1
|
Rodnin MV, Ladokhin AS. Membrane translocation assay based on proteolytic cleavage: application to diphtheria toxin T domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:35-40. [PMID: 25291602 DOI: 10.1016/j.bbamem.2014.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/04/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
The function of diphtheria toxin translocation (T) domain is to transfer the catalytic domain across the endosomal membrane upon acidification. The goal of this study was to develop and apply an in vitro functional assay for T domain activity, suitable for investigation of structure-function relationships of translocation across lipid bilayers of various compositions. Traditionally, T domain activity in vitro is estimated by measuring either conductance in planar lipid bilayers or the release of fluorescent markers from lipid vesicles. While an in vivo cell death assay is the most relevant to physiological function, it cannot be applied to studying the effects of pH or membrane lipid composition on translocation. Here we suggest an assay based on cleavage of the N-terminal part of T domain upon translocation into protease-loaded vesicles. A series of control experiment was used to confirm that cleavage occurs inside the vesicle and not as the result of vesicle disruption. Translocation of the N-terminus of the T domain is shown to require the presence of a critical fraction of anionic lipids, which is consistent with our previous biophysical measurements of insertion. Application of the proposed assay to a series of T domain mutants correlated well with the results of cytotoxicity assay.
Collapse
Affiliation(s)
- Mykola V Rodnin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
2
|
Abstract
The topology of integral membrane proteins with a weak topological tendency can be influenced when fused to tags, such as these used for topological determination or protein purification. Here, we describe a technique for topology determination of an untagged membrane protein. This technique, optimized for bacterial cells, allows the visualization of the protein in the native environment and incorporates the substituted-cysteine accessibility method.
Collapse
|
3
|
Jiang X, Nie Y, Kaback HR. Site-directed alkylation studies with LacY provide evidence for the alternating access model of transport. Biochemistry 2011; 50:1634-40. [PMID: 21254783 DOI: 10.1021/bi101988s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In total, 59 single Cys-replacement mutants in helix VII and helix X of the lactose permease of Escherichia coli were subjected to site-directed fluorescence labeling in right-side-out membrane vesicles to complete the testing of Cys accessibility or reactivity. For both helices, accessibility/reactivity is relatively low at the level of the sugar-binding site where the helices are tightly packed. However, labeling of Cys substitutions in helix VII with tetramethylrhodamine-5-maleimide decreases from the middle toward the cytoplasmic end and increases toward the periplasmic end. Helix X is labeled mainly on the side facing the central hydrophilic cavity with relatively small or no changes in the presence of ligand. In contrast, sugar binding causes a significant increase in accessibility/reactivity at the periplasmic end of helix VII. When considered with similar findings from N-ethylmaleimide alkylation studies, the results confirm and extend support for the alternating access model.
Collapse
Affiliation(s)
- Xiaoxu Jiang
- Department of Physiology, University of California, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
4
|
Liu Z, Madej MG, Kaback HR. Helix dynamics in LacY: helices II and IV. J Mol Biol 2010; 396:617-26. [PMID: 20043916 DOI: 10.1016/j.jmb.2009.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/18/2009] [Accepted: 12/20/2009] [Indexed: 11/25/2022]
Abstract
Biochemical and biophysical studies based upon crystal structures of both a mutant and wild-type lactose permease from Escherichia coli (LacY) in an inward-facing conformation have led to a model for the symport mechanism in which both sugar and H+ binding sites are alternatively accessible to both sides of the membrane. Previous findings indicate that the face of helix II with Asp68 is important for the conformational changes that occur during turnover. As shown here, replacement of Asp68 at the cytoplasmic end of helix II, particularly with Glu, abolishes active transport but the mutants retain the ability to bind galactopyranoside. In the x-ray structure, Asp68 and Lys131 (helix IV) lie within approximately 4.2 A of each other. Although a double mutant with Cys replacements at both position 68 and position 131 cross-links efficiently, single replacements for Lys131 exhibit very significant transport activity. Site-directed alkylation studies show that sugar binding by the Asp68 mutants causes closure of the cytoplasmic cavity, similar to wild-type LacY; however, strikingly, the probability of opening the periplasmic pathway upon sugar binding is markedly reduced. Taken together with results from previous mutagenesis and cross-linking studies, these findings lead to a model in which replacement of Asp68 blocks a conformational transition involving helices II and IV that is important for opening the periplasmic cavity. Evidence suggesting that movements of helices II and IV are coupled functionally with movements in the pseudo-symmetrically paired helices VIII and X is also presented.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
5
|
Engel CK, Chen L, Privé GG. Insertion of carrier proteins into hydrophilic loops of the Escherichia coli lactose permease. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:38-46. [PMID: 12100994 DOI: 10.1016/s0005-2736(02)00398-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the design and characterization of a set of fusion proteins of the Escherichia coli lactose (lac) permease in which a set of five different soluble "carrier" proteins (cytochrome(b562), flavodoxin, T4 lysozyme, beta-lactamase and 70 kDa heat shock ATPase domain) were systematically inserted into selected loop positions of the transporter. The design goal was to increase the exposed hydrophilic surface area of the permease, while minimizing the internal flexibility of the resulting fusion proteins in order to improve the crystallization properties of the membrane protein. Fusion proteins with insertions into the central hydrophilic loop of the lac permease were active in transport lactose, although only the fusion proteins with E. coli cytochrome(b562), E. coli flavodoxin or T4 lysozyme were expressed at near wild-type lac permease levels. Eight other loop positions were tested with these three carriers, leading to the identification of additional fusion proteins that were active and well-expressed. By combining the results from the single carrier insertions, we have expressed functional "double fusion" proteins containing cytochrome(b562) domains inserted in two different loop positions.
