein phosphorylation is the primary event allowing the short-term adaptation of leaf C metabolism to changes in N supply.
Collapse
|
38
|
Duff SMG, Chollet R. In Vivo Regulation of Wheat-Leaf Phosphoenolpyruvate Carboxylase by Reversible Phosphorylation. PLANT PHYSIOLOGY 1995; 107:775-782. [PMID: 12228402 PMCID: PMC157193 DOI: 10.1104/pp.107.3.775] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Regulation of C3 phosphoenolpyruvate carboxylase (PEPC) and its protein-serine/threonine kinase (PEPC-PK) was studied in wheat (Triticum aestivum) leaves that were excised from low-N-grown seedlings and subsequently illuminated and/or supplied with 40 mM KNO3. The apparent phosphorylation status of PEPC was assessed by its sensitivity to L-malate inhibition at suboptimal assay conditions, and the activity state of PEPC-PK was determined by the in vitro 32P labeling of purified maize dephospho-PEPC by [[gamma]-32P]ATP/Mg. Illumination ([plus or minus]NO3-) for 1 h led to about a 4.5-fold increase in the 50% inhibition constant for L-malate, which was reversed by placing the illuminated detached leaves in darkness (minus NO3-). A 1 -h exposure of excised leaves to light, KNO3, or both resulted in relative PEPC-PK activities of 205, 119, and 659%, respectively, of the dark/0 mM KNO3 control tissue. In contrast, almost no activity was observed when a recombinant sorghum phosphorylation-site mutant (S8D) form of PEPC was used as protein substrate in PEPC-PK assays of the light plus KNO3 leaf extracts. In vivo labeling of wheat-leaf PEPC by feeding 32P-labeled orthophosphate showed that PEPC from light plus KNO3 tissue was substantially more phosphorylated than the enzyme in the dark minus-nitrate immunoprecipitates. Immunoblot analysis indicated that no changes in relative PEPC-protein amount occurred within 1 h for any of the treatments. Thus, C3 PEPC activity in these detached wheat leaves appears to be regulated by phosphorylation of a serine residue near the protein's N terminus by a Ca2+ -independent protein kinase in response to a complex interaction in vivo between light and N.
Collapse
Affiliation(s)
- SMG. Duff
- Department of Biochemistry, University of Nebraska-Lincoln, East Campus, Lincoln, Nebraska 68583-0718
| | | |
Collapse
|
39
|
Duff SMG, Andreo CS, Pacquit V, Lepiniec L, Sarath G, Condon SA, Vidal J, Gadal P, Chollet R. Kinetic Analysis of the Non-Phosphorylated, in Vitro Phosphorylated, and Phosphorylation-Site-Mutant (Asp8) Forms of Intact Recombinant C4 Phosphoenolpyruvate Carboxylase from Sorghum. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20234.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Duff SMG, Andreo CS, Pacquit V, Lepiniec L, Sarath G, Condon SA, Vidal J, Gadal P, Chollet R. Kinetic Analysis of the Non-Phosphorylated, in Vitro Phosphorylated, and Phosphorylation-Site-Mutant (Asp8) Forms of Intact Recombinant C4 Phosphoenolpyruvate Carboxylase from Sorghum. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0092o.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Rajagopalan AV, Devi MT, Raghavendra AS. Molecular biology of C4 phosphoenolpyruvate carboxylase: Structure, regulation and genetic engineering. PHOTOSYNTHESIS RESEARCH 1994; 39:115-135. [PMID: 24311065 DOI: 10.1007/bf00029380] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/1993] [Accepted: 11/01/1993] [Indexed: 06/02/2023]
Abstract
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 (-)-dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His(138), His(579) and Arg(587) in catalysis and/or substrate-binding by the E. coli enzyme, Ser(8) in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.
