1
|
Timson DJ. The molecular basis of galactosemia — Past, present and future. Gene 2016; 589:133-41. [DOI: 10.1016/j.gene.2015.06.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
|
2
|
Bourgeaux V, Piller F, Piller V. Two-step enzymatic synthesis of UDP-N-acetylgalactosamine. Bioorg Med Chem Lett 2005; 15:5459-62. [PMID: 16203137 DOI: 10.1016/j.bmcl.2005.08.088] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/11/2005] [Accepted: 08/30/2005] [Indexed: 11/25/2022]
Abstract
UDP-GalNAc has been synthesised with high yield from GalNAc, UTP and ATP using recombinant human GalNAc kinase GK2 and UDP-GalNAc pyrophosphorylase AGX1. Both enzymes have been prepared in one step from 1L cultures of transformed Escherichia coli and the UDP-GalNAc produced has been purified by a simple procedure. The method described is a rapid and efficient means to produce UDP-GalNAc as well as analogues like UDP-N-azidoacetylgalactosamine (UDP-GalNAz).
Collapse
Affiliation(s)
- Vanessa Bourgeaux
- Centre de Biophysique Moléculaire CNRS UPR4301 affiliée à l'Université d'Orléans et à l'INSERM, rue Charles Sadron, F-45071 Orléans Cedex 02, France
| | | | | |
Collapse
|
3
|
Han GS, Sreenivas A, Choi MG, Chang YF, Martin SS, Baldwin EP, Carman GM. Expression of Human CTP synthetase in Saccharomyces cerevisiae reveals phosphorylation by protein kinase A. J Biol Chem 2005; 280:38328-36. [PMID: 16179339 PMCID: PMC1400552 DOI: 10.1074/jbc.m509622200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Delta ura8Delta mutant lacking CTP synthetase activity. The expression of the CTPS1- and CTPS2-encoded human CTP synthetase enzymes in the ura7Delta ura8Delta mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from (32)P(i)-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase 1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation.
Collapse
Affiliation(s)
- Gil-Soo Han
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
5
|
Reich S, Hennermann J, Vetter B, Neumann LM, Shin YS, Söling A, Mönch E, Kulozik AE. An unexpectedly high frequency of hypergalactosemia in an immigrant Bosnian population revealed by newborn screening. Pediatr Res 2002; 51:598-601. [PMID: 11978883 DOI: 10.1203/00006450-200205000-00009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In galactokinase (GALK) deficiency, galactose cannot be phosphorylated into galactose-1-phosphate, which leads to cataract formation. Neonatal screening for hypergalactosemia in Berlin has been performed by thin-layer chromatography since 1978, which detects classical galactosemia and GALK deficiency. Until 1991, GALK deficiency has not been identified in a total of approximately 260,000 samples. In contrast, from 1992 to 1999, nine patients were detected in a total of approximately 240,000 screened newborns. One Turkish patient was homozygous for two novel S142I/G148C GALK mutations in close proximity to the putative ATP-binding site of the enzyme. The other eight children were born to five families belonging to the Bosnian refugee population consisting of approximately 30,000 individuals who have arrived in Berlin since 1991. In two of these families, GALK deficiency was subsequently diagnosed in siblings who had cataract surgery at 4 and 5 y of age, respectively. In all these 10 Bosnian patients, a homozygous P28T mutation located near the active center of the enzyme was identified. We propose that neonatal screening of populations with a significant proportion of Bosnians and possibly other southeastern Europeans, e.g. Romani, should be particularly directed toward GALK deficiency, an inborn error of metabolism that is readily amenable to effective treatment.
