1
|
Li H, Cao Z, Liu Y, Xue Z, Li Y, Xing H, Xu Y, Gu R, Qiu S, Wei H, Wang M, Rao Q, Wang J. Slow-replicating leukemia cells represent a leukemia stem cell population with high cell-surface CD74 expression. Mol Oncol 2024; 18:2554-2568. [PMID: 38922758 PMCID: PMC11459046 DOI: 10.1002/1878-0261.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/25/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Persistence of quiescent leukemia stem cells (LSCs) after treatment most likely contributes to chemotherapy resistance and poor prognosis of leukemia patients. Identification of this quiescent cell population would facilitate eradicating LSCs. Here, using a cell-tracing PKH26 (PKH) dye that can be equally distributed to daughter cells following cell division in vivo, we identify a label-retaining slow-cycling leukemia cell population from AML1-ETO9a (AE9a) leukemic mice. We find that, compared with cells not maintaining PKH-staining, a higher proportion of PKH-retaining cells are in G0 phase, and PKH-retaining cells exhibit increased colony formation ability and leukemia initiation potential. In addition, PKH-retaining cells possess high chemo-resistance and are more likely to be localized to the endosteal bone marrow region. Based on the transcriptional signature, HLA class II histocompatibility antigen gamma chain (Cd74) is highly expressed in PKH-retaining leukemia cells. Furthermore, cell surface CD74 was identified to be highly expressed in LSCs of AE9a mice and CD34+ human leukemia cells. Compared to Lin-CD74- leukemia cells, Lin-CD74+ leukemia cells of AE9a mice exhibit higher stemness properties. Collectively, our findings reveal that the identified slow-cycling leukemia cell population represents an LSC population, and CD74+ leukemia cells possess stemness properties, suggesting that CD74 is a candidate LSC surface marker.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Zhijie Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yiming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Zhenya Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yishuang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
2
|
Tanese K, Ogata D. The role of macrophage migration inhibitory factor family and CD74 in the pathogenesis of melanoma. Exp Dermatol 2024; 33:e15122. [PMID: 38884501 DOI: 10.1111/exd.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Melanoma is an aggressive tumour with poor prognosis that arises from the malignant transformation of melanocytes. Over the past few decades, intense research into the pathogenesis of melanoma has led to the development of BRAF and immune checkpoint inhibitors, including antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which have shown clinically significant efficacy. However, some tumours do not respond to these therapies initially or become treatment resistant. Most melanoma tissues appear to possess biological characteristics that allow them to evade these treatments, and identifying these characteristics is one of the major challenges facing cancer researchers. One such characteristic that has recently gained attention is the role of macrophage migration inhibitory factor (MIF) and its receptor CD74. This review outlines the cellular and molecular functions of CD74, MIF and their family of proteins. We then review their roles in tumours based on previous reports, highlight their pathological significance in melanoma and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Lobos Patorniti N, Zulkefli KL, McAdam ME, Vargas P, Bakke O, Progida C. Rai14 is a novel interactor of Invariant chain that regulates macropinocytosis. Front Immunol 2023; 14:1182180. [PMID: 37545539 PMCID: PMC10401043 DOI: 10.3389/fimmu.2023.1182180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Invariant chain (Ii, CD74) is a type II transmembrane glycoprotein that acts as a chaperone and facilitates the folding and transport of MHC II chains. By assisting the assembly and subcellular targeting of MHC II complexes, Ii has a wide impact on the functions of antigen-presenting cells such as antigen processing, endocytic maturation, signal transduction, cell migration, and macropinocytosis. Ii is a multifunctional molecule that can alter endocytic traffic and has several interacting molecules. To understand more about Ii's function and to identify further Ii interactors, a yeast two-hybrid screening was performed. Retinoic Acid-Induced 14 (Rai14) was detected as a putative interaction partner, and the interaction was confirmed by co-immunoprecipitation. Rai14 is a poorly characterized protein, which is believed to have a role in actin cytoskeleton and membrane remodeling. In line with this, we found that Rai14 localizes to membrane ruffles, where it forms macropinosomes. Depletion of Rai14 in antigen-presenting cells delays MHC II internalization, affecting macropinocytic activity. Intriguingly, we demonstrated that, similar to Ii, Rai14 is a positive regulator of macropinocytosis and a negative regulator of cell migration, two antagonistic processes in antigen-presenting cells. This antagonism is known to depend on the interaction between myosin II and Ii. Here, we show that Rai14 also binds to myosin II, suggesting that Ii, myosin II, and Rai14 work together to coordinate macropinocytosis and cell motility.
Collapse
Affiliation(s)
| | | | | | - Pablo Vargas
- Inserm U1151, Institut Necker Enfants Malades, Paris, France
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Li QL, Tang J, Zhao L, Ruze A, Shan XF, Gao XM. The role of CD74 in cardiovascular disease. Front Cardiovasc Med 2023; 9:1049143. [PMID: 36712241 PMCID: PMC9877307 DOI: 10.3389/fcvm.2022.1049143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Leukocyte differentiation antigen 74 (CD74), also known as invariant chain, is a molecular chaperone of major histocompatibility complex class II (MHC II) molecules involved in antigen presentation. CD74 has recently been shown to be a receptor for the macrophage migration inhibitory factor family proteins (MIF/MIF2). Many studies have revealed that CD74 plays an important role in cardiovascular disease. In this review, we summarize the structure and main functions of CD74 and then focus on the recent research progress on the role of CD74 in cardiovascular diseases. In addition, we also discuss potential treatment strategies that target CD74. Our systematic review of the role of CD74 in cardiovascular disease will fill some knowledge gaps in the field.