Collapse
Affiliation(s)
- A V Rajagopalan
- School of Life Sciences, University of Hyderabad, 500 134, Hyderabad, India
| | | | | |
Collapse
|
42
|
Control of Plant Enzyme Activity by Reversible Protein Phoce:infhorylation. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0074-7696(08)62086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
43
|
Tarczynski MC, Outlaw WH. The Interactive Effects of pH, L-Malate, and Glucose-6-Phosphate on Guard-Cell Phosphoenolpyruvate Carboxylase. PLANT PHYSIOLOGY 1993; 103:1189-1194. [PMID: 12232011 PMCID: PMC159105 DOI: 10.1104/pp.103.4.1189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interactive effects of pH, L-malate, and glucose-6-phosphate (Glc-6-P) on the Vmax and Km of guard-cell (GC) phosphoenolpyruvate (PEP) carboxylase (PEPC) of Vicia faba L. were determined. Leaves of three different physiological states (closed stomata, opening stomata, open stomata) were rapidly frozen and freeze dried. GC pairs dissected from the leaves were individually extracted and individually assayed for the kinetic properties of PEPC. Vmax was 6 to 9 pmol GC pair-1 h-1 and was apparently unaffected to a biologically significant extent by the investigated physiological states of the leaf, pH (7.0 or 8.5), L-malate (0, 5, or 15 mM), and Glc-6-P (0, 0.1, 0.5, 0.7, or 5 mM). As reported earlier, the Km(PEP.Mg) was about 0.2 mM (pH 8.5) or 0.7 mM (pH 7.0), which can be compared with a GC [PEP] of 0.27 mM. In the study reported here, we determined that the in situ GC [Glc-6-P] equals approximately 0.6 to 1.2 mM. When 0.5 mM Glc-6-P was included in the GC PEPC assay mixture, the Km(PEP.Mg) decreased to about 0.1 mM (pH 8.5) or 0.2 mM (pH 7.0). Thus, Glc-6-P at endogenous concentrations would seem both to activate the enzyme and to diminish the dramatic effect of pH on Km(PEP.Mg). Under assay conditions, L-malate is an inhibitor of GC PEPC. In planta, cytoplasmic [L-malate] is approximately 8 mM. Inclusion of 5 mM L-malate increased the Km(PEP.Mg) to about 3.6 mM (pH 7.0) or 0.4 mM (pH 8.5). Glc-6-P (0.5 mM) was sufficient to relieve L-malate inhibition completely at pH 8.5. In contrast, approximately 5 mM Glc-6-P was required to relieve L-malate inhibition at pH 7.0. No biologically significant effect of physiological state of the tissue on GC PEPC Km(PEP.Mg) (regardless of the presence of effectors) was observed. Together, these results are consistent with a model that GC PEPC is regulated by its cytosolic chemical environment and not by posttranslational modification that is detectable at physiological levels of effectors. It is important to note, however, that we did not determine the phosphorylation status of GC PEPC directly or indirectly (by comparison of the concentration of L-malate that causes a 50% inhibition of GC PEPC).
Collapse
Affiliation(s)
- M. C. Tarczynski
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-3050
| | | |
Collapse
|
44
|
Rajagopalan AV, Devi MT, Raghavendra AS. Patterns of phosphoenolpyruvate carboxylase activity and cytosolic pH during light activation and dark deactivation in C3 and C 4 plants. PHOTOSYNTHESIS RESEARCH 1993; 38:51-60. [PMID: 24317830 DOI: 10.1007/bf00015061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/1993] [Accepted: 07/16/1993] [Indexed: 06/02/2023]
Abstract
The rate and extent of light activation of PEPC may be used as another criterion to distinguish C3 and C4 plants. Light stimulated phosphoenolypyruvate carboxylase (PEPC) in leaf discs of C4 plants, the activity being three times greater than that in the dark but stimulation of PEPC was limited about 30% over the dark-control in C3 species. The light activation of PEPC in leaves of C3 plants was complete within 10 min, while maximum activation in C4 plants required illumination for more than 20 min, indicating that the relative pace of PEPC activation was slower in C4 plants than in C3 plants. Similarly, the dark-deactivation of the enzyme was also slower in leaves of C4 than in C3 species. The extent of PEPC stimulation in the alkaline pH range indicated that the dark-adapted form of the C4 enzyme is very sensitive to changes in pH. The pH of cytosol-enriched cell sap extracted from illuminated leaves of C4 plants was more alkaline than that of dark-adapted leaves. The extent of such light-dependent alkalization of cell sap was three times higher in C4 leaves than in C3 plants. The course of light-induced alkalization and dark-acidification of cytosol-enriched cell sap was markedly similar to the pattern of light activation and dark-deactivation of PEPC in Alternanthera pungens, a C4 plant. Our report provides preliminary evidence that the photoactivation of PEPC in C4 plants may be mediated at least partially by the modulation of cytosolic pH.