Collapse
Affiliation(s)
- Susanne Reich
- Children's Hospital, Charité, Campus Virchow, Humboldt University, D-10247 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Stanchi F, Bertocco E, Toppo S, Dioguardi R, Simionati B, Cannata N, Zimbello R, Lanfranchi G, Valle G. Characterization of 16 novel human genes showing high similarity to yeast sequences. Yeast 2001; 18:69-80. [PMID: 11124703 DOI: 10.1002/1097-0061(200101)18:1<69::aid-yea647>3.0.co;2-h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The entire set of open reading frames (ORFs) of Saccharomyces cerevisiae has been used to perform systematic similarity searches against nucleic acid and protein databases: with the aim of identifying interesting homologies between yeast and mammalian genes. Many similarities were detected: mostly with known genes. However: several yeast ORFs were only found to match human partial sequence tags: indicating the presence of human transcripts still uncharacterized that have a homologous counterpart in yeast. About 30 such transcripts were further studied and named HUSSY (human sequence similar to yeast). The 16 most interesting are presented in this paper along with their sequencing and mapping data. As expected: most of these genes seem to be involved in basic metabolic and cellular functions (lipoic acid biosynthesis: ribulose-5-phosphate-3-epimerase: glycosyl transferase: beta-transducin: serine-threonine-kinase: ABC proteins: cation transporters). Genes related to RNA maturation were also found (homologues to DIM1: ROK1-RNA-elicase and NFS1). Furthermore: five novel human genes were detected (HUSSY-03: HUSSY-22: HUSSY-23: HUSSY-27: HUSSY-29) that appear to be homologous to yeast genes whose function is still undetermined. More information on this work can be obtained at the website http://grup.bio.unipd.it/hussy
Collapse
Affiliation(s)
- F Stanchi
- CRIBI Biotechnology Centre, Università di Padova, via G. Colombo 3, Padova 35121, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Novelli G, Reichardt JK. Molecular basis of disorders of human galactose metabolism: past, present, and future. Mol Genet Metab 2000; 71:62-5. [PMID: 11001796 DOI: 10.1006/mgme.2000.3073] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular cloning and characterization of all three human galactose-metabolic genes have led to the identification of a number of mutations which result in three forms of galactosemia which are caused by kinase (GALK), transferase (GALT), or epimerase (GALE) deficiency. We review here recent developments in the molecular characterization of all three disorders of human galactose metabolism. Recent progress in the biochemical and/or structural analyses of the GALT and GALE proteins has complemented human mutational studies. Interestingly, genotype/phenotype correlations have been modest as in some other Mendelian disorders. We discuss possible reasons for this apparent paradox. Finally, we note the panethnic nature of galactosemia and suggest a hypothesis for it.
Collapse
Affiliation(s)
- G Novelli
- Dipartimento di Biopatologia e Diagnostica per Immagini, Università di Roma Tor Vergata, Rome, 00133, Italy
| | | |
Collapse
|
8
|
Mehta DV, Kabir A, Bhat PJ. Expression of human inositol monophosphatase suppresses galactose toxicity in Saccharomyces cerevisiae: possible implications in galactosemia. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1454:217-26. [PMID: 10452956 DOI: 10.1016/s0925-4439(99)00037-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A suppressor of galactose toxicity in a gal7 yeast strain (lacking galactose 1-phosphate uridyl transferase) has been isolated from a HeLa cell cDNA library. Analysis of the plasmid clone indicated that the insert has an ORF identical to that of hIMPase (human myo-inositol monophosphatase). The ability of hIMPase to suppress galactose toxicity is sensitive to the presence of Li(+) in the medium. A gal7 yeast strain harboring a plasmid containing cloned hIMPase grows on galactose as a sole carbon source. hIMPase mediated galactose metabolism is dependent on the functionality of GAL1 as well as GAL10 encoded galactokinase and epimerase respectively. These results predicted that the UDP-glucose/galactose pyrophosphorylase mediated pathway may be responsible for the relief of galactose toxicity. Experiments conducted to test this prediction revealed that expression of UGP1 encoded UDP-glucose pyrophosphorylase can indeed overcome the relief of galactose toxicity. Moreover, expression of UGP1 allows a gal7 strain to grow on galactose as a sole carbon source. Unlike the hIMPase mediated relief of galactose toxicity, UGP1 mediated relief of galactose toxicity is lithium insensitive. Based on our results and on the basis of available information on galactose toxicity, we suggest an alternative explanation for the molecular mechanism of galactose toxicity.
