1
|
Taylor IR, Assimon VA, Kuo SY, Rinaldi S, Li X, Young ZT, Morra G, Green K, Nguyen D, Shao H, Garneau-Tsodikova S, Colombo G, Gestwicki JE. Tryptophan scanning mutagenesis as a way to mimic the compound-bound state and probe the selectivity of allosteric inhibitors in cells. Chem Sci 2020; 11:1892-1904. [PMID: 34123282 PMCID: PMC8148087 DOI: 10.1039/c9sc04284a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the selectivity of a small molecule for its target(s) in cells is an important goal in chemical biology and drug discovery. One powerful way to address this question is with dominant negative (DN) mutants, in which an active site residue in the putative target is mutated. While powerful, this approach is less straightforward for allosteric sites. Here, we introduce tryptophan scanning mutagenesis as an expansion of this idea. As a test case, we focused on the challenging drug target, heat shock cognate protein 70 (Hsc70), and its allosteric inhibitor JG-98. Structure-based modelling predicted that mutating Y149W in human Hsc70 or Y145W in the bacterial ortholog DnaK would place an indole side chain into the allosteric pocket normally occupied by the compound. Indeed, we found that the tryptophan mutants acted as if they were engaged with JG-98. We then used DnaK Y145W to suggest that this protein may be an anti-bacterial target. Indeed, we found that DnaK inhibitors have minimum inhibitory concentration (MIC) values <0.125 μg mL-1 against several pathogens, including multidrug-resistant Staphylococcus aureus (MRSA) strains. We propose that tryptophan scanning mutagenesis may provide a distinct way to address the important problem of target engagement.
Collapse
Affiliation(s)
- Isabelle R Taylor
- Department of Pharmaceutical Chemistry, University of California at San Francisco 675 Nelson Rising Lane San Francisco CA 94158 USA
| | - Victoria A Assimon
- Department of Pharmaceutical Chemistry, University of California at San Francisco 675 Nelson Rising Lane San Francisco CA 94158 USA
| | - Szu Yu Kuo
- Department of Pharmaceutical Chemistry, University of California at San Francisco 675 Nelson Rising Lane San Francisco CA 94158 USA
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR Via Mario Bianco 9 20131 Milano Italy
| | - Xiaokai Li
- Department of Pharmaceutical Chemistry, University of California at San Francisco 675 Nelson Rising Lane San Francisco CA 94158 USA
| | - Zapporah T Young
- Department of Pharmaceutical Chemistry, University of California at San Francisco 675 Nelson Rising Lane San Francisco CA 94158 USA
| | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR Via Mario Bianco 9 20131 Milano Italy
| | - Keith Green
- Department of Pharmaceutical Sciences, University of Kentucky Lexington KY 40536-0596 USA
| | - Daniel Nguyen
- Department of Pharmaceutical Chemistry, University of California at San Francisco 675 Nelson Rising Lane San Francisco CA 94158 USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California at San Francisco 675 Nelson Rising Lane San Francisco CA 94158 USA
| | | | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR Via Mario Bianco 9 20131 Milano Italy
- Department of Chemistry, University of Pavia V.le Taramelli 12 27100 Pavia Italy
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco 675 Nelson Rising Lane San Francisco CA 94158 USA
| |
Collapse
|
2
|
Abstract
Replication forks frequently are challenged by lesions on the DNA template, replication-impeding DNA secondary structures, tightly bound proteins or nucleotide pool imbalance. Studies in bacteria have suggested that under these circumstances the fork may leave behind single-strand DNA gaps that are subsequently filled by homologous recombination, translesion DNA synthesis or template-switching repair synthesis. This review focuses on the template-switching pathways and how the mechanisms of these processes have been deduced from biochemical and genetic studies. I discuss how template-switching can contribute significantly to genetic instability, including mutational hotspots and frequent genetic rearrangements, and how template-switching may be elicited by replication fork damage.
Collapse
Affiliation(s)
- Susan T Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 2454-9110, USA.
| |
Collapse
|
3
|
Pathways of allosteric regulation in Hsp70 chaperones. Nat Commun 2015; 6:8308. [PMID: 26383706 PMCID: PMC4595643 DOI: 10.1038/ncomms9308] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/09/2015] [Indexed: 12/13/2022] Open
Abstract
Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric communication. We show that the SBD inhibits ATPase activity by interacting with the NBD through a highly conserved hydrogen bond network, and define the signal transduction pathway that allows bound substrates to trigger ATP hydrolysis. We identify variants deficient in only one direction of allosteric control and demonstrate that ATP-induced substrate release is more important for chaperone activity than substrate-stimulated ATP hydrolysis. These findings provide evidence of an unexpected dichotomic allostery mechanism in Hsp70 chaperones and provide the basis for a comprehensive mechanical model of allostery in Hsp70s. Hsp70 chaperones are essential for cellular proteostasis, and their function depends on allosteric communication between their nucleotide- and substrate-binding domains. Here, Kityk et al. provide a mechanical model of allostery and demonstrate that ATP-induced substrate release is more important for chaperone activity than substrate-stimulated ATP hydrolysis.
Collapse
|
4
|
Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol 2013; 11:e1001735. [PMID: 24358019 PMCID: PMC3866087 DOI: 10.1371/journal.pbio.1001735] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial heat shock transcription factor, σ32, maintains proper protein homeostasis only after it is targeted to the inner membrane by the signal recognition particle (SRP), thereby enabling integration of protein folding information from both the cytoplasm and cell membrane. All cells must adapt to rapidly changing conditions. The heat shock response (HSR) is an intracellular signaling pathway that maintains proteostasis (protein folding homeostasis), a process critical for survival in all organisms exposed to heat stress or other conditions that alter the folding of the proteome. Yet despite decades of study, the circuitry described for responding to altered protein status in the best-studied bacterium, E. coli, does not faithfully recapitulate the range of cellular responses in response to this stress. Here, we report the discovery of the missing link. Surprisingly, we found that σ32, the central transcription factor driving the HSR, must be localized to the membrane rather than dispersed in the cytoplasm as previously assumed. Genetic analyses indicate that σ32 localization results from a protein targeting reaction facilitated by the signal recognition particle (SRP) and its receptor (SR), which together comprise a conserved protein targeting machine and mediate the cotranslational targeting of inner membrane proteins to the membrane. SRP interacts with σ32 directly and transports it to the inner membrane. Our results show that σ32 must be membrane-associated to be properly regulated in response to the protein folding status in the cell, explaining how the HSR integrates information from both the cytoplasm and bacterial cell membrane. All cells have to adjust to frequent changes in their environmental conditions. The heat shock response is a signaling pathway critical for survival of all organisms exposed to elevated temperatures. Under such conditions, the heat shock response maintains enzymes and other proteins in a properly folded state. The mechanisms for sensing temperature and the subsequent induction of the appropriate transcriptional response have been extensively studied. Prior to this work, however, the circuitry described in the best studied bacterium E. coli could not fully explain the range of cellular responses that are observed following heat shock. We report the discovery of this missing link. Surprisingly, we find that σ32, a transcription factor that induces gene expression during heat shock, needs to be localized to the membrane, rather than being active as a soluble cytoplasmic protein as previously thought. We show that, equally surprisingly, σ32 is targeted to the membrane by the signal recognition particle (SRP) and its receptor (SR). SRP and SR constitute a conserved protein targeting machine that normally only operates on membrane and periplasmic proteins that contain identifiable signal sequences. Intriguingly, σ32 does not have any canonical signal sequence for export or membrane-integration. Our results indicate that membrane-associated σ32, not soluble cytoplasmic σ32, is the preferred target of regulatory control in response to heat shock. Our new model thus explains how protein folding status from both the cytoplasm and bacterial cell membrane can be integrated to control the heat shock response.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - Ryoji Miyazaki
