1
|
Yang X, Liu Y, Wang Z, Jin Y, Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Commun Biol 2024; 7:1475. [PMID: 39521912 PMCID: PMC11550846 DOI: 10.1038/s42003-024-07180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a newly defined type of programmed cell death, ferroptosis is considered a potent weapon against tumors due to its distinct mechanism from other types of programmed cell death. Ferroptosis is triggered by the uncontrolled accumulation of hydroperoxyl polyunsaturated fatty acid-containing phospholipids, also called lipid peroxidation. The lipid peroxidation, generated through enzymatic and non-enzymatic mechanisms, drives changes in cell morphology and the destruction of membrane integrity. Here, we dissect the mechanisms of ferroptosis induced enzymatically or non-enzymatically, summarize the major metabolism pathways in modulating lipid peroxidation, and provide insights into the relationship between ferroptosis and tumor suppression. In this review, we discuss the recent advances of ferroptosis in tumor microenvironments and the prospect of potential therapeutic application.
Collapse
Affiliation(s)
- Xin Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhe Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ying Jin
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou Ninth People's Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Asadipour K, Hani MB, Potter L, Ruedlinger BL, Lai N, Beebe SJ. Nanosecond Pulsed Electric Fields (nsPEFs) Modulate Electron Transport in the Plasma Membrane and the Mitochondria. Bioelectrochemistry 2024; 155:108568. [PMID: 37738861 DOI: 10.1016/j.bioelechem.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Nanosecond pulsed electric fields (nsPEFs) are a pulsed power technology known for ablating tumors, but they also modulate diverse biological mechanisms. Here we show that nsPEFs regulate trans-plasma membrane electron transport (tPMET) rates in the plasma membrane redox system (PMRS) shown as a reduction of the cell-impermeable, WST-8 tetrazolium dye. At lower charging conditions, nsPEFs enhance, and at higher charging conditions inhibit tPMET in H9c2 non-cancerous cardiac myoblasts and 4T1-luc breast cancer cells. This biphasic nsPEF-induced modulation of tPMET is typical of a hormetic stimulus that is beneficial and stress-adaptive at lower levels and damaging at higher levels. NsPEFs also attenuated mitochondrial electron transport system (ETS) activity (O2 consumption) at Complex I when coupled and uncoupled to oxidative phosphorylation. NsPEFs generated more reactive oxygen species (ROS) in mitochondria (mROS) than in the cytosol (cROS) in non-cancer H9c2 heart cells but more cROS than mROS in 4T1-luc cancer cells. Under lower charging conditions, nsPEFs support glycolysis while under higher charging conditions, nsPEFs inhibit electron transport in the PMRS and the mitochondrial ETS producing ROS, ultimately causing cell death. The impact of nsPEF on ETS presents a new paradigm for considering nsPEF modulation of redox functions, including redox homeostasis and metabolism.
Collapse
Affiliation(s)
- Kamal Asadipour
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Maisoun Bani Hani
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA
| | - Lucas Potter
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | | | - Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk Virginia, USA
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk Virginia, USA.
| |
Collapse
|
4
|
Nicoll CR, Alvigini L, Gottinger A, Cecchini D, Mannucci B, Corana F, Mascotti ML, Mattevi A. In vitro construction of the COQ metabolon unveils the molecular determinants of coenzyme Q biosynthesis. Nat Catal 2024; 7:148-160. [PMID: 38425362 PMCID: PMC7615680 DOI: 10.1038/s41929-023-01087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Metabolons are protein assemblies that perform a series of reactions in a metabolic pathway. However, the general importance and aptitude of metabolons for enzyme catalysis remain poorly understood. In animals, biosynthesis of coenzyme Q is currently attributed to ten different proteins, with COQ3, COQ4, COQ5, COQ6, COQ7 and COQ9 forming the iconic COQ metabolon. Yet several reaction steps conducted by the metabolon remain enigmatic. To elucidate the prerequisites for animal coenzyme Q biosynthesis, we sought to construct the entire metabolon in vitro. Here we show that this approach, rooted in ancestral sequence reconstruction, reveals the enzymes responsible for the uncharacterized steps and captures the biosynthetic pathway in vitro. We demonstrate that COQ8, a kinase, increases and streamlines coenzyme Q production. Our findings provide crucial insight into how biocatalytic efficiency is regulated and enhanced by these biosynthetic engines in the context of the cell.
Collapse
Affiliation(s)
- Callum R. Nicoll
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Alvigini
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Andrea Gottinger
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Domiziana Cecchini
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | | | - Federica Corana
- ’Centro Grandi Strumenti’, University of Pavia, Pavia, Italy
| | - María Laura Mascotti
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Andrea Mattevi
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Rodriguez JB, Szajnman SH. An updated review of chemical compounds with anti-Toxoplasma gondii activity. Eur J Med Chem 2023; 262:115885. [PMID: 37871407 DOI: 10.1016/j.ejmech.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.
Collapse
Affiliation(s)
- Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina.
| | - Sergio H Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
6
|
McBeth C, Stott-Marshall RJ. Interference of reversible redox compounds in enzyme catalysed assays - Electrochemical limitations. Anal Biochem 2023; 662:114972. [PMID: 36410430 DOI: 10.1016/j.ab.2022.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Several commercial assay kits exist with limited explanation of the kit components and reagent constituents, which greatly increases potential incompatibility issues resulting in the loss of samples, time, and data. Herein we explore such issues via the redox ion [Fe(CN)6]3/4- in two commercial l-lactate and pyruvate assay kits. RESULTS We clearly demonstrate significant interference from redox compounds with the l-lactate and pyruvate assays; a significance in signal inhibition/mechanism restriction, and false/mechanism exhaustion, respectively. Potential mechanisms are explored to explain interference. CONCLUSION The need for transparency is crucial for consistency of assay kit performance from lab to lab. There is a need for suppliers to list the components of kits and/or list the potential for interference from specific agents to ensure that results obtained from these kits are reliable and reproducible.
Collapse
Affiliation(s)
- Craig McBeth
- Biodiscovery Institute, Faculty of Science, School of Pharmacy, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK.
| | - Robert J Stott-Marshall
- Wolfson School of Global Virus Research, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
7
|
Nyssen P, Franck T, Serteyn D, Mouithys-Mickalad A, Hoebeke M. Propofol metabolites and derivatives inhibit the oxidant activities of neutrophils and myeloperoxidase. Free Radic Biol Med 2022; 191:164-175. [PMID: 36064069 DOI: 10.1016/j.freeradbiomed.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
In previous studies, propofol has shown immunomodulatory abilities on various in vitro models. As this anesthetic molecule is extensively used in intensive care units, its anti-inflammatory properties present a great interest for the treatment of inflammatory disorders like the systemic inflammatory response syndrome. In addition to its inhibition abilities on important neutrophils mechanisms (chemotaxis, reactive oxygen species (ROS) production, Neutrophil Extracellular Traps (NETs) formation, …), our group has shown that propofol is also a reversible inhibitor of the oxidant myeloperoxidase (MPO) activity. Propofol being subject to rapid metabolism, its derivatives could contribute to its anti-inflammatory action. First, propofol-β-glucuronide (PPFG), 2,6-diisopropyl-1,4-p-benzoquinone (PPFQ) and 3,5,3',5'-tetraisopropyl-(4,4')-diphenoquinone (PPFDQ) were compared on their superoxide (O2.-) scavenging properties and more importantly on their inhibitory action on the O2.- release by activated neutrophils using EPR spectroscopy and chemiluminescence assays. PPFQ and PPFDQ are potent superoxide scavengers and also inhibit the release of ROS by neutrophils. An Enzyme-Linked Immunosorbent Assay (ELISA) has also highlighted the ability of both molecules to significantly decrease the MPO degranulation process of neutrophils. Fluorescence enzymatic assays helped to investigate the action of the propofol derivatives on the peroxidase and chlorination activities of MPO. In addition, using SIEFED (Specific Immunological Extraction Followed by Enzyme Detection) assays and docking, we demonstrated the concentration-dependent inhibitory action of PPFQ and its ability to bind to the enzyme active site while PPFG presented a much weaker inhibitory action. Overall, the oxidation derivatives and metabolites PPFQ and PPFDQ can, at physiological concentrations, perpetuate the immunomodulatory action of propofol by acting on the oxidant response of PMN and MPO.