Collapse
Affiliation(s)
- D V Mehta
- Laboratory of Molecular Genetics, Biotechnology Centre, Indian Institute of Technology, Powai, Mumbai 400 076, India
| | | | | |
Collapse
|
9
|
Sherson S, Gy I, Medd J, Schmidt R, Dean C, Kreis M, Lecharny A, Cobbett C. The arabinose kinase, ARA1, gene of Arabidopsis is a novel member of the galactose kinase gene family. PLANT MOLECULAR BIOLOGY 1999; 39:1003-12. [PMID: 10344205 DOI: 10.1023/a:1006181908753] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The arabinose-sensitive ara1-1 mutant of Arabidopsis is deficient in arabinose kinase activity. A candidate for the ARA1 gene. ISA1, has been previously identified through the Arabidopsis genome sequencing initiative. Here we demonstrate that (1) the ARA1 gene coincides with ISA1 in a positional cloning strategy; (2) there are mutations in the ISA1 gene in both the ara1-1 mutant and an intragenic suppressor mutant; and (3) the ara1-1 and suppressor mutant phenotypes can be complemented by the expression of the ISA1 cDNA in transgenic plants. Together these observations confirm that ISA1 is the ARA1 gene. ARA1 is a member of the galactose kinase family of genes and represents a new substrate specificity among this and other families of sugar kinases. A second gene with similarities to members of the galactose kinase gene family has been identified in the EST database. A 1.8 kb cDNA contained an open reading-frame predicted to encode a 496 amino acid polypeptide. The GAL1 cDNA was expressed in a galK mutant of Escherichia coli and in vitro assays of extracts of the strain expressing GAL1 confirmed that the cDNA encodes a galactose kinase activity. Both GAL1 and ARA1 cross-hybridise at low stringency to other sequences suggesting the presence of additional members of the galactose kinase gene family.
Collapse
Affiliation(s)
- S Sherson
- Department of Genetics, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gy I, Aubourg S, Sherson S, Cobbett CS, Cheron A, Kreis M, Lecharny A. Analysis of a 14-kb fragment containing a putative cell wall gene and a candidate for the ARA1, arabinose kinase, gene from chromosome IV of Arabidopsis thaliana. Gene 1998; 209:201-10. [PMID: 9524266 DOI: 10.1016/s0378-1119(98)00049-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An Arabidopsis thaliana genomic DNA fragment of 14kb has been characterized in the framework of the E.S.S.A. programme. Computational and molecular approaches identified three novel gene sequences coding, respectively, for a protein of unknown function, a putative membrane-anchored cell wall protein and an arabinose kinase gene corresponding to the locus ARA1. The latter two genes named AtSEB1 and AtISA1 have been characterized in detail. They are very different in their organization, codon usage and level of expression. Homologues of AtSEB1 and AtISA1 have been identified. Sequence comparisons showed that the former genes contained a long 5' extension coding for an N-terminal domain probably specifying subcellular localization. Cloning and sequencing of the cognate cDNA for the AtISA1 homologue in A. thaliana, named GAL1, indicate that it encodes for a galactokinase-like protein. Our results highlight the integrative outcome of a systematic sequencing project in which links between biochemically and genetically characterized mutants, ESTs and genomic sequence data are generated.