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Saskia Neher
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Deborah A. Siegele
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Peter Walter
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Takashi Yura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California, United States
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| |
Collapse
|
5
|
Tong P, Lu Z, Chen X, Wang Q, Yu F, Zou P, Yu X, Li Y, Lu L, Chen YH, Jiang S. An engineered HIV-1 gp41 trimeric coiled coil with increased stability and anti-HIV-1 activity: implication for developing anti-HIV microbicides. J Antimicrob Chemother 2013; 68:2533-44. [DOI: 10.1093/jac/dkt230] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
6
|
Jiang X, Ruiz T, Mintz KP. Characterization of the secretion pathway of the collagen adhesin EmaA of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2012; 27:382-96. [PMID: 22958387 DOI: 10.1111/j.2041-1014.2012.00652.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The extracellular matrix protein adhesin A (EmaA) surface antennae-like structures of the periodontal pathogen Aggregatibacter actinomycetemcomitans are composed of three identical protein monomers. Recently, we have demonstrated that the protein is synthesized with an extended signal peptide of 56 amino acids necessary for membrane targeting and protein translocation. In this study, EmaA secretion was demonstrated to be reliant on a chaperone-dependent secretion pathway. Deletion of secB partially reduced but did not abolish the amount of EmaA in the membrane. This observation was attributed to an increase in the synthesis of DnaK in the ΔsecB strain. Overexpression of a DnaK substitution mutant (A174T), with diminished activity, in the ΔsecB strain further reduced the amount of EmaA in the membrane. Expression of dnaK A174T in the wild-type strain did not affect the amount of EmaA in the membrane when grown under optimal growth conditions at 37°C. However, EmaA was found to be reduced when this strain was grown at heat-shock temperature. A chromosomal deletion of amino acids 16-39 of the EmaA extended signal peptide, transformed with either the wild-type or dnaK A174T-expressing plasmid, did not affect the amount of EmaA in the membrane. In addition, the level of EmaA in a ΔsecB/emaA(-) double mutant strain expressing EmaAΔ16-39 was unchanged when grown at both temperatures. The data suggest that chaperones are required for the targeting of EmaA to the membrane and a specific region of the signal peptide is necessary for secretion under stress conditions.
Collapse
Affiliation(s)
- X Jiang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
7
|
Affiliation(s)
- Christopher G. Evans
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Lyra Chang
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Jason E. Gestwicki
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| |
Collapse
|
8
|
Janakiraman A, Fixen KR, Gray AN, Niki H, Goldberg MB. A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in Shigella. J Bacteriol 2009; 191:6300-11. [PMID: 19684128 PMCID: PMC2753027 DOI: 10.1128/jb.00833-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/07/2009] [Indexed: 11/20/2022] Open
Abstract
Autotransporters are outer membrane proteins that are widely distributed among gram-negative bacteria. Like other autotransporters, the Shigella autotransporter IcsA, which is required for actin assembly during infection, is secreted at the bacterial pole. In the bacterial cytoplasm, IcsA localizes to poles and potential cell division sites independent of the cell division protein FtsZ. To identify bacterial proteins involved in the targeting of IcsA to the pole in the bacterial cytoplasm, we screened a genome-scale library of Escherichia coli proteins tagged with green fluorescent protein (GFP) for those that displayed a localization pattern similar to that of IcsA-GFP in cells that lack functional FtsZ using a strain carrying a temperature-sensitive ftsZ allele. For each protein that mimicked the localization of IcsA-GFP, we tested whether IcsA localization was dependent on the presence of the protein. Although these approaches did not identify a polar receptor for IcsA, the cytoplasmic chaperone DnaK both mimicked IcsA localization at elevated temperatures as a GFP fusion and was required for the localization of IcsA to the pole in the cytoplasm of E. coli. DnaK was also required for IcsA secretion at the pole in Shigella flexneri. The localization of DnaK-GFP to poles and potential cell division sites was dependent on elevated growth temperature and independent of the presence of IcsA or functional FtsZ; native DnaK was found to be enhanced at midcell and the poles. A second Shigella autotransporter, SepA, also required DnaK for secretion, consistent with a role of DnaK more generally in the chaperoning of autotransporter proteins in the bacterial cytoplasm.
Collapse
Affiliation(s)
- Anuradha Janakiraman
- Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
9
|
Secretion of GOB metallo-beta-lactamase in Escherichia coli depends strictly on the cooperation between the cytoplasmic DnaK chaperone system and the Sec machinery: completion of folding and Zn(II) ion acquisition occur in the bacterial periplasm. Antimicrob Agents Chemother 2009; 53:2908-17. [PMID: 19433552 DOI: 10.1128/aac.01637-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes produced by many clinically relevant gram-negative pathogens that can hydrolyze most beta-lactam antibiotics. MbetaLs are synthesized in the bacterial cytoplasm as precursors and are secreted into the periplasm. Here, we report that the biogenesis process of the recently characterized MbetaL GOB-18 demands cooperation between a main chaperone system of the bacterial cytoplasm, DnaK, and the Sec secretion machinery. Using the expression of the complete gob-18 gene from the gram-negative opportunistic pathogen Elizabethkingia meningoseptica in Escherichia coli as a model system, we found that the precursor of this metalloenzyme is secreted by the Sec pathway and reduces cell susceptibility to different beta-lactam antibiotics. Moreover, acting with different J proteins such as cytoplasmic DnaJ and membrane-associated DjlA as cochaperones, DnaK plays an essential role in the cytoplasmic transit of the GOB-18 precursor to the Sec translocon. Our studies also revealed a less relevant role, that of assisting in GOB-18 secretion, for trigger factor, while no significant functions were found for other main cytoplasmic chaperones such as SecB or GroEL/ES. The overall findings indicate that the biogenesis of GOB-18 involves cytoplasmic interaction of the precursor protein mainly with DnaK, secretion by the Sec system, and final folding and incorporation of Zn(II) ions into the bacterial periplasm.
Collapse
|
10
|
Singh B, Gupta RS. Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 2009; 281:361-73. [PMID: 19127371 DOI: 10.1007/s00438-008-0417-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 12/22/2008] [Indexed: 11/25/2022]
Abstract
The Hsp60 and Hsp70 chaperones contain a number of conserved inserts that are restricted to particular phyla of bacteria. A one aa insert in the E. coli GroEL and a 21-23 insert in the DnaK proteins are specific for most Gram-negative bacteria. Two other inserts in DnaK are limited to certain groups of proteobacteria. The requirement of these inserts for cellular growth was examined by carrying out complementation studies with temperature-sensitive (T(s)) mutants of E. coli groEL or dnaK. Our results demonstrate that deletion or most changes in these inserts completely abolished the complementation ability of the mutant proteins. Studies with GroEL and DnaK from some other species that either lacked or contained these inserts also indicated that these inserts are essential for growth of E. coli. The DnaK from some bacteria contains a two aa insert that is not found in E. coli. Introduction of this insert into the E. coli DnaK also led to its inactivation, indicating that these inserts are specific for different groups. We postulate that these conserved inserts that are localized in loop regions on protein surfaces, are involved in some ancillary functions that are essential for the groups of bacteria where they are found.