Collapse
Affiliation(s)
- Pauline Nyssen
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée Du 6 Août, 19, 4000 Liège (Sart-Tilman), Belgium.
| | - Thierry Franck
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Didier Serteyn
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium; Department of Clinical Sciences, Anesthesiology and Equine Surgery, Faculty of Veterinary Medicine, University of Liège, Building B41, Quartier Vallée 2, Avenue de Cureghem 5, 4000 Liège (Sart-Tilman), Belgium
| | - Ange Mouithys-Mickalad
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Maryse Hoebeke
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée Du 6 Août, 19, 4000 Liège (Sart-Tilman), Belgium
| |
Collapse
|
8
|
The Use of the Coenzyme Q 10 as a Food Supplement in the Management of Fibromyalgia: A Critical Review. Antioxidants (Basel) 2022; 11:antiox11101969. [PMID: 36290691 PMCID: PMC9598746 DOI: 10.3390/antiox11101969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The coenzyme Q10 is a naturally occurring benzoquinone derivative widely prescribed as a food supplement for different physical conditions and pathologies. This review aims to sum up the key structural and functional characteristics of Q10, taking stock of its use in people affected by fibromyalgia. A thorough survey has been conducted, using Pubmed, Scifinder, and ClinicalTrials.gov as the reference research applications and registry database, respectively. Original articles, reviews, and editorials published within the last 15 years, as well as open clinical investigations in the field, if any, were analyzed to point out the lights and shadows of this kind of supplementation as they emerge from the literature.
Collapse
|
9
|
Azad A, Kong A. The Therapeutic Potential of Imidazole or Quinone-Based Compounds as Radiosensitisers in Combination with Radiotherapy for the Treatment of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194694. [PMID: 36230623 PMCID: PMC9563564 DOI: 10.3390/cancers14194694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Patients with curable head and neck cancers are usually treated with a combination of chemotherapy and radiotherapy, but they experience significant, severe side effects, which greatly affect their quality of life. Some of these patients still experience disease relapse after an intensive course of treatment due to tumours that are resistant to radiotherapy and chemotherapy because of hypoxia (lack of oxygen). In addition, some patients are not suitable for and/or are not able to have combined chemotherapy with radiotherapy due to their age or other physical conditions. Certain small-molecule drugs, which are used to treat various infections including malaria, have been shown to reduce hypoxia and thus make radiotherapy more effective. Therefore, their combination with radiotherapy could have less toxicities compared with the combination of chemotherapy with radiotherapy. Here, we discuss the promising results from preclinical work and clinical trials of these agents, and their potential use in the clinic, to reduce hypoxia and to sensitise radiotherapy. These agents could potentially be used for patients who are not suitable for combined chemotherapy and radiotherapy; they may also be used to reduce the dose of radiotherapy if able to enhance radiotherapy effect at lower dose in order to reduce toxicities while maintaining the treatment efficacy in a more personalised manner. Abstract The addition of platinum chemotherapy to primary radiotherapy (chemoradiation) improves survival outcomes for patients with head and neck squamous cell carcinoma (HNSCC), but it carries a high incidence of acute and long-term treatment-related complications, resulting in a poor quality of life. In addition, patients with significant co-morbidities, or older patients, cannot tolerate or do not benefit from concurrent chemoradiation. These patients are often treated with radiotherapy alone resulting in poor locoregional control and worse survival outcomes. Thus, there is an urgent need to assess other less toxic treatment modalities, which could become an alternative to chemoradiation in HNSCC. Currently, there are several promising anti-cancer drugs available, but there has been very limited success so far in replacing concurrent chemoradiation due to their low efficacy or increased toxicities. However, there is new hope that a treatment strategy that incorporates agents that act as radiosensitisers to improve the efficacy of conventional radiotherapy could be an alternative to more toxic chemotherapeutic agents. Recently, imidazole-based or quinone-based anti-malarial compounds have drawn considerable attention as potential radiosensitisers in several cancers. Here, we will discuss the possibility of using these compounds as radiosensitisers, which could be assessed as safe and effective alternatives to chemotherapy, particularly for patients with HNSCC that are not suitable for concurrent chemotherapy due to their age or co-morbidities or in metastatic settings. In addition, these agents could also be tested to assess their efficacy in combination with immunotherapy in recurrent and metastatic settings or in combination with radiotherapy and immunotherapy in curative settings.
Collapse
|
10
|
Mitochondrial dysfunction triggers the pathogenesis of Parkinson's disease in neuronal C/EBPβ transgenic mice. Mol Psychiatry 2021; 26:7838-7850. [PMID: 34489530 DOI: 10.1038/s41380-021-01284-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Respiratory chain complex I deficiency elicits mitochondrial dysfunction and reactive oxidative species (ROS), which plays a crucial role in Parkinson's disease (PD) pathogenesis. However, it remains unclear whether the impairment in other complexes in the mitochondrial oxidative phosphorylation chain is also sufficient to trigger PD onset. Here we show that inhibition of Complex II or III in the electron transport chain (ETC) induces the motor disorder and PD pathologies in neuronal Thy1-C/EBPβ transgenic mice. Through a cell-based screening of mitochondrial respiratory chain inhibitors, we identified TTFA (complex II inhibitor) and Atovaquone (complex III inhibitor), which robustly block the oxidative phosphorylation functions, strongly escalate ROS, and activate C/EBPβ/AEP pathway that triggers dopaminergic neuronal cell death. Oral administration of these inhibitors to Thy1-C/EBPβ mice elicits constipation and motor defects, associated with Lewy body-like inclusions. Deletion of SDHD (Succinate dehydrogenase) gene from the complex II in the Substantia Nigra of Thy1-C/EBPβ mice triggers ROS and PD pathologies, resulting in motor disorders. Hence, our findings demonstrate that mitochondrial ETC inactivation triggers PD pathogenesis via activating C/EBPβ/AEP pathway.
Collapse
|
11
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
12
|
Mitochondrial Coenzyme Q10 Determination Via Isotope Dilution Liquid Chromatography -Tandem Mass Spectrometry. Methods Mol Biol 2021. [PMID: 34118048 DOI: 10.1007/978-1-0716-1262-0_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coenzyme Q10 (CoQ10) is an essential part of the mitochondrial respiratory chain . Here, we describe an accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of mitochondrial CoQ10 in isolated mitochondria . In the assay, mitochondrial suspensions are spiked with CoQ10-[2H9] internal standard (IS), extracted with organic solvents and CoQ10 quantified by LC-MS/MS using multiple reaction monitoring (MRM).
Collapse
|
13
|
Yuan S, Schmidt HM, Wood KC, Straub AC. CoenzymeQ in cellular redox regulation and clinical heart failure. Free Radic Biol Med 2021; 167:321-334. [PMID: 33753238 DOI: 10.1016/j.freeradbiomed.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Coenzyme Q (CoQ) is ubiquitously embedded in lipid bilayers of various cellular organelles. As a redox cycler, CoQ shuttles electrons between mitochondrial complexes and extramitochondrial reductases and oxidases. In this way, CoQ is crucial for maintaining the mitochondrial function, ATP synthesis, and redox homeostasis. Cardiomyocytes have a high metabolic rate and rely heavily on mitochondria to provide energy. CoQ levels, in both plasma and the heart, correlate with heart failure in patients, indicating that CoQ is critical for cardiac function. Moreover, CoQ supplementation in clinics showed promising results for treating heart failure. This review provides a comprehensive view of CoQ metabolism and its interaction with redox enzymes and reactive species. We summarize the clinical trials and applications of CoQ in heart failure and discuss the caveats and future directions to improve CoQ therapeutics.