Collapse
Affiliation(s)
- A V Rajagopalan
- School of Life Science, University of Hyderabad, 500 134, Hyderabad, India
| | | | | |
Collapse
|
45
|
Daie J. Cytosolic fructose-1,6-bisphosphatase: A key enzyme in the sucrose biosynthetic pathway. PHOTOSYNTHESIS RESEARCH 1993; 38:5-14. [PMID: 24317825 DOI: 10.1007/bf00015056] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/1993] [Accepted: 06/29/1993] [Indexed: 05/05/2023]
Abstract
Fructose-1,6 bisphosphatase (FBPase) is a ubiquitous enzyme controlling a key reaction. In non-photosynthetic tissues, it regulates the rate of gluconeogenesis. In photosynthetic tissues, two FBPase isozymes (chloroplastic and cytosolic) play key roles in carbon assimilation and metabolism. The cytosolic FBPase is one of the regulatory enzymes in the sucrose biosynthetic pathway - its activity is regulated by both fine and coarse control mechanisms. Kinetic and allosteric properties of the plant cytosolic FBPase are remarkably similar to the mammalian and yeast FBPase, but differ greatly from those of the chloroplastic FBPase. Cytosolic FBPase is relatively conserved among various organisms both at amino acid and nucleotide sequence levels. There is slightly higher similarity between mammalian FBPase and plant cytosolic FBPase than there is between the two plant FBPases. Expression of plant cytosolic FBPase gene is developmentally regulated and appears to be coordinated with the expression of Rubisco and other carbon metabolism enzymes. Similar to the gluconeogenic FBPase, relatively rapid end product repression of FBPase gene occurs in plant. However, unlike the gluconeogenic FBPase, a concurrent decline in plant FBPase activity does not occur in response to increased end product levels. The physiological significance of FBPase gene repression, therefore, remains unclear in plants. Both expression and activity of the cytosolic FBPase are regulated by environmental factors such as light and drought conditions. Light-dependent modulation of FBPase activity in plants appears to involve some type of posttranslational modification. In addition to elucidating the exact nature of the presumed posttranslational modification, cloning of genomic and upstream sequences is needed before we fully understand the molecular regulation of the cytosolic FBPase in plants. Use of transgenic plants with altered rates of FBPase activity offers potential for enhanced crop productivity.
Collapse
Affiliation(s)
- J Daie
- Department of Botany, University of Wisconsin, Birge Hall, 53706, Madison, WI, USA
| |
Collapse
|
46
|
Palmer JM, Short TW, Gallagher S, Briggs WR. Blue Light-Induced Phosphorylation of a Plasma Membrane-Associated Protein in Zea mays L. PLANT PHYSIOLOGY 1993; 102:1211-1218. [PMID: 12231896 PMCID: PMC158907 DOI: 10.1104/pp.102.4.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Blue light induces a variety of photomorphogenic responses in higher plants, among them phototropic curvature, the bending of seedlings toward a unidirectional light source. In dark-grown coleoptiles of maize (Zea mays L.) seedlings, blue light induces rapid phosphorylation of a 114-kD protein at fluence levels that are sufficient to stimulate phototropic curvature. Phosphorylation in response to blue light can be detected in vivo in coleoptile tips preincubated in 32Pi or in vitro in isolated membranes supplemented with [[gamma]-32P]ATP. Phosphorylation reaches a maximum level in vitro within 2 min following an inductive light pulse, but substantial labeling occurs within the first 15 s. Isolated membranes remain activated for several minutes following an in vitro blue light stimulus, even in the absence of exogenous ATP. Phosphoamino acid analysis of the 114-kD protein detected phosphoserine and a trace of phosphothreonine. The kinase involved in phosphorylating the protein in vitro is not dependent on calcium. The 114-kD protein itself has an apparent binding site for ATP, detected by incubating with the nonhydrolyzable analog, 5[prime]-p-fluorosulfonyl-benzoyladenosine. This result suggests that the 114-kD protein, which becomes phosphorylated in response to blue light, may also be capable of kinase activity.
Collapse
Affiliation(s)
- J. M. Palmer
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305
| | | | | | | |
Collapse
|
47
|
Bakrim N, Prioul JL, Deleens E, Rocher JP, Arrio-Dupont M, Vidal J, Gadal P, Chollet R. Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase (A Cardinal Event Influencing the Photosynthesis Rate in Sorghum and Maize). PLANT PHYSIOLOGY 1993; 101:891-897. [PMID: 12231740 PMCID: PMC158704 DOI: 10.1104/pp.101.3.891] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
C4 leaf phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is subject to a day/night regulatory phosphorylation cycle. By using the cytoplasmic protein synthesis inhibitor cycloheximide (CHX), we previously reported that the reversible in vivo light activation of the C4 PEPC protein-serine kinase requires protein synthesis. In the present leaf gas-exchange study, we have examined how and to what extent the CHX-induced inhibition of PEPC protein kinase activity/PEPC phosphorylation in the light influences C4 photosynthesis. Detached Sorghum vulgare and maize (Zea mays) leaves fed 10 [mu]M CHX showed a gradual but marked decrease in photosynthetic CO2 assimilation capacity. A series of control experiments designed to assess deleterious secondary effects of the inhibitor established that this reduction in C4 leaf CO2 assimilation was not due to (a) an increased stomatal resistance to CO2 diffusion, (b) a decrease in the activation state of other photoactivated C4 cycle enzymes, and (c) a perturbation of the Benson-Calvin C3 cycle, as evidenced by the absence of an inhibitory effect of CHX on leaf photosynthesis by a C3 grass (Triticum aestivum). It is notable that the CHX-induced decrease in CO2 assimilation by illuminated Sorghum leaves was highly correlated with a decrease in the apparent phosphorylation status of PEPC and a concomitant change in carbon isotope discrimination consistent with a shift from a C4 to a C3 mode of leaf CO2 fixation. These collective findings indicate that the light-dependent activation of the PEPC protein-serine kinase and the resulting phosphorylation of serine-8 or serine-15 in Sorghum or maize PEPC, respectively, are fundamental regulatory events that influence leaf C4 photosynthesis in vivo.