Collapse
Affiliation(s)
- Christian K Engel
- Division of Molecular and Structural Biology, Ontario Cancer Institute, Toronto, Canada
| | | | | |
Collapse
|
6
|
Nachliel E, Gutman M. Probing of the substrate binding domain of lactose permease by a proton pulse. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:33-50. [PMID: 11513803 DOI: 10.1016/s0005-2736(01)00361-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The lactose permease of Escherichia coli coupled proton transfer across the bacterial inner membrane with the uptake of beta-galactosides. In the present study we have used the cysteine-less C148 mutant that was selectively labeled by fluorescein maleimide on the C148 residue, which is an active component of the substrate transporting cavity. Measurements of the protonation dynamics of the bound pH indicator in the time resolved domain allowed us to probe the binding site by a free diffusing proton. The measured signal was reconstructed by numeric integration of differential rate equations that comply with the detailed balance principle and account for all proton transfer reactions taking place in the reaction mixture. This analysis yields the rate constants and pK values of all residues participating in the fast proton transfer reaction between the bulk and the protein's surface, revealing the exposed residues that react with free protons in a diffusion controlled reaction and how they transfer protons among themselves. The magnitudes of these rate constants were finally evaluated by comparison with the rate predicted by the Debye-Smoluchowski equation. The analysis of the kinetic and pK values indicated that the protein-fluorescein adduct assumes two conformation states. One is dominant above pH 7.4, while the other exists only below 7.1. In the high pH range, the enzyme assumes a constrained configuration and the rate constant of the reaction of a free diffusing proton with the bound dye is 10 times slower than a diffusion controlled reaction. In this state, the carboxylate moiety of residue E126 is in close proximity to the dye and exchanges a proton with it at a very fast rate. Below pH 7.1, the substrate binding domain is in a relaxed configuration and freely accessed by bulk protons, and the rate of proton exchange between the dye and E126 is 100,000 times slower. The relevance of these observations to the catalytic cycle is discussed.
Collapse
Affiliation(s)
- E Nachliel
- Laser Laboratory for Fast Reaction in Biology, Department of Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
7
|
Kaback HR, Sahin-Tóth M, Weinglass AB. The kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2001; 2:610-20. [PMID: 11483994 DOI: 10.1038/35085077] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Membrane transport proteins catalyse the movement of molecules into and out of cells and organelles, but their hydrophobic and metastable nature often makes them difficult to study by traditional means. Novel approaches that have been developed and applied to one membrane transport protein, the lactose permease from Escherichia coli, are now being used to study various other membrane proteins.
Collapse
Affiliation(s)
- H R Kaback
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles, California 90095-1662, USA.
| | | | | |
Collapse
|
8
|
Weinglass AB, Kaback HR. The central cytoplasmic loop of the major facilitator superfamily of transport proteins governs efficient membrane insertion. Proc Natl Acad Sci U S A 2000; 97:8938-43. [PMID: 10880570 PMCID: PMC16800 DOI: 10.1073/pnas.140224497] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deletion of 5 residues (Delta5) from the central cytoplasmic loop of the lactose permease of Escherichia coli has no significant effect on expression or activity, whereas Delta12 leads to increased rates of permease turnover after membrane insertion and decreased transport activity, and Delta20 abolishes insertion and activity. By expressing Delta12 or Delta20 in two halves, both expression and activity are restored to levels approximating wild type. Replacing deleted residues with random hydrophilic amino acids also leads to full recovery. However, introduction of hydrophobic residues decreases expression and activity in a context-dependent manner. Thus, a minimum length of the central cytoplasmic loop is vital for proper insertion, stability, and efficient transport activity, because of constraints at the cytoplasmic ends of helices VI and VII. Furthermore, the results are consistent with the idea that the middle cytoplasmic loop provides a temporal delay between insertion of the first six helices into the membrane before insertion of the second six helices.
Collapse
Affiliation(s)
- A B Weinglass
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA
| | | |
Collapse
|
9
|
van Geest M, Lolkema JS. Membrane topology of the Na(+)/citrate transporter CitS of Klebsiella pneumoniae by insertion mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:328-38. [PMID: 10825453 DOI: 10.1016/s0005-2736(00)00185-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The sodium ion dependent citrate transporter of Klebsiella pneumoniae (CitS) is a member of the bacterial 2-hydroxycarboxylate transporter family. Membrane topology models of the protein, largely based on reporter molecule fusions to C-terminally truncated CitS molecules, indicate that the protein traverses the membrane 11 times with the NH(2)-terminus in the cytoplasm and the COOH-terminus in the periplasm. Furthermore, the structure is characterized by unusual long loops in the COOH-terminal half of the protein: one hydrophobic segment between transmembrane segments V and VI in the periplasm and three long loops connecting transmembrane segments VI and VII, VIII and IX and X and XI in the cytoplasm. The 10 kDa biotin acceptor domain and six consecutive His residues (His-tag) were inserted at different positions in the four long loops and the effect on transport activity and protein stability was analyzed. Six out of seven insertion mutants were stably expressed and three of these had retained significant transport activity. The sidedness of the tags in the mutants that tolerated the insertion was determined by proteolysis experiments. The results support the 11 transmembrane segment model that was based upon truncated CitS proteins.