Collapse
Affiliation(s)
- I Gy
- Institut de Biotechnologie des Plantes, Laboratoire de Biologie du Développement des Plantes, Bâtiment 630, Université de Paris-Sud, CNRS-ERS 569, F-91405, Orsay, Cedex, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Groom KR, Heyman HC, Steffen MC, Hawkins L, Martin NC. Kluyveromyces lactis SEF1 and its Saccharomyces cerevisiae homologue bypass the unknown essential function, but not the mitochondrial RNase P function, of the S. cerevisiae RPM2 gene. Yeast 1998; 14:77-87. [PMID: 9483797 DOI: 10.1002/(sici)1097-0061(19980115)14:1<77::aid-yea201>3.0.co;2-p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RPM2 is a Saccharomyces cerevisiae nuclear gene required for normal cell growth yet the only known function of Rpm2p is as a protein subunit of yeast mitochondrial RNase P, an enzyme responsible for the 5' maturation of mitochondrial tRNAs. Since mitochondrial protein synthesis in S. cerevisiae is not essential for viability, RPM2 must provide another function in addition to its known role as a mitochondrial tRNA processing enzyme. During a search for RPM2 homologues from Kluyveromyces lactis, we recovered a K. lactis gene that compensates for the essential function but not the RNase P function of RPM2. We have named this gene SEF1 (Suppressor of the Essential Function), DNA sequence analysis of SEF1 reveals it contains a Zn(2)-Cys(6) binuclear cluster motif found in a growing number of yeast transcription factors. The SEF1 homologue of S. cerevisiae also compensates for the essential function of RPM2. The two proteins share 49% identity and 72% amino acid sequence similarity.
Collapse
MESH Headings
- Amino Acid Sequence
- Cloning, Molecular
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Fungal Proteins
- Genes, Fungal
- Genetic Complementation Test
- Kluyveromyces/genetics
- Kluyveromyces/physiology
- Mitochondria/enzymology
- Molecular Sequence Data
- RNA/metabolism
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Fungal/metabolism
- RNA, Mitochondrial
- RNA, Transfer/metabolism
- Ribonuclease P
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/physiology
- Sequence Analysis, DNA
- Suppression, Genetic
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transformation, Genetic
Collapse
Affiliation(s)
- K R Groom
- Department of Biochemistry, University of Louisville School of Medicine, KY 40292, USA
| | | | | | | | | |
Collapse
|
12
|
Pastuszak I, O'Donnell J, Elbein AD. Identification of the GalNAc kinase amino acid sequence. J Biol Chem 1996; 271:23653-6. [PMID: 8798585 DOI: 10.1074/jbc.271.39.23653] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A new kinase that forms GalNAc-1-P was purified from pig kidney cytosol and identified on gels by labeling with N3-[32P]ATP (Pastuszak, I., Drake, R., and Elbein, A. D. (1996) J. Biol. Chem. 271, in press). A 50-kDa labeled protein was eluted, digested with trypsin, and the sequences of four peptides representing 49 amino acids showed 90% identity to sequence of human galactokinase reported to be on chromosome 15. To resolve this dilemma, activities and substrate specificities of galactokinase and GalNAc kinase from human and pig kidney, as well as of galactokinase from the yeast clone transfected with the cDNA from presumptive human galactokinase, were compared. The purified galactokinases phosphorylated galactose, but not GalNAc, whereas GalNAc kinase also phosphorylated galactose when this sugar was present at millimolar concentrations. Extracts of gal 1(-) yeast clone, transfected with presumptive human galactokinase cDNA, had very low galactokinase activity even when yeast were grown on galactose, but good activity with GalNAc. On the other hand, the wild type yeast phosphorylated galactose, but not GalNAc. These data indicate that the sequence reported for galactokinase on chromosome 15 is that of GalNAc kinase, which can phosphorylate galactose when this sugar is present at millimolar concentrations. This transfection thus allows the yeast mutant to grow slowly on galactose-containing media.