Collapse
Affiliation(s)
- N. Bakrim
- Laboratoire de Physiologie Vegetale Moleculaire (N.B., M.A.-D., J.V., P.G.) and Laboratoire de Structure et Metabolisme des Plantes (J.-L.P., E.D., J.-P.R.), URA Centre National de la Recherche Scientifique D 1128, Universite de Paris-Sud, Centre d'Orsay, Batiment 430, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pierre JN, Pacquit V, Vidal J, Gadal P. Regulatory phosphorylation of phosphoenolpyruvate carboxylase in protoplasts from Sorghum mesophyll cells and the role of pH and Ca2+ as possible components of the light-transduction pathway. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:531-7. [PMID: 1459134 DOI: 10.1111/j.1432-1033.1992.tb17451.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The light-dependent phosphorylation of the photosynthetic phosphoenolpyruvate carboxylase (PyrPC) was shown to occur in protoplasts from Sorghum mesophyll cells. It was accompanied by an increase in PyrPC protein-serine-kinase activity and conferred the target-specific functional properties, i.e. an increase in Vmax and apparent Ki for L-malate, as previously found with the whole leaf. The light-dependent regulatory phosphorylation of PyrPC was (a) specifically promoted by the weak bases NH4Cl and methylamine (agents which increase cytosolic pH), but not by KNO3, (b) inhibited by the cytosolic protein-synthesis inhibitor, cycloheximide, thus confirming that protein turnover is a component of the signal-transduction cascade, as reported in [4], (c) found to moderately decrease in the presence of EGTA and to be strongly depressed when the Ca(2+)-selective ionophore A23187 was added to the incubation medium together with EGTA. Addition of Ca2+, but not of Mg2+, to the Ca(2+)-depleted protoplasts partially, but significantly, relieved the inhibition. Calcium deprivation apparently affected the in-situ light-activation of the PyrPC protein kinase. These data indicated that both Ca2+ and an increase in cytosolic pH are required for the induction of PyrPC protein kinase activity/PyrPC phosphorylation in illuminated protoplasts from Sorghum mesophyll cells.
Collapse
Affiliation(s)
- J N Pierre
- Laboratoire de Biochimie Fonctionnelle des Membranes Végétales-Centre National de la Recherche Scientifique, France
| | | | | | | |
Collapse
|
49
|
Site-directed mutagenesis of the phosphorylatable serine (Ser8) in C4 phosphoenolpyruvate carboxylase from sorghum. The effect of negative charge at position 8. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41844-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Champigny ML, Foyer C. Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino Acid biosynthesis: basis for a new concept. PLANT PHYSIOLOGY 1992; 100:7-12. [PMID: 16653003 PMCID: PMC1075509 DOI: 10.1104/pp.100.1.7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The regulation of carbon partitioning between carbohydrates (principally sucrose) and amino acids has been only poorly characterized in higher plants. The hypothesis that the pathway of sucrose and amino acid biosynthesis compete for carbon skeletons and energy is widely accepted. In this review, we suggest a mechanism involving the regulation of cytosolic protein kinases whereby the flow of carbon is regulated at the level of partitioning between the pathways of carbohydrate and nitrogen metabolism via the covalent modulation of component enzymes. The addition of nitrate to wheat seedlings (Triticum aestivum) grown in the absence of exogenous nitrogen has a dramatic, if transient, impact on sucrose formation and on the activities of sucrose phosphate synthase (which is inactivated) and phosphoenolpyruvate carboxylase (which is activated). The activities of these two enzymes are modulated by protein phosphorylation in response to the addition of nitrate, but they respond in an inverse fashion. Sucrose phosphate synthase in inactivated and phosphoenolpyruvate carboxylase is activated. Nitrate functions as a signal metabolite activating the cytosolic protein kinase, thereby modulating the activities of at least two of the key enzymes in assimilate partitioning and redirecting the flow of carbon away from sucrose biosynthesis toward amino acid synthesis.
Collapse
Affiliation(s)
- M L Champigny
- Photosynthèse et Métabolisme (Unité de Recherche Associée Centre National de la Recherche Scientifique D 1128), Bâtiment 430, Université Paris-Sud, F-91405 Orsay cedex, France
| | | |
Collapse
|