1
|
Sen C, Logashree V, Makde RD, Ghosh B. Amino acid propensities for secondary structures and its variation across protein structures using exhaustive PDB data. Comput Biol Chem 2024; 110:108083. [PMID: 38691894 DOI: 10.1016/j.compbiolchem.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Amino acid propensities for protein secondary structures are vital for protein structure prediction, understanding folding, and design, and have been studied using various theoretical and experimental methods. Traditional assessments of average propensities using statistical methods have been done on relatively smaller dataset for only a few secondary structures. They also involve averaging out the environmental factors and lack insights into consistency of preferences across diverse protein structures. While a few studies have explored variations in propensities across protein structural classes and folds, exploration of such variations across protein structures remains to be carried out. In this work, we have revised the average propensities for all six different secondary structures, namely α-helix, β-strand, 310-helix, π-helix, turn and coil, analyzing the most exhaustive dataset available till date using two robust secondary structure assignment algorithms, DSSP and STRIDE. The propensities evaluated here can serve as a standard reference. Moreover, we present here, for the first time, the propensities within individual protein structures and investigated how the preferences of residues and more interestingly, of their groups formed based on their structural features, vary across different unique structures. We devised a novel approach- the minimal set analysis, based on the propensity distribution of residues, which along with the group propensities led us to the conclusion that a residue's preference for a specific secondary structure is primarily dictated by its side chain's structural features. The findings in this study provide a more insightful picture of residues propensities and can be useful in protein folding and design studies.
Collapse
Affiliation(s)
- Chandra Sen
- Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V Logashree
- Department of Electrical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Ravindra D Makde
- Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Biplab Ghosh
- Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
2
|
John T, Rampioni A, Poger D, Mark AE. Molecular Insights into the Dynamics of Amyloid Fibril Growth: Elongation and Lateral Assembly of GNNQQNY Protofibrils. ACS Chem Neurosci 2024; 15:716-723. [PMID: 38235697 DOI: 10.1021/acschemneuro.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The self-assembly of peptides and proteins into β-sheet rich amyloid fibrils is linked to both functional and pathological states. In this study, the growth of fibrillar structures of the short peptide GNNQQNY, a fragment from the yeast prion Sup35 protein, was examined. Molecular dynamics simulations were used to study alternative mechanisms of fibril growth, including elongation through binding of monomers as well as fibril self-assembly into larger, more mature structures. It was found that after binding, monomers diffused along preformed fibrils toward the ends, supporting the mechanism of fibril growth via elongation. Lateral assembly of protofibrils was found to occur readily, suggesting that this could be the key to transitioning from isolated fibrils to mature multilayer structures. Overall, the work provides mechanistic insights into the competitive pathways that govern amyloid fibril growth.
Collapse
Affiliation(s)
- Torsten John
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aldo Rampioni
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - David Poger
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Konietzny A, Grendel J, Kadek A, Bucher M, Han Y, Hertrich N, Dekkers DHW, Demmers JAA, Grünewald K, Uetrecht C, Mikhaylova M. Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines. EMBO J 2022; 41:e106523. [PMID: 34935159 PMCID: PMC8844991 DOI: 10.15252/embj.2020106523] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.
Collapse
Affiliation(s)
- Anja Konietzny
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jasper Grendel
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alan Kadek
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- European XFEL GmbHSchenefeldGermany
| | - Michael Bucher
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Yuhao Han
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
| | - Nathalie Hertrich
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Kay Grünewald
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Department of ChemistryUniversity of HamburgHamburgGermany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- European XFEL GmbHSchenefeldGermany
- Centre for Structural Systems BiologyHamburgGermany
| | - Marina Mikhaylova
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
4
|
Antitumor Activity and Mechanism of Action of Hormonotoxin, an LHRH Analog Conjugated to Dermaseptin-B2, a Multifunctional Antimicrobial Peptide. Int J Mol Sci 2021; 22:ijms222111303. [PMID: 34768734 PMCID: PMC8582938 DOI: 10.3390/ijms222111303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common cancer in men. For patients with advanced or metastatic prostate cancer, available treatments can slow down its progression but cannot cure it. The development of innovative drugs resulting from the exploration of biodiversity could open new therapeutic alternatives. Dermaseptin-B2, a natural multifunctional antimicrobial peptide isolated from Amazonian frog skin, has been reported to possess antitumor activity. To improve its pharmacological properties and to decrease its peripheral toxicity and lethality we developed a hormonotoxin molecule composed of dermaseptin-B2 combined with d-Lys6-LHRH to target the LHRH receptor. This hormonotoxin has a significant antiproliferative effect on the PC3 tumor cell line, with an IC50 value close to that of dermaseptin-B2. Its antitumor activity has been confirmed in vivo in a xenograft mouse model with PC3 tumors and appears to be better tolerated than dermaseptin-B2. Biophysical experiments showed that the addition of LHRH to dermaseptin-B2 did not alter its secondary structure or biological activity. The combination of different experimental approaches indicated that this hormonotoxin induces cell death by an apoptotic mechanism instead of necrosis, as observed for dermaseptin-B2. These results could explain the lower toxicity observed for this hormonotoxin compared to dermaseptin-B2 and may represent a promising targeting approach for cancer therapy.
Collapse
|
5
|
Roy M, Bhakta K, Bhowmick A, Gupta S, Ghosh A, Ghosh A. Archaeal Hsp14 drives substrate shuttling between small heat shock proteins and thermosome: insights into a novel substrate transfer pathway. FEBS J 2021; 289:1080-1104. [PMID: 34637594 DOI: 10.1111/febs.16226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Heat shock proteins maintain protein homeostasis and facilitate the survival of an organism under stress. Archaeal heat shock machinery usually consists of only sHsps, Hsp70, and Hsp60. Moreover, Hsp70 is absent in thermophilic and hyperthermophilic archaea. In the absence of Hsp70, how aggregating protein substrates are transferred to Hsp60 for refolding remains elusive. Here, we investigated the crosstalk in the heat shock response pathway of thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. In the present study, we biophysically and biochemically characterized one of the small heat shock proteins, Hsp14, of S. acidocaldarius. Moreover, we investigated its ability to interact with Hsp20 and Hsp60 to facilitate the substrate proteins' folding under stress conditions. Like Hsp20, we demonstrated that the dimer is the active form of Hsp14, and it forms an oligomeric storage form at a higher temperature. More importantly, the dynamics of the Hsp14 oligomer are maintained by rapid subunit exchange between the dimeric states, and the rate of subunit exchange increases with increasing temperature. We also tested the ability of Hsp14 to form hetero-oligomers via subunit exchange with Hsp20. We observed hetero-oligomer formation only at higher temperatures (50 °C-70 °C). Furthermore, experiments were performed to investigate the interaction between small heat shock proteins and Hsp60. We demonstrated an enthalpy-driven direct physical interaction between Hsp14 and Hsp60. Our results revealed that Hsp14 could transfer sHsp-captured substrate proteins to Hsp60, which then refolds them back to their active form.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Biochemistry, Bose Institute, Kolkata, India
| | - Koustav Bhakta
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | | | | - Anupama Ghosh
- Division of Plant Biology, Bose Institute, Kolkata, India
| | | |
Collapse
|
6
|
Chen Z, Chi Z, Sun Y, Lv Z. Chirality in peptide-based materials: From chirality effects to potential applications. Chirality 2021; 33:618-642. [PMID: 34342057 DOI: 10.1002/chir.23344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Chirality is ubiquitous in nature with primary cellular functions that include construction of right-/left-handed helix and selective communications among diverse biomolecules. Of particularly intriguing are the chiral peptide-based materials that can be deliberately designed to change physicochemistry properties via tuning peptide sequences. Critically, understanding their chiral effects are fundamental for the development of novel materials in chemistry and biomedicine fields. Here, we review recent researches on chirality in peptide-based materials, summarizing relevant typical chiral effects towards recognition, amplification, and induction. Driven forces for the chiral discrimination in affinity interaction as well as the handedness preferences in supramolecular structure formation at both the macroscale and microscale are illustrated. The implementation of such chirality effects of artificial copolymers, assembled aggregates and their composites in the fields of bioseparation and bioenrichment, cell incubation, protein aggregation inhibitors, chiral smart gels, and bionic electro devices are also presented. At last, the challenges in these areas and possible directions are pointed out. The diversity of chiral roles in the origin of life and chirality design in different organic or composite systems as well as their applications in drug development and chirality detection in environmental protection are discussed.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Sun
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
How stable are the collagen and ferritin proteins for application in bioelectronics? PLoS One 2021; 16:e0246180. [PMID: 33513177 PMCID: PMC7845979 DOI: 10.1371/journal.pone.0246180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
One major obstacle in development of biomolecular electronics is the loss of function of biomolecules upon their surface-integration and storage. Although a number of reports on solid-state electron transport capacity of proteins have been made, no study on whether their functional integrity is preserved upon surface-confinement and storage over a long period of time (few months) has been reported. We have investigated two specific cases—collagen and ferritin proteins, since these proteins exhibit considerable potential as bioelectronic materials as we reported earlier. Since one of the major factors for protein degradation is the proteolytic action of protease, such studies were made under the action of protease, which was either added deliberately or perceived to have entered in the reaction vial from ambient environment. Since no significant change in the structural characteristics of these proteins took place, as observed in the circular dichroism and UV-visible spectrophotometry experiments, and the electron transport capacity was largely retained even upon direct protease exposure as revealed from the current sensing atomic force spectroscopy experiments, we propose that stable films can be formed using the collagen and ferritin proteins. The observed protease-resistance and robust nature of these two proteins support their potential application in bioelectronics.