Collapse
Affiliation(s)
- Bhag Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8N 3Z5, Canada
| | | |
Collapse
|
11
|
Goldfless SJ, Morag AS, Belisle KA, Sutera VA, Lovett ST. DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell 2006; 21:595-604. [PMID: 16507358 DOI: 10.1016/j.molcel.2006.01.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
We propose that rearrangements between short tandem repeated sequences occur by errors made during a replication fork repair pathway involving a replication template switch. We provide evidence here that the DnaK chaperone of E. coli controls this template switch repair process. Mutants in dnaK are sensitive to replication fork damage and exhibit high expression of the SOS response, indicative of repair deficiency. Deletion and expansion of tandem repeats that occur by replication misalignment ("slippage") are also DnaK dependent. Because mutations in dnaX encoding the gamma and tau subunits of DNA polymerase III mimic dnaK phenotypes and are genetically epistatic, we propose that the DnaKJ chaperone remodels the replisome to facilitate repair. The fork remains largely intact because PriA or PriC restart proteins are not required. We also suggest that the poorly defined RAD6-RAD18-RAD5 mechanism of postreplication repair in eukaryotes occurs by an analogous mechanism to the DnaK template-switch pathway in prokaryotes.
Collapse
Affiliation(s)
- Stephen J Goldfless
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | |
Collapse
|
12
|
Grudniak AM, Kuć M, Wolska KI. Role ofEscherichia coliDnaK and DnaJ chaperones in spontaneous and induced mutagenesis and their effect on UmuC stability. FEMS Microbiol Lett 2005; 242:361-6. [PMID: 15621460 DOI: 10.1016/j.femsle.2004.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/03/2004] [Accepted: 11/17/2004] [Indexed: 01/08/2023] Open
Abstract
The frequency of spontaneous as well as induced reversions of auxotrophic mutations in Escherichia coli AB1157 and its DeltadnaK and DeltadnaKdnaJ derivatives was estimated. The obtained results demonstrate that both mutants tested are characterized by elevated frequency of spontaneous reversions compared to their AB1157 parent. In contrast, the frequency of reversions induced by UV and MMS, i.e. agents inducing the SOS response, is reduced in DeltadnaJ and DeltadnaKdnaJ mutants, pointing to the possible defect of these mutants in error prone repair. Due to the fact that UmuC protein is one of the main players executing the error prone repair, its stability in DeltadnaJ and DeltadnaKdnaJ mutants was also studied. Reduced UmuC stability was demonstrated only in the DeltadnaKdnaJ mutant.
Collapse
Affiliation(s)
- Anna M Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
13
|
Ohno M, Kitabatake N, Tani F. Role of the C-terminal region of mouse inducible Hsp72 in the recognition of peptide substrate for chaperone activity. FEBS Lett 2004; 576:381-6. [PMID: 15498567 DOI: 10.1016/j.febslet.2004.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 09/16/2004] [Indexed: 11/22/2022]
Abstract
Here, we produced the C-terminal truncation variants of mouse inducible heat shock protein 72 (Hsp72) to elucidate the regulatory role of the C-terminal helical lid of Hsp70 for substrate recognition. All of the truncation variants containing the substrate binding domain bound a short-length peptide substrate CLLLSAPRR. When a large mass reduced carboxymethyl alpha-lactalbumin (RCMLA) as a substrate was used in gel filtration experiment, we observed the complex formation only for the truncation variants containing the long alpha-helix C in the helical lid. However, RCMLA binding occurred even for the variants lacking alpha-helix C when their C-terminal region was anchored onto a solid phase. Together with the finding that helix C is involved in the self-association of Hsp70, our present data suggest that the C-terminal region of Hsp70 modulates the substrate recognition and its kinetics may be substrate-mass dependent.
Collapse
Affiliation(s)
- Michiko Ohno
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Goka-sho, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
14
|
Goryshin IY, Naumann TA, Apodaca J, Reznikoff WS. Chromosomal deletion formation system based on Tn5 double transposition: use for making minimal genomes and essential gene analysis. Genome Res 2003; 13:644-53. [PMID: 12654720 PMCID: PMC430159 DOI: 10.1101/gr.611403] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this communication, we describe the use of specialized transposons (Tn5 derivatives) to create deletions in the Escherichia coli K-12 chromosome. These transposons are essentially rearranged composite transposons that have been assembled to promote the use of the internal transposon ends, resulting in intramolecular transposition events. Two similar transposons were developed. The first deletion transposon was utilized to create a consecutive set of deletions in the E. coli chromosome. The deletion procedure has been repeated 20 serial times to reduce the genome an average of 200 kb (averaging 10 kb per deletion). The second deletion transposon contains a conditional origin of replication that allows deleted chromosomal DNA to be captured as a complementary plasmid. By plating cells on media that do not support plasmid replication, the deleted chromosomal material is lost and if it is essential, the cells do not survive. This methodology was used to analyze 15 chromosomal regions and more than 100 open reading frames (ORFs). This provides a robust technology for identifying essential and dispensable genes.
Collapse
Affiliation(s)
- Igor Y Goryshin
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
15
|
Qi HY, Hyndman JB, Bernstein HD. DnaK promotes the selective export of outer membrane protein precursors in SecA-deficient Escherichia coli. J Biol Chem 2002; 277:51077-83. [PMID: 12403776 DOI: 10.1074/jbc.m209238200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Consistent with many other results indicating that SecA plays an essential role in the translocation of presecretory proteins across the Escherichia coli inner membrane, we previously found that a approximately 95% depletion of SecA completely blocks the export of periplasmic proteins in vivo. Surprisingly, we found that about 25% of the outer membrane protein (OMP) OmpA synthesized after SecA depletion was gradually translocated across the inner membrane. In this study we analyzed the export of several other OMPs after SecA depletion. We found that 25-50% of each OMP as well as an OmpA-alkaline phosphatase fusion protein was exported from SecA-deficient cells. This partial export was completely abolished by the SecA inhibitor sodium azide and therefore still required the participation of SecA. Examination of a variety of OmpA derivatives, however, ruled out the possibility that OMPs are selectively translocated in SecA-deficient cells because SecA binds to their N termini with unusually high affinity. Export after SecA depletion was observed in cells that lack SecB, the primary targeting factor for OMPs, but was abolished by partial inactivation of DnaK. Furthermore, OmpA could be isolated in a stable complex with DnaK. The data strongly suggest that OMPs require only a relatively low level of translocase activity to cross the inner membrane because they can be preserved in a prolonged export-competent state by DnaK.