Collapse
Affiliation(s)
- M van Geest
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | | |
Collapse
|
10
|
van Geest M, Lolkema JS. Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev 2000; 64:13-33. [PMID: 10704472 PMCID: PMC98984 DOI: 10.1128/mmbr.64.1.13-33.2000] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies.
Collapse
Affiliation(s)
- M van Geest
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
11
|
Pi J, Dogovski C, Pittard AJ. Functional consequences of changing proline residues in the phenylalanine-specific permease of Escherichia coli. J Bacteriol 1998; 180:5515-9. [PMID: 9791098 PMCID: PMC107607 DOI: 10.1128/jb.180.21.5515-5519.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PheP protein is a high-affinity phenylalanine-specific permease of the bacterium Escherichia coli. A topological model based on genetic analysis involving the construction of protein fusions with alkaline phosphatase has previously been proposed in which PheP has 12 transmembrane segments with both N and C termini located in the cytoplasm (J. Pi and A. J. Pittard, J. Bacteriol. 178:2650-2655, 1996). Site-directed mutagenesis has been used to investigate the functional importance of each of the 16 proline residues of the PheP protein. Replacement of alanine at only three positions, P54, P341, and P442, resulted in the loss of 50% or more activity. Substitutions at P341 had the most dramatic effects. None of these changes in transport activity were, however, associated with any defect of the mutant protein in inserting into the membrane, as indicated by [35S]methionine labelling and immunoprecipitation using anti-PheP serum. A possible role for each of these three prolines is discussed. Inserting a single alanine residue at different sites within span IX and the loop immediately preceding it also had major effects on transport activity, suggesting an important role for a highly organized structure in this region of the protein.
Collapse
Affiliation(s)
- J Pi
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
12
|
Frillingos S, Sahin-Tóth M, Wu J, Kaback HR. Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 1998; 12:1281-99. [PMID: 9761772 DOI: 10.1096/fasebj.12.13.1281] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The entire lactose permease of Escherichia coli, a polytopic membrane transport protein that catalyzes beta-galactoside/H+ symport, has been subjected to Cys-scanning mutagenesis in order to determine which residues play an obligatory role in the mechanism and to create a library of mutants with a single-Cys residue at each position of the molecule for structure/function studies. Analysis of the mutants has led to the following: 1) only six amino acid side chains play an irreplaceable role in the transport mechanism; 2) positions where the reactivity of the Cys replacement is increased upon ligand binding are identified; 3) positions where the reactivity of the Cys replacement is decreased by ligand binding are identified; 4) helix packing, helix tilt, and ligand-induced conformational changes are determined by using the library of mutants in conjunction with a battery of site-directed techniques; 5) the permease is a highly flexible molecule; and 6) a working model that explains coupling between beta-galactoside and H+ translocation. structure-function relationships in polytopic membrane proteins.
Collapse
Affiliation(s)
- S Frillingos
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology and Molecular Genetics, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90024
| | | | | | | |
Collapse
|
13
|
Abstract
Although missense mutations that inactivate integral membrane proteins cause a variety of diseases, the mechanisms by which they act are poorly understood. To establish a model for investigating this issue, we identified 51 missense mutations arising in vivo that inactivate Escherichia coli lac permease, a well-characterized membrane transport protein. The mutants were isolated using a genetic screening procedure which eliminates mutations that block expression of the lac permease gene, such as nonsense and frameshift mutations. The majority of the 51 missense mutations caused highly non-conservative changes in membrane-spanning sequences, such as the introduction of charged residues. Nevertheless, the greatest clustering of substitutions occurred in the two regions of lac permease thought to be most important for transport function. The existence of this clustering indicates that even highly non-conservative substitutions may cause relatively localized structural defects. Conservative inactivating substitutions were scattered throughout lac permease and may affect residues that make contacts required for normal folding. Two unexpected phenotypes were observed in the collection of mutants: about 20% of the substitutions led to cold-sensitive lactose utilization, and one substitution made the mutant lac permease toxic to cells. This relatively unbiased collection of mutants should provide a resource for further studies of how missense mutations inactivate membrane proteins in vivo.
Collapse
Affiliation(s)
- J Bailey
- Department of Genetics, University of Washington, Seattle, WA 98115, USA
| | | |
Collapse
|
14
|
Seok YJ, Sun J, Kaback HR, Peterkofsky A. Topology of allosteric regulation of lactose permease. Proc Natl Acad Sci U S A 1997; 94:13515-9. [PMID: 9391057 PMCID: PMC28337 DOI: 10.1073/pnas.94.25.13515] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sugar transport by some permeases in Escherichia coli is allosterically regulated by the phosphorylation state of the intracellular regulatory protein, enzyme IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system. A sensitive radiochemical assay for the interaction of enzyme IIAglc with membrane-associated lactose permease was used to characterize the binding reaction. The binding is stimulated by transportable substrates such as lactose, melibiose, and raffinose, but not by sugars that are not transported (maltose and sucrose). Treatment of lactose permease with N-ethylmaleimide, which blocks ligand binding and transport by alkylating Cys-148, also blocks enzyme IIAglc binding. Preincubation with the substrate analog beta-D-galactopyranosyl 1-thio-beta-D-galactopyranoside protects both lactose transport and enzyme IIAglc binding against inhibition by N-ethylmaleimide. A collection of lactose permease replacement mutants at Cys-148 showed, with the exception of C148V, a good correlation of relative transport activity and enzyme IIAglc binding. The nature of the interaction of enzyme IIAglc with the cytoplasmic face of lactose permease was explored. The N- and C-termini, as well as five hydrophilic loops in the permease, are exposed on the cytoplasmic surface of the membrane and it has been proposed that the central cytoplasmic loop of lactose permease is the major determinant for interaction with enzyme IIAglc. Lactose permease mutants with polyhistidine insertions in cytoplasmic loops IV/V and VI/VII and periplasmic loop VII/VIII retain transport activity and therefore substrate binding, but do not bind enzyme IIAglc, indicating that these regions of lactose permease may be involved in recognition of enzyme IIAglc. Taken together, these results suggest that interaction of lactose permease with substrate promotes a conformational change that brings several cytoplasmic loops into an arrangement optimal for interaction with the regulatory protein, enzyme IIAglc. A topological map of the proposed interaction is presented.