Collapse
Affiliation(s)
- Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heidi M Schmidt
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine C Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|
15
|
Effects of yellow and red bell pepper (paprika) extracts on pathogenic microorganisms, cancerous cells and inhibition of survivin. Journal of Food Science and Technology 2021; 58:1499-1510. [PMID: 33746278 DOI: 10.1007/s13197-020-04663-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
The present work examined the biomedical value of red and yellow bell pepper extracts (YME and RME) in terms of antioxidant, antibacterial and anticancer activities by in vitro and virtual studies. The yield of extract was 3.49% for RME and 2.92% for YME. The level of total phenols and total flavonoids significantly varied between the type of extracts, and it was higher in RME than that in YME. The extracts showed promising DPPH and ABTS free radical scavenging rates. The extracts showed an excellent antibacterial activity. The minimal inhibitory concentration (MIC) of RME was 0.20 mg mL-1 for Bacillus cereus, 0.30 mg mL-1 for Escherichia coli, 0.50 mg mL-1 for Staphylococcus aureus and 0.60 mg mL-1 and for Pseudomonas aeruginosa, while the MIC of YME was 0.40 mg mL-1 for B. cereus, 0.40 mg mL-1 for E. coli, 0.50 mg mL-1 for S. aureus, and 0.60 mg mL-1 for P. aeruginosa. TEM results demonstrated the cellular damage induced by RME in B. cereus biofilm. The RME did not show any cytotoxicity in normal NIH3T3 cells, but at 125 μg mL-1 did a strong cytotoxicity in human lung cancer cell line A549 as evident by cytotoxicity assay, ROS and AO/EB staining. The virtual biological examination indicated that β-carotene from RME was a potential compound with higher docking energy against both targeted enzymes and proteins as - 14.30 for LpxC and - 15.59 for survivin. Therefore, it is recommended that RME is a better functional food with novel biomedical properties and it deserves further evaluation for its the novel molecules against multidrug resistant pathogens.
Collapse
|
16
|
Liparulo I, Bergamini C, Bortolus M, Calonghi N, Gasparre G, Kurelac I, Masin L, Rizzardi N, Rugolo M, Wang W, Aleo SJ, Kiwan A, Torri C, Zanna C, Fato R. Coenzyme Q biosynthesis inhibition induces HIF-1α stabilization and metabolic switch toward glycolysis. FEBS J 2020; 288:1956-1974. [PMID: 32898935 DOI: 10.1111/febs.15561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
Coenzyme Q10 (CoQ, ubiquinone) is a redox-active lipid endogenously synthesized by the cells. The final stage of CoQ biosynthesis is performed at the mitochondrial level by the 'complex Q', where coq2 is responsible for the prenylation of the benzoquinone ring of the molecule. We report that the competitive coq2 inhibitor 4-nitrobenzoate (4-NB) decreased the cellular CoQ content and caused severe impairment of mitochondrial function in the T67 human glioma cell line. In parallel with the reduction in CoQ biosynthesis, the cholesterol level increased, leading to significant perturbation of the plasma membrane physicochemical properties. We show that 4-NB treatment did not significantly affect the cell viability, because of an adaptive metabolic rewiring toward glycolysis. Hypoxia-inducible factor 1α (HIF-1α) stabilization was detected in 4-NB-treated cells, possibly due to the contribution of both reduction in intracellular oxygen tension and ROS overproduction. Exogenous CoQ supplementation partially recovered cholesterol content, HIF-1α degradation, and ROS production, whereas only weakly improved the bioenergetic impairment induced by the CoQ depletion. Our data provide new insights on the effect of CoQ depletion and contribute to shed light on the pathogenic mechanisms of ubiquinone deficiency syndrome.
Collapse
Affiliation(s)
- Irene Liparulo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | | | - Natalia Calonghi
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Italy
| | - Luca Masin
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Wenping Wang
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Serena J Aleo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Alisar Kiwan
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Italy
| | - Cristian Torri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| |
Collapse
|
17
|
Sun J, Patel CB, Jang T, Merchant M, Chen C, Kazerounian S, Diers AR, Kiebish MA, Vishnudas VK, Gesta S, Sarangarajan R, Narain NR, Nagpal S, Recht L. High levels of ubidecarenone (oxidized CoQ 10) delivered using a drug-lipid conjugate nanodispersion (BPM31510) differentially affect redox status and growth in malignant glioma versus non-tumor cells. Sci Rep 2020; 10:13899. [PMID: 32807842 PMCID: PMC7431533 DOI: 10.1038/s41598-020-70969-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming in cancer cells, vs. non-cancer cells, elevates levels of reactive oxygen species (ROS) leading to higher oxidative stress. The elevated ROS levels suggest a vulnerability to excess prooxidant loads leading to selective cell death, a therapeutically exploitable difference. Co-enzyme Q10 (CoQ10) an endogenous mitochondrial resident molecule, plays an important role in mitochondrial redox homeostasis, membrane integrity, and energy production. BPM31510 is a lipid-drug conjugate nanodispersion specifically formulated for delivery of supraphysiological concentrations of ubidecarenone (oxidized CoQ10) to the cell and mitochondria, in both in vitro and in vivo model systems. In this study, we sought to investigate the therapeutic potential of ubidecarenone in the highly treatment-refractory glioblastoma. Rodent (C6) and human (U251) glioma cell lines, and non-tumor human astrocytes (HA) and rodent NIH3T3 fibroblast cell lines were utilized for experiments. Tumor cell lines exhibited a marked increase in sensitivity to ubidecarenone vs. non-tumor cell lines. Further, elevated mitochondrial superoxide production was noted in tumor cells vs. non-tumor cells hours before any changes in proliferation or the cell cycle could be detected. In vitro co-culture experiments show ubidecarenone differentially affecting tumor cells vs. non-tumor cells, resulting in an equilibrated culture. In vivo activity in a highly aggressive orthotopic C6 glioma model demonstrated a greater than 25% long-term survival rate. Based on these findings we conclude that high levels of ubidecarenone delivered using BPM31510 provide an effective therapeutic modality targeting cancer-specific modulation of redox mechanisms for anti-cancer effects.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA.
| | - Chirag B Patel
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taichang Jang
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Milton Merchant
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Chen Chen
- Department of Otolaryngology, Stanford University, Palo Alto, CA, 94305, USA
| | | | | | | | | | | | | | | | - Seema Nagpal
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Lawrence Recht
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA.
| |
Collapse
|
18
|
Bahrami A, Bo S, Jamialahmadi T, Sahebkar A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res Rev 2020; 58:101024. [PMID: 32006687 DOI: 10.1016/j.arr.2020.101024] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Human ageing is determined by degenerative alterations and processes with different manifestations such as gradual organ dysfunction, tissue function loss, increased population of aged (senescent) cells, incapability of maintaining homeostasis and reduced repair capacity, which collectively lead to an increased risk of diseases and death. The inhibitors of HMG-CoA reductase (statins) are the most widely used lipid-lowering agents, which can reduce cardiovascular morbidity and mortality. Accumulating evidence has documented several pleiotropic effects of statins in addition to their lipid-lowering properties. Recently, several studies have highlighted that statins may have the potential to delay the ageing process and inhibit the onset of senescence. In this review, we focused on the anti-ageing mechanisms of statin drugs and their effects on cardiovascular and non-cardiovascular diseases.