Collapse
Affiliation(s)
- Hai-Yan Qi
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1810, USA
| | | | | |
Collapse
|
16
|
Bernstein HD, Hyndman JB. Physiological basis for conservation of the signal recognition particle targeting pathway in Escherichia coli. J Bacteriol 2001; 183:2187-97. [PMID: 11244056 PMCID: PMC95123 DOI: 10.1128/jb.183.7.2187-2197.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli signal recognition particle (SRP) is a ribonucleoprotein complex that targets nascent inner membrane proteins (IMPs) to transport sites in the inner membrane (IM). Since SRP depletion only partially inhibits IMP insertion under some growth conditions, however, it is not clear why the particle is absolutely essential for viability. Insights into this question emerged from experiments in which we analyzed the physiological consequences of reducing the intracellular concentration of SRP below the wild-type level. We found that even moderate SRP deficiencies that have little effect on cell growth led to the induction of a heat shock response. Genetic manipulations that suppress the heat shock response were lethal in SRP-deficient cells, indicating that the elevated synthesis of heat shock proteins plays an important role in maintaining cell viability. Although it is conceivable that the heat shock response serves to increase the capacity of cells to target IMPs via chaperone-based mechanisms, SRP-deficient cells did not show an increased dependence on either GroEL or DnaK. By contrast, the heat shock-regulated proteases Lon and ClpQ became essential for viability when SRP levels were reduced. These results suggest that the heat shock response protects SRP-deficient cells by increasing their capacity to degrade mislocalized IMPs. Consistent with this notion, a model IMP that was mislocalized in the cytoplasm as the result of SRP depletion appeared to be more stable in a Deltalon DeltaclpQ strain than in control cells. Taken together, the data provide direct evidence that SRP is essential in E. coli and possibly conserved throughout prokaryotic evolution as well partly because efficient IMP targeting prevents a toxic accumulation of aggregated proteins in the cytoplasm.
Collapse
Affiliation(s)
- H D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1810, USA.
| | | |
Collapse
|
17
|
Bredèche MF, Ehrlich SD, Michel B. Viability of rep recA mutants depends on their capacity to cope with spontaneous oxidative damage and on the DnaK chaperone protein. J Bacteriol 2001; 183:2165-71. [PMID: 11244053 PMCID: PMC95120 DOI: 10.1128/jb.183.7.2165-2171.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication arrests due to the lack or the inhibition of replicative helicases are processed by recombination proteins. Consequently, cells deficient in the Rep helicase, in which replication pauses are frequent, require the RecBCD recombination complex for growth. rep recA mutants are viable and display no growth defect at 37 or 42 degrees C. The putative role of chaperone proteins in rep and rep recA mutants was investigated by testing the effects of dnaK mutations. dnaK756 and dnaK306 mutations, which allow growth of otherwise wild-type Escherichia coli cells at 40 degrees C, are lethal in rep recA mutants at this temperature. Furthermore, they affect the growth of rep mutants, and to a lesser extent, that of recA mutants. We conclude that both rep and recA mutants require DnaK for optimal growth, leading to low viability of the triple (rep recA dnaK) mutant. rep recA mutant cells form colonies at low efficiency when grown to exponential phase at 30 degrees C. Although the plating defect is not observed at a high temperature, it is not suppressed by overexpression of heat shock proteins at 30 degrees C. The plating defect of rep recA mutant cells is suppressed by the presence of catalase in the plates. The cryosensitivity of rep recA mutants therefore results from an increased sensitivity to oxidative damage upon propagation at low temperatures.
Collapse
Affiliation(s)
- M F Bredèche
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, F-78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
18
|
Smýkal P, Hrdý I, Pechan PM. High-molecular-mass complexes formed in vivo contain smHSPs and HSP70 and display chaperone-like activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2195-207. [PMID: 10759842 DOI: 10.1046/j.1432-1327.2000.01223.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stress can have profound effects on the cell. The elicitation of the stress response in the cell is often accompanied by the synthesis of high-molecular-mass complexes, sometimes termed heat shock granules (HSGs). The presence of the complexes has been shown to be important for the survival of cells subjected to stress. We purified these complexes from heat-stressed BY-2 tobacco cells. HSG complexes formed in vivo contain predominantly smHSPs, HSP40 and HSP70 and display chaperone-like activity. Tubulins as well as other proteins may be part of the complex or its substrate. The proteins, except smHSPs and to some extent HSP70, were hypersensitive to proteolysis, suggesting that they were partially denatured and not an integral part of the HSG complexes. When citrate synthase was used as the substrate, in vivo generated HSG complexes exhibited strong nucleotide-dependent in vitro chaperone activity. Measurable ATP-mediated hydrolytic activity was detected. Isolated HSG complexes are stable until ATP is added, which leads to rapid dissociation of the complex into subunits. It is proposed that smHSPs form the core of the complex in association with ATP-dependent HSP70 and HSP40 cochaperones. Implications of these findings are discussed.
Collapse
Affiliation(s)
- P Smýkal
- Department of Plant Physiology, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
19
|
Barthel TK, Walker GC. Inferences concerning the ATPase properties of DnaK and other HSP70s are affected by the ADP kinase activity of copurifying nucleoside-diphosphate kinase. J Biol Chem 1999; 274:36670-8. [PMID: 10593971 DOI: 10.1074/jbc.274.51.36670] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preparations of Escherichia coli DnaK from our lab as well as preparations of DnaK and other HSP70 proteins from several major labs in the field produce a stoichiometric initial burst of [alpha-(32)P]ADP when incubated with [alpha-(32)P]ATP and contain an ADP kinase activity. We determined that the initial burst activity results from the transfer of gamma-phosphate from the radiolabeled substrate [alpha-(32)P]ATP to unlabeled ADP bound by the DnaK and is the same activity that results in ADP phosphorylation. The purification of DnaK from E. coli cells that carry a disrupted ndk gene, ndk::km, results in preparations with greatly reduced ADP kinase activities compared with preparations of DnaK purified from ndk(+) cells. The reduction in the amount of ADP kinase activity in preparations of DnaK purified from ndk::km cells shows that nucleoside-diphosphate kinase (NDP kinase) is responsible for most of the ADP kinase activity present in DnaK preparations isolated from ndk(+) cells. The remaining ADP kinase activity in preparations from ndk::km cells, which varies between preparations, is also a property of NDP kinase, which is most likely expressed because of a low frequency reversion of the disrupted ndk gene. A weak, but measurable physical interaction exists between DnaK and NDP kinase and may be at least partially responsible for the co-purification of NDP kinase with DnaK. The presence of contaminating NDP kinase can explain the range of k(cat) values reported for the ATPase activity of DnaK as well as recent reports of initial burst kinetics by DnaK (Banecki, B., and Zylicz, M. (1996) J. Biol. Chem. 271, 6137-6143) and an ADP-ATP exchange activity of DnaK (Hiromura, M., Yano, M., Mori, H., Inoue, M., and Kido, H. (1998) J. Biol. Chem. 273, 5435-5438).
Collapse
Affiliation(s)
- T K Barthel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
20
|
Elefant F, Palter KB. Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes developmental defects and lethality. Mol Biol Cell 1999; 10:2101-17. [PMID: 10397752 PMCID: PMC25422 DOI: 10.1091/mbc.10.7.2101] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Drosophila melanogaster HSC3 and HSC4 genes encode Hsc70 proteins homologous to the mammalian endoplasmic reticulum (ER) protein BiP and the cytoplasmic clathrin uncoating ATPase, respectively. These proteins possess ATP binding/hydrolysis activities that mediate their ability to aid in protein folding by coordinating the sequential binding and release of misfolded proteins. To investigate the roles of HSC3 (Hsc3p) and HSC4 (Hsc4p) proteins during development, GAL4-targeted gene expression was used to analyze the effects of producing dominant negatively acting Hsc3p (D231S, K97S) and Hsc4p (D206S, K71S) proteins, containing single amino acid substitutions in their ATP-binding domains, in specific tissues of Drosophila throughout development. We show that the production of each mutant protein results in lethality over a range of developmental stages, depending on the levels of protein produced and which tissues are targeted. We demonstrate that the functions of both Hsc3p and Hsc4p are required for proper tissue establishment and maintenance. Production of mutant Hsc4p, but not Hsc3p, results in induction of the stress-inducible Hsp70 at normal temperatures. Evidence is presented that lethality is caused by tissue-specific defects that result from a global accumulation of misfolded protein caused by lack of functional Hsc70. We show that both mutant Hsc3ps are defective in ATP-induced substrate release, although Hsc3p(D231S) does undergo an ATP-induced conformational change. We believe that the amino acid substitutions in Hsc3p interfere with the structural coupling of ATP binding to substrate release, and this defect is the basis for the mutant proteins' dominant negative effects in vivo.