Collapse
Affiliation(s)
- Y J Seok
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, Bethesda, MD 20892-4036, USA
| | | | | | | |
Collapse
|
15
|
Braun P, Persson B, Kaback HR, von Heijne G. Alanine insertion scanning mutagenesis of lactose permease transmembrane helices. J Biol Chem 1997; 272:29566-71. [PMID: 9368019 DOI: 10.1074/jbc.272.47.29566] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A priori, single residue insertions into transmembrane helices are expected to be highly disruptive to protein structure and function. We have carried out a systematic analysis of the phenotypes associated with Ala insertions into transmembrane helices in lactose permease, a multispanning Escherichia coli inner membrane protein. Insertion of alanine into the center of 7 transmembrane helices was found to abolish stable integration of lactose permease into the membrane or uphill lactose transport. A more detailed Ala insertion scan was made of transmembrane helix III. The results pin-point a central region of approximately 2 helical turns that is crucial for lactose permease stability and/or activity. A Trp scan in this region identified 2 residues essential for lactose permease stability. From these results, it appears that transmembrane helices have differential sensitivities to single residue insertions and that such mutations may be useful for identifying structurally and/or functionally important helix segments.
Collapse
Affiliation(s)
- P Braun
- Department of Biochemistry, University of Stockholm, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
16
|
Tamai E, Fann MC, Tsuchiya T, Maloney PC. Purification of UhpT, the sugar phosphate transporter of Escherichia coli. Protein Expr Purif 1997; 10:275-82. [PMID: 9226724 DOI: 10.1006/prep.1997.0754] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To purify UhpT, the sugar phosphate carrier of Escherichia coli, we constructed a variant (HisUhpT) in which 10 tandem histidine residues were placed at the UhpT N terminus and then used Ni(2+)-agarose affinity chromatography of detergent-solubilized proteins. Membrane vesicles from a strain overexpressing His-UhpT were extracted at pH 7.4 with either 1.5% n-octyl-beta-D-glucopyranoside (octylglucoside) or 1.5% n-dodecyl-beta-D-maltoside (dodecylmaltoside) in 200 mM sodium chloride, 100 mM potassium phosphate, 50 mM glucose 6-phosphate, 10-20% glycerol, 0.2% E. coli phospholipid, and 5 mM beta-mercaptoethanol. After the detergent extract was applied to a Ni(2+)-agarose column, nonspecifically bound material was removed by washing at pH 7 with the same buffer also containing 50 mM imidazole. Purified HisUhpT was released subsequently, when sodium chloride was replaced with 300 mM imidazole or 100 mM EDTA, giving an overall yield of about 25 micrograms HisUhpT/mg vesicle protein. Whether eluted by imidazole or EDTA in either octylglucoside or dodecylmaltoside, purified HisUhpT showed a specific activity of 2.5-3 mumol/min per milligram of protein as monitored by [14C]glucose 6-phosphate transport by proteoliposomes loaded with 100 mM potassium phosphate. This corresponded to a calculated turnover number near 20 s-1 for the heterologous exchange of external sugar phosphate with internal phosphate. At low temperature (4 degrees C) HisUhpT retained full activity in either octylglucoside or dodecylmaltoside; however, at elevated temperature (> or = 23 degrees C), the protein displayed a marked lability in octylglucoside (t1/2 = 11 min), but not in dodecylmaltoside (t1/2 > or = 200-300 min).
Collapse
Affiliation(s)
- E Tamai
- Department of Physiology, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
17
|
Manoil C, Bailey J. A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. J Mol Biol 1997; 267:250-63. [PMID: 9096223 DOI: 10.1006/jmbi.1996.0881] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteins can be remarkably tolerant of major mutational changes. Sites that accomodate large insertions without loss of function ("permissive" sites) appear generally to correspond to surface regions at which the added sequences do not disrupt overall folding. The identification of such sites can aid in the engineering of functional derivatives of a protein with novel properties. To screen for permissive sites, we developed a simple two-step procedure for generating 31-codon insertions in cloned genes. In a first step, a beta-galactosidase or alkaline phosphatase gene fusion is generated by insertion of a transposon derivative into the target gene. Requiring beta-galactosidase or alkaline phosphatase activity fixes the translational reading frame of the transposon relative to the target gene. In a second step, most of the transposon sequences are excised in vitro, leaving the in-frame insertion. Insertions may be targeted either to cytoplasmic or exported protein sequences, and the inserted sequence acts as an epitope in a variety of proteins. As a test case, a set of 31-codon insertions in the Escherichia coli lac permease gene was generated. The lactose transport activities of the mutant proteins followed a simple pattern: most of the proteins (10/12) with insertions in sequences thought to face the cytoplasm or periplasm were at least partially active, whereas all proteins (9/9) with insertions in membrane-spanning sequences were inactive. The only exceptions were two inactive proteins with insertions in the third cytoplasmic region. Most of the inactive proteins were detected at reduced levels in cells, presumably due to proteolytic breakdown. These studies thus illustrate the use of the new method to identify permissive sites and help document the remarkable sequence flexibility of many of the hydrophilic loops in lac permease. In addition to screening for permissive sites, 31-codon insertion mutagenesis may be useful in epitope-tagging proteins at multiple internal positions, in analyzing membrane protein topology, and in dissecting structure-function relationships in proteins.