Collapse
Affiliation(s)
- I Pastuszak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | | | | |
Collapse
|
13
|
Tygstrup N, Jensen SA, Krog B, Dalhoff K. Expression of liver-specific functions in rat hepatocytes following sublethal and lethal acetaminophen poisoning. J Hepatol 1996; 25:183-90. [PMID: 8878780 DOI: 10.1016/s0168-8278(96)80072-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIM In order to study the short-term effect of moderate and severe reduction of liver function by acetaminophen poisoning of different severity on gene expression for liver-specific functions, rats were given 3.75 and 7.5 g per kg body weight acetaminophen intragastrically. The lower dose is associated with low mortality; after the higher dose, most rats die at between 12 and 24 h. METHODS In the morning, 1 1/2, 3, 6, 9, and 12 h after the injection, the rats were killed and RNA was extracted from liver tissue. By slot-blot hybridization mRNA steady-state levels were determined for enzymes involved in metabolic liver functions, i.e. ureagenesis, gluconeogenesis, and drug metabolism, for acute phase proteins, "house-keeping" proteins, and for proteins related to liver regeneration. Results were expressed as per cent of the level in similarly fasted, untreated rats of the same stock RESULTS After the smaller dose of acetaminophen, most of the examined mRNA levels were increasing during the experimental period, being two- to four-fold elevated in relation to control after 6 to 12 h. Rats receiving the lethal dose either showed no or a later and smaller increase, and in several cases a fall towards the end of the experiment. The greatest differences were seen for mRNA of arginase, beta-fibrinogen, alpha 1-acid glycoprotein, alpha-tubulin, histone 3, TGF beta, and cyclin d, i.e. proteins associated with acute phase response and liver cell replication and maintenance. CONCLUSIONS It is concluded that reversible intoxication with acetaminophen induces an adaptive modulation of mRNA expression of liver functions and regeneration which is lacking after severe intoxication. This adaptation, with emphasis on acute phase response and regeneration, may be crucial for recovery after acetaminophen intoxication. If this also applies to the intoxication in man, estimates of the corresponding variables may be clues to the prognosis of acetaminophen-induced fulminant hepatic failure.
Collapse
Affiliation(s)
- N Tygstrup
- Department of Medicine A, Rigshospitalet, Copenhagen, Denmark,
| | | | | | | |
Collapse
|
14
|
Tygstrup N, Jensen SA, Krog B, Pietrangelo A, Shafritz DA. Expression of messenger RNA for liver functions following 70% and 90% hepatectomy. J Hepatol 1996; 25:72-8. [PMID: 8836904 DOI: 10.1016/s0168-8278(96)80330-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIMS/METHODS The effect of moderate and severe reduction of the functional liver mass on gene expression for liver functions was studied in rats following 70% and 90% hepatectomy. At intervals up to 24 h after operation rats were killed and RNA was extracted from the remaining liver tissue. By slot-blot hybridization mRNA steady-state levels were determined for enzymes involved in metabolic 'liver-specific' functions, acute phase proteins, 'house-keeping', and growth-related proteins. Results were expressed as per cent of levels in a pool from fed control rats of the same gender and age. RESULTS Among 'liver-specific' metabolic functions only expression of gluconeogenesis, represented by phosphoenol carboxykinase mRNA, was augmented initially, followed by a fall to very low values after 90% hepatectomy. The drug metabolizing system represented by CYP2B1/2 mRNA was reduced to half of the control values. Expression of urea synthesis, as reflected by carbamoylphosphate synthetase mRNA, showed a gradual decline after 90% hepatectomy, in contrast to rising levels of argininosuccinate lyase and arginase mRNA, possibly serving polyamine rather than urea synthesis. The mRNA level of the acute phase protein alpha 1-acid glycoprotein showed a smaller and later rise in 90% than in 70% hepatectomized rats, whereas that of alpha 2-macroglobulin only increased after 90% hepatectomy like the 'house-keeping' beta-actin mRNA. A rise in histone 3, which coincides with mitosis, was only seen after 70% hepatectomy, indicating that after 90% hepatectomy the response to growth-stimulating factors is weak or delayed, supported by a delayed rise in cyclin d and low levels of growth hormone receptor mRNA. CONCLUSIONS It is concluded that attempts by gene regulation to adapt liver functions to a reduction of the liver mass depend on the amount of liver tissue lost. When the loss is nearly fatal, compensation for normal metabolic functions may be abandoned for efforts to regenerate, which, however, may be delayed or after all be too weak.