Collapse
Affiliation(s)
- Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China,Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China,Clinical Medical Research Institute of Xinjiang Medical University, Ürümqi, China,*Correspondence: Xiao-Ming Gao,
| |
Collapse
|
5
|
Li X, Abrahams C, Yu A, Embry M, Henningsen R, DeAlmeida V, Matheny S, Kline T, Yam A, Stafford R, Hallam T, Lupher M, Molina A. Targeting CD74 in B-cell non-Hodgkin lymphoma with the antibody-drug conjugate STRO-001. Oncotarget 2023; 14:1-13. [PMID: 36634212 PMCID: PMC9836384 DOI: 10.18632/oncotarget.28341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Overexpression of CD74, a type II transmembrane glycoprotein involved in MHC class II antigen presentation, has been reported in many B-cell non-Hodgkin lymphomas (NHLs) and in multiple myeloma (MM). STRO-001 is a site-specific, predominantly single-species antibody-drug conjugate (ADC) that targets CD74 and has demonstrated efficacy in xenograft models of MM and tolerability in non-human primates. Here we report results of preclinical studies designed to elucidate the potential role of STRO-001 in B-cell NHL. STRO-001 displayed nanomolar and sub-nanomolar cytotoxicity in 88% (15/17) of cancer cell lines tested. STRO-001 showed potent cytotoxicity on proliferating B cells while limited cytotoxicity was observed on naïve human B cells. A linear dose-response relationship was demonstrated in vivo for DLBCL models SU-DHL-6 and U2932. Tumor regression was induced at doses less than 5 mg/kg, while maximal activity with complete cures were observed starting at 10 mg/kg. In MCL Mino and Jeko-1 xenografts, STRO-001 starting at 3 mg/kg significantly prolonged survival or induced tumor regression, respectively, leading to tumor eradication in both models. In summary, high CD74 expression levels in tumors, nanomolar cellular potency, and significant anti-tumor in DLBCL and MCL xenograft models support the ongoing clinical study of STRO-001 in patients with B-cell NHL.
Collapse
Affiliation(s)
- Xiaofan Li
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA,Correspondence to:Xiaofan Li, email:
| | - Cristina Abrahams
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Abigail Yu
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Millicent Embry
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Robert Henningsen
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Venita DeAlmeida
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Shannon Matheny
- 2Clinical Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Toni Kline
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Alice Yam
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Ryan Stafford
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Trevor Hallam
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Mark Lupher
- 1Research Development, Sutro Biopharma, South San Francisco, CA 94080, USA
| | - Arturo Molina
- 2Clinical Development, Sutro Biopharma, South San Francisco, CA 94080, USA,Arturo Molina, email:
| |
Collapse
|
6
|
Jin Y, Deng Z, Zhu T. Membrane protein trafficking in the anti-tumor immune response: work of endosomal-lysosomal system. Cancer Cell Int 2022; 22:413. [PMID: 36528587 PMCID: PMC9759898 DOI: 10.1186/s12935-022-02805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has changed the treatment landscape for multiple cancer types. In the recent decade, great progress has been made in immunotherapy, including immune checkpoint inhibitors, adoptive T-cell therapy, and cancer vaccines. ICIs work by reversing tumor-induced immunosuppression, resulting in robust activation of the immune system and lasting immune responses. Whereas, their clinical use faces several challenges, especially the low response rate in most patients. As an increasing number of studies have focused on membrane immune checkpoint protein trafficking and degradation, which interferes with response to immunotherapy, it is necessary to summarize the mechanism regulating those transmembrane domain proteins translocated into the cytoplasm and degraded via lysosome. In addition, other immune-related transmembrane domain proteins such as T-cell receptor and major histocompatibility are associated with neoantigen presentation. The endosomal-lysosomal system can also regulate TCR and neoantigen-MHC complexes on the membrane to affect the efficacy of adoptive T-cell therapy and cancer vaccines. In conclusion, we discuss the process of surface delivery, internalization, recycling, and degradation of immune checkpoint proteins, TCR, and neoantigen-MHC complexes on the endosomal-lysosomal system in biology for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Jin
- grid.412632.00000 0004 1758 2270Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Zhifeng Deng
- grid.412632.00000 0004 1758 2270Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Ting Zhu
- grid.412632.00000 0004 1758 2270Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
7
|
Geanes ES, Krepel SA, McLennan R, Pierce S, Khanal S, Bradley T. Development of combinatorial antibody therapies for diffuse large B cell lymphoma. Front Med (Lausanne) 2022; 9:1034594. [PMID: 36353222 PMCID: PMC9637670 DOI: 10.3389/fmed.2022.1034594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common form of lymphoma, is typically treated with chemotherapy combined with the immunotherapy rituximab, an antibody targeting the B cell receptor, CD20. Despite the success of this treatment regimen, approximately a third of DLBCL patients experience either relapse or have refractory disease that is resistant to rituximab, indicating the need for alternative therapeutic strategies. Here, we identified that CD74 and IL4R are expressed on the cell surface of both CD20 positive and CD20 negative B cell populations. Moreover, genes encoding CD74 and IL4R are expressed in lymphoma biopsies isolated from all stages of disease. We engineered bispecific antibodies targeting CD74 or IL4R in combination with rituximab anti-CD20 (anti-CD74/anti-CD20 and anti-IL4R/anti-CD20). Bispecific antibody function was evaluated by measuring direct induction of apoptosis, antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent cellular cytotoxicity in both rituximab-sensitive and rituximab-resistant DLBCL cell lines. Both anti-CD74/anti-CD20 and anti-IL4R/anti-CD20 were able to mediate ADCC and ADCP, but CD74-targeting therapeutic antibodies could also mediate direct cytotoxicity. Overall, this study strongly indicates that development of bispecific antibodies that target multiple B cell receptors expressed by lymphoma could provide improved defense against relapse and rituximab resistance.
Collapse
Affiliation(s)
- Eric S. Geanes
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Stacey A. Krepel
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Rebecca McLennan
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Stephen Pierce
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Santosh Khanal
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Todd Bradley,
| |
Collapse
|
8
|
Santambrogio L. Molecular Determinants Regulating the Plasticity of the MHC Class II Immunopeptidome. Front Immunol 2022; 13:878271. [PMID: 35651601 PMCID: PMC9148998 DOI: 10.3389/fimmu.2022.878271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
In the last few years, advancement in the analysis of the MHC class II (MHC-II) ligandome in several mouse and human haplotypes has increased our understanding of the molecular components that regulate the range and selection of the MHC-II presented peptides, from MHC class II molecule polymorphisms to the recognition of different conformers, functional differences in endosomal processing along the endocytic tract, and the interplay between the MHC class II chaperones DM and DO. The sum of all these variables contributes, qualitatively and quantitatively, to the composition of the MHC II ligandome, altogether ensuring that the immunopeptidome landscape is highly sensitive to any changes in the composition of the intra- and extracellular proteome for a comprehensive survey of the microenvironment for MHC II presentation to CD4 T cells.