Collapse
Affiliation(s)
- C Manoil
- Department of Genetics, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
18
|
Frillingos S, Ujwal ML, Sun J, Kaback HR. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis. Protein Sci 1997; 6:431-7. [PMID: 9041646 PMCID: PMC2143654 DOI: 10.1002/pro.5560060220] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in transmembrane domain VIII and flanking hydrophilic loops (from Gln 256 to Lys 289) was replaced individually with Cys. Of the 34 single-Cys mutants, 26 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 7 mutants (Gly 262-->Cys, Gly 268-->Cys, Asn 272-->Cys, Pro 280-->Cys, Asn 284-->Cys, Gly 287-->Cys, and Gly 288-->Cys) exhibit lower but significant levels of accumulation (30-50% of C-less). As expected (Ujwal ML, Sahin-Tóth M, Persson B, Kaback HR, 1994, Mol Membr Biol 1:9-16), Cys replacement for Glu 269 abolishes lactose transport. Immunoblot analysis reveals that the mutants are inserted into the membrane at concentrations comparable to C-less permease, with the exceptions of mutants Pro 280-->Cys, Gly 287-->Cys, and Lys 289-->Cys, which are expressed at reduced levels. The transport activity of the mutants is inhibited by N-ethylmaleimide (NEM) in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to inactivation by NEM at positions that cluster in manner indicating that they are on one face of an alpha-helix (Gly 262-->Cys, Val 264-->Cys, Thr 265-->Cys, Gly 268-->Cys. Asn 272-->Cys, Ala 273-->Cys, Met 276-->Cys, Phe 277-->Cys, and Ala 279-->Cys). The results indicate that transmembrane domain VIII is in alpha-helical conformation and demonstrate that, although only a single residue in this region of the permease is essential for activity (Glu 269), one face of the helix plays an important role in the transport mechanism. More direct evidence for the latter conclusion is provided in the companion paper (Frillingos S. Kaback HR, 1997, Protein Sci 6:438-443) by using site-directed sulfhydryl modification of the Cys-replacement mutants in situ.
Collapse
Affiliation(s)
- S Frillingos
- Howard Hughes Medical Institute, University of California Los Angeles 90095-1662, USA
| | | | | | | |
Collapse
|
19
|
Pazdernik NJ, Jessen-Marshall AE, Brooker RJ. Role of conserved residues in hydrophilic loop 8-9 of the lactose permease. J Bacteriol 1997; 179:735-41. [PMID: 9006028 PMCID: PMC178755 DOI: 10.1128/jb.179.3.735-741.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A peptide motif, GXXX(D/E)(R/K)XG(R/K)(R/K), has been conserved in a large group of evolutionarily related membrane proteins that transport small molecules across the membrane. Within the superfamily, this motif is located in two cytoplasmic loops that connect transmembrane segments 2 and 3 and transmembrane segments 8 and 9. In a previous study concerning the loop 2-3 motif of the lactose permease (A. E. Jessen-Marshall, N. J. Paul, and R. J. Brooker, J. Biol. Chem. 270:16251-16257, 1995), it was shown that the first-position glycine and the fifth-position aspartate are critical for transport activity since a variety of site-directed mutations greatly diminished the rate of transport. In the current study, a similar approach was used to investigate the functional significance of the conserved residues in the loop 8-9 motif. In the wild-type lactose permease, however, this motif has been evolutionarily modified so that the first-position glycine (an alpha-helix breaker) has been changed to proline (also a helix breaker); the fifth position has been changed to an asparagine; and one of the basic residues has been altered. In this investigation, we made a total of 28 single and 7 double mutants within the loop 8-9 motif to explore the functional importance of this loop. With regard to transport activity, amino acid substitutions within the loop 8-9 motif tend to be fairly well tolerated. Most substitutions produced permeases with normal or mildly defective transport activities. However, three substitutions at the first position (i.e., position 280) resulted in defective lactose transport. Kinetic analysis of position 280 mutants indicated that the defect decreased the Vmax for lactose uptake. Besides substitutions at position 280, a Gly-288-to-Thr mutant had the interesting property that the kinetic parameters for lactose uptake were normal yet the rates of lactose efflux and exchange were approximately 10-fold faster than wild-type rates. The results of this study suggest that loop 8-9 may facilitate conformational changes that translocate lactose.