Collapse
Affiliation(s)
- F Elefant
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
21
|
Montgomery DL, Morimoto RI, Gierasch LM. Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. J Mol Biol 1999; 286:915-32. [PMID: 10024459 DOI: 10.1006/jmbi.1998.2514] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In Escherichia coli, DnaK is essential for the replication of bacteriophage lambda DNA; this in vivo activity provides the basis of a screen for mutations affecting DnaK function. Mn PCR was used to introduce mutations into residues 405-468 of the C-terminal polypeptide-binding domain of DnaK. These mutant proteins were screened for the ability to propagate bacteriophage lambda in the background of a dnaK deficient cell line, BB1553. This initial screen identified several proteins which were mutant at multiple positions. The multiple mutants were further dissected into single mutants which remained negative for lambda propagation. Four of these single-site mutants were purified and assayed for biochemical functionality. Two single-site mutations, F426S and S427P, are localized in the peptide binding site and display weakened peptide binding affinity. This indicates that the crystallographically determined peptide binding site is also critical for in vivo lambda replication. Two other mutations, K414I and N451K, are located at the edge of the beta-sandwich domain near alpha-helix A. The K414I mutant binds peptide moderately well, yet displays defects in allosteric functions, including peptide-stimulated ATPase activity, ATP-induced changes in tryptophan fluorescence, ATP-induced peptide release, and elevated ATPase activity. The K414 position is close in tertiary structure to the linker region to the ATPase domain and reflects a specific area of the peptide-binding domain which is necessary for interdomain coupling. The mutant N451K displays defects in both peptide binding and allosteric interaction.
Collapse
Affiliation(s)
- D L Montgomery
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | | | | |
Collapse
|
22
|
Hallstrom TC, Katzmann DJ, Torres RJ, Sharp WJ, Moye-Rowley WS. Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:1147-55. [PMID: 9488429 PMCID: PMC108827 DOI: 10.1128/mcb.18.3.1147] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1997] [Accepted: 12/02/1997] [Indexed: 02/06/2023] Open
Abstract
Multiple or pleiotropic drug resistance in the yeast Saccharomyces cerevisiae requires the expression of several ATP binding cassette transporter-encoding genes under the control of the zinc finger-containing transcription factor Pdrlp. The ATP binding cassette transporter-encoding genes regulated by Pdrlp include PDR5 and YOR1, which are required for normal cycloheximide and oligomycin tolerances, respectively. We have isolated a new member of the PDR gene family that encodes a member of the Hsp70 family of proteins found in this organism. This gene has been designated PDR13 and is required for normal growth. Overexpression of Pdr13p leads to an increase in both the expression of PDR5 and YOR1 and a corresponding enhancement in drug resistance. Pdr13p requires the presence of both the PDR1 structural gene and the Pdr1p binding sites in target promoters to mediate its effect on drug resistance and gene expression. A dominant, gain-of-function mutant allele of PDR13 was isolated and shown to have the same phenotypic effects as when the gene is present on a 2microm plasmid. Genetic and Western blotting experiments indicated that Pdr13p exerts its effect on Pdr1p at a posttranslational step. These data support the view that Pdr13p influences pleiotropic drug resistance by enhancing the function of the transcriptional regulatory protein Pdr1p.
Collapse
Affiliation(s)
- T C Hallstrom
- Department of Physiology, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
23
|
Checa SK, Viale AM. The 70-kDa heat-shock protein/DnaK chaperone system is required for the productive folding of ribulose-biphosphate carboxylase subunits in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:848-55. [PMID: 9342238 DOI: 10.1111/j.1432-1033.1997.00848.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have studied the in vivo requirements of the DnaK chaperone system for the folding of recombinant ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Expression of functional dimeric or hexadecameric ribulose-bisphosphate carboxylase from different bacterial sources (including purple bacteria and cyanobacteria) was severely impaired in E. coli dnaK, dnaJ, or grpE mutants. These enzymes were synthesized mostly in soluble, fully enzymatically active forms in wild-type E. coli cells cultured in the temperature range 20-42 degrees C, but aggregated extensively in dnaK null mutants. Co-expression of dnaK, but not groESL, markedly reduced the aggregation of ribulose-bisphosphate carboxylase subunits in dnaK null mutants and restored the enzyme activity to levels found in isogenic wild-type strains. Ribulose-bisphosphate carboxylase expression in wild-type E. coli cells growing at 30 degrees C promoted an enhanced synthesis of stress proteins, apparently by sequestering DnaK from its negative regulatory role in this response. The overall results indicate that the DnaK chaperone system assists in vivo the folding pathway of ribulose-bisphosphate carboxylase large subunits, most probably at its very early stages.
Collapse
Affiliation(s)
- S K Checa
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | |
Collapse
|
24
|
Zhang J, Walker GC. Identification of Elements of the Peptide Binding Site of DnaK by Peptide Cross-linking. J Biol Chem 1996. [DOI: 10.1074/jbc.271.33.19668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
Wild J, Rossmeissl P, Walter WA, Gross CA. Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J Bacteriol 1996; 178:3608-13. [PMID: 8655561 PMCID: PMC178133 DOI: 10.1128/jb.178.12.3608-3613.1996] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We used depletion studies designed to further investigate the role of the DnaK, DnaJ, and GrpE heat shock proteins in the SecB-dependent and SecB-independent secretion pathways. Our previous finding that SecB-deficient strains containing the grpE280 mutation were still secretion proficient raised the possibility that GrpE was not involved in this secretory pathway. Using depletion studies, we now demonstrate a requirement for GrpE in this pathway. In addition, depletion studies demonstrate that while DnaK, DnaJ, and GrpE are involved in the secretion of the SecB-independent proteins (alkaline phosphatase, ribose-binding protein, and beta-lactamase), they are not the primary chaperones in this process.
Collapse
Affiliation(s)
- J Wild
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
26
|
Hendershot L, Wei J, Gaut J, Melnick J, Aviel S, Argon Y. Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants. Proc Natl Acad Sci U S A 1996; 93:5269-74. [PMID: 8643565 PMCID: PMC39234 DOI: 10.1073/pnas.93.11.5269] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A group of resident ER proteins have been identified that are proposed to function as molecular chaperones. The best characterized of these is BiP/GRP78, an hsp70 homologue that binds peptides containing hydrophobic residues in vitro and unfolded or unassembled proteins in vivo. However, evidence that mammalian BiP plays a direct role in protein folding remains circumstantial. In this study, we examine how BiP interacts with a particular substrate, immunoglobulin light chain (lambda LC), during its folding. Wild-type hamster BiP and several well-characterized BiP ATPase mutants were used in transient expression experiments. We demonstrate that wild-type lambda LCs showed prolonged association with mutant BiP which inhibited their secretion. Both wild-type and mutant BiP bound only to unfolded and partially folded LCs. The wild-type BiP was released from the incompletely folded LCs, allowing them to fold and be secreted, whereas the mutant BiP was not released. As a result, the LCs that were bound to BiP mutants were unable to undergo complete disulfide bond formation and were retained in the ER. Our experiments suggest that LCs undergo both BiP-dependent and BiP-independent folding steps, demonstrating that both ATP binding and hydrolysis activities of BiP are essential for the completion of LC folding in vivo and reveal that BiP must release before disulfide bond formation can occur in that domain.