Collapse
Affiliation(s)
- Laura Santambrogio
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Laura Santambrogio,
| |
Collapse
|
9
|
Cloutier M, Fortin JS, Thibodeau J. The transmembrane domain and luminal C-terminal region independently support invariant chain trimerization and assembly with MHCII into nonamers. BMC Immunol 2021; 22:56. [PMID: 34384367 PMCID: PMC8362237 DOI: 10.1186/s12865-021-00444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 07/20/2021] [Indexed: 05/31/2023] Open
Abstract
Background Invariant chain (CD74, Ii) is a multifunctional protein expressed in antigen presenting cells. It assists the ER exit of various cargos and serves as a receptor for the macrophage migration inhibitory factor. The newly translated Ii chains trimerize, a structural feature that is not readily understood in the context of its MHCII chaperoning function. Two segments of Ii, the luminal C-terminal region (TRIM) and the transmembrane domain (TM), have been shown to participate in the trimerization process but their relative importance and impact on the assembly with MHCII molecules remains debated. Here, we addressed the requirement of these domains in the trimerization of human Ii as well as in the oligomerization with MHCII molecules. We used site-directed mutagenesis to generate series of Ii and DR mutants. These were transiently transfected in HEK293T cells to test their cell surface expression and analyse their interactions by co-immunoprecipitations. Results Our results showed that the TRIM domain is not essential for Ii trimerization nor for intracellular trafficking with MHCII molecules. We also gathered evidence that in the absence of TM, TRIM allows the formation of multi-subunit complexes with HLA-DR. Similarly, in the absence of TRIM, Ii can assemble into high-order structures with MHCII molecules. Conclusions Altogether, our data show that trimerization of Ii through either TM or TRIM sustains nonameric complex formation with MHCII molecules. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00444-6.
Collapse
Affiliation(s)
- Maryse Cloutier
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Succ Centre-Ville, CP 6128, Montréal, QC, H3C 3J7, Canada
| | - Jean-Simon Fortin
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Succ Centre-Ville, CP 6128, Montréal, QC, H3C 3J7, Canada
| | - Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Succ Centre-Ville, CP 6128, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
10
|
Margiotta A, Frei DM, Sendstad IH, Janssen L, Neefjes J, Bakke O. Invariant chain regulates endosomal fusion and maturation through an interaction with the SNARE Vti1b. J Cell Sci 2020; 133:jcs244624. [PMID: 32907852 DOI: 10.1242/jcs.244624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
The invariant chain (Ii, also known as CD74) is a multifunctional regulator of adaptive immune responses and is responsible for sorting major histocompatibility complex class I and class II (MHCI and MHCII, respectively) molecules, as well as other Ii-associated molecules, to a specific endosomal pathway. When Ii is expressed, endosomal maturation and proteolytic degradation of proteins are delayed and, in non-antigen presenting cells, the endosomal size increases, but the molecular mechanisms underlying this are not known. We identified that a SNARE, Vti1b, is essential for regulating these Ii-induced effects. Vti1b binds to Ii and is localized at the contact sites of fusing Ii-positive endosomes. Furthermore, truncated Ii lacking the cytoplasmic tail, which is not internalized from the plasma membrane, relocates Vti1b to the plasma membrane. Knockout of Ii in an antigen-presenting cell line was found to speed up endosomal maturation, whereas silencing of Vti1b inhibits the Ii-induced maturation delay. Our results suggest that Ii, by interacting with the SNARE Vti1b in antigen-presenting cells, directs specific Ii-associated SNARE-mediated fusion in the early part of the endosomal pathway that leads to a slower endosomal maturation for efficient antigen processing and MHC antigen loading.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | - Dominik M Frei
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| | | | - Lennert Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, PB 1066, 0316 Oslo, Norway
| |
Collapse
|
11
|
Balhorn R, Balhorn MC. Therapeutic applications of the selective high affinity ligand drug SH7139 extend beyond non-Hodgkin's lymphoma to many other types of solid cancers. Oncotarget 2020; 11:3315-3349. [PMID: 32934776 PMCID: PMC7476732 DOI: 10.18632/oncotarget.27709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023] Open
Abstract
SH7139, the first of a series of selective high affinity ligand (SHAL) oncology drug candidates designed to target and bind to the HLA-DR proteins overexpressed by B-cell lymphomas, has demonstrated exceptional efficacy in the treatment of Burkitt lymphoma xenografts in mice and a safety profile that may prove to be unprecedented for an oncology drug. The aim of this study was to determine how frequently the HLA-DRs targeted by SH7139 are expressed by different subtypes of non-Hodgkin’s lymphoma and by other solid cancers that have been reported to express HLA-DR. Binding studies conducted with SH7129, a biotinylated analog of SH7139, reveal that more than half of the biopsy sections obtained from patients with different types of non-Hodgkin’s lymphoma express the HLA-DRs targeted by SH7139. Similar analyses of tumor biopsy tissue obtained from patients diagnosed with eighteen other solid cancers show the majority of these tumors also express the HLA-DRs targeted by SH7139. Cervical, ovarian, colorectal and prostate cancers expressed the most HLA-DR. Only a few esophageal and head and neck tumors bound the diagnostic. Within an individual’s tumor, cell to cell differences in HLA-DR target expression varied by only 2 to 3-fold while the expression levels in tumors obtained from different patients varied as much as 10 to 100-fold. The high frequency with which SH7129 was observed to bind to these cancers suggests that many patients diagnosed with B-cell lymphomas, myelomas, and other non-hematological cancers should be considered potential candidates for new therapies such as SH7139 that target HLA-DR-expressing tumors.