Collapse
Affiliation(s)
- N Tygstrup
- Department of Medicine A, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
15
|
Ai Y, Jenkins NA, Copeland NG, Gilbert DH, Bergsma DJ, Stambolian D. Mouse galactokinase: isolation, characterization, and location on chromosome 11. Genome Res 1995; 5:53-9. [PMID: 8717055 DOI: 10.1101/gr.5.1.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Elevated galactose levels can be caused by several enzyme defects, one of which is galactokinase. Galactokinase deficiency cause congenital cataracts during infancy and presenile cataracts in the adult population. We have isolated the mouse cDNA for galactokinase, which shares extensive amino acid sequence homology, 88% identity, with a recently cloned human galactokinase. It is expressed in all tissues examined. In an interspecific backcross analysis galactokinase maps to the distal region of mouse chromosome 11, a region that is homologous to human chromosome 17q22-25. The availability of the mouse gene provides an opportunity to make a knockout model for galactokinase deficiency.
Collapse
Affiliation(s)
- Y Ai
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
16
|
Stambolian D, Ai Y, Sidjanin D, Nesburn K, Sathe G, Rosenberg M, Bergsma DJ. Cloning of the galactokinase cDNA and identification of mutations in two families with cataracts. Nat Genet 1995; 10:307-12. [PMID: 7670469 DOI: 10.1038/ng0795-307] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Galactokinase is an essential enzyme for the metabolism of galactose and its deficiency causes congenital cataracts during infancy and presenile cataracts in the adult population. We have cloned the human galactokinase cDNA, which maps to chromosome 17q24, and show that the isolated cDNA expresses galactokinase activity in bacteria and mammalian cells. We also describe two different mutations in this gene in unrelated families with galactokinase deficiency and cataracts. The availability of the cloned galactokinase gene provides an important reference to identify mutations in patients with galactokinase deficiency and cataracts.
Collapse
Affiliation(s)
- D Stambolian
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Yang WL, Carman GM. Phosphorylation of CTP synthetase from Saccharomyces cerevisiae by protein kinase C. J Biol Chem 1995; 270:14983-8. [PMID: 7797479 PMCID: PMC1351267 DOI: 10.1074/jbc.270.25.14983] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation of CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) from Saccharomyces cerevisiae protein kinase C was examined. Using pure CTP by synthetase as a substrate, protein kinase C activity was dose- and time-dependent and required calcium, diacylglycerol, and phosphatidylserine for full activation. Protein kinase C activity was also dependent on the concentration of CTP synthetase. Protein kinase C phosphorylated CTP synthetase on serine and threonine residues in vitro whereas the enzyme was primarily phosphorylated on serine residues in vivo. Phosphopeptide mapping analysis of CTP synthetase phosphorylated in vitro and in vivo indicated that the enzyme was phosphorylated on more than one site. Most of the phosphopeptides derived from CTP synthetase phosphorylated in vivo were the same as those derived from CTP synthetase phosphorylated by protein kinase C in vitro. The stoichiometry of the phosphorylation of native CTP synthetase was 0.4 mol of phosphate/mol of enzyme whereas the stoichiometry of the phosphorylation of alkaline phosphatase-treated CTP synthetase was 2.2 mol of phosphate/mol of enzyme. This indicated that CTP synthetase was purified in a phosphorylated state. Phosphorylation of CTP synthetase resulted in a 3-fold activation in enzyme activity whereas alkaline phosphatase treatment of CTP synthetase resulted in a 5-fold decrease in enzyme activity. Overall, the results reported here were consistent with the conclusion that CTP synthetase was regulated by protein kinase C phosphorylation.