Collapse
|
8
|
Chakraborty D, Chebaro Y, Wales DJ. A multifunnel energy landscape encodes the competing α-helix and β-hairpin conformations for a designed peptide. Phys Chem Chem Phys 2020; 22:1359-1370. [PMID: 31854397 DOI: 10.1039/c9cp04778f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depending on the amino acid sequence, as well as the local environment, some peptides have the capability to fold into multiple secondary structures. Conformational switching between such structures is a key element of protein folding and aggregation. Specifically, understanding the molecular mechanism underlying the transition from an α-helix to a β-hairpin is critical because it is thought to be a harbinger of amyloid assembly. In this study, we explore the energy landscape for an 18-residue peptide (DP5), designed by Araki and Tamura to exhibit equal propensities for the α-helical and β-hairpin forms. We find that the degeneracy is encoded in the multifunnel nature of the underlying free energy landscape. In agreement with experiment, we also observe that mutation of tyrosine at position 12 to serine shifts the equilibrium in favor of the α-helix conformation, by altering the landscape topography. The transition from the α-helix to the β-hairpin is a complex stepwise process, and occurs via collapsed coil-like intermediates. Our findings suggest that even a single mutation can tune the emergent features of the landscape, providing an efficient route to protein design. Interestingly, the transition pathways for the conformational switch seem to be minimally perturbed upon mutation, suggesting that there could be universal microscopic features that are conserved among different switch-competent protein sequences.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| | - Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK.
| |
Collapse
|
9
|
Chemical and Biological Characteristics of Antimicrobial α-Helical Peptides Found in Solitary Wasp Venoms and Their Interactions with Model Membranes. Toxins (Basel) 2019; 11:toxins11100559. [PMID: 31554187 PMCID: PMC6832458 DOI: 10.3390/toxins11100559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Solitary wasps use their stinging venoms for paralyzing insect or spider prey and feeding them to their larvae. We have surveyed bioactive substances in solitary wasp venoms, and found antimicrobial peptides together with some other bioactive peptides. Eumenine mastoparan-AF (EMP-AF) was the first to be found from the venom of the solitary eumenine wasp Anterhynchium flavomarginatum micado, showing antimicrobial, histamine-releasing, and hemolytic activities, and adopting an α-helical secondary structure under appropriate conditions. Further survey of solitary wasp venom components revealed that eumenine wasp venoms contained such antimicrobial α-helical peptides as the major peptide component. This review summarizes the results obtained from the studies of these peptides in solitary wasp venoms and some analogs from the viewpoint of (1) chemical and biological characterization; (2) physicochemical properties and secondary structure; and (3) channel-like pore-forming properties.
Collapse
|
10
|
Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective. J Colloid Interface Sci 2019; 548:244-254. [PMID: 31004957 DOI: 10.1016/j.jcis.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS A variety of nanostructures with different chiral features can be self-assembled from short peptides with highly similar sequences. We hypothesize that these supramolecular nanostructures are ruled by the constituent amino acid residues which adopt their conformations under the influence of intra-/inter-molecular interactions during peptide self-assembly. APPROACH Through reviewing recent advances in the self-assembly of short peptides and focusing on the relationship between amino acid conformations, peptide secondary structures and intra-/inter-molecular interactions within the supramolecular architectures, we aim to rationalize the complex interactive processes involved in the self-assembly of short, designed peptides. RESULTS Given the highly complexing interactive processes, the adoption of amino acid conformations and their control over peptide self-assembly consist of 4 main steps: (1) Each amino acid residue adopts its unique conformation in a specific sequence; (2) The sequence exhibits its own main chain geometry and determines the propensity of the intermolecular alignment within the building block; (3) The structural propensity of the building block and the packing mode between them determine the self-assembled structural features such as twisting, growth and chirality; (4) In addition to intra-/inter-molecular interactions, inter-sheet and inter-building block interactions could also affect the residue conformations and nanostructures, causing structural readjustment.
Collapse
|
11
|
Potent and Broad-Spectrum Antimicrobial Activity of Analogs from the Scorpion Peptide Stigmurin. Int J Mol Sci 2019; 20:ijms20030623. [PMID: 30709056 PMCID: PMC6387013 DOI: 10.3390/ijms20030623] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Scorpion venom constitutes a rich source of biologically active compounds with high potential for therapeutic and biotechnological applications that can be used as prototypes for the design of new drugs. The aim of this study was to characterize the structural conformation, evaluate the antimicrobial activity, and gain insight into the possible action mechanism underlying it, for two new analog peptides of the scorpion peptide Stigmurin, named StigA25 and StigA31. The amino acid substitutions in the native sequence for lysine residues resulted in peptides with higher positive net charge and hydrophobicity, with an increase in the theoretical helical content. StigA25 and StigA31 showed the capacity to modify their structural conformation according to the environment, and were stable to pH and temperature variation—results similar to the native peptide. Both analog peptides demonstrated broad-spectrum antimicrobial activity in vitro, showing an effect superior to that of the native peptide, being non-hemolytic at the biologically active concentrations. Therefore, this study demonstrates the therapeutic potential of the analog peptides from Stigmurin and the promising approach of rational drug design based on scorpion venom peptide to obtain new anti-infective agents.