Collapse
Affiliation(s)
- N J Pazdernik
- Department of Genetics and Cell Biology and Institute for Advanced Studies in Biological Process Technology, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
20
|
Hoischen C, Levin J, Pitaknarongphorn S, Reizer J, Saier MH. Involvement of the central loop of the lactose permease of Escherichia coli in its allosteric regulation by the glucose-specific enzyme IIA of the phosphoenolpyruvate-dependent phosphotransferase system. J Bacteriol 1996; 178:6082-6. [PMID: 8830713 PMCID: PMC178473 DOI: 10.1128/jb.178.20.6082-6086.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Allosteric regulation of several sugar transport systems such as those specific for lactose, maltose and melibiose in Escherichia coli (inducer exclusion) is mediated by the glucose-specific enzyme IIA (IIAGlc) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Deletion mutations in the cytoplasmic N and C termini of the lactose permease protein, LacY, and replacement of all cysteine residues in LacY with other residues did not prevent IIAGlc-mediated inhibition of lactose uptake, but several point and insertional mutations in the central cytoplasmic loop of this permease abolished transport regulation and IIAGlc binding. The results substantiate the conclusion that regulation of the lactose permease in E. coli by the PTS is mediated by a primary interaction of IIAGlc with the central cytoplasmic loop of the permease.
Collapse
Affiliation(s)
- C Hoischen
- Department of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
▪ Abstract Plant and fungal membrane proteins catalyzing the transmembrane translocation of small molecules without directly using ATP or acting as channels are discussed in this review. Facilitators, ion-cotransporters, and exchange translocators mainly for sugars, amino acids, and ions that have been cloned and characterized from Saccharomyces cerevisiae and from various plant sources have been tabulated. The membrane topology and structure of the most extensively studied carriers (lac permease of Escherichia coli, Glut1 of man, HUP1 of Chlorella) are discussed in detail as well as the kinetic analysis of specific Na+ and H+ cotransporters. Finally, the knowledge concerning regulatory phenomena of carriers—mainly of S. cerevisiae—is summarized.
Collapse
Affiliation(s)
- W. Tanner
- Lehrstuhl fur Zellbiologie und Pflanzenphysiologie, Universitat Regensburg, Regensburg, 93040 Germany
| | | |
Collapse
|
22
|
Chapter 10 The lactose permease of Escherichia coli: Past, present and future. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1383-8121(96)80051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Voss J, Hubbell WL, Kaback HR. Distance determination in proteins using designed metal ion binding sites and site-directed spin labeling: application to the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 1995; 92:12300-3. [PMID: 8618889 PMCID: PMC40344 DOI: 10.1073/pnas.92.26.12300] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
As shown in the accompanying paper, the magnetic dipolar interaction between site-directed metal-nitroxide pairs can be exploited to measure distances in T4 lysozyme, a protein of known structure. To evaluate this potentially powerful method for general use, particularly with membrane proteins that are difficult to crystallize, both a paramagnetic metal ion binding site and a nitroxide side chain were introduced at selected positions in the lactose permease of Escherichia coli, a paradigm for polytopic membrane proteins. Thus, three individual cysteine residues were introduced into putative helix IV of a lactose permease mutant devoid of native cysteine residues containing a high-affinity divalent metal ion binding site in the form of six contiguous histidine residues in the periplasmic loop between helices III and IV. In addition, the construct contained a biotin acceptor domain in the middle cytoplasmic loop to facilitate purification. After purification and spin labeling, electron paramagnetic resonance spectra were obtained with the purified proteins in the absence and presence of Cu(II). The results demonstrate that positions 103, 111, and 121 are 8, 14, and > 23 A from the metal binding site. These data are consistent with an alpha-helical conformation of transmembrane domain IV of the permease. Application of the technique to determine helix packing in lactose permease is discussed.
Collapse
Affiliation(s)
- J Voss
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90095-1662, USA
| | | | | |
Collapse
|
24
|
Abstract
Most attempts to engineer the properties of proteins have employed single or multiple substitution mutations, which typically produce minor changes in structure. Recent structural and stability studies of insertion and deletion mutants clearly indicate that relatively large structural perturbations can be induced by altering the spacing of residues along the polypeptide backbone, often without major losses in protein stability. Although their effects are difficult to anticipate, insertions and deletions provide important new tools for altering protein structures in directions not achievable with substitutions alone.
Collapse
Affiliation(s)
- D Shortle
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
25
|
Jessen-Marshall AE, Paul NJ, Brooker RJ. The conserved motif, GXXX(D/E)(R/K)XG[X](R/K)(R/K), in hydrophilic loop 2/3 of the lactose permease. J Biol Chem 1995; 270:16251-7. [PMID: 7608191 DOI: 10.1074/jbc.270.27.16251] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A conserved motif, GXXX(D/E)(R/K)XG(R/K)(R/K), has been identified among a large group of evolutionarily related membrane proteins involved in the transport of small molecules across the membrane. To determine the importance of this motif within the lactose permease of Escherichia coli, a total of 28 site-directed mutations at the conserved first, fifth, sixth, eighth, ninth, and tenth positions were analyzed. A dramatic inhibition of activity was observed with all bulky mutations at the first-position glycine. Based on these results, together with sequence comparisons within the superfamily, it seems likely that small side chain volume (and possibly high beta-turn propensity) may be structurally important at this position. The acidic residue at the fifth position was also found to be very important for transport activity and even a conservative glutamate at this location exhibited marginal transport activity. In contrast, many substitutions at the eighth-position glycine, even those with a high side chain volume and/or low beta-turn propensity, still retained high levels of transport activity. Similarly, none of the basic residues within the motif were essential for transport activity when replaced individually by nonbasic residues. However, certain substitutions at the basic residue sites as well as the eighth-position glycine were observed to have moderately reduced levels of active transport of lactose. Taken together, the results of this study confirm the importance of the conserved loop 2/3 motif in transport function. It is suggested that this motif may be important in promoting global conformational changes within the permease.