Collapse
|
19
|
Wang Y, Hekimi S. The Complexity of Making Ubiquinone. Trends Endocrinol Metab 2019; 30:929-943. [PMID: 31601461 DOI: 10.1016/j.tem.2019.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Ubiquinone (UQ, coenzyme Q) is an essential electron transfer lipid in the mitochondrial respiratory chain. It is a main source of mitochondrial reactive oxygen species (ROS) but also has antioxidant properties. This mix of characteristics is why ubiquinone supplementation is considered a potential therapy for many diseases involving mitochondrial dysfunction. Mutations in the ubiquinone biosynthetic pathway are increasingly being identified in patients. Furthermore, secondary ubiquinone deficiency is a common finding associated with mitochondrial disorders and might exacerbate these conditions. Recent developments have suggested that ubiquinone biosynthesis occurs in discrete domains of the mitochondrial inner membrane close to ER-mitochondria contact sites. This spatial requirement for ubiquinone biosynthesis could be the link between secondary ubiquinone deficiency and mitochondrial dysfunction, which commonly results in loss of mitochondrial structural integrity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
20
|
Sofyan A, Uyeno Y, Shinkai T, Hirako M, Kushibiki S, Kanamori H, Mori S, Katayose Y, Mitsumori M. Metagenomic profiles of the rumen microbiota during the transition period in low-yield and high-yield dairy cows. Anim Sci J 2019; 90:1362-1376. [PMID: 31407448 DOI: 10.1111/asj.13277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/17/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022]
Abstract
We investigated potential relationships between rumen microbiota and milk production in dairy cows during the transition period. Twelve dairy cows were divided into a low-yield (LY) or high-yield (HY) group based on their milk yield. Rumen samples were taken from dairy cows at 3 weeks before parturition, and at 4, 8, and 12 weeks after parturition. 16S rDNA-based metagenomic analysis showed that diversities of rumen microbiota in both groups were similar and the number of operational taxonomic units (OTUs) was lower in the postpartum than prepartum period in both groups. The abundance of Bacteroidetes and ratio of Bacteroidetes:Firmicutes was higher in the HY than the LY group. OTUs assigned to Prevotella bryantii, Fibrobacter succinogenes, Ruminococcus albus, Butyrivibrio fibrisolvens, and Succinivibrio sp. were abundant in the HY group. These OTUs were significantly related to the propionate molar proportion of rumen fluids in the HY group. OTUs assigned to Lachnospiraceae, Bifidobacterium sp. and Saccharofermentans were dominant in the LY group. Predictive functional profiling revealed that abundance of gene families involved in amino acid and vitamin metabolism was higher in the HY than the LY group. These results suggest that the community structure and fermentation products of rumen microbiota could be associated with milk production of dairy cows.
Collapse
Affiliation(s)
- Ahmad Sofyan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Research Unit for Natural Product Technology (BPTBA), Indonesian Institute of Sciences (LIPI), Yogyakarta, Indonesia
| | - Yutaka Uyeno
- Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Takumi Shinkai
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Makoto Hirako
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroyuki Kanamori
- Advanced Genomics Breeding Section, Institute of Crop Science, NARO, Tsukuba, Japan
| | - Satomi Mori
- Advanced Genomics Breeding Section, Institute of Crop Science, NARO, Tsukuba, Japan
| | - Yuichi Katayose
- Advanced Genomics Breeding Section, Institute of Crop Science, NARO, Tsukuba, Japan
| | - Makoto Mitsumori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
21
|
Takahashi T, Mine Y, Okamoto T. Extracellular coenzyme Q 10 (CoQ 10) is reduced to ubiquinol-10 by intact Hep G2 cells independent of intracellular CoQ 10 reduction. Arch Biochem Biophys 2019; 672:108067. [PMID: 31400302 DOI: 10.1016/j.abb.2019.108067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022]
Abstract
Coenzyme Q10 (CoQ10) is an essential factor in the mitochondrial respiratory chain and is closely associated with ATP production in humans. It is known that orally administered CoQ10 in humans is rapidly reduced, and most is detected as a reduced form, ubiquinol-10 (CoQ10H2), in serum. However, the mechanism of exogenous CoQ10 reduction in vivo is unclear. Therefore, in order to clarify how CoQ10 is reduced to CoQ10H2, we conducted a study using human liver cancer cell line Hep G2 cells, which show strong intracellular CoQ10-reducing activity. When intact cells were incubated with CoQ10, the exogenously added CoQ10 was incorporated into the cells, time-, concentration-, and temperature-dependently, and 50-80% of that was detected as CoQ10H2. On the other hand, a part of the extracellular CoQ10 was also detected as CoQ10H2, and the amount was greater than that of the intracellular CoQ10H2. Furthermore, the CoQ10-loaded cells did not leak the intracellular CoQ10H2 (or CoQ10) to the outside of the cells, and modulation of the extracellular CoQ10H2 amount had little effect on the intracellular CoQ10 or CoQ10H2 contents, suggesting the existence of an individual mechanism of CoQ10 reduction inside and outside the cells. Moreover, intact cells could reduce CoQ10 in low-density lipoprotein to CoQ10H2. Therefore, we concluded that a novel CoQ10-reducing mechanism may exist in the plasma membrane, probably the outer surface, of Hep G2 cells, and it may work to reduce extracellular CoQ10 and/or maintain extracellular CoQ10H2.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Biochemistry, Department of Health Science and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| | - Yukitoshi Mine
- Laboratory of Biochemistry, Department of Health Science and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Tadashi Okamoto
- Laboratory of Biochemistry, Department of Health Science and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| |
Collapse
|
22
|
Sánchez-Sánchez R, Vázquez P, Ferre I, Ortega-Mora LM. Treatment of Toxoplasmosis and Neosporosis in Farm Ruminants: State of Knowledge and Future Trends. Curr Top Med Chem 2019; 18:1304-1323. [PMID: 30277158 PMCID: PMC6340160 DOI: 10.2174/1568026618666181002113617] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Toxoplasmosis and neosporosis are closely related protozoan diseases that lead to important economic impacts in farm ruminants. Toxoplasma gondii infection mainly causes reproductive failure in small ruminants and is a widespread zoonosis, whereas Neospora caninum infection is one of the most important causes of abortion in cattle worldwide. Vaccination has been considered the most economic measure for controlling these diseases. However, despite vaccine development efforts, only a live-attenuated T. gondii vaccine has been licensed for veterinary use, and no promising vaccines against ne-osporosis have been developed; therefore, vaccine development remains a key goal. Additionally, drug therapy could be a valuable strategy for disease control in farm ruminants, as several drugs that limit T. gondii and N. caninum proliferation and dissemination have been evaluated. This approach may also be relevant to performing an initial drug screening for potential human therapy for zoonotic parasites. Treat-ments can be applied against infections in adult ruminants to minimize the outcomes of a primo-infection or the reactivation of a chronic infection during gestation or in newborn ruminants to avoid infection chronification. In this review, the current status of drug development against toxoplasmosis and neosporo-sis in farm ruminants is presented, and in an effort to promote additional treatment options, prospective drugs that have shown efficacy in vitro and in laboratory animal models of toxoplasmosis and neosporosis are examined
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Patricia Vázquez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
23
|
Sherman HG, Jovanovic C, Stolnik S, Baronian K, Downard AJ, Rawson FJ. New Perspectives on Iron Uptake in Eukaryotes. Front Mol Biosci 2018; 5:97. [PMID: 30510932 PMCID: PMC6254016 DOI: 10.3389/fmolb.2018.00097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic organisms require iron to function. Malfunctions within iron homeostasis have a range of physiological consequences, and can lead to the development of pathological conditions that can result in an excess of non-transferrin bound iron (NTBI). Despite extensive understanding of iron homeostasis, the links between the “macroscopic” transport of iron across biological barriers (cellular membranes) and the chemistry of redox changes that drive these processes still needs elucidating. This review draws conclusions from the current literature, and describes some of the underlying biophysical and biochemical processes that occur in iron homeostasis. By first taking a broad view of iron uptake within the gut and subsequent delivery to tissues, in addition to describing the transferrin and non-transferrin mediated components of these processes, we provide a base of knowledge from which we further explore NTBI uptake. We provide concise up-to-date information of the transplasma electron transport systems (tPMETSs) involved within NTBI uptake, and highlight how these systems are not only involved within NTBI uptake for detoxification but also may play a role within the reduction of metabolic stress through regeneration of intracellular NAD(P)H/NAD(P)+ levels. Furthermore, we illuminate the thermodynamics that governs iron transport, namely the redox potential cascade and electrochemical behavior of key components of the electron transport systems that facilitate the movement of electrons across the plasma membrane to the extracellular compartment. We also take account of kinetic changes that occur to transport iron into the cell, namely membrane dipole change and their consequent effects within membrane structure that act to facilitate transport of ions.