Collapse
Affiliation(s)
- Rod Balhorn
- SHAL Technologies Inc., Livermore, CA 94550, USA
| | | |
Collapse
|
12
|
Graves AM, Virdis F, Morrison E, Álvaro-Benito M, Khan AA, Freund C, Golovkina TV, Denzin LK. Human Hepatitis B Viral Infection Outcomes Are Linked to Naturally Occurring Variants of HLA-DOA That Have Altered Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:923-935. [PMID: 32690655 PMCID: PMC7415708 DOI: 10.4049/jimmunol.2000476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022]
Abstract
HLA molecules of the MHC class II (MHCII) bind and present pathogen-derived peptides for CD4 T cell activation. Peptide loading of MHCII in the endosomes of cells is controlled by the interplay of the nonclassical MHCII molecules, HLA-DM (DM) and HLA-DO (DO). DM catalyzes peptide loading, whereas DO, an MHCII substrate mimic, prevents DM from interacting with MHCII, resulting in an altered MHCII-peptide repertoire and increased MHCII-CLIP. Although the two genes encoding DO (DOA and DOB) are considered nonpolymorphic, there are rare natural variants. Our previous work identified DOB variants that altered DO function. In this study, we show that natural variation in the DOA gene also impacts DO function. Using the 1000 Genomes Project database, we show that ∼98% of individuals express the canonical DOA*0101 allele, and the remaining individuals mostly express DOA*0102, which we found was a gain-of-function allele. Analysis of 25 natural occurring DOα variants, which included the common alleles, identified three null variants and one variant with reduced and nine with increased ability to modulate DM activity. Unexpectedly, several of the variants produced reduced DO protein levels yet efficiently inhibited DM activity. Finally, analysis of associated single-nucleotide polymorphisms genetically linked the DOA*0102 common allele, a gain-of-function variant, with human hepatitis B viral persistence. In contrast, we found that the DOα F114L null allele was linked with viral clearance. Collectively, these studies show that natural variation occurring in the human DOA gene impacts DO function and can be linked to specific outcomes of viral infections.
Collapse
Affiliation(s)
- Austin M Graves
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
- Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854
| | - Francesca Virdis
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Eliot Morrison
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | - Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | - Aly A Khan
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Christian Freund
- Laboratory of Protein Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | | | - Lisa K Denzin
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901;
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901; and
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
13
|
Cho KJ, Ishido S, Eisenlohr LC, Roche PA. Activation of Dendritic Cells Alters the Mechanism of MHC Class II Antigen Presentation to CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1621-1629. [PMID: 31996461 DOI: 10.4049/jimmunol.1901234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
Abstract
Both immature and mature dendritic cells (DCs) can process and present foreign Ags to CD4 T cells; however, the mechanism by which MHC class II (MHC-II) in mature DCs acquires antigenic peptides remains unknown. To address this, we have studied Ag processing and presentation of two distinct CD4 T cell epitopes of the influenza virus hemagglutinin coat protein by both immature and mature mouse DCs. We find that immature DCs almost exclusively use newly synthesized MHC-II targeted to DM+ late endosomes for presentation to influenza virus-specific CD4 T cells. By contrast, mature DCs exclusively use recycling MHC-II that traffics to both early and late endosomes for antigenic peptide binding. Rab11a knockdown partially inhibits recycling of MHC-II in mature DCs and selectively inhibits presentation of an influenza virus hemagglutinin CD4 T cell epitope generated in early endosomes. These studies highlight a "division of labor" in MHC-II peptide binding, in which immature DCs preferentially present Ags acquired in Rab11a- DM+ late endosomes, whereas mature DCs use recycling MHC-II to present antigenic peptides acquired in both Rab11a+ early endosomes and Rab11a- endosomes for CD4 T cell activation.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501 Japan
| | - Laurence C Eisenlohr
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and.,Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
14
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
15
|
Au KM, Balhorn R, Balhorn MC, Park SI, Wang AZ. High-Performance Concurrent Chemo-Immuno-Radiotherapy for the Treatment of Hematologic Cancer through Selective High-Affinity Ligand Antibody Mimic-Functionalized Doxorubicin-Encapsulated Nanoparticles. ACS CENTRAL SCIENCE 2019; 5:122-144. [PMID: 30693332 PMCID: PMC6346391 DOI: 10.1021/acscentsci.8b00746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Non-Hodgkin lymphoma is one of the most common types of cancer. Relapsed and refractory diseases are still common and remain significant challenges as the majority of these patients eventually succumb to the disease. Herein, we report a translatable concurrent chemo-immuno-radiotherapy (CIRT) strategy that utilizes fully synthetic antibody mimic Selective High-Affinity Ligand (SHAL)-functionalized doxorubicin-encapsulated nanoparticles (Dox NPs) for the treatment of human leukocyte antigen-D related (HLA-DR) antigen-overexpressed tumors. We demonstrated that our tailor-made antibody mimic-functionalized NPs bound selectively to different HLA-DR-overexpressed human lymphoma cells, cross-linked the cell surface HLA-DR, and triggered the internalization of NPs. In addition to the direct cytotoxic effect by Dox, the internalized NPs then released the encapsulated Dox and upregulated the HLA-DR expression of the surviving cells, which further augmented immunogenic cell death (ICD). The released Dox not only promotes ICD but also sensitizes the cancer cells to irradiation by inducing cell cycle arrest and preventing the repair of DNA damage. In vivo biodistribution and toxicity studies confirm that the targeted NPs enhanced tumor uptake and reduced systemic toxicities of Dox. Our comprehensive in vivo anticancer efficacy studies using lymphoma xenograft tumor models show that the antibody-mimic functional NPs effectively inhibit tumor growth and sensitize the cancer cells for concurrent CIRT treatment without incurring significant side effects. With an appropriate treatment schedule, the SHAL-functionalized Dox NPs enhanced the cell killing efficiency of radiotherapy by more than 100% and eradicated more than 80% of the lymphoma tumors.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina
Center for
Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, and Department of
Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rod Balhorn
- SHAL
Technologies, Inc., 15986
Mines Road, Livermore, California 94550, United States
| | - Monique C. Balhorn
- SHAL
Technologies, Inc., 15986
Mines Road, Livermore, California 94550, United States
| | - Steven I. Park
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Levine
Cancer Institute, Atrium Health, Division
of Hematology and Oncology, 100 Medical Park Drive, Suite 110, Concord, North Carolina 28025, United States
| | - Andrew Z. Wang
- Laboratory of Nano- and Translational Medicine, Carolina
Center for
Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, and Department of
Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Mensali N, Grenov A, Pati NB, Dillard P, Myhre MR, Gaudernack G, Kvalheim G, Inderberg EM, Bakke O, Wälchli S. Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncoimmunology 2019; 8:1558663. [PMID: 30723591 PMCID: PMC6350688 DOI: 10.1080/2162402x.2018.1558663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Eradication of tumors by the immune system relies on the efficient activation of a T-cell response. For many years, the main focus of cancer immunotherapy has been on cytotoxic CD8 T-cell. However, stimulation of CD4 helper T cells is critical for the promotion and maintenance of immune memory, thus a good vaccine should evoke a two-dimensional T-cell response. The invariant chain (Ii) is required for the MHC class II heterodimer to be correctly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells (APC). We previously showed that by replacing the Ii CLIP peptide by an MHC-I cancer peptide, we could efficiently load MHC-I. This prompted us to test whether longer cancer peptides could be loaded on both MHC classes and whether such peptides could be accommodated in the CLIP region of Ii. We here present data showing that expanding the CLIP replacement size leads to T-cell activation. We demonstrate by using long peptides that APCs can present peptides from the same Ii molecule on both MHC-I and -II. In addition, we present evidence that antigen presentation after Ii-loading was superior to an ER-targeted minigene construct, suggesting that ER-localization was not sufficient to obtain efficient MHC-II loading. Finally, we verified that Ii-expressing dendritic cells could prime CD4+ and CD8+ T cells from a naïve population. Taken together our study demonstrates that CLIP peptide replaced Ii constructs fulfill some of the major requirements for an efficient vector for cancer vaccination.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.,Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Amalie Grenov
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Niladri Bhusan Pati
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Pierre Dillard
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Marit Renée Myhre
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Institute for cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Oddmund Bakke
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| |
Collapse
|
17
|
Thibodeau J, Moulefera MA, Balthazard R. On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking. Hum Immunol 2019; 80:15-31. [DOI: 10.1016/j.humimm.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
|
18
|
Abstract
Unlike B cells, CD8-positive and CD4-positive T cells of the adaptive immune system do not recognize intact foreign proteins but instead recognize polypeptide fragments of potential antigens. These antigenic peptides are expressed on the surface of antigen presenting cells bound to MHC class I and MHC class II proteins. Here, we review the basics of antigen acquisition by antigen presenting cells, antigen proteolysis into polypeptide fragments, antigenic peptide binding to MHC proteins, and surface display of both MHC class I-peptide and MHC class II-peptide complexes.
Collapse
|
19
|
Pérez-Montesinos G, López-Ortega O, Piedra-Reyes J, Bonifaz LC, Moreno J. Dynamic Changes in the Intracellular Association of Selected Rab Small GTPases with MHC Class II and DM during Dendritic Cell Maturation. Front Immunol 2017; 8:340. [PMID: 28396666 PMCID: PMC5367080 DOI: 10.3389/fimmu.2017.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/09/2017] [Indexed: 01/13/2023] Open
Abstract
Antigen processing for presentation by major histocompatibility complex class II (MHCII) molecules requires the latter to travel through the endocytic pathway together with its chaperons: the invariant chain (Ii) and DM. Nevertheless, the nature of the compartments where MHCII molecules travel to acquire peptides lacks definition regarding molecules involved in intracellular vesicular trafficking, such as Rab small GTPases. We aimed to define which Rab proteins are present during the intracellular transport of MHCII, DM, and Ii through the endocytic pathway on their route to the cell surface during dendritic cell (DC) maturation. We examined, by means of three-color confocal microscopy, the association of MHCII, DM, and Ii with Rab5, Rab7, Rab9, and Rab11 during the maturation of bone marrow-derived or spleen DC in response to LPS as an inflammatory stimulus. Prior to the stage of immature DC, MHCII migrated from diffuse small cytoplasmic vesicles, predominantly Rab5+Rab7- and Rab5+Rab7+ into a pericentriolar Rab5+Rab7+Rab9+ cluster, with Rab11+ areas. As DC reached the mature phenotype, MHCII left the pericentriolar endocytic compartments toward the cell surface in Rab11+ and Rab9+Rab11+ vesicles. The invariant chain and MHCII transport pathways were not identical. DM and MHCII appeared to arrive to pericentriolar endocytic compartments of immature DC through partially different routes. The association of MHCII molecules with distinct Rab GTPases during DC maturation suggests that after leaving the biosynthetic pathway, MHCII sequentially traffic from typical early endosomes to multivesicular late endosomes to finally arrive at the cell surface in Rab11+ recycling-type endosomes. In immature DCs, DM encounters transiently MHCII in the Rab5+Rab7+Rab9+ compartments, to remain there in mature DC.
Collapse
Affiliation(s)
- Gibrán Pérez-Montesinos
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
- Centro Dermatológico “Dr. Ladislao de la Pascua”, Secretaría de Salud del Distrito Federal, Mexico City, Distrito Federal, Mexico
| | - Orestes López-Ortega
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| | - Jessica Piedra-Reyes
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| | - Laura C. Bonifaz
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
| | - José Moreno
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| |
Collapse
|
20
|
Invariant Chain Complexes and Clusters as Platforms for MIF Signaling. Cells 2017; 6:cells6010006. [PMID: 28208600 PMCID: PMC5371871 DOI: 10.3390/cells6010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking.