Collapse
|
12
|
Roy M, Gupta S, Patranabis S, Ghosh A. The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2549-2565. [PMID: 30293966 DOI: 10.1016/j.bbamem.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022]
Abstract
Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that rescue misfolded proteins from irreversible aggregation during cellular stress. Many such sHsps exist as large polydisperse species in solution, and a rapid dynamic subunit exchange between oligomeric and dissociated forms modulates their function under a variety of stress conditions. Here, we investigated the structural and functional properties of Hsp20 from thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. To provide a framework for investigating the structure-function relationship of Hsp20 and understanding its dynamic nature, we employed several biophysical and biochemical techniques. Our data suggested the existence of a ~24-mer of Hsp20 at room temperature (25 °C) and a higher oligomeric form at higher temperature (50 °C-70 °C) and lower pH (3.0-5.0). To our surprise, we identified a dimeric form of protein as the functional conformation in the presence of aggregating substrate proteins. The hydrophobic microenvironment mainly regulates the oligomeric plasticity of Hsp20, and it plays a key role in the protection of stress-induced protein aggregation. In Sulfolobus sp., Hsp20, despite being a non-secreted protein, has been reported to be present in secretory vesicles and it is still unclear whether it stabilizes substrate proteins or membrane lipids within the secreted vesicles. To address such an issue, we tested the ability of Hsp20 to interact with membrane lipids along with its ability to modulate membrane fluidity. Our data revealed that Hsp20 interacts with membrane lipids via a hydrophobic interaction and it lowers the propensity of in vitro phase transition of bacterial and archaeal lipids.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Sayandeep Gupta
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Somi Patranabis
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Centenary Campus, P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054, West Bengal, India.
| |
Collapse
|
13
|
Poon C, Sarkar M, Chung EJ. Synthesis of Monocyte-targeting Peptide Amphiphile Micelles for Imaging of Atherosclerosis. J Vis Exp 2017. [PMID: 29286384 DOI: 10.3791/56625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a major contributor to cardiovascular disease, the leading cause of death worldwide, which claims 17.3 million lives annually. Atherosclerosis is also the leading cause of sudden death and myocardial infarction, instigated by unstable plaques that rupture and occlude the blood vessel without warning. Current imaging modalities cannot differentiate between stable and unstable plaques that rupture. Peptide amphiphiles micelles (PAMs) can overcome this drawback as they can be modified with a variety of targeting moieties that bind specifically to diseased tissue. Monocytes have been shown to be early markers of atherosclerosis, while large accumulation of monocytes is associated with plaques prone to rupture. Hence, nanoparticles that can target monocytes can be used to discriminate different stages of atherosclerosis. To that end, here, we describe a protocol for the preparation of monocyte-targeting PAMs (monocyte chemoattractant protein-1 (MCP-1) PAMs). MCP-1 PAMs are self-assembled through synthesis under mild conditions to form nanoparticles of 15 nm in diameter with near neutral surface charge. In vitro, PAMs were found to be biocompatible and had a high binding affinity for monocytes. The methods described herein show promise for a wide range of applications in atherosclerosis as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Christopher Poon
- Department of Biomedical Engineering, University of Southern California
| | - Manjima Sarkar
- Department of Biomedical Engineering, University of Southern California
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California;
| |
Collapse
|
14
|
Dos Santos C, Hamadat S, Le Saux K, Newton C, Mazouni M, Zargarian L, Miro-Padovani M, Zadigue P, Delbé J, Hamma-Kourbali Y, Amiche M. Studies of the antitumor mechanism of action of dermaseptin B2, a multifunctional cationic antimicrobial peptide, reveal a partial implication of cell surface glycosaminoglycans. PLoS One 2017; 12:e0182926. [PMID: 28797092 PMCID: PMC5552233 DOI: 10.1371/journal.pone.0182926] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Dermaseptin-B2 (DRS-B2) is a multifunctional cationic antimicrobial peptide (CAP) isolated from frog skin secretion. We previously reported that DRS-B2 possesses anticancer and antiangiogenic activities in vitro and in vivo. In the present study, we evaluated the antiproliferative activity of DRS-B2 on numerous tumor cell lines, its cell internalization and studies of its molecular partners as well as their influences on its structure. Confocal microscopy using ([Alexa594]-(Cys0)-DRS-B2) shows that in sensitive human tumor cells (PC3), DRS-B2 seems to accumulate rapidly at the cytoplasmic membranes and enters the cytoplasm and the nucleus, while in less sensitive tumor cells (U87MG), DRS-B2 is found packed in vesicles at the cell membrane. Furthermore FACS analysis shows that PC3 cells viability decreases after DRS-B2 treatment while U87 MG seems to be unaffected. However, "pull down" experiments performed with total protein pools from PC3 or U87MG cells and the comparison between the antiproliferative effect of DRS-B2 and its synthetic analog containing all D-amino acids suggest the absence of a stereo-selective protein receptor. Pretreatment of PC3 cells with sodium chlorate, decreases the antiproliferative activity of DRS-B2. This activity is partially restored after addition of exogenous chondroitin sulfate C (CS-C). Moreover, we demonstrate that at nanomolar concentrations CS-C potentiates the antiproliferative effect of DRS-B2. These results highlight the partial implication of glycosaminoglycans in the mechanism of antiproliferative action of DRS-B2. Structural analysis of DRS-B2 by circular dichroism in the presence of increasing concentration of CS-C shows that DRS-B2 adopts an α-helical structure. Finally, structure-activity-relationship studies suggest a key role of the W residue in position 3 of the DRS-B2 sequence for its antiproliferative activity.
Collapse
Affiliation(s)
- Célia Dos Santos
- Laboratoire (CRRET), EAC 7149 CNRS, University Paris Est Créteil, Créteil, France
| | - Sabah Hamadat
- Laboratoire (CRRET), EAC 7149 CNRS, University Paris Est Créteil, Créteil, France
- University Paris Est Créteil, Créteil, France
| | - Karen Le Saux
- University Paris Est Créteil, Créteil, France
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Clara Newton
- Laboratoire (CRRET), EAC 7149 CNRS, University Paris Est Créteil, Créteil, France
- University Paris Est Créteil, Créteil, France
| | - Meriem Mazouni
- Laboratoire (CRRET), EAC 7149 CNRS, University Paris Est Créteil, Créteil, France
- University Paris Est Créteil, Créteil, France
| | - Loussiné Zargarian
- BPA, CNRS UMR 8113 Bâtiment IDA, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Mickael Miro-Padovani
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Patricia Zadigue
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Jean Delbé
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Yamina Hamma-Kourbali
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Mohamed Amiche
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
- * E-mail: ,
| |
Collapse
|
15
|
Lella M, Mahalakshmi R. Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence. Biochemistry 2017; 56:2971-2984. [DOI: 10.1021/acs.biochem.7b00375] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muralikrishna Lella
- Molecular Biophysics Laboratory,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
16
|
Lavanya V, Anil Kumar B, Jamal S, Khan MKA, Ahmed N. Sub-Micellar Concentration of Sodium Dodecyl Sulphate Prevents Thermal Denaturation Induced Aggregation of Plant Lectin, Jacalin. Protein J 2017; 36:17-27. [PMID: 28133706 DOI: 10.1007/s10930-017-9694-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The irreversible thermal unfolding of jacalin, the lectin purified from jackfruit seeds was accompanied by aggregation, where intermolecular interactions among the subunits are favoured over intramolecular interactions. The extent of aggregation increased as a function of temperature, time and protein concentration. The anionic surfactant, sodium dodecyl sulphate (SDS) significantly suppressed the formation of aggregates as observed by turbidity measurements and Rayleigh scattering assay. Moreover, far UV-CD spectra indicate that the protein β sheet transforms into α helical structure, when denatured in the presence of 3 mM SDS. Further, jacalin when heated in the presence of SDS partially retained the hemagglutination activity when jacalin-SDS mixture was diluted to 1:8 factor since 3 mM SDS was found to lyse the red blood cells. Thus, SDS only altered the aggregation behaviour of jacalin by preventing intermolecular hydrogen bonding among the exposed residues but did not completely stabilize the native conformation.
Collapse
Affiliation(s)
- V Lavanya
- School of Life Sciences, B S Abdur Rahman University, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - B Anil Kumar
- School of Life Sciences, B S Abdur Rahman University, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Shazia Jamal
- School of Life Sciences, B S Abdur Rahman University, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Md Khurshid Alam Khan
- School of Life Sciences, B S Abdur Rahman University, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Neesar Ahmed
- School of Life Sciences, B S Abdur Rahman University, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
17
|
Saha P, Sikdar S, Manna C, Chakrabarti J, Ghosh M. SDS induced dissociation of STY3178 oligomer: experimental and molecular dynamics studies. RSC Adv 2017. [DOI: 10.1039/c6ra25737b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
STY3178 the yfdX Salmonella Typhi protein dissociates reversibly in presence of sodium dodecyl sulphate from trimer to monomer.