Collapse
Affiliation(s)
- Harry G Sherman
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | | | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alison J Downard
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
24
|
Matlock MK, Hughes TB, Dahlin JL, Swamidass SJ. Modeling Small-Molecule Reactivity Identifies Promiscuous Bioactive Compounds. J Chem Inf Model 2018; 58:1483-1500. [PMID: 29990427 DOI: 10.1021/acs.jcim.8b00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Scientists rely on high-throughput screening tools to identify promising small-molecule compounds for the development of biochemical probes and drugs. This study focuses on the identification of promiscuous bioactive compounds, which are compounds that appear active in many high-throughput screening experiments against diverse targets but are often false-positives which may not be easily developed into successful probes. These compounds can exhibit bioactivity due to nonspecific, intractable mechanisms of action and/or by interference with specific assay technology readouts. Such "frequent hitters" are now commonly identified using substructure filters, including pan assay interference compounds (PAINS). Herein, we show that mechanistic modeling of small-molecule reactivity using deep learning can improve upon PAINS filters when modeling promiscuous bioactivity in PubChem assays. Without training on high-throughput screening data, a deep learning model of small-molecule reactivity achieves a sensitivity and specificity of 18.5% and 95.5%, respectively, in identifying promiscuous bioactive compounds. This performance is similar to PAINS filters, which achieve a sensitivity of 20.3% at the same specificity. Importantly, such reactivity modeling is complementary to PAINS filters. When PAINS filters and reactivity models are combined, the resulting model outperforms either method alone, achieving a sensitivity of 24% at the same specificity. However, as a probabilistic model, the sensitivity and specificity of the deep learning model can be tuned by adjusting the threshold. Moreover, for a subset of PAINS filters, this reactivity model can help discriminate between promiscuous and nonpromiscuous bioactive compounds even among compounds matching those filters. Critically, the reactivity model provides mechanistic hypotheses for assay interference by predicting the precise atoms involved in compound reactivity. Overall, our analysis suggests that deep learning approaches to modeling promiscuous compound bioactivity may provide a complementary approach to current methods for identifying promiscuous compounds.
Collapse
Affiliation(s)
- Matthew K Matlock
- Department of Pathology and Immunology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| | - Tyler B Hughes
- Department of Pathology and Immunology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| | - Jayme L Dahlin
- Department of Pathology , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States.,Institute for Informatics , Washington University in St. Louis , Saint Louis , Missouri 63110 , United States
| |
Collapse
|
25
|
Takahashi T, Mine Y, Okamoto T. Intracellular reduction of coenzyme Q homologues with a short isoprenoid side chain induces apoptosis of HeLa cells. J Biochem 2018; 163:329-339. [PMID: 29319808 DOI: 10.1093/jb/mvy002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/21/2017] [Indexed: 11/13/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential factor of the mitochondrial respiratory chain. CoQ homologues with different lengths of the isoprenoid side chain are widely distributed in nature, but little is known about the relationship between the isoprenoid side chain length and biological function; therefore, we examined the effects of CoQ homologues on HeLa cells. When CoQ homologues with a shorter isoprenoid side chain than CoQ4 were added to HeLa cells, they induced cell death, and the order of cytotoxic intensity was as follows: CoQ0 ≫ CoQ3 ≈ CoQ1 > CoQ2 ≫ CoQ4. Furthermore, we found that CoQ1, CoQ2 and CoQ3 could induce caspase-mediated apoptosis, and the order of intensity was as follows: CoQ3 > CoQ2 ≥ CoQ1. We could not identify the participation of reactive oxygen species in the apoptosis induction, but observed that an NAD(P)H dehydrogenase (quinone) 1 (NQO1) inhibitor, dicumarol, could inhibit not only the intracellular reduction of the homologues but also apoptosis. However, because dicumarol did not affect well-known apoptosis inducers, such as anti-Fas IgG, tumor necrosis factor (TNF)-α, TNF-related apoptosis-inducing ligand, UV-B and H2O2 of HeLa cells at all, we concluded that NQO1-related intracellular reduction of CoQ, or its reduced product, ubiquinol, may participate in the apoptosis induction of HeLa cells.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Biochemistry, Department of Health Science and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Yukitoshi Mine
- Laboratory of Biochemistry, Department of Health Science and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Tadashi Okamoto
- Laboratory of Biochemistry, Department of Health Science and Social Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| |
Collapse
|
26
|
Balercia G, Mancini A, Tirabassi G, Pontecorvi A. Coenzyme Q10 in Male Infertility. ANTIOXIDANTS IN ANDROLOGY 2017. [DOI: 10.1007/978-3-319-41749-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Abstract
ME-143 (NV-143), a synthetic isoflavone under clinical evaluation for efficacy in the management of ovarian and other forms of human cancer, blocked the activity of a cancer-specific and growth-related cell surface ECTO-NOX protein with both oxidative (hydroquinone) and protein disulfide-thiol interchange activity designated ENOX2 (tNOX) and inhibited the growth of cultured cancer cells with EC50s in the range of 20–50 nM. Purified recombinant ENOX2 also bound ME-143 with a Kd of 43 (40–50) nM. Both the oxidative and protein disulfide-thiol interchange activities of ENOX proteins that alternate to generate a complex set of oscillations with a period length of 22 min compared to 24 min for the constitutive counterpart ENOX1 (CNOX) that characterizes ENOX proteins responded to ME-143. Oxidation of NADH or reduced coenzyme Q10 was rapidly blocked. In contrast, the protein disulfide-thiol interchange activity measured from the cleavage of dithiodipyridine (EC50 of ca. 50 nM) was inhibited progressively over an interval of 60 min that spanned three cycles of activity. Inhibition of the latter paralleled the inhibition of cell enlargement and the consequent inability of inhibited cells to initiate traverse of the cell cycle. Activities of constitutive ENOX1 (CNOX) forms of either cancer or noncancer cells were unaffected by ME-143 over the range of concentrations inhibiting ENOX2. Taken together, the findings show that ME-143 binds to ENOX2 with an affinity 4 to 10 times greater than that reported previously for the related anticancer isoflavone, phenoxodiol.
Collapse
|
28
|
Itkonen O, Turpeinen U. Mitochondrial coenzyme Q10 determination via isotope dilution liquid chromatography tandem mass spectrometry. Methods Mol Biol 2015; 1264:271-8. [PMID: 25631021 DOI: 10.1007/978-1-4939-2257-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Coenzyme Q10 (CoQ10) is an essential part of the mitochondrial respiratory chain. Here, we describe an accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of mitochondrial CoQ10 in isolated mitochondria. In the assay, mitochondrial suspensions are spiked with CoQ10-[(2)H6] internal standard, extracted with organic solvents, and CoQ10 quantified by LC-MS/MS using multiple reaction monitoring (MRM).
Collapse
Affiliation(s)
- Outi Itkonen
- Laboratory Division HUSLAB, Helsinki University Central Hospital, Haartmaninkatu 2, Helsinki, 00029, Finland,
| | | |
Collapse
|
29
|
Crane FL, Löw H, Sun I, Navas P, Gvozdjáková A. Plasma membrane coenzyme Q: evidence for a role in autism. Biologics 2014; 8:199-205. [PMID: 24920882 PMCID: PMC4043426 DOI: 10.2147/btt.s53375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background The Voltage Dependent Anion Channel (VDAC) is involved in control of autism. Treatments, including coenzyme Q, have had some success on autism control. Data sources Correlation of porin redox activity and expression of autism is based on extensive literature, especially studies of antibodies, identification of cytosolic nicotinamide adenine dinucleotide reduced (NADH) dehydrogenase activity in the VDAC, and evidence for extreme sensitivity of the dehydrogenase to a mercurial. Evidence for a coenzyme Q requirement came from extraction and analog inhibition of NADH ferricyanide reductase in the erythrocyte plasma membrane, done in 1994, and reinterpreted when it was identified in VDAC in 2004. The effects of ubiquinol (the QH2 – reduced form of coenzyme Q) in children with autism were studied. Results A new role for coenzyme Q in the porin channels has implications on autism. Ubiquinol, the more active form of coenzyme Q, produces favorable response in children with autism. Agents which affected electron transport in porin show parallel effects in autism. Conclusion We propose a hypothesis that autism is controlled by a coenzyme Q-dependent redox system in the porin channels; this conclusion is based on the effects of agents that positively or negatively affect electron transport and the symptoms of autism. The full understanding of the mechanism of their control needs to be established.