Collapse
|
21
|
The biological function and significance of CD74 in immune diseases. Inflamm Res 2016; 66:209-216. [DOI: 10.1007/s00011-016-0995-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
|
22
|
Park GB, Chung YH, Gong JH, Jin DH, Kim D. GSK-3β-mediated fatty acid synthesis enhances epithelial to mesenchymal transition of TLR4-activated colorectal cancer cells through regulation of TAp63. Int J Oncol 2016; 49:2163-2172. [PMID: 27599658 DOI: 10.3892/ijo.2016.3679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/23/2016] [Indexed: 11/05/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) in cancer cells is a critical regulatory component of both cellular metabolism and epithelial-mesenchymal transition (EMT) processes via regulation of the β-catenin/E-cadherin and phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Lipogenesis of cancer cells also plays a critical role in survival and metastasis. We investigated the role of GSK-3β-mediated intracellular fatty acid synthesis to control EMT in TLR4-activated colorectal cancer cells and the underlying regulatory mechanism. Engagement of TLR4 with lipopolysaccharide (LPS) in colon cancer cells promoted the induction of phosphorylated GSK-3β and related lipogenic enzymes as well as the expression of CD74, CD44 and macrophage inhibitory factor (MIF), but decreased expression of transcriptionally active p63 (TAp63). In addition, targeted inhibition of GSK-3β using SB216763 was accompanied by decreased intracellular fatty acid synthesis and blockage of CD74 and CD44 expression, whereas it reversed the level of TAp63. Although TAp63 overexpression had no effect on the expression of CD74 and CD44 in LPS-treated colon cancer cells, GSK-3β-dependent fatty acid synthesis and invasive activity were significantly suppressed. Notably, inhibition of CD44 or CD74 by siRNA not only attenuated de novo lipogenesis and migratory activity but also restored the expression of TAp63 in LPS-activated colon cancer cells. These results suggest that TAp63-mediated GSK-3β activation induced by TLR4 stimulation triggers migration and invasion of colon cancer cells through the regulation of lipid synthesis and GSK-3β-mediated CD74/CD44 expression could be a target to control fatty acid-related EMT process through the modulation of TAp63 expression.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ji Hee Gong
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
23
|
Leung SO, Gao K, Wang GY, Cheung BKW, Lee KY, Zhao Q, Cheung WT, Wang JZ. Surrogate target cells expressing surface anti-idiotype antibody for the clinical evaluation of an internalizing CD22-specific antibody. MAbs 2015; 7:66-76. [PMID: 25427174 DOI: 10.4161/19420862.2014.985519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.
Collapse
Key Words
- ADCC, antibody dependent cell cytotoxicity
- CD22
- CMC, complement mediated cytotoxicity
- HACA, human anti-chimeric antibody
- MOA, mechanism of action
- NHL, non-Hodgkins lymphoma
- PBMC, peripheral blood mononuclear cell
- PK, pharmacokinetic
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- anti-idiotype
- bioassay
- internalizing
- mAb, monoclonal antibody
- surrogate target cells
Collapse
Affiliation(s)
- Shui-On Leung
- a Institute of Biomedical Sciences ; Fudan University ; Shanghai , China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Valiño-Rivas L, Baeza-Bermejillo C, Gonzalez-Lafuente L, Sanz AB, Ortiz A, Sanchez-Niño MD. CD74 in Kidney Disease. Front Immunol 2015; 6:483. [PMID: 26441987 PMCID: PMC4585214 DOI: 10.3389/fimmu.2015.00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/05/2015] [Indexed: 12/17/2022] Open
Abstract
CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ciro Baeza-Bermejillo
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Laura Gonzalez-Lafuente
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ana Belen Sanz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain ; School of Medicine, Universidad Autónoma de Madrid , Madrid , Spain ; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| |
Collapse
|
25
|
The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 2015; 15:203-16. [PMID: 25720354 DOI: 10.1038/nri3818] [Citation(s) in RCA: 662] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antigenic peptide-loaded MHC class II molecules (peptide-MHC class II) are constitutively expressed on the surface of professional antigen-presenting cells (APCs), including dendritic cells, B cells, macrophages and thymic epithelial cells, and are presented to antigen-specific CD4(+) T cells. The mechanisms of antigen uptake, the nature of the antigen processing compartments and the lifetime of cell surface peptide-MHC class II complexes can vary depending on the type of APC. It is likely that these differences are important for the function of each distinct APC subset in the generation of effective adaptive immune responses. In this Review, we describe our current knowledge of the mechanisms of uptake and processing of antigens, the intracellular formation of peptide-MHC class II complexes, the intracellular trafficking of peptide-MHC class II complexes to the APC plasma membrane and their ultimate degradation.
Collapse
|
26
|
The human-specific invariant chain isoform Iip35 modulates Iip33 trafficking and function. Immunol Cell Biol 2014; 92:791-8. [PMID: 24983457 DOI: 10.1038/icb.2014.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/12/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
The invariant chain (Ii) is a multifunctional protein, which has an essential role in the assembly and transport of major histocompatibility complex class II (MHC II) molecules. From a single gene, Ii is synthesized as four different isoforms: Iip33, Iip35, Iip41 and Iip43. Iip35 and Iip43 are specific to humans, and are formed due to an upstream alternative translation site, resulting in an N-terminal extension of 16 amino acids. This extension harbors a strong endoplasmic reticulum (ER) retention motif. Consequently, Iip35 or Iip43 expressed alone are retained in the ER, whereas Iip33 and Iip41 rapidly traffic to the endosomal pathway. Endogenously expressed, the four isoforms form mixed heterotrimers in the ER; however, mainly due to the absence of the Iip35/p43 isoforms in mice, little is known about how they influence general Ii function. In this study, we have co-expressed Iip33 and Iip35 in human cells with and without MHC II to gain a better understanding of how Iip35 isoform influences the cellular properties of Iip33. We find that Iip35 significantly affects the properties of Iip33. In the presence of Iip35, the transport of Iip33 out of the ER is delayed, its half-life is dramatically prolonged and its ability to induce enlarged endosomes and delayed endosomal maturation is abrogated.
Collapse
|
27
|
ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5:a016873. [PMID: 24296169 DOI: 10.1101/cshperspect.a016873] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the initiation of adaptive immune responses, dendritic cells present antigenic peptides in association with major histocompatibility complex class II (MHCII) to naïve CD4(+) T lymphocytes. In this review, we discuss how antigen presentation is regulated through intracellular processing and trafficking of MHCII. Newly synthesized MHCII is chaperoned by the invariant chain to endosomes, where peptides from endocytosed pathogens can bind. In nonactivated dendritic cells, peptide-loaded MHCII is ubiquitinated and consequently sorted by the ESCRT machinery to intraluminal vesicles of multivesicular bodies, ultimately leading to lysosomal degradation. Ubiquitination of newly synthesized MHCII is blocked when dendritic cells are activated, now allowing its transfer to the cell surface. This mode of regulation for MHCII is a prime example of how molecular processing and sorting at multivesicular bodies can determine the expression of signaling receptors at the plasma membrane.