Collapse
Affiliation(s)
- L Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kamath-Loeb AS, Lu CZ, Suh WC, Lonetto MA, Gross CA. Analysis of three DnaK mutant proteins suggests that progression through the ATPase cycle requires conformational changes. J Biol Chem 1995; 270:30051-9. [PMID: 8530409 DOI: 10.1074/jbc.270.50.30051] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DnaK, the bacterial homolog of the eukaryotic hsp70 proteins, is an ATP-dependent chaperone whose basal ATPase is stimulated by synthetic peptides and its cohort heat shock proteins, DnaJ and GrpE. We have used three mutant DnaK proteins, E171K, D201N, and A174T (corresponding to Glu175, Asp206, and Ala179, respectively, in bovine heat stable cognate 70) to probe the ATPase cycle. All of the mutant proteins exhibit some alteration in basal ATP hydrolysis. However, they all exhibit more severe defects in the regulated activities. D201N and E171K are completely defective in all regulated activities of the protein and also in making the conformational change exhibited by the wt protein upon binding ATP. We suggest that the inability of D201N and E171K to achieve the ATP activated conformation prevents both stimulation by all effectors and the ATP-mediated release of GrpE. In contrast, the defect of A174T is much more specific. It exhibits normal binding and release of GrpE and normal stimulation of ATPase activity by DnaJ. However, it is defective in the synergistic activation of its ATPase by DnaJ and GrpE. We suggest that this mutant protein is specifically defective in a DnaJ/GrpE mediated conformational change in DnaK necessary for the synergistic action of DnaJ+GrpE.
Collapse
Affiliation(s)
- A S Kamath-Loeb
- Department of Microbiology, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
28
|
Rockabrand D, Blum P. Multicopy plasmid suppression of stationary phase chaperone toxicity in Escherichia coli by phosphogluconate dehydratase and the N-terminus of DnaK. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:498-506. [PMID: 8544815 DOI: 10.1007/bf00290575] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Overproduction of DnaK in Escherichia coli results in a bacteriocidal effect. This effect is most acute in stationary phase cells. A selection scheme was developed to isolate multicopy suppressors from an E. coli plasmid expression library, which overcome the stationary phase toxicity of excess DnaK. Two suppressor plasmids were recovered which contained inserts of 1.85 kb and 2.69 kb, respectively. Rearranged and deleted plasmid derivatives were constructed and used to further localize the suppressors. DNA sequence analysis demonstrated that one suppressor encoded phosphogluconate dehydratase (Edd) while the other suppressor encoded the N-terminal 237 amino acids of DnaK itself (DnaK'). Strains bearing the suppressor plasmids constitutively overproduced proteins with apparent masses of 66 kDa (Edd) and 37 kDa (DnaK') as determined by gel electrophoresis. Western blot analysis using polyclonal antisera specific for either Edd or DnaK confirmed the identity of these overproduced proteins. Suppression of DnaK toxicity was eliminated by the introduction of a + 1 frameshift mutation early in the respective coding regions of either of the two suppressors. These results suggest that suppressor gene translation plays a role in the mechanism of DnaK suppression.
Collapse
Affiliation(s)
- D Rockabrand
- School of Biological Sciences, University of Nebraska, Lincoln 68588-0118, USA
| | | |
Collapse
|
29
|
Wei J, Gaut JR, Hendershot LM. In vitro dissociation of BiP-peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis. J Biol Chem 1995; 270:26677-82. [PMID: 7592894 DOI: 10.1074/jbc.270.44.26677] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the present study, we produced single point mutations in the ATP binding site of hamster BiP, isolated recombinant proteins, and characterized them in terms of their affinity for ATP and ADP, their ability to undergo a conformational change upon nucleotide binding, and their rate of ATP hydrolysis. These analyses allowed us to classify the mutants into three groups: ATP hydrolysis (T229G), ATP binding (G226D, G227D), and ATP-induced conformation (T37G) mutants, and to test the role of these activities in the in vitro ATP-mediated release of proteins from BiP. All three classes of mutants were still able to bind peptide demonstrating that nucleotide is not involved in this function. Addition of ATP to either wild-type BiP or the T229G mutant caused the in vitro release of bound peptide, confirming that ATP hydrolysis is not required for protein release. ATP did not dissociate G226D, G227D, or T37G mutant BiP-peptide complexes, suggesting that ATP binding to BiP is not sufficient for the release of bound peptides, but that an ATP-induced conformational change in BiP is necessary. The identification of BiP mutants that are defective in each of these steps of ATP hydrolysis will allow the in vivo dissection of the role of nucleotide in BiP's activity.
Collapse
Affiliation(s)
- J Wei
- Department of Tumor Cell Biollogy, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
30
|
Camacho-Carranza R, Membrillo-Hernández J, Ramírez-Santos J, Castro-Dorantes J, Chagoya de Sánchez V, Gómez-Eichelmann MC. Topoisomerase activity during the heat shock response in Escherichia coli K-12. J Bacteriol 1995; 177:3619-22. [PMID: 7768879 PMCID: PMC177075 DOI: 10.1128/jb.177.12.3619-3622.1995] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During the upshift of temperature from 30 to 42, 45, 47, or 50 degrees C, an increase in the level of supercoiling of a reporter plasmid was observed. This increase was present in groE and dnaK mutants but was inhibited in cells treated with chloramphenicol and novobiocin. The intracellular [ATP]/[ADP] ratio increased rapidly after an upshift in temperature from 30 to 47 degrees C and then decreased to reach a level above that observed at 30 degrees C. These results suggest that gyrase and proteins synthesized during heat shock are responsible for the changes seen in plasmid supercoiling. Proteins GroE and DnaK are probably not involved in this phenomenon.
Collapse
Affiliation(s)
- R Camacho-Carranza
- Departamento de Biología Molecular, Universidad Nacional Autónoma de México, México, D.F
| | | | | | | | | | | |
Collapse
|
31
|
Hendershot LM, Wei JY, Gaut JR, Lawson B, Freiden PJ, Murti KG. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Mol Biol Cell 1995; 6:283-96. [PMID: 7612964 PMCID: PMC301188 DOI: 10.1091/mbc.6.3.283] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BiP possesses ATP binding/hydrolysis activities that are thought to be essential for its ability to chaperone protein folding and assembly in the endoplasmic reticulum (ER). We have produced a series of point mutations in a hamster BiP clone that inhibit ATPase activity and have generated a species-specific anti-BiP antibody to monitor the effects of mutant hamster BiP expression in COS monkey cells. The enzymatic inactivation of BiP did not interfere with its ability to bind to Ig heavy chains in vivo but did inhibit ATP-mediated release of heavy chains in vitro. Immunofluorescence staining and electron microscopy revealed vesiculation of the ER membranes in COS cells expressing BiP ATPase mutants. ER disruption was not observed when a "44K" fragment of BiP that did not include the protein binding domain was similarly mutated but was observed when the protein binding region of BiP was expressed without an ATP binding domain. This suggests that BiP binding to target proteins as an inactive chaperone is responsible for the ER disruption. This is the first report on the in vivo expression of mammalian BiP mutants and is demonstration that in vitro-identified ATPase mutants behave as dominant negative mutants when expressed in vivo.