Collapse
Affiliation(s)
- Frederick L Crane
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Hans Löw
- Department of Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Iris Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Sevilla, Spain
| | - Anna Gvozdjáková
- Pharmacobiochemical Laboratory of Third Medical Department, Medical Faculty, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
30
|
Abstract
Any bilayer lipid membrane can support a membrane voltage. The combination of optical perturbation and optical readout of membrane voltage opens the door to studies of electrophysiology in a huge variety of systems previously inaccessible to electrode-based measurements. Yet, the application of optogenetic electrophysiology requires careful reconsideration of the fundamentals of bioelectricity. Rules of thumb appropriate for neuroscience and cardiology may not apply in systems with dramatically different sizes, lipid compositions, charge carriers, or protein machinery. Optogenetic tools are not electrodes; thus, optical and electrode-based measurements have different quirks. Here we review the fundamental aspects of bioelectricity with the aim of laying a conceptual framework for all-optical electrophysiology.
Collapse
Affiliation(s)
- Adam E Cohen
- Department of Chemistry and Chemical Biology and
| | | |
Collapse
|
31
|
Wang Y, Hekimi S. Mitochondrial respiration without ubiquinone biosynthesis. Hum Mol Genet 2013; 22:4768-83. [PMID: 23847050 DOI: 10.1093/hmg/ddt330] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic effects of UQ deficiency and to assess potential therapeutic agents for the treatment of UQ deficiencies. We found that Mclk1 knockout cells are viable in the total absence of UQ. The UQ biosynthetic precursor DMQ9 accumulates in these cells and can sustain mitochondrial respiration, albeit inefficiently. We demonstrated that efficient rescue of the respiratory deficiency in UQ-deficient cells by UQ analogues is side chain length dependent, and that classical UQ analogues with alkyl side chains such as idebenone and decylUQ are inefficient in comparison with analogues with isoprenoid side chains. Furthermore, Vitamin K2, which has an isoprenoid side chain, and has been proposed to be a mitochondrial electron carrier, had no efficacy on UQ-deficient mouse cells. In our model with liver-specific loss of Mclk1, a large depletion of UQ in hepatocytes caused only a mild impairment of respiratory chain function and no gross abnormalities. In conjunction with previous findings, this surprisingly small effect of UQ depletion indicates a nonlinear dependence of mitochondrial respiratory capacity on UQ content. With this model, we also showed that diet-derived UQ10 is able to functionally rescue the electron transport deficit due to severe endogenous UQ deficiency in the liver, an organ capable of absorbing exogenous UQ.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montréal, Quebec, Canada H3A 1B1
| | | |
Collapse
|
32
|
Itkonen O, Suomalainen A, Turpeinen U. Mitochondrial coenzyme Q10 determination by isotope-dilution liquid chromatography-tandem mass spectrometry. Clin Chem 2013; 59:1260-7. [PMID: 23640978 DOI: 10.1373/clinchem.2012.200196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) is an essential part of the mitochondrial respiratory chain. Unlike most other respiratory chain disorders, CoQ10 deficiency is potentially treatable. We aimed to develop and validate an accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of mitochondrial CoQ10 in clinical samples. METHODS We used mitochondria isolated from muscle biopsies of patients (n = 166) suspected to have oxidative phosphorylation deficiency. We also used fibroblast mitochondria from 1 patient with CoQ10 deficiency and 3 healthy individuals. Samples were spiked with nonphysiologic CoQ10-[(2)H6] internal standard, extracted with 1-propanol and with ethanol and hexane (2 mL/5 mL), and CoQ10 quantified by LC-MS/MS. The method and sample stability were validated. A reference interval was established from the patient data. RESULTS The method had a limit of quantification of 0.5 nmol/L. The assay range was 0.5-1000 nmol/L and the CVs were 7.5%-8.2%. CoQ10 was stable in concentrated mitochondrial suspensions. In isolated mitochondria, the mean ratio of CoQ10 to citrate synthase (CS) activity (CoQ10/CS) was 1.7 nmol/U (95% CI, 1.6-1.7 nmol/U). We suggest a CoQ10/CS reference interval of 1.1-2.8 nmol/U for both sexes and all ages. The CoQ10/CS ratio was 5-fold decreased in fibroblast mitochondria from a patient with known CoQ10 deficiency due to recessive prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) mutations. CONCLUSIONS Normalization of mitochondrial CoQ10 concentration against citrate synthase activity is likely to reflect most accurately the CoQ10 content available for the respiratory chain. Our assay and the established reference range should facilitate the diagnosis of respiratory chain disorders and treatment of patients with CoQ10 deficiency.
Collapse
Affiliation(s)
- Outi Itkonen
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | |
Collapse
|
33
|
Prophylactic and Antinociceptive Effects of Coenzyme Q10 on Diabetic Neuropathic Pain in a Mouse Model of Type 1 Diabetes. Anesthesiology 2013; 118:945-54. [DOI: 10.1097/aln.0b013e3182829b7b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Background:
Oxidative stress is a key factor implicated in the development of diabetic neuropathy. This study evaluates the prophylactic and antinociceptive effects of the antioxidant coenzyme Q10 (CoQ10) on diabetes-induced neuropathic pain in a diabetic mouse model.
Methods:
Total 56 mice with type 1 diabetes induced by streptozotocin were used, 20 normal mice were used as control. Mechanical and thermal nociceptive behavioral assays were applied to evaluate diabetic neuropathic pain. Tissue lipid peroxidation, immunohistochemistry, reverse transcription, and polymerase chain reaction were used to evaluate the molecular mechanisms of CoQ10. Data are presented as mean ± SEM.
Results:
CoQ10 administration was associated with reduced loss of body weight compared with nontreated diabetic mice, without affecting blood glucose levels. Low dose and long-term administration of CoQ10 prevented the development of neuropathic pain. Treatment with CoQ10 produced a significant dose-dependent inhibition of mechanical allodynia and thermal hyperalgesia in diabetic mice. Dorsal root ganglia, sciatic nerve, and spinal cord tissues from diabetic mice demonstrated increased lipid peroxidation that was reduced by CoQ10 treatment. CoQ10 administration was also noted to reduce the proinflammatory factors in the peripheral and central nervous system.
Conclusions:
The results of this study support the hypothesis that hyperglycemia induced neuronal oxidative damage and reactive inflammation may be pathogenic in diabetic neuropathic pain. CoQ10 may be protective by inhibiting oxidative stress and reducing inflammation by down-regulating proinflammatory factors. These results suggest that CoQ10 administration may represent a low-risk, high-reward strategy for preventing or treating diabetic neuropathy.