Collapse
Affiliation(s)
- A E Jessen-Marshall
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
26
|
Zen KH, Consler TG, Kaback HR. Insertion of the polytopic membrane protein lactose permease occurs by multiple mechanisms. Biochemistry 1995; 34:3430-7. [PMID: 7880837 DOI: 10.1021/bi00010a035] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The lactose permease of Escherichia coli has 12 transmembrane hydrophobic domains in probable alpha-helical conformation connected by hydrophilic loops. Previous studies [Consler, T. G., Persson, B., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6934-6938] demonstrate that a peptide fragment (the XB domain) containing a factor Xa protease site immediately upstream of a biotin acceptor domain can be engineered into the permease, thereby allowing rapid purification to a high state of purity. Here we describe the use of the XB domain to probe topology and insertion. Cells expressing permease with the XB domain at the N terminus, at the C terminus, or in loop 6 or 10 on the cytoplasmic face of the membrane catalyze active transport, although only the chimeras with the XB domain at the C terminus or in loop 6 are biotinylated. In contrast, chimeras with the XB domain in periplasmic loop 3 or 7 are inactive, but strikingly, both constructs are biotinylated. Furthermore, the XB domain in all the constructs, particularly in the loop 3 and loop 7 chimeras, is accessible from the cytoplasmic face of the membrane, as evidenced by factor Xa proteolysis or avidin binding studies with spheroplasts and disrupted membrane preparations. Finally, alkaline phosphatase fusions one loop downstream from each periplasmic XB domain exhibit high phosphatase activity. Thus, the presence of the XB domain in a periplasmic loop apparently blocks translocation of a discrete segment of the permease consisting of the loop and the two adjoining helices without altering insertion of the remainder of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K H Zen
- Howard Hughes Medical Institute, Department of Physiology, University of California Los Angeles 90024-1662
| | | | | |
Collapse
|
27
|
Sahin-Tóth M, Lawrence MC, Kaback HR. Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc Natl Acad Sci U S A 1994; 91:5421-5. [PMID: 8202501 PMCID: PMC44007 DOI: 10.1073/pnas.91.12.5421] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An engineered fusion protein containing two tandem lactose permease molecules (permease dimer) exhibits high transport activity and is used to test the phenomenon of negative dominance. Introduction of the mutation Glu-325-->Cys into either the first or the second half of the dimer results in a 50% decrease in activity, whereas introduction of the mutation into both halves of the dimer abolishes transport. Lactose transport by permease dimer is completely inactivated by N-ethylmaleimide; however, 40-45% activity is retained after N-ethylmaleimide treatment when either the first or the second half of the dimer is replaced with a mutant devoid of cysteine residues. The observations demonstrate that both halves of the fusion protein are equally active and suggest that each half may function independently. To test the possibility that oligomerization between dimers might account for the findings, a permease dimer was constructed that contains two different deletion mutants that complement functionally when expressed as untethered molecules. Because this construct does not catalyze lactose transport to any extent whatsoever, it is unlikely that the two halves of the dimer interact or that there is an oligomeric interaction between dimers. The approach is consistent with the contention that the functional unit of lactose permease is a monomer.
Collapse
Affiliation(s)
- M Sahin-Tóth
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1662
| | | | | |
Collapse
|
28
|
Caspari T, Stadler R, Sauer N, Tanner W. Structure/function relationship of the Chlorella glucose/H+ symporter. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41890-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Sahin-Tóth M, Persson B, Schwieger J, Cohan P, Kaback HR. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli. Protein Sci 1994; 3:240-7. [PMID: 8003960 PMCID: PMC2142801 DOI: 10.1002/pro.5560030208] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in the hydrophilic N-terminus and the first putative transmembrane helix was systematically replaced with Cys (from Tyr-2 to Trp-33). Twenty-three of 32 mutants exhibit high lactose accumulation (70-100% or more of C-less), and an additional 8 mutants accumulate to lower but highly significant levels. Surprisingly, Cys replacement for Gly-24 or Tyr-26 yields fully active permease molecules, and permease with Cys in place of Pro-28 also exhibits significant transport activity, although previous mutagenesis studies on these residues suggested that they may be required for lactose transport. As expected, Cys replacement for Pro-31 completely inactivates, in agreement with previous findings indicating that "helix-breaking" propensity at this position is necessary for full activity (Consler TG, Tsolas O, Kaback HR, 1991, Biochemistry 30:1291-1297). Twenty-nine mutants are present in the membrane in amounts comparable to C-less permease, whereas membrane levels of mutants Tyr-3-->Cys and Phe-12-->Cys are slightly reduced, as judged by immunological techniques. Dramatically, mutant Phe-9-->Cys is hardly detectable when expressed from the lac promoter/operator at a relatively low rate, but is present in the membrane in a stable form when expressed at a high rate from the T7 promoter. Finally, studies with N-ethylmalemide show that 6 Cys-replacement mutants that cluster at the C-terminal end of putative helix I are inactivated significantly.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Sahin-Tóth