Collapse
Affiliation(s)
- L M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
32
|
Wu B, Ang D, Snavely M, Georgopoulos C. Isolation and characterization of point mutations in the Escherichia coli grpE heat shock gene. J Bacteriol 1994; 176:6965-73. [PMID: 7961459 PMCID: PMC197068 DOI: 10.1128/jb.176.22.6965-6973.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Escherichia coli grpE gene (along with dnaK, dnaJ, groEL, and groES) was originally identified as one of the host factors required for phage lambda growth. The classical grpE280 mutation was the only grpE mutation that resulted from the initial screen and shown to specifically block the initiation of lambda DNA replication. Here we report the isolation of several new grpE missense mutations, again using phage lambda resistance as a selection. All mutants fall into two groups based on their temperature-dependent phenotype for lambda growth. Members of the first group (I), including grpE17 and grpE280, which was obtained again, are resistant to lambda growth at both 30 and 42 degrees C. Members of the second group (II), including grpE25, grpE66, grpE103, grpE13a, grpE57b, and grpE61, are sensitive to lambda growth at 30 degrees C but resistant at 42 degrees C. All mutations are recessive, since an E. coli grpE null mutant strain carrying these mutant alleles on low-copy-number plasmids are sensitive to infection by the lambda grpE+ transducing phage. Both group I and group II mutants are temperature sensitive for E. coli growth above 42 degrees C. The nucleotide changes were identified by sequencing analyses and shown to be dispersed throughout the latter 75% of the grpE coding region. Most of the amino acid changes occur at conserved residues, as judged by sequence comparisons between E. coli and other bacterial and yeast GrpE homologs. The isolation of these new mutations is the first step toward a structure-function analysis of the GrpE protein.
Collapse
Affiliation(s)
- B Wu
- Department of Cellular, Viral and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132
| | | | | | | |
Collapse
|
33
|
Petit M, Bedale W, Osipiuk J, Lu C, Rajagopalan M, McInerney P, Goodman M, Echols H. Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31589-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Kanemori M, Mori H, Yura T. Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli. J Bacteriol 1994; 176:4235-42. [PMID: 7912695 PMCID: PMC205634 DOI: 10.1128/jb.176.14.4235-4242.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The GroE heat shock proteins (GroEL and GroES) of Escherichia coli represent major molecular chaperones that participate in folding (and assembly) of a variety of proteins and are essential for cell growth at all temperatures. We have examined the effects of reducing the cellular content of GroE on the synthesis and stability of proteins during steady-state growth with near-normal rates. The GroE protein level was manipulated by placing groE under the control of lacUV5 promoter on a multicopy plasmid in a strain lacking the chromosomal groE operon. When this strain was grown with a limited concentration (40 microM) of inducer (IPTG [isopropyl-beta-D-thiogalactopyranoside]) at 37 degrees C, the GroE level and growth rate were comparable to those of the wild type. When cells were depleted of IPTG, they continued to grow at or below 37 degrees C albeit at reduced rates, despite the much-reduced GroE level (ca. 25% of that of wild type). Under these conditions, the cellular contents of at least 13 polypeptides were affected. Among the most striking effects was the enhanced synthesis of a set of heat shock proteins which resulted from the increased level of sigma 32 which is required for transcription of heat shock genes. This increase in the sigma 32 level was brought about by both stabilization and increased synthesis of sigma 32. Other proteins affected by the reduced GroE level included two proteins (enzymes of the Entner-Doudoroff pathway) encoded by the edd-eda operon and the ribosomal protein S6, suggesting that the GroE chaperones are involved in regulating expression of genes for carbohydrate metabolism and in modulating biogenesis or function of the ribosome.
Collapse
Affiliation(s)
- M Kanemori
- Institute for Virus Research, Kyoto University, Japan
| | | | | |
Collapse
|
35
|
McCarty JS, Walker GC. DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation. J Bacteriol 1994; 176:764-80. [PMID: 8300530 PMCID: PMC205114 DOI: 10.1128/jb.176.3.764-780.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Site-directed mutagenesis has previously been used to construct Escherichia coli dnaK mutants encoding proteins that are altered at the site of in vitro phosphorylation (J. S. McCarty and G. C. Walker, Proc. Natl. Acad. Sci. USA 88:9513-9517, 1991). These mutants are unable to autophosphorylate and are severely defective in ATP hydrolysis. These mutant dnaK genes were placed under the control of the lac promoter and were found not to complement the deficiencies of a delta dnaK mutant in negative regulation of the heat shock response. A decrease in the expression of DnaK and DnaJ below their normal levels at 30 degrees C was found to result in increased expression of GroEL. The implications of these results for DnaK's role in the negative regulation of the heat shock response are discussed. Evidence is also presented indicating the existence of a 70-kDa protein present in a delta dnaK52 mutant that cross-reacts with antibodies raised against DnaK. Derivatives of the dnaK+ E. coli strain MC4100 expressing the mutant DnaK proteins filamented severely at temperatures equal to or greater than 34 degrees C. In the dnaK+ E. coli strain W3110, expression of these mutant proteins caused extreme filamentation even at 30 degrees C. Together with other observations, these results suggest that DnaK may play a direct role in the septation pathway, perhaps via an interaction with FtsZ. Although delta dnaK52 derivatives of strain MC4100 filament extensively, a level of underexpression of DnaK and DnaJ that results in increased expression of the other heat shock proteins did not result in filamentation. The delta dnaK52 allele could be transduced successfully, at temperatures of up to 45 degrees C, into strains carrying a plasmid expressing dnaK+ dnaJ+, although the yield of transductants decreased above 37 degrees C. In contrast, with a strain that did not carry a plasmid expressing dnaK+ dnaJ+, the yield of delta dnaK52 transductants decreased extremely sharply between 39 and 40 degrees C, suggesting that DnaK and DnaJ play one or more roles critical for growth at temperatures of 40 degrees C or greater.
Collapse
Affiliation(s)
- J S McCarty
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
36
|
Kawula TH, Lelivelt MJ. Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion and bgl activation, but not proU derepression, in hns-1 mutant Escherichia coli. J Bacteriol 1994; 176:610-9. [PMID: 8300516 PMCID: PMC205097 DOI: 10.1128/jb.176.3.610-619.1994] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in hns, the gene encoding the nucleoid-associated protein H-NS, affect both the expression of many specific unlinked genes and the inversion rate of the DNA segment containing the pilA promoter in Escherichia coli. A second-site mutation, termed hscA1, compensated for the effect of an hns-1 mutant allele on the pilA promoter inversion rate and on activation of the bgl operon. The proU operon, induced in an hns-1 background, remained derepressed in an hns-1 hscA1 strain and was induced at an intermediate level in an hns hscA1 strain. An insertion mutant allele, hscA2-cat, conferred the same partial hns-1 compensatory phenotype as the hscA1 allele. The hscA gene encoded a 66-kDa protein product that is a member of the Hsp70 protein class. The gene encoding this product is part of a bicistronic operon that is preceded by a possible sigma 32 promoter and also encodes a 21-kDa protein with significant homology to the DnaJ protein family. The mutation defining the hscA1 allele resulted in a phenylalanine substituting a conserved serine residue located in the ATP-binding region of other Hsp70 proteins.