Collapse
|
34
|
Indo HP, Nakanishi I, Ohkubo K, Yen HC, Nyui M, Manda S, Matsumoto KI, Fukuhara K, Anzai K, Ikota N, Matsui H, Minamiyama Y, Nakajima A, Ichikawa H, Fukuzumi S, Ozawa T, Mukai C, Majima HJ. Comparison of in vivo and in vitro antioxidative parameters for eleven food factors. RSC Adv 2013. [DOI: 10.1039/c3ra22686g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Löw H, Crane FL, Morré DJ. Putting together a plasma membrane NADH oxidase: A tale of three laboratories. Int J Biochem Cell Biol 2012; 44:1834-8. [DOI: 10.1016/j.biocel.2012.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
|
36
|
Frassetto L, Sebastian A. How metabolic acidosis and oxidative stress alone and interacting may increase the risk of fracture in diabetic subjects. Med Hypotheses 2012; 79:189-92. [DOI: 10.1016/j.mehy.2012.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/20/2012] [Indexed: 01/11/2023]
|
37
|
Persson MF, Franzén S, Catrina SB, Dallner G, Hansell P, Brismar K, Palm F. Coenzyme Q10 prevents GDP-sensitive mitochondrial uncoupling, glomerular hyperfiltration and proteinuria in kidneys from db/db mice as a model of type 2 diabetes. Diabetologia 2012; 55:1535-43. [PMID: 22311417 DOI: 10.1007/s00125-012-2469-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/29/2011] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS Increased oxygen consumption results in kidney tissue hypoxia, which is proposed to contribute to the development of diabetic nephropathy. Oxidative stress causes increased oxygen consumption in type 1 diabetic kidneys, partly mediated by uncoupling protein-2 (UCP-2)-induced mitochondrial uncoupling. The present study investigates the role of UCP-2 and oxidative stress in mitochondrial oxygen consumption and kidney function in db/db mice as a model of type 2 diabetes. METHODS Mitochondrial oxygen consumption, glomerular filtration rate and proteinuria were investigated in db/db mice and corresponding controls with and without coenzyme Q10 (CoQ10) treatment. RESULTS Untreated db/db mice displayed mitochondrial uncoupling, manifested as glutamate-stimulated oxygen consumption (2.7 ± 0.1 vs 0.2 ± 0.1 pmol O(2) s(-1) [mg protein](-1)), glomerular hyperfiltration (502 ± 26 vs 385 ± 3 μl/min), increased proteinuria (21 ± 2 vs 14 ± 1, μg/24 h), mitochondrial fragmentation (fragmentation score 2.4 ± 0.3 vs 0.7 ± 0.1) and size (1.6 ± 0.1 vs 1 ± 0.0 μm) compared with untreated controls. All alterations were prevented or reduced by CoQ10 treatment. Mitochondrial uncoupling was partly inhibited by the UCP inhibitor GDP (-1.1 ± 0.1 pmol O(2) s(-1) [mg protein](-1)). UCP-2 protein levels were similar in untreated control and db/db mice (67 ± 9 vs 67 ± 4 optical density; OD) but were reduced in CoQ10 treated groups (43 ± 2 and 38 ± 7 OD). CONCLUSIONS/INTERPRETATION db/db mice displayed oxidative stress-mediated activation of UCP-2, which resulted in mitochondrial uncoupling and increased oxygen consumption. CoQ10 prevented altered mitochondrial function and morphology, glomerular hyperfiltration and proteinuria in db/db mice, highlighting the role of mitochondria in the pathogenesis of diabetic nephropathy and the benefits of preventing increased oxidative stress.
Collapse
Affiliation(s)
- M Friederich Persson
- Department of Medical Cell Biology, Biomedical Center, Husargatan 3, Box 571, 751 23 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
38
|
Antioxidant activity and antiproliferative action of methanol extracts of 4 different colored bell peppers (Capsicum annuum l.). Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0069-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
39
|
Rodriguez JB, Szajnman SH. New antibacterials for the treatment of toxoplasmosis; a patent review. Expert Opin Ther Pat 2012; 22:311-33. [PMID: 22404108 DOI: 10.1517/13543776.2012.668886] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Toxoplasma gondii is an opportunistic protozoan parasite responsible for toxoplasmosis. T. gondii is able to infect a wide range of hosts, particularly humans and warm-blooded animals. Toxoplasmosis can be considered as one of the most prevalent parasitic diseases affecting close to one billion people worldwide, but its current chemotherapy is still deficient and is only effective in the acute phase of the disease. AREAS COVERED This review covers different approaches to toxoplasmosis chemotherapy focused on the metabolic differences between the host and the parasite. Selective action on different targets such as the isoprenoid pathway, dihydrofolate reductase, T. gondii adenosine kinase, different antibacterials, T. gondii histone deacetylase and calcium-dependent protein kinases is discussed. EXPERT OPINION A new and safe chemotherapy is needed, as T. gondii causes serious morbidity and mortality in pregnant women and immunodeficient patients undergoing chemotherapy. A particular drawback of the available treatments is the lack of efficacy against the tissue cyst of the parasite. During this review a broad scope of several attractive targets for drug design have been presented. In this context, the isoprenoid pathway, dihydrofolate reductase, T. gondii histone deacetylase are promising molecular targets.
Collapse
Affiliation(s)
- Juan Bautista Rodriguez
- Universidad de Buenos Aires, Química Orgánica & UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Pab 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina.
| | | |
Collapse
|
40
|
Crane FL, Löw H. The oxidative function of diferric transferrin. Biochem Res Int 2012; 2012:592806. [PMID: 22400117 PMCID: PMC3286898 DOI: 10.1155/2012/592806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/09/2011] [Indexed: 12/31/2022] Open
Abstract
There is evidence for an unexpected role of diferric transferrin as a terminal oxidase for the transplasma membrane oxidation of cytosolic NADH. In the original studies which showed the reduction of iron in transferrin by the plasma membranes NADH oxidase, the possible role of the reduction on iron uptake was emphasized. The rapid reoxidation of transferrin iron under aerobic conditions precludes a role for surface reduction at neutral pH for release of iron for uptake at the plasma membrane. The stimulation of cytosolic NADH oxidation by diferric transferrin indicates that the transferrin can act as a terminal oxidase for the transplasma membrane NADH oxidase or can bind to a site which activates the oxidase. Since plasma membrane NADH oxidases clearly play a role in cell signaling, the relation of ferric transferrin stimulation of NADH oxidase to cell control should be considered, especially in relation to the growth promotion by transferrin not related to iron uptake. The oxidase can also contribute to control of cytosolic NAD concentration, and thereby can activate sirtuins for control of ageing and growth.
Collapse
Affiliation(s)
- Frederick L. Crane
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA
| | - Hans Löw
- Department of Molecular Medicine and Surgery, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
41
|
Abstract
The key role of coenzyme Q (ubiquinone or Q) is in mitochondrial and prokaryotic energetics. Less well investigated is the basis for its presence in eukaryotic membrane locations other than mitochondria and in plasma where both antioxidant and potentially more targeted roles are indicated. Included in the latter is that of a lipid-soluble electron transfer intermediate that serves as the transmembrane component of plasma membrane and Golgi apparatus electron transport, which regulates cytosolic NAD(+) /NADH ratios and is involved in vectorial membrane displacements and in the regulation of cell growth. Important protective effects on circulating lipoproteins and in the prevention of coronary artery disease ensue not only from the antioxidant role of CoQ(10) but also from its ability to directly block protein oxidation and superoxide generation of the TM-9 family of membrane proteins known as age-related NADH oxidase or arNOX (ENOX3) and their shed forms that appear after age 30 and some of which associate specifically with low-density lipoprotein particles to catalyze protein oxidation and crosslinking.
Collapse
Affiliation(s)
- D James Morré
- NOX Technologies, Purdue Research Park, West Lafayette, IN, USA.
| | | |
Collapse
|
42
|
Involvement of thermoplasmaquinone-7 in transplasma membrane electron transport of Entamoeba histolytica trophozoites: a key molecule for future rational chemotherapeutic drug designing. J Bioenerg Biomembr 2011; 43:203-15. [PMID: 21523408 DOI: 10.1007/s10863-011-9347-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/25/2011] [Indexed: 11/27/2022]
Abstract
The quinone composition of the transplasma membrane electron transport chain of parasitic protozoa Entamoeba histolytica was investigated. Purification of quinone from the plasma membrane of E. histolytica and its subsequent structural elucidation revealed the structure of the quinone as a methylmenaquinone-7 (thermoplasmaquinone-7), a napthoquinone. Membrane bound thermoplasmaquinone-7 can be destroyed by UV irradiation with a concomitant loss of plasma membrane electron transport activity. The abilities of different quinones to restore transplasma membrane electron transport activity in UV irradiated trophozoites were compared. The lost activity was recovered completely by the addition of thermoplasmaquinone-7, but ubiquinones are unable to restore the same. These findings clearly indicate that thermoplasmaquinone-7 acts as a lipid shuttle in the plasma membrane of the parasite to mediate electron transfer between cytosolic reductant and non permeable electron acceptors. This thermoplasmaquinone-7 differs from that of the mammalian host and can provide a novel target for future rational chemotherapeutic drug designing.