Collapse
Affiliation(s)
- W L Yang
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08903, USA
| | | |
Collapse
|
18
|
Abstract
Analysis of both the human and rat galactose-1-phosphate uridyltransferase (GALT) genes reveal 5' regulatory consensus sequences suggestive of a housekeeping gene. This is in accord with the finding of GALT activity in all tissues. However, the complications seen in galactosemia, in particular ovarian dysfunction and verbal dyspraxia, suggest organ-specific sensitivity to lack of GALT activity. Analysis of steady-state GALT mRNA and specific activity levels in adult rat organs reveals a marked difference between organs that correlates with the degree of organ dysfunction in humans with galactosemia. The organ variation in GALT mRNA and activity thus appears to be due to genetic regulation. Discernment of the pathophysiologic basis for the organ-specific complications requires an understanding of the basis for the differences in organ regulation. The present state of knowledge of the regulation of the Leloir enzymes in general, GALT in particular, from prokaryotes to mammals is discussed.
Collapse
Affiliation(s)
- R A Heidenreich
- Section of Genetics, Children's Research Center, University of Arizona, Tucson 85724, USA
| |
Collapse
|
19
|
Kruger WD, Cox DR. A yeast system for expression of human cystathionine beta-synthase: structural and functional conservation of the human and yeast genes. Proc Natl Acad Sci U S A 1994; 91:6614-8. [PMID: 8022826 PMCID: PMC44253 DOI: 10.1073/pnas.91.14.6614] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human cystathionine beta-synthase (CBS; EC 4.2.1.22) deficiency results in a recessive genetic disorder whose clinical and biochemical manifestations vary greatly among affected individuals. In an effort to identify and analyze mutations in the human CBS gene, we have developed a yeast expression system for human CBS. We have cloned and sequenced a human cDNA that codes for CBS and have expressed the human CBS protein in yeast cells lacking endogenous CBS. The human enzyme produced in yeast is functional both in vitro and in vivo. We have also cloned and sequenced the yeast gene, CYS4, that codes for CBS. The predicted human and yeast CBS proteins are 38% identical and 72% similar to each other, as well as sharing significant similarity with bacterial cysteine synthase. These results demonstrate the evolutionary conservation of CBS and establish the utility of a yeast expression system for studying human CBS.
Collapse
Affiliation(s)
- W D Kruger
- Department of Psychiatry, University of California at San Francisco 94143
| | | |
Collapse
|
20
|
Bork P, Sander C, Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 1993; 2:31-40. [PMID: 8382990 PMCID: PMC2142297 DOI: 10.1002/pro.5560020104] [Citation(s) in RCA: 305] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Kinases that catalyze phosphorylation of sugars, called here sugar kinases, can be divided into at least three distinct nonhomologous families. The first is the hexokinase family, which contains many prokaryotic and eukaryotic sugar kinases with diverse specificities, including a new member, rhamnokinase from Salmonella typhimurium. The three-dimensional structure of hexokinase is known and can be used to build models of functionally important regions of other kinases in this family. The second is the ribokinase family, of unknown three-dimensional structure, and comprises pro- and eukaryotic ribokinases, bacterial fructokinases, the minor 6-phosphofructokinase 2 from Escherichia coli, 6-phosphotagatokinase, 1-phosphofructokinase, and, possibly, inosine-guanosine kinase. The third family, also of unknown three-dimensional structure, contains several bacterial and yeast galactokinases and eukaryotic mevalonate and phosphomevalonate kinases and may have a substrate binding region in common with homoserine kinases. Each of the three families of sugar kinases appears to have a distinct three-dimensional fold, since conserved sequence patterns are strikingly different for the three families. Yet each catalyzes chemically equivalent reactions on similar or identical substrates. The enzymatic function of sugar phosphorylation appears to have evolved independently on the three distinct structural frameworks, by convergent evolution. In addition, evolutionary trees reveal that (1) fructokinase specificity has evolved independently in both the hexokinase and ribokinase families and (2) glucose specificity has evolved independently in different branches of the hexokinase family. These are examples of independent Darwinian adaptation of a structure to the same substrate at different evolutionary times. The flexible combination of active sites and three-dimensional folds observed in nature can be exploited by protein engineers in designing and optimizing enzymatic function.
Collapse
Affiliation(s)
- P Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|