Collapse
Affiliation(s)
- Toine ten Broeke
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | |
Collapse
|
28
|
Internalizing MHC class II-peptide complexes are ubiquitinated in early endosomes and targeted for lysosomal degradation. Proc Natl Acad Sci U S A 2013; 110:20188-93. [PMID: 24277838 DOI: 10.1073/pnas.1312994110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As sentinels of the immune system, dendritic cells (DCs) continuously generate and turnover antigenic peptide-MHC class II complexes (pMHC-II). pMHC-II generation is a complex process that involves many well-characterized MHC-II biosynthetic intermediates; however, the mechanisms leading to MHC-II turnover/degradation are poorly understood. We now show that pMHC-II complexes undergoing clathrin-independent endocytosis from the DC surface are efficiently ubiquitinated by the E3 ubiquitin ligase March-I in early endosomes, whereas biosynthetically immature MHC-II-Invariant chain (Ii) complexes are not. The inability of MHC-II-Ii to serve as a March-I substrate is a consequence of Ii sorting motifs that divert the MHC-II-Ii complex away from March-I(+) early endosomes. When these sorting motifs are mutated, or when clathrin-mediated endocytosis is inhibited, MHC-II-Ii complexes internalize by using a clathrin-independent endocytosis pathway and are now ubiquitinated as efficiently as pMHC-II complexes. These data show that the selective ubiquitination of internalizing surface pMHC-II in March-I(+) early endosomes promotes degradation of "old" pMHC-II and spares forms of MHC-II that have not yet loaded antigenic peptides or have not yet reached the DC surface.
Collapse
|
29
|
Hussain F, Freissmuth M, Völkel D, Thiele M, Douillard P, Antoine G, Thurner P, Ehrlich H, Schwarz HP, Scheiflinger F, Kerschbaumer RJ. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Mol Cancer Ther 2013; 12:1223-34. [PMID: 23619302 DOI: 10.1158/1535-7163.mct-12-0988] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine, originally discovered for its eponymous effect and now known for pleiotropic biologic properties in immunology and oncology. Circulating MIF levels are elevated in several types of human cancer including prostate cancer. MIF is released presumably by both stromal and tumor cells and enhances malignant growth and metastasis by diverse mechanisms, such as stimulating tumor cell proliferation, suppressing apoptotic death, facilitating invasion of the extracellular matrix, and promoting angiogenesis. Recently described fully human anti-MIF antibodies were tested in vitro and in vivo for their ability to influence growth rate and invasion of the human PC3 prostate cancer cell line. In vitro, the selected candidate antibodies BaxG03, BaxB01, and BaxM159 reduced cell growth and viability by inhibiting MIF-induced phosphorylation of the central kinases p44/42 mitogen-activated protein kinase [extracellular signal-regulated kinase-1 and -2 (ERK1/2)] and protein kinase B (AKT). Incubation of cells in the presence of the antibodies also promoted activation of caspase-3/7. The antibodies furthermore inhibited MIF-promoted invasion and chemotaxis as transmigration through Matrigel along a MIF gradient was impaired. In vivo, pharmacokinetic parameters (half-life, volume of distribution, and bioavailability) of the antibodies were determined and a proof-of-concept was obtained in a PC3-xenograft mouse model. Treatment with human anti-MIF antibodies blunted xenograft tumor growth in a dose-dependent manner. We therefore conclude that the anti-MIF antibodies described neutralize some of the key tumor-promoting activities of MIF and thus limit tumor growth in vivo.
Collapse
Affiliation(s)
- Filza Hussain
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Währinger Str. 13a, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Govindan SV, Cardillo TM, Sharkey RM, Tat F, Gold DV, Goldenberg DM. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol Cancer Ther 2013; 12:968-78. [PMID: 23427296 DOI: 10.1158/1535-7163.mct-12-1170] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD74 is an attractive target for antibody-drug conjugates (ADC), because it internalizes and recycles after antibody binding. CD74 mostly is associated with hematologic tumors but is expressed also in solid cancers. Therefore, ADCs of the humanized anti-CD74 antibody, milatuzumab, were examined for the therapy of CD74-expressing solid tumors. Milatuzumab-doxorubicin and two milatuzumab-SN-38 conjugates with cleavable linkers, differing in their stability in serum and how they release SN-38 in the lysosome, were prepared. CD74 expression was determined by flow cytometry and immunohistology. In vitro cytotoxicity and in vivo therapeutic studies were conducted in the human cancer cell lines A-375 (melanoma), HuH-7 and Hep-G2 (hepatoma), Capan-1 (pancreatic), NCI-N87 (gastric), and Raji Burkitt lymphoma. The milatuzumab-SN-38 ADC was compared with SN-38 ADCs prepared with anti-Trop-2 and anti-CEACAM6 antibodies in xenografts expressing their target antigens. Milatuzumab-doxorubicin was most effective in the lymphoma model, whereas in A-375 and Capan-1 solid tumors, only milatuzumab-SN-38 showed a therapeutic benefit. Despite much lower surface expression of CD74 than Trop-2 or CEACAM6, milatuzumab-SN-38 had similar efficacy in Capan-1 as anti-Trop-2-SN-38, but in NCI-N87, anti-CEACAM6 and anti-Trop-2 conjugates were superior. Studies in two hepatoma lines at a single dose level showed significant benefit over saline controls but not against an irrelevant immunoglobulin G conjugate. CD74 is a suitable target for ADCs in some solid tumor xenografts, with efficacy largely influenced by uniformity of CD74 expression and with SN-38 conjugates providing the best therapeutic responses; SN-38 conjugates were preferable in solid cancers, whereas doxorubicin ADC was better in lymphoma tested.