Collapse
|
43
|
Konno Y, Aoki M, Takagishi M, Sakai N, Koike M, Wakamatsu K, Hosoi S. Enhancement of antibody production by the addition of Coenzyme-Q(10). Cytotechnology 2011; 63:163-70. [PMID: 21197574 PMCID: PMC3080474 DOI: 10.1007/s10616-010-9330-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/17/2010] [Indexed: 11/30/2022] Open
Abstract
Recently, there has been a growing demand for therapeutic monoclonal antibodies (MAbs) on the global market. Because therapeutic MAbs are more expensive than low-molecular-weight drugs, there have been strong demands to lower their production costs. Therefore, efficient methods to minimize the cost of goods are currently active areas of research. We have screened several enhancers of specific MAb production rate (SPR) using a YB2/0 cell line and found that coenzyme-Q(10) (CoQ(10)) is a promising enhancer candidate. CoQ(10) is well known as a strong antioxidant in the respiratory chain and is used for healthcare and other applications. Because CoQ(10) is negligibly water soluble, most studies are limited by low concentrations. We added CoQ(10) to a culture medium as dispersed nanoparticles at several concentrations (Q-Media) and conducted a fed-batch culture. Although the Q-Media had no effect on cumulative viable cell density, it enhanced SPR by 29%. In addition, the Q-Media had no effect on the binding or cytotoxic activity of MAbs. Q-Media also enhanced SPR with CHO and NS0 cell lines by 30%. These observations suggest that CoQ(10) serves as a powerful aid in the production of MAbs by enhancing SPR without changing the characteristics of cell growth, or adversely affecting the quality or biological activity of MAbs.
Collapse
Affiliation(s)
- Yoshinobu Konno
- Bioprocess Research and Development Laboratories, Kyowa Hakko Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki-shi, Gunma, 370-0013, Japan,
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Coenzyme Q(10) (CoQ(10)) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ(10) is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ(10) supplementation. CoQ(10) deficiency has been associated with five major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) cerebellar ataxia, (4) isolated myopathy, and (5) nephrotic syndrome. In a few patients, pathogenic mutations have been identified in genes involved in the biosynthesis of CoQ(10) (primary CoQ(10) deficiencies) or in genes not directly related to CoQ(10) biosynthesis (secondary CoQ(10) deficiencies). Respiratory chain defects, ROS production, and apoptosis contribute to the pathogenesis of primary CoQ(10) deficiencies. In vitro and in vivo studies are necessary to further understand the pathogenesis of the disease and to develop more effective therapies.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Nierobisz LS, Hentz NG, Felts JV, Mozdziak PE. Fiber phenotype and coenzyme Q₁₀ content in Turkey skeletal muscles. Cells Tissues Organs 2010; 192:382-94. [PMID: 20664252 DOI: 10.1159/000319550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2010] [Indexed: 11/19/2022] Open
Abstract
Phenotypical differences between muscle fibers are associated with a source of cellular energy. Coenzyme Q(10) (CoQ(10)) is a major component of the mitochondrial oxidative phosphorylation process, and it significantly contributes to the production of cellular energy in the form of ATP. The objective of this study was to determine the relationship between whole-tissue CoQ(10) content, mitochondrial CoQ(10) content, mitochondrial protein, and muscle phenotype in turkeys. Four specialized muscles (anterior latissimus dorsi, ALD; posterior latissimus dorsi, PLD; pectoralis major, PM, and biceps femoris, BF) were evaluated in 9- and 20-week-old turkey toms. The amount of muscle mitochondrial protein was determined using the Bradford assay and CoQ(10) content was measured using HPLC-UV. The amount of mitochondrial protein relative to total protein was significantly lower (p < 0.05) at 9 compared to 20 weeks of age. All ALD fibers stained positive for anti-slow (S35) MyHC antibody. The PLD and PM muscle fibers revealed no staining for slow myosin heavy chain (S35 MyHC), whereas half of BF muscle fibers exhibited staining for S35 MyHC at 9 weeks and 70% at 20 weeks of age. The succinate dehydrogenase (SDH) staining data revealed that SDH significantly increases (p < 0.05) in ALD and BF muscles and significantly decreases (p < 0.05) in PLD and PM muscles with age. The study reveals age-related decreases in mitochondrial CoQ(10) content in muscles with fast/glycolytic profile, and demonstrates that muscles with a slow/oxidative phenotypic profile contain a higher proportion of CoQ(10) than muscles with a fast/glycolytic phenotypic profile.
Collapse
Affiliation(s)
- L S Nierobisz
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
46
|
Forsman U, Sjöberg M, Turunen M, Sindelar PJ. 4-Nitrobenzoate inhibits coenzyme Q biosynthesis in mammalian cell cultures. Nat Chem Biol 2010; 6:515-7. [PMID: 20526342 DOI: 10.1038/nchembio.372] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/15/2010] [Indexed: 12/12/2022]
Abstract
Coenzyme Q (Q) is an electron transporter in the respiratory chain and a lipid-soluble antioxidant that decreases in humans with age. Here we show that 4-nitrobenzoate inhibited 4-hydroxybenzoate:polyprenyl transferase (Coq2) in a competitive manner and dose-dependently decreased Q in mammalian cells without accumulation of Q intermediates. As 4-nitrobenzoate neither interfered with mitochondrial respiration nor induced oxidative stress, it should prove a valuable tool for studies on both Q deficiency and Q supplementation.
Collapse
Affiliation(s)
- Ulrika Forsman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
47
|
Crane FL. Discovery of plastoquinones: a personal perspective. PHOTOSYNTHESIS RESEARCH 2010; 103:195-209. [PMID: 20217233 DOI: 10.1007/s11120-010-9537-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 02/10/2010] [Indexed: 05/24/2023]
Abstract
The discovery and the rediscovery of plastoquinone (PQ) are described together with the definition of its structure as a 2,3-dimethyl 5 solanosyl benzoquinone. The discovery, by M. Kofler, was a result of a search for Vitamin K. Its rediscovery was made by me, when I was at The Enzyme Institute of the University of Wisconsin, analyzing animals and plants for the newly discovered coenzyme Q. In green plants, I found another lipophilic quinone in addition to coenzyme Q. Some misleading evidence suggested as if the new quinone had coenzyme Q activity in mitochondria, but improved methods gave negative results. When I found that the quinone was concentrated in chloroplasts, I considered a role for it in photosynthesis analogous to the role of coenzyme Q in mitochondria. After moving to the Chemistry Department, University of Texas at Austin, I used a plain light bulb and some spinach chloroplasts to show that PQ could be involved in photosynthetic redox reactions. This effect was supported by Norman Bishop's restoration of chloroplast electron transport after solvent extraction, with PQ and photoreduction studies by E. R. Redfern and J. Friend in R. A. Morton's laboratory in Liverpool, UK. We also found an additional analog of PQ in addition to a second analog found in Wisconsin. We called the new analogs PQB and PQC. Although we found some restoration effects with PQC, the discovery by W. T. Griffiths in Morton's laboratory, that PQB and PQC consisted of six forms of PQ each, made it more likely that the new analogs were breakdown products. Morton's group established the structure of the PQCs as a series of PQs, with a hydroxyl group on the prenyl side chain, and the PQB series as having fatty acids esterified to the hydroxyl groups of PQC. Possible functions of the analogs are also discussed in this article.
Collapse
Affiliation(s)
- Frederick L Crane
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
48
|
Choi CH, Kim SH, Shanmugam S, Baskaran R, Park JS, Yong CS, Choi HG, Yoo BK, Han K. Relative Bioavailability of Coenzyme Q10 in Emulsion and Liposome Formulations. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.1.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
|
50
|
Rao RP, Nalini K, Prakasa Rao J. Plasma membrane electron transport in frog blood vessels. J Biosci 2009; 34:849-52. [DOI: 10.1007/s12038-009-0099-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|