Collapse
Affiliation(s)
- Paramita Saha
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Samapan Sikdar
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Camelia Manna
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Jaydeb Chakrabarti
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| | - Mahua Ghosh
- Department of Chemical
- Biological and Macromolecular Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700106
- India
| |
Collapse
|
18
|
Resistance to the nucleotide analogue cidofovir in HPV(+) cells: a multifactorial process involving UMP/CMP kinase 1. Oncotarget 2016; 7:10386-401. [PMID: 26824416 PMCID: PMC4891127 DOI: 10.18632/oncotarget.7006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(−) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.
Collapse
|
19
|
Sajeevan KA, Roy D. Temperature-dependent molecular dynamics study reveals an ionic liquid induced 3 10 - to α-helical switch in a neurotoxin. Biopolymers 2016; 108. [PMID: 28009043 DOI: 10.1002/bip.23009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 02/01/2023]
Abstract
Thermal melting and recooling of AuIB, a neurotoxic conopeptide and a highly potent nonaddictive pain reliever is investigated thoroughly in water and an ionic liquid (IL) 1-butyl-3-methylimidazolium Chloride, [Im41 ][Cl] by classical molecular dynamics simulations. Structural evolution of AuIB in water and the IL is observed at different temperatures between 305 and 400 K, to explore how highly viscous ionic solvents affect the peptide structure as compared to conventional solvent water. At 305 K, unlike water, the coercive effect of IL frustrates AuIB secondary structural motifs significantly. As the temperature is raised, a very interesting IL induced conformational transition from 310 - to α-helix is noticed in the peptide, presumably triggered by a significant restructuring of the peptide H-bond network. The backbone length distributions of the peptide indicate that the IL induced conformational switching is accompanied by a reduction of the axial rise of the helical region, encompassing the residues Pro-6 to Ala-10. Further, we estimated the void space available to the peptide for its structural relaxation within the first solvation shell of ∼5 Å in water as well as in IL. A temperature increase by 100 K, opens up an estimated void volume of ∼70 Å3 , equivalent to the volume of approximately six water molecules, around the peptide in IL. Cooling simulations of AuIB point to the crucial interplay between thermodynamically favored AuIB conformers and their kinetic control. This study provides a comprehensive understanding of the ionic solvation of biomolecules reinforcing previous experimental findings.
Collapse
Affiliation(s)
- Karuna Anna Sajeevan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad, Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana, 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad, Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana, 500078, India
| |
Collapse
|
20
|
Peng S, Lin JY, Cheng MH, Wu CW, Chu IM. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:421-8. [DOI: 10.1016/j.msec.2016.06.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/01/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022]
|
21
|
Jafari M, Mehrnejad F. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations. PLoS One 2016; 11:e0165213. [PMID: 27768744 PMCID: PMC5074503 DOI: 10.1371/journal.pone.0165213] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022] Open
Abstract
Changes in the tertiary structure of proteins and the resultant fibrillary aggregation could result in fatal heredity diseases, such as lysozyme systemic amyloidosis. Human lysozyme is a globular protein with antimicrobial properties with tendencies to fibrillate and hence is known as a fibril-forming protein. Therefore, its behavior under different ambient conditions is of great importance. In this study, we conducted two 500000 ps molecular dynamics (MD) simulations of human lysozyme in sodium dodecyl sulfate (SDS) at two ambient temperatures. To achieve comparative results, we also performed two 500000 ps human lysozyme MD simulations in pure water as controls. The aim of this study was to provide further molecular insight into all interactions in the lysozyme-SDS complexes and to provide a perspective on the ability of human lysozyme to form amyloid fibrils in the presence of SDS surfactant molecules. SDS, which is an anionic detergent, contains a hydrophobic tail with 12 carbon atoms and a negatively charged head group. The SDS surfactant is known to be a stabilizer for helical structures above the critical micelle concentration (CMC) [1]. During the 500000 ps MD simulations, the helical structures were maintained by the SDS surfactant above its CMC at 300 K, while at 370 K, human lysozyme lost most of its helices and gained β-sheets. Therefore, we suggest that future studies investigate the β-amyloid formation of human lysozyme at SDS concentrations above the CMC and at high temperatures.
Collapse
Affiliation(s)
- Majid Jafari
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- * E-mail:
| |
Collapse
|
22
|
Lassalle MW, Kondou S. Uncovering the role of the flexible C-terminal tail: A model study with Strep-tagged GFP. BIOCHIMIE OPEN 2016; 2:1-8. [PMID: 29632832 PMCID: PMC5889473 DOI: 10.1016/j.biopen.2015.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022]
Abstract
Recently, it has been recognized that, much like an electric current in an electric circuit, dynamic disruptions from flexible, unstructured regions distal to the active region are transferred through the contact network to the active site and influence protein stability and/or function. As transmembrane proteins frequently possess the β-barrel structure, studies of proteins with this topology are required. The unstructured lid segments of the β-barrel GFP protein are conserved and could play a role in the backbone stabilization required for chromophore function. A study of the disordered C-terminus and the function within the lid is necessary. In this study, we entirely truncated the flexible C-terminal tail and investigated the N-terminal Strep-tagged GFP by fluorescence spectroscopy, and the temperature- and GdnHCl-induced unfolding by circular dichroism. The introduction of the unstructured Strep-tag itself changed the unfolding pathway. Truncating the entire flexible tail did not decrease the fluorescence intensity to a large extent; however, the protein stability changed dramatically. The temperature for half-denaturation T1/2 changed significantly from 79 °C for the wild-type to 72.8 °C for the mutant. Unfolding kinetics at different temperatures have been induced by 4 M GdnHCl, and the apparent Arrhenius activation energy decreased by 40% as compared to the wild-type.
Collapse
Affiliation(s)
- Michael W. Lassalle
- iCLA (International College of Liberal Arts), Yamanashi Gakuin University, 2-4-5 Sakaori, Kofu-city, Yamanashi-ken, 400-8575 Japan
| | - Shinobu Kondou
- Ehime Prefectural Police HQ, Forensic Science Laboratory, Japan
| |
Collapse
|
23
|
Ammar FF, Hobaika Z, Abdel-Azeim S, Zargarian L, Maroun RG, Fermandjian S. A targeted DNA substrate mechanism for the inhibition of HIV-1 integrase by inhibitors with antiretroviral activity. FEBS Open Bio 2016; 6:234-50. [PMID: 27239438 PMCID: PMC4821353 DOI: 10.1002/2211-5463.12025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
We recently reported that viral DNA could be the primary target of raltegravir (RAL), an efficient anti‐HIV‐1 drug, which acts by inhibiting integrase. To elucidate this mechanism, we conducted a comparative analysis of RAL and TB11, a diketoacid abandoned as an anti‐HIV‐1 drug for its weak efficiency and marked toxicity, and tested the effects of the catalytic cofactor Mg2+ (5 mm) on drug‐binding properties. We used circular dichroism and fluorescence to determine drug affinities for viral DNA long terminal repeats (LTRs) and peptides derived from the integrase active site and DNA retardation assays to assess drug intercalation into DNA base pairs. We found that RAL bound more tightly to LTR ends than did TB11 (a diketo acid bearing an azido group) and that Mg2+ significantly increased the affinity of both RAL and TB11. We also observed a good relationship between drug binding with processed LTR and strand transfer inhibition. This unusual type of inhibition was caused by Mg2+‐assisted binding of drugs to DNA substrate, rather than to enzyme. Notably, while RAL bound exclusively to the cleavable/cleaved site, TB11 further intercalated into DNA base pairs and interacted with the integrase‐derived peptides. These unwanted binding sites explain the weaker bioavailability and higher toxicity of TB11 compared with the more effective RAL.