Collapse
Affiliation(s)
- T H Kawula
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599-7290
| | | |
Collapse
|
37
|
Liberek K, Georgopoulos C. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc Natl Acad Sci U S A 1993; 90:11019-23. [PMID: 8248205 PMCID: PMC47913 DOI: 10.1073/pnas.90.23.11019] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
All organisms respond to various forms of stress, including heat shock. The heat shock response has been universally conserved from bacteria to humans. In Escherichia coli the heat shock response is under the positive transcriptional control of the sigma 32 polypeptide and involves transient acceleration in the rate of synthesis of a few dozen genes. Three of the heat shock genes--dnaK, dnaJ, and grpE--are special because mutations in any one of these lead to constitutive levels of heat shock gene expression, implying that their products negatively autoregulate their own synthesis. The DnaK, DnaJ, and GrpE proteins have been known to function in various biological situations, including bacteriophage lambda replication. Here, we report the formation of an ATP hydrolysis-dependent complex of DnaJ, sigma 32, and DnaK proteins in vitro. This DnaJ-sigma 32-DnaK complex has been seen under different conditions, including glycerol gradient sedimentation and co-immunoprecipitation. The DnaK and DnaJ proteins in the presence of ATP can interfere with the efficient binding of sigma 32 to the RNA polymerase core, and are capable of disrupting a preexisting sigma 32-RNA polymerase complex. Our results suggest a possible mechanism for the autoregulation of the heat shock response.
Collapse
Affiliation(s)
- K Liberek
- Departement de Biochimie Medicale, Centre Medical Universitaire, Genève, Switzerland
| | | |
Collapse
|
38
|
Krska J, Elthon T, Blum P. Monoclonal antibody recognition and function of a DnaK (HSP70) epitope found in gram-negative bacteria. J Bacteriol 1993; 175:6433-40. [PMID: 7691795 PMCID: PMC206751 DOI: 10.1128/jb.175.20.6433-6440.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The isolation and characterization of a monoclonal antibody (MAb 2G5) specific for the bacterial DnaK (HSP70) protein is described. The 2G5 MAb was initially selected because of its ability to bind to DnaK under denaturing conditions. Isotype analyses indicated that 2G5 was an immunoglobulin G2a. Dose-response Western blot (immunoblot) experiments with purified but unconcentrated 2G5 permitted detection of 10 ng of pure DnaK protein. The DnaK epitope was determined by Western blot analysis of a series of truncated DnaK fragments overproduced in Escherichia coli using 5' and 3' dnaK-deleted expression plasmids. The epitope mapped to a 22-amino-acid region spanning DnaK residues 288 and 310. Phylogenetic distribution of the epitope was examined by Western blot analysis of a wide variety of bacterial species and indicated that the epitope was uniquely present in gram-negative organisms. The proximity of the epitope to the presumed DnaK ATP-binding pocket suggested that MAb binding might inhibit DnaK ATPase activity. In vitro analysis supported this prediction and demonstrated that MAb-mediated inhibition of ATPase activity was antibody specific and occurred at stoichiometric molar ratios of MAb to DnaK. Possible mechanisms to explain the ability of the 2G5 MAb to inhibit DnaK activity are discussed.
Collapse
Affiliation(s)
- J Krska
- School of Biological Sciences, University of Nebraska, Lincoln 68588-0118
| | | | | |
Collapse
|
39
|
Wild J, Walter WA, Gross CA, Altman E. Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. J Bacteriol 1993; 175:3992-7. [PMID: 8320215 PMCID: PMC204827 DOI: 10.1128/jb.175.13.3992-3997.1993] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The accumulation of secretory protein precursors, caused either by mutations in secB or secA or by the overproduction of export-defective proteins, results in a two- to fivefold increase in the synthesis of heat shock proteins. In such strains, sigma 32, the alternative sigma factor responsible for transcription of the heat shock genes, is stabilized. The resultant increase in the level of sigma 32 leads to increased transcription of heat shock genes and increased synthesis of heat shock proteins. We have also found that although a secB null mutant does not grow on rich medium at a temperature range of 30 to 42 degrees C, it does grow at 44 degrees C. In addition, we found that a secB null mutant exhibits greater thermotolerance than the wild-type parental strain. Elevated levels of heat shock proteins, as well as some other non-heat shock proteins, may account for the partial heat resistance of a SecB-lacking strain.
Collapse
Affiliation(s)
- J Wild
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
40
|
Gaut J, Hendershot L. Mutations within the nucleotide binding site of immunoglobulin-binding protein inhibit ATPase activity and interfere with release of immunoglobulin heavy chain. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53169-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
41
|
Zylicz M. The Escherichia coli chaperones involved in DNA replication. Philos Trans R Soc Lond B Biol Sci 1993; 339:271-7; discussion 277-8. [PMID: 8098531 DOI: 10.1098/rstb.1993.0025] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutations in the Escherichia coli heat shock genes, dnaK, dnaJ or grpE, alter host DNA and RNA synthesis, degradation of other proteins, cell division and expression of other heat shock genes. They also block the initiation of DNA replication of bacteriophages lambda and P1, and the mini-F plasmid. An in vitro lambda DNA replication system, composed entirely of purified components, enabled us to describe the molecular mechanism of the dnaK, dnaJ and grpE gene products. DnaK, the bacterial hsp 70 homologue, releases lambda P protein from the preprimosomal complex in an ATP- and DnaJ-dependent reaction (GrpE-independent initiation of lambda DNA replication). In this paper, I show that, when GrpE is present, lambda P protein is not released from the preprimosomal complex, rather it is translocated within the complex in such a way that it does not inhibit DnaB helicase activity. Translocation of lambda P triggers the initiation event allowing DnaB helicase to unwind DNA near the ori lambda sequence, leading to efficient lambda DNA replication. Chaperone activity of the DnaK-DnaJ-GrpE system is first manifested in the selective binding of these heat shock proteins to the preprimosomal complex, followed by its ATP-dependent rearrangement. I show that DnaJ not only tags the preprimosomal complex for recognition by DnaK, but also stabilizes the multi-protein structure. GrpE also participates in the binding of DnaK to the preprimosomal complex by increasing DnaK's affinity to those lambda P proteins which are already with DnaJ.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Zylicz
- University of Gdansk, Department of Molecular Biology, Poland
| |
Collapse
|
42
|
Wild J, Altman E, Yura T, Gross CA. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev 1992; 6:1165-72. [PMID: 1628824 DOI: 10.1101/gad.6.7.1165] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Escherichia coli secreted proteins must be maintained in an export-competent state before translocation across the cytoplasmic membrane. This function is carried out by a group of proteins called chaperones. SecB is the major chaperone that interacts with precursor proteins before their secretion. We report results indicating that the DnaK and DnaJ heat shock proteins are also involved in the export of several proteins, most likely by acting as their chaperones. Translocation of alkaline phosphatase, a SecB-independent protein, was inhibited in dnaK- and dnaJ- mutant strains, suggesting that export of this protein probably involves DnaK and DnaJ. In addition, DnaK and DnaJ play a critical role in strains lacking SecB. They are required both for viability and for the residual processing of the SecB-dependent proteins LamB and maltose-binding protein (MBP) seen in secB null strains. Furthermore, overproduction of DnaK and DnaJ permits strains lacking SecB to grow in rich medium and accelerates the processing of LamB and MBP. These results suggest that under conditions where SecB becomes limiting, DnaK and DnaJ probably substitute for SecB and facilitate protein export. This provides the cell with a mechanism to overcome a temporary imbalance in the secretion process caused by an abrupt expansion in the pool of precursor proteins.
Collapse
Affiliation(s)
- J Wild
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|