- Howard Hughes Medical Institute, Department of Physiology, University of California at Los Angeles 90024-1662
| | | | | | | | | |
Collapse
|
30
|
Sahin-Tóth M, Kaback HR. Properties of interacting aspartic acid and lysine residues in the lactose permease of Escherichia coli. Biochemistry 1993; 32:10027-35. [PMID: 8399130 DOI: 10.1021/bi00089a019] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The side chains of the interacting pair Asp237(helix VII)-Lys358(helix XI) or Asp240(helix VII)-Lys319(helix X) in the lactose permease of Escherichia coli were extended by replacement with Glu and/or Arg or by site-specific derivatization of single-Cys replacement mutants. Iodoacetic acid was used to carboxymethylate Cys, or methanethiosulfonate derivatives [Akabas, M. H., Stauffer, D. A., Xu, M., & Karlin, A. (1992) Science 258, 307] were used to attach negatively charged ethylsulfonate or positively charged ethylammonium groups. Replacement of Asp237 with Glu, carboxymethyl-Cys, or sulfonylethylthio-Cys yields active permease with Lys or Arg at position 358. Similarly, the permease tolerates replacement of Lys358 with Arg or ammonioethylthio-Cys with Asp or Glu at position 237. Remarkably, moreover, permease with Lys, Arg, or ammonioethylthio-Cys in place of Asp237 is highly active when Lys358 is replaced with Asp or Glu, in agreement with the conclusion that the polarity of the charge interaction can be reversed without loss of activity [Sahin-Tóth, M., Dunten, R. L., Gonzalez, A., & Kaback, H. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 10547]. In contrast, replacement of Asp240 with Glu abolishes lactose transport, and permease with carboxymethyl-Cys, at position 240 is inactive when paired with Lys319, but it exhibits significant activity with Arg319. Interestingly, sulfonylethylthio-Cys substitution for Asp240 also results in significant transport activity. Permease with Arg or ammonioethylthio-Cys in place of Lys319 exhibits high activity with Asp240 as the negative counterion, but no lactose transport is observed when either of these modifications is paired with Glu240.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Sahin-Tóth
- Department of Physiology and Microbiology, Howard Hughes Medical Institute, University of California at Los Angeles 90024-1570
| | | |
Collapse
|
31
|
Waeber U, Buhr A, Schunk T, Erni B. The glucose transporter of Escherichia coli. Purification and characterization by Ni+ chelate affinity chromatography of the IIBCGlc subunit. FEBS Lett 1993; 324:109-12. [PMID: 8504852 DOI: 10.1016/0014-5793(93)81542-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The IIBCGlc transmembrane subunit of the glucose transporter of E. coli containing a carboxy-terminal affinity tag consisting of six adjacent histidines was purified by nickel chelate affinity chromatography. The protein was constitutively overexpressed from a high copy number plasmid. 1.5 mg of 95% pure protein was obtained from 5 g (wet weight) cells. 70% of the phosphotransferase activity present in cell membranes was recovered. Adsorption to the nickel resin allows delipidation as well as rapid detergent exchange. The procedure was used to demonstrate exchange of subunits in the IIBCGlc dimer and it holds promise for the investigation of other protein-protein interactions.
Collapse
Affiliation(s)
- U Waeber
- Institute for Biochemistry, University of Bern, Switzerland
| | | | | | | |
Collapse
|
32
|
Sahin-Tóth M, Kaback HR. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci 1993; 2:1024-33. [PMID: 8318887 PMCID: PMC2142399 DOI: 10.1002/pro.5560020615] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino-acid residue in putative transmembrane helices IX and X and the short intervening loop was systematically replaced with Cys (from Asn-290 to Lys-335). Thirty-four of 46 mutants accumulate lactose to high levels (70-100% or more of C-less), and an additional 7 mutants exhibit lower but highly significant lactose accumulation. As expected (see Kaback, H.R., 1992, Int. Rev. Cytol. 137A, 97-125), Cys substitution for Arg-302, His-322, or Glu-325 results in inactive permease molecules. Although Cys replacement for Lys-319 or Phe-334 also inactivates lactose accumulation, Lys-319 is not essential for active lactose transport (Sahin-Tóth, M., Dunten, R.L., Gonzalez, A., & Kaback, H.R., 1992, Proc. Natl. Acad. Sci. USA 89, 10547-10551), and replacement of Phe-334 with leucine yields permease with considerable activity. All single-Cys mutants except Gly-296 --> Cys are present in the membrane in amounts comparable to C-less permease, as judged by immunological techniques. In contrast, mutant Gly-296 --> Cys is hardly detectable when expressed at a relatively low rate from the lac promoter/operator but present in the membrane in stable form when expressed at a high rate from T7 promoter. Finally, studies with N-ethylmaleimide (NEM) show that only a few mutants are inactivated significantly. Remarkably, the rate of inactivation of Val-315 --> Cys permease is enhanced at least 10-fold in the presence of beta-galactopyranosyl 1-thio-beta-D-galactopyranoside (TDG) or an H+ electrochemical gradient (delta mu-H+). The results demonstrate that only three residues in this region of the permease -Arg-302, His-322, and Glu-325-are essential for active lactose transport. Furthermore, the enhanced reactivity of the Val-315 --> Cys mutant toward NEM in the presence of TDG or delta mu-H+ probably reflects a conformational alteration induced by either substrate binding or delta mu-H+.
Collapse
Affiliation(s)
- M Sahin-Tóth
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1574
| | | |
Collapse
|