Collapse
Affiliation(s)
- Farah F Ammar
- Centre d'Analyses et de Recherche UR EGFEM Faculté des Sciences Université Saint-Joseph Beirut Lebanon; LBPA, UMR8113 du CNRS Ecole Normale Supérieure de Cachan Cedex Cachan France
| | - Zeina Hobaika
- Centre d'Analyses et de Recherche UR EGFEM Faculté des Sciences Université Saint-Joseph Beirut Lebanon
| | - Safwat Abdel-Azeim
- LBPA, UMR8113 du CNRS Ecole Normale Supérieure de Cachan Cedex Cachan France
| | - Loussinée Zargarian
- LBPA, UMR8113 du CNRS Ecole Normale Supérieure de Cachan Cedex Cachan France
| | - Richard G Maroun
- Centre d'Analyses et de Recherche UR EGFEM Faculté des Sciences Université Saint-Joseph Beirut Lebanon
| | - Serge Fermandjian
- LBPA, UMR8113 du CNRS Ecole Normale Supérieure de Cachan Cedex Cachan France; Chemistry and Biology, Nucleo(s)tides and Immunology for Therapy UMR8601 CNRS Paris Cedex 06 France
| |
Collapse
|
24
|
Erler J, Zhang R, Petridis L, Cheng X, Smith JC, Langowski J. The role of histone tails in the nucleosome: a computational study. Biophys J 2016; 107:2911-2922. [PMID: 25517156 DOI: 10.1016/j.bpj.2014.10.065] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022] Open
Abstract
Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins.
Collapse
Affiliation(s)
- Jochen Erler
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Ruihan Zhang
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Loukas Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Xiaolin Cheng
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jörg Langowski
- Division of Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
25
|
Zhou P, Deng L, Wang Y, Lu JR, Xu H. Interplay between Intrinsic Conformational Propensities and Intermolecular Interactions in the Self-Assembly of Short Surfactant-like Peptides Composed of Leucine/Isoleucine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4662-4672. [PMID: 27088564 DOI: 10.1021/acs.langmuir.6b00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To study how the conformational propensities of individual amino acid residues, primary structures (i.e., adjacent residues and molecular lengths), and intermolecular interactions of peptides affect their self-assembly properties, we report the use of replica exchange molecular dynamics (REMD) to investigate the monomers, dimers, and trimers of a series of short surfactant-like peptides (I3K, L3K, L4K, and L5K). For four-residue peptides X3K (I3K and L3K), the results show that their different aggregation behaviors arise from the different intrinsic conformational propensities of isoleucine and leucine. For LmK peptides (L3K, L4K, and L5K), the molecular length is found to dictate their aggregation via primarily modulating intermolecular interactions. Increasing the number of hydrophobic amino acid residues of LmK peptides enhances their intermolecular H-bonding and promotes the formation of β-strands in dimer and trimer aggregates, overwhelming the intrinsic preference of Leu for helical structures. Thus, the interplay between the conformational propensities of individual amino acid residues for secondary structures and molecular interactions determines the self-assembly properties of the peptides, and the competition between intramolecular and intermolecular H-bonding interactions determines the probability of β-sheet alignment of peptide molecules. These results are validated by comparing simulated and experimental CD spectra of the peptides. This study will aid the design of short peptide amphiphiles and improve the mechanistic understanding of their self-assembly behavior.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao, China
| | - Li Deng
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao, China
| | - Yanting Wang
- Institute of Theoretical Physics, Chinese Academy of Sciences , 55 East Zhongguancun Road, Beijing, China
| | - Jian R Lu
- Biological Physics Laboratory, School of Physics and Astronomy, The University of Manchester Institution , Manchester M13 9PL, United Kingdom
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao, China
| |
Collapse
|
26
|
Le Breton N, Adrianaivomananjaona T, Gerbaud G, Etienne E, Bisetto E, Dautant A, Guigliarelli B, Haraux F, Martinho M, Belle V. Dimerization interface and dynamic properties of yeast IF1 revealed by Site-Directed Spin Labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:89-97. [PMID: 26518384 DOI: 10.1016/j.bbabio.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 11/21/2022]
Abstract
The mitochondrial ATPase inhibitor, IF1, regulates the activity of the mitochondrial ATP synthase. The oligomeric state of IF1 related to pH is crucial for its inhibitory activity. Although extensive structural studies have been performed to characterize the oligomeric states of bovine IF1, only little is known concerning those of yeast IF1. While bovine IF1 can be found as an inhibitory dimer at low pH and a non-inhibitory tetramer at high pH, a monomer/dimer equilibrium has been described for yeast IF1, high pH values favoring the monomeric state. Combining different strategies involving the grafting of nitroxide spin labels combined with Electron Paramagnetic Resonance (EPR) spectroscopy, the present study brings the first structural characterization, at the residue level, of yeast IF1 in its dimeric form. The results show that the dimerization interface involves the central region of the peptide revealing that the dimer corresponds to a non-inhibitory state. Moreover, we demonstrate that the C-terminal region of the peptide is highly dynamic and that this segment is probably folded back onto the central region. Finally, the pH-dependence of the inter-label distance distribution has been observed indicating a conformational change between two structural states in the dimer.
Collapse
Affiliation(s)
- Nolwenn Le Breton
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Tiona Adrianaivomananjaona
- Lifesearch, 72 rue du Fauboug St Honoré, F-75008 Paris, France; CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; CEA, CNRS, Université Paris Sud, Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, F-91191 Gif sur Yvette, France
| | - Guillaume Gerbaud
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Emilien Etienne
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Elena Bisetto
- CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; Department of Biomedical Sciences and Technologies, University of Udine, Piazzale Kolbe 4, I-33100 Udine, Italy
| | - Alain Dautant
- University Bordeaux-CNRS, IBGC, UMR 5095, 1 rue Camille Saint-Saëns, F-33000 Bordeaux, France
| | - Bruno Guigliarelli
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Francis Haraux
- CEA, Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France; CEA, CNRS, Université Paris Sud, Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, F-91191 Gif sur Yvette, France.
| | - Marlène Martinho
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France
| | - Valérie Belle
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille, France.
| |
Collapse
|
27
|
Kim H, Kihara D. Protein structure prediction using residue- and fragment-environment potentials in CASP11. Proteins 2015; 84 Suppl 1:105-17. [PMID: 26344195 DOI: 10.1002/prot.24920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Abstract
An accurate scoring function that can select near-native structure models from a pool of alternative models is key for successful protein structure prediction. For the critical assessment of techniques for protein structure prediction (CASP) 11, we have built a protocol of protein structure prediction that has novel coarse-grained scoring functions for selecting decoys as the heart of its pipeline. The score named PRESCO (Protein Residue Environment SCOre) developed recently by our group evaluates the native-likeness of local structural environment of residues in a structure decoy considering positions and the depth of side-chains of spatially neighboring residues. We also introduced a helix interaction potential as an additional scoring function for selecting decoys. The best models selected by PRESCO and the helix interaction potential underwent structure refinement, which includes side-chain modeling and relaxation with a short molecular dynamics simulation. Our protocol was successful, achieving the top rank in the free modeling category with a significant margin of the accumulated Z-score to the subsequent groups when the top 1 models were considered. Proteins 2016; 84(Suppl 1):105-117. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyungrae Kim
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47906
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47906. .,Department of Computer Science, Purdue University, West Lafayette, Indiana, 47907.
| |
Collapse
|
28
|
Pellach M, Atsmon-Raz Y, Simonovsky E, Gottlieb H, Jacoby G, Beck R, Adler-Abramovich L, Miller Y, Gazit E. Spontaneous structural transition in phospholipid-inspired aromatic phosphopeptide nanostructures. ACS NANO 2015; 9:4085-4095. [PMID: 25802000 DOI: 10.1021/acsnano.5b00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phospholipid membranes could be considered a prime example of the ability of nature to produce complex yet ordered structures, by spontaneous and efficient self-assembly. Inspired by the unique properties and architecture of phospholipids, we designed simple amphiphilic decapeptides, intended to fold in the center of the peptide sequence, with a phosphorylated serine "head" located within a central turn segment, and two hydrophobic "tails". The molecular design also included the integration of the diphenylalanine motif, previously shown to facilitate self-assembly and increase nanostructure stability. Secondary structure analysis of the peptides indeed indicated the presence of stabilized conformations in solution, with a central turn connecting two hydrophobic "tails", and interactions between the hydrophobic strands. The mechanisms of assembly into supramolecular structures involved structural transitions between different morphologies, which occurred over several hours, leading to the formation of distinctive nanostructures, including half-elliptical nanosheets and curved tapes. The phosphopeptide building blocks appear to self-assemble via a particular combination of aromatic, hydrophobic and ionic interactions, as well as hydrogen bonding, as demonstrated by proposed constructed simulated models of the peptides and self-assembled nanostructures. Molecular dynamics simulations also gave insight into mechanisms of structural transitions of the nanostructures at a molecular level. Because of the biocompatibility of peptides, the phosphopeptide assemblies allow for expansion of the library of biomolecular nanostructures available for future design and application of biomedical devices.
Collapse
Affiliation(s)
- Michal Pellach
- †Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Atsmon-Raz
- ‡Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- §Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Eyal Simonovsky
- ‡Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- §Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Hugo Gottlieb
- ⊥Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Guy Jacoby
- ∥The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Roy Beck
- ∥The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Lihi Adler-Abramovich
- †Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yifat Miller
- ‡Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- §Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Ehud Gazit
- †Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- #Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Carlier L, Joanne P, Khemtémourian L, Lacombe C, Nicolas P, El Amri C, Lequin O. Investigating the role of GXXXG motifs in helical folding and self-association of plasticins, Gly/Leu-rich antimicrobial peptides. Biophys Chem 2015; 196:40-52. [DOI: 10.1016/j.bpc.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 12/24/2022]
|
30
|
Kim H, Kihara D. Detecting local residue environment similarity for recognizing near-native structure models. Proteins 2014; 82:3255-72. [PMID: 25132526 PMCID: PMC4237674 DOI: 10.1002/prot.24658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/10/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022]
Abstract
We developed a new representation of local amino acid environments in protein structures called the Side-chain Depth Environment (SDE). An SDE defines a local structural environment of a residue considering the coordinates and the depth of amino acids that locate in the vicinity of the side-chain centroid of the residue. SDEs are general enough that similar SDEs are found in protein structures with globally different folds. Using SDEs, we developed a procedure called PRESCO (Protein Residue Environment SCOre) for selecting native or near-native models from a pool of computational models. The procedure searches similar residue environments observed in a query model against a set of representative native protein structures to quantify how native-like SDEs in the model are. When benchmarked on commonly used computational model datasets, our PRESCO compared favorably with the other existing scoring functions in selecting native and near-native models.
Collapse
Affiliation(s)
- Hyungrae Kim
- Department of Biological Sciences, Purdue University, West Lafayette IN, 47906, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette IN, 47906, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
31
|
Structural basis for inhibition of the MDM2:p53 interaction by an optimized MDM2-binding peptide selected with mRNA display. PLoS One 2014; 9:e109163. [PMID: 25275651 PMCID: PMC4183577 DOI: 10.1371/journal.pone.0109163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/29/2014] [Indexed: 12/21/2022] Open
Abstract
The oncoprotein MDM2 binds to tumor suppressor protein p53 and inhibits its anticancer activity, which leads to promotion of tumor cell growth and tumor survival. Abrogation of the p53:MDM2 interaction reportedly results in reactivation of the p53 pathway and inhibition of tumor cell proliferation. We recently performed rigorous selection of MDM2-binding peptides by means of mRNA display and identified an optimal 12-mer peptide (PRFWEYWLRLME), named MDM2 Inhibitory Peptide (MIP), which shows higher affinity for MDM2 (and also its homolog, MDMX) and higher tumor cell proliferation suppression activity than known peptides. Here we determined the NMR solution structure of a MIP-MDM2 fusion protein to elucidate the structural basis of the tight binding of MIP to MDM2. A region spanning from Phe3 to Met11 of MIP forms a single α-helix, which is longer than those of the other MDM2-binding peptides. MIP shares a conserved Phe3-Trp7-Leu10 triad, whose side chains are oriented towards and fit into the hydrophobic pockets of MDM2. Additionally, hydrophobic surface patches that surround the hydrophobic pockets of MDM2 are covered by solvent-exposed MIP residues, Trp4, Tyr6, and Met11. Their hydrophobic interactions extend the interface of the two molecules and contribute to the strong binding. The potential MDM2 inhibition activity observed for MIP turned out to originate from its enlarged binding interface. The structural information obtained in the present study provides a road map for the rational design of strong inhibitors of MDM2:p53 binding.
Collapse
|
32
|
Zamudio-Prieto O, Benítez-Cardoza C, Arroyo R, Ortega-López J. Conformational changes induced by detergents during the refolding of chemically denatured cysteine protease ppEhCP-B9 from Entamoeba histolytica. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1299-306. [DOI: 10.1016/j.bbapap.2014.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
|
33
|
Wen Y, Roudebush SL, Buckholtz GA, Goehring TR, Giannoukakis N, Gawalt ES, Meng WS. Coassembly of amphiphilic peptide EAK16-II with histidinylated analogues and implications for functionalization of β-sheet fibrils in vivo. Biomaterials 2014; 35:5196-205. [DOI: 10.1016/j.biomaterials.2014.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/03/2014] [Indexed: 02/02/2023]
|
34
|
Mileo E, Lorenzi M, Erales J, Lignon S, Puppo C, Le Breton N, Etienne E, Marque SRA, Guigliarelli B, Gontero B, Belle V. Dynamics of the intrinsically disordered protein CP12 in its association with GAPDH in the green alga Chlamydomonas reinhardtii: a fuzzy complex. MOLECULAR BIOSYSTEMS 2014; 9:2869-76. [PMID: 24056937 DOI: 10.1039/c3mb70190e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CP12 is a widespread regulatory protein of oxygenic photosynthetic organisms that contributes to the regulation of the Calvin cycle by forming a supra-molecular complex with at least two enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK). CP12 shares some similarities with intrinsically disordered proteins (IDPs) depending on its redox state. In this study, site-directed spin labeling (SDSL) combined with EPR spectroscopy was used to probe the dynamic behavior of CP12 from Chlamydomonas reinhardtii upon binding to GAPDH, the first step towards ternary complex formation. The two N-terminal cysteine residues were labeled using the classical approach while the tyrosine located at the C-terminal end of CP12 was modified following an original procedure. The results show that the label grafted at the C-terminal extremity is in the vicinity of the interaction site whereas the N-terminal region remains fully disordered upon binding to GAPDH. In conclusion, GAPDH-CP12 is a fuzzy complex, in which the N-terminal region of CP12 keeps a conformational freedom in the bound form. This fuzziness could be one of the keys to facilitate binding of PRK to CP12-GAPDH and to form the ternary supra-molecular complex.
Collapse
Affiliation(s)
- Elisabetta Mileo
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Feng Y, Lin H, Luo L. Prediction of protein secondary structure using feature selection and analysis approach. Acta Biotheor 2014; 62:1-14. [PMID: 24052343 DOI: 10.1007/s10441-013-9203-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 08/24/2013] [Indexed: 01/09/2023]
Abstract
The prediction of the secondary structure of a protein from its amino acid sequence is an important step towards the prediction of its three-dimensional structure. However, the accuracy of ab initio secondary structure prediction from sequence is about 80% currently, which is still far from satisfactory. In this study, we proposed a novel method that uses binomial distribution to optimize tetrapeptide structural words and increment of diversity with quadratic discriminant to perform prediction for protein three-state secondary structure. A benchmark dataset including 2,640 proteins with sequence identity of less than 25% was used to train and test the proposed method. The results indicate that overall accuracy of 87.8% was achieved in secondary structure prediction by using ten-fold cross-validation. Moreover, the accuracy of predicted secondary structures ranges from 84 to 89% at the level of residue. These results suggest that the feature selection technique can detect the optimized tetrapeptide structural words which affect the accuracy of predicted secondary structures.
Collapse
|
36
|
|
37
|
Rösner HI, Kragelund BB. Structure and dynamic properties of membrane proteins using NMR. Compr Physiol 2013; 2:1491-539. [PMID: 23798308 DOI: 10.1002/cphy.c110036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integral membrane proteins are one of the most challenging groups of macromolecules despite their apparent conformational simplicity. They manage and drive transport, circulate information, and participate in cellular movements via interactions with other proteins and through intricate conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches, a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability.
Collapse
Affiliation(s)
- Heike I Rösner
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
38
|
Wang TF, Lin MG, Lo HF, Chi MC, Lin LL. Biophysical characterization of a recombinant aminopeptidase II from the thermophilic bacterium Bacillus stearothermophilus. J Biol Phys 2013; 40:25-40. [PMID: 24165863 DOI: 10.1007/s10867-013-9332-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/30/2013] [Indexed: 11/30/2022] Open
Abstract
In the present study, the biophysical properties of His6-tagged Bacillus stearothermophilus aminopeptidase II (His6-tagged BsAmpII) are characterized in detail by gel-filtration, analytical ultracentrifugation, and various spectroscopic techniques. Using size-exclusion chromatography and analytical ultracentrifugation, we demonstrate that His6-tagged BsAmpII exists predominantly as a dimer in solution. The enzyme is active and stable at pHs ranging from 6.5 to 8.5. Far-UV circular dichroism analysis reveals that the secondary structures of His6-tagged BsAmpII are significantly altered in the presence of SDS, whereas the presence of 5-10% acetone and ethanol was harmless to the folding of the enzyme. Thermal unfolding of His6-tagged BsAmpII was found to be irreversible and led to the formation of aggregates. The native enzyme started to unfold beyond 0.6 M guanidine hydrochloride and had a midpoint of denaturation at 1.34 M. This protein remained active at concentrations of urea below 2.7 M but experienced an irreversible unfolding by >5 M denaturant. Taken together, this work lays a foundation for potential biotechnological applications of His6-tagged BsAmpII.
Collapse
Affiliation(s)
- Tzu-Fan Wang
- Department of Chemistry, National Cheng Kung University, Tainan City, 701, Taiwan,
| | | | | | | | | |
Collapse
|
39
|
Suárez-Diez M, Pujol AM, Matzapetakis M, Jaramillo A, Iranzo O. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet. Biotechnol J 2013; 8:855-64. [PMID: 23788466 DOI: 10.1002/biot.201200380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/22/2013] [Accepted: 06/03/2013] [Indexed: 11/12/2022]
Abstract
Automated methodologies to design synthetic proteins from first principles use energy computations to estimate the ability of the sequences to adopt a targeted structure. This approach is still far from systematically producing native-like sequences, due, most likely, to inaccuracies when modeling the interactions between the protein and its aqueous environment. This is particularly challenging when engineering small protein domains (with less polar pair interactions than with the solvent). We have re-designed a three-helix bundle, domain B, using a fixed backbone and a four amino acid alphabet. We have enlarged the rotamer library with conformers that increase the weight of electrostatic interactions within the design process without altering the energy function used to compute the folding free energy. Our synthetic sequences show less than 15% similarity to any Swissprot sequence. We have characterized our sequences in different solvents using circular dichroism and nuclear magnetic resonance. The targeted structure achieved is dependent on the solvent used. This method can be readily extended to larger domains. Our method will be useful for the engineering of proteins that become active only in a given solvent and for designing proteins in the context of hydrophobic solvents, an important fraction of the situations in the cell.
Collapse
Affiliation(s)
- Maria Suárez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Hara M, Kondo M, Kato T. A KS-type dehydrin and its related domains reduce Cu-promoted radical generation and the histidine residues contribute to the radical-reducing activities. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1615-24. [PMID: 23382551 PMCID: PMC3617826 DOI: 10.1093/jxb/ert016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Dehydrin is a plant disordered protein whose functions are not yet totally understood. Here it is reported that a KS-type dehydrin can reduce the formation of reactive oxygen species (ROS) from Cu. AtHIRD11, which is the Arabidopsis KS-type dehydrin, inhibited generation of hydrogen peroxide and hydroxyl radicals in the Cu-ascorbate system. The radical-reducing activity of AtHIRD11 was stronger than those of radical-silencing peptides such as glutathione and serum albumin. The addition of Cu(2+) reduced the disordered state, decreased the trypsin susceptibility, and promoted the self-association of AtHIRD11. Domain analyses indicated that the five domains containing histidine showed ROS-reducing activities. Histidine/alanine substitutions indicated that histidine is a crucial residue for reducing ROS generation. Using the 27 peptides which are related to the KnS-type dehydrins of 14 plant species, it was found that the strengths of ROS-reducing activities can be determined by two factors, namely the histidine contents and the length of the peptides. The degree of ROS-reducing activities of a dehydrin can be predicted using these indices.
Collapse
Affiliation(s)
- Masakazu Hara
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| | | | | |
Collapse
|
41
|
Chen L, Ai X, Portaliou AG, Minetti CASA, Remeta DP, Economou A, Kalodimos CG. Substrate-activated conformational switch on chaperones encodes a targeting signal in type III secretion. Cell Rep 2013; 3:709-15. [PMID: 23523349 DOI: 10.1016/j.celrep.2013.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/27/2013] [Accepted: 02/22/2013] [Indexed: 02/07/2023] Open
Abstract
The targeting of type III secretion (TTS) proteins at the injectisome is an important process in bacterial virulence. Nevertheless, how the injectisome specifically recognizes TTS substrates among all bacterial proteins is unknown. A TTS peripheral membrane ATPase protein located at the base of the injectisome has been implicated in the targeting process. We have investigated the targeting of the EspA filament protein and its cognate chaperone, CesAB, to the EscN ATPase of the enteropathogenic E. coli (EPEC). We show that EscN selectively engages the EspA-loaded CesAB but not the unliganded CesAB. Structure analysis revealed that the targeting signal is encoded in a disorder-order structural transition in CesAB that is elicited only upon the binding of its physiological substrate, EspA. Abrogation of the interaction between the CesAB-EspA complex and EscN resulted in severe secretion and infection defects. Additionally, we show that the targeting and secretion signals are distinct and that the two processes are likely regulated by different mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Center of Integrative Proteomics Research and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Walker AA, Warden AC, Trueman HE, Weisman S, Sutherland TD. Micellar refolding of coiled-coil honeybee silk proteins. J Mater Chem B 2013; 1:3644-3651. [DOI: 10.1039/c3tb20611d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Evolutionary screening and adsorption behavior of engineered M13 bacteriophage and derived dodecapeptide for selective decoration of gold interfaces. J Colloid Interface Sci 2013; 389:220-9. [DOI: 10.1016/j.jcis.2012.08.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022]
|
44
|
Kamech N, Vukičević D, Ladram A, Piesse C, Vasseur J, Bojović V, Simunić J, Juretić D. Improving the Selectivity of Antimicrobial Peptides from Anuran Skin. J Chem Inf Model 2012; 52:3341-51. [DOI: 10.1021/ci300328y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nédia Kamech
- Université Pierre et Marie Curie - Paris 06, Equipe Biogenèse des signaux
peptidiques, ER3, 7 Quai Saint-Bernard, 75252 Paris cedex 05, France
| | - Damir Vukičević
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Ali Ladram
- Université Pierre et Marie Curie - Paris 06, Equipe Biogenèse des signaux
peptidiques, ER3, 7 Quai Saint-Bernard, 75252 Paris cedex 05, France
| | - Christophe Piesse
- Université Pierre et Marie Curie - Paris 06, Ingénierie des protéines,
Institut de Biologie intégrative IFR 83, 7 Quai Saint-Bernard,
75252 Paris cedex 05, France
| | - Julie Vasseur
- Université Pierre et Marie Curie - Paris 06, Equipe Biogenèse des signaux
peptidiques, ER3, 7 Quai Saint-Bernard, 75252 Paris cedex 05, France
| | - Viktor Bojović
- Ruđer Bošković Institute, Centre for Informatics and Computing, 10000 Zagreb, Croatia
| | - Juraj Simunić
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Davor Juretić
- Faculty of Science, University of Split, 21000 Split, Croatia
| |
Collapse
|
45
|
Contribution of hydrophobic interactions to the folding and fibrillation of histone H1 and its carboxy-terminal domain. J Struct Biol 2012; 180:101-9. [PMID: 22813934 DOI: 10.1016/j.jsb.2012.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/31/2012] [Accepted: 07/06/2012] [Indexed: 11/23/2022]
Abstract
Histone H1 is involved in chromatin structure and gene regulation. H1 also performs functions outside cell nuclei, which may depend on its properties as a lipid-binding protein. The H1 CTD behaves as an intrinsically disordered protein (IDP) with coupled binding and folding. Here, we used neutral detergents and anionic SDS to study the contribution of hydrophobic interactions to the folding of the CTD. In the presence of neutral detergents, the CTD folded with proportions of secondary structure motifs similar to those observed in the DNA complexes. These results identify a folding pathway for the CTD based on hydrophobic interactions, and independent of charge compensation. The CTD is phosphorylated to different extents by cyclin-dependent kinases. The general effect of phosphorylation in the presence of detergents was a decrease in the α-helix content and an increase in that of the β-structure. The greatest effect was observed in the fully phosphorylated CTD (three phosphate groups) in the presence of anionic SDS (7:1, detergent/CTD molar ratio); in these conditions, the CTD became an all-β protein, with 83% β-structure and no α-helix. The CTD in all-β conformation readily formed ribbon-like fibers. The entire H1 also formed fibers when fully phosphorylated in the CTD. Fibers were of the amyloid type, as judged by strong birefringence in the presence of Congo red and thioflavin fluorescence enhancement. Amyloid fiber formation was only observed in SDS, suggesting that it requires the joint effects of partial charge neutralization and hydrophobic interactions, together with the all-β potential provided by full phosphorylation.
Collapse
|
46
|
Chemes LB, Alonso LG, Noval MG, de Prat-Gay G. Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains. Methods Mol Biol 2012; 895:387-404. [PMID: 22760329 DOI: 10.1007/978-1-61779-927-3_22] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Circular dichroism (CD) spectroscopy is a simple and powerful technique, which allows for the assessment of the conformational properties of a protein or protein domain. Intrinsically disordered proteins (IDPs), as discussed throughout this series, differ from random coil polypeptides in that different regions present specific conformational preferences, exhibiting dynamic secondary structure content [1]. These dynamic secondary structure elements can be stabilized or perturbed by different chemical (solvent, ionic strength, pH) or physical (temperature) agents, by posttranslational modifications, and by ligands. This information is important for defining ID nature. As IDPs present dynamic conformations, circular dichroism measurements (and other approaches as well) should be carried out not as single spectra performed in unique conditions, but instead changing the chemical conditions and observing the behavior, as part of the determination of the ID nature.In this chapter, we present the basic methodology for performing Far-UV CD measurements on a protein of interest and for identifying and characterizing intrinsically disordered regions, and several protocols for the analysis of residual secondary structure present in the protein under study. These techniques are straightforward to perform; they require minimal training and can be preliminary to more complex methodologies such as NMR.
Collapse
Affiliation(s)
- Lucía B Chemes
- Protein Structure, Function and Engineering Laboratory, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
47
|
Muñoz F, Palomares-Jerez MF, Daleo G, Villalaín J, Guevara MG. Cholesterol and membrane phospholipid compositions modulate the leakage capacity of the swaposin domain from a potato aspartic protease (StAsp-PSI). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1038-44. [DOI: 10.1016/j.bbalip.2011.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/08/2011] [Accepted: 08/03/2011] [Indexed: 12/26/2022]
|
48
|
Deiber JA, Piaggio MV, Peirotti MB. Global conformations of proteins as predicted from the modeling of their CZE mobility data. Electrophoresis 2011; 32:2779-87. [DOI: 10.1002/elps.201100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/07/2011] [Accepted: 02/10/2011] [Indexed: 11/11/2022]
|
49
|
Hua W, Xu L, Luo Y, Li S. Understanding the influence of guest-host interactions on the conformation of short peptides in a hydrophobic cavity: a computational study. Chemphyschem 2011; 12:1325-33. [PMID: 21445953 DOI: 10.1002/cphc.201001081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Indexed: 11/10/2022]
Abstract
We performed a computational investigation to understand the conformational preferences of four short peptides in a self-assembled cage based on the experimental work by Y. Hatakeyama et al. (Angew. Chem. Int. Ed.2009, 48, 8695). For this purpose, we combined molecular dynamics simulations, Monte Carlo simulations, and quantum mechanical calculations to obtain energies and structures for several low-lying conformers of four peptides and the corresponding peptide-cage inclusion complexes. Our calculations at both B3LYP and MP2 levels show that for each peptide, the corresponding conformation within the host (as revealed by the crystal structure) does not represent the lowest-energy conformation of this peptide in vacuum. By comparing some low-lying conformers in vacuum and in the cavity (for the same peptide), we found that the cage has a significant influence on the conformational propensities of peptides. First, one carbonyl oxygen of each peptide tends to bind to one Zn(II) atom of the cage, forming a Zn-O bond. The formation of this bond leads to significant charge transfer from the cage to the peptide. Second, this Zn-O bond causes the peptide to go through some local conformational changes. For larger peptides, such as penta- and hexapeptides, our calculations also show that some of their conformers must undergo significant structural changes, due to the confinement of the host. This computational study reveals the noticeable influence of the guest-host interaction on the conformational preferences of short peptides.
Collapse
Affiliation(s)
- Weijie Hua
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Hankou Road 22, 210093 Nanjing, PR China
| | | | | | | |
Collapse
|
50
|
Andreotti G, Vitale RM, Avidan-Shpalter C, Amodeo P, Gazit E, Motta A. Converting the highly amyloidogenic human calcitonin into a powerful fibril inhibitor by three-dimensional structure homology with a non-amyloidogenic analogue. J Biol Chem 2011; 286:2707-18. [PMID: 21078667 PMCID: PMC3024767 DOI: 10.1074/jbc.m110.182014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/21/2010] [Indexed: 12/25/2022] Open
Abstract
Irreversible aggregation limits bioavailability and therapeutic activity of protein-based drugs. Here we show that an aggregation-resistant mutant can be engineered by structural homology with a non-amyloidogenic analogue and that the aggregation-resistant variant may act as an inhibitor. This strategy has successfully been applied to the amyloidogenic human calcitonin (hCT). Including only five residues from the non-amyloidogenic salmon calcitonin (sCT), we obtained a variant, polar human calcitonin (phCT), whose solution structure was shown by CD, NMR, and calculations to be practically identical to that of sCT. phCT was also observed to be a potent amyloidogenesis inhibitor of hCT when mixed with it in a 1:1 ratio. Fibrillation studies of phCT and the phCT-hCT mixture mimicked the sCT behavior in the kinetics and shapes of the fibrils with a dramatic reduction with respect to hCT. Finally, the effect of phCT alone and of the mixture on the intracellular cAMP level in T47D cells confirmed for the mutant and the mixture their calcitonin-like activity, exhibiting stimulation effects identical to those of sCT, the current therapeutic form. The strategy followed appears to be suitable to develop new forms of hCT with a striking reduction of aggregation and improved activity. Finally, the inhibitory properties of the aggregation-resistant analogue, if confirmed for other amyloidogenic peptides, may favor a new strategy for controlling fibril formation in a variety of human diseases.
Collapse
Affiliation(s)
- Giuseppina Andreotti
- From the Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Edificio A, 80078 Pozzuoli (Naples), Italy and
| | - Rosa Maria Vitale
- From the Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Edificio A, 80078 Pozzuoli (Naples), Italy and
| | - Carmit Avidan-Shpalter
- the Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Pietro Amodeo
- From the Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Edificio A, 80078 Pozzuoli (Naples), Italy and
| | - Ehud Gazit
- the Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Andrea Motta
- From the Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Edificio A, 80078 Pozzuoli (Naples), Italy and
| |
Collapse
|