Collapse
|
31
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
32
|
Pulse-chase analysis for studies of MHC class II biosynthesis, maturation, and peptide loading. Methods Mol Biol 2013; 960:411-432. [PMID: 23329504 DOI: 10.1007/978-1-62703-218-6_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pulse-chase analysis is a commonly used technique for studying the synthesis, processing and transport of proteins. Cultured cells expressing proteins of interest are allowed to take up radioactively labeled amino acids for a brief interval ("pulse"), during which all newly synthesized proteins incorporate the label. The cells are then returned to nonradioactive culture medium for various times ("chase"), during which proteins may undergo conformational changes, trafficking, or degradation. Proteins of interest are isolated (usually by immunoprecipitation) and resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the fate of radiolabeled molecules is examined by autoradiography. This chapter describes a pulse-chase protocol suitable for studies of major histocompatibility complex (MHC) class II biosynthesis and maturation. We discuss how results are affected by the recognition by certain anti-class II antibodies of distinct class II conformations associated with particular biosynthetic states. Our protocol can be adapted to follow the fate of many other endogenously synthesized proteins, including viral or transfected gene products, in cultured cells.
Collapse
|
33
|
Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2012; 14:135-52. [PMID: 23127154 DOI: 10.1111/tra.12026] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 12/15/2022]
Abstract
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen-specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross-presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells.
Collapse
Affiliation(s)
- Adriana R Mantegazza
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
34
|
Vandenbark AA, Meza-Romero R, Benedek G, Andrew S, Huan J, Chou YK, Buenafe AC, Dahan R, Reiter Y, Mooney JL, Offner H, Burrows GG. A novel regulatory pathway for autoimmune disease: binding of partial MHC class II constructs to monocytes reduces CD74 expression and induces both specific and bystander T-cell tolerance. J Autoimmun 2012; 40:96-110. [PMID: 23026773 DOI: 10.1016/j.jaut.2012.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Treatment with partial (p)MHC class II-β1α1 constructs (also referred to as recombinant T-cell receptor ligands - RTL) linked to antigenic peptides can induce T-cell tolerance, inhibit recruitment of inflammatory cells and reverse autoimmune diseases. Here we demonstrate a novel regulatory pathway that involves RTL binding to CD11b(+) mononuclear cells through a receptor comprised of MHC class II invariant chain (CD74), cell-surface histones and MHC class II itself for treatment of experimental autoimmune encephalomyelitis (EAE). Binding of RTL constructs with CD74 involved a previously unrecognized MHC class II-α1/CD74 interaction that inhibited CD74 expression, blocked activity of its ligand, macrophage migration inhibitory factor, and reduced EAE severity. These findings implicate binding of RTL constructs to CD74 as a key step in both antigen-driven and bystander T-cell tolerance important in treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Research Service, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gil Benedek
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shayne Andrew
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jianya Huan
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yuan K Chou
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Abigail C Buenafe
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rony Dahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoram Reiter
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jeffery L Mooney
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA
| | - Halina Offner
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gregory G Burrows
- Tykeson MS Research Laboratory, UHS-46, 3181 SW Sam Jackson Park Rd, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.,Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
35
|
Sanchez-Niño MD, Sanz AB, Ruiz-Andres O, Poveda J, Izquierdo MC, Selgas R, Egido J, Ortiz A. MIF, CD74 and other partners in kidney disease: tales of a promiscuous couple. Cytokine Growth Factor Rev 2012; 24:23-40. [PMID: 22959722 DOI: 10.1016/j.cytogfr.2012.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans.
Collapse
|
36
|
Karakikes I, Morrison IEG, O'Toole P, Metodieva G, Navarrete CV, Gomez J, Miranda-Sayago JM, Cherry RJ, Metodiev M, Fernandez N. Interaction of HLA-DR and CD74 at the cell surface of antigen-presenting cells by single particle image analysis. FASEB J 2012; 26:4886-96. [PMID: 22889831 DOI: 10.1096/fj.12-211466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Major histocompatibility complex (MHC) class II-associated antigen presentation involves an array of interacting molecules. CD74, the cell surface isoform of the MHC class II-associated invariant chain, is one such molecule; its role remains poorly defined. To address this, we have employed a high-resolution single-particle imaging method for quantifying the colocalization of CD74 with human leukocyte antigen (HLA)-DR molecules on human fibroblast cells known for their capacity to function as antigen-presenting cells. We have also examined whether the colocalization induces internalization of HLA-DR using HA(307-319), a "universal" peptide that binds specifically to the peptide-binding groove of all HLA-DR molecules, irrespective of their alleles. We have determined that 25 ± 1.3% of CD74 and 17 ± 0.3% of HLA-DR are colocalized, and the association of CD74 with HLA-DR and the internalization of HLA-DR are both inhibited by HA(307-319). A similar inhibition of HLA-DR internalization was observed in freshly isolated monocyte-derived dendritic cells. A key role of CD74 is to translocate HLA-DR molecules to early endosomes for reloading with peptides prior to recycling to the cell surface. We conclude that CD74 regulates the balance of peptide-occupied and peptide-free forms of MHC class II at the cell surface.
Collapse
Affiliation(s)
- Ioannis Karakikes
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester C04 3SQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zheng YX, Yang M, Rong TT, Yuan XL, Ma YH, Wang ZH, Shen LS, Cui L. CD74 and macrophage migration inhibitory factor as therapeutic targets in gastric cancer. World J Gastroenterol 2012; 18:2253-61. [PMID: 22611320 PMCID: PMC3351777 DOI: 10.3748/wjg.v18.i18.2253] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the relationship and molecular features of CD74/macrophage migration inhibitory factor (MIF)/Toll-like receptor 4 (TLR4) in gastric cancer. METHODS CD74, MIF and TLR4 expression in the paraffin-embedded sections of gastric cancer from 120 patients were detected by immunohistochemical staining. Knock down of CD74 expression in gastric cancer cell line MKN-45 was performed by lentivirus transduction and detected by Western blotting. MKN-45 cell proliferation assay under the stimulants was measured by the cell counting kit 8 (CCK8) assay and MIF concentration in the culture medium was detected by enzyme-linked immunosorbent assay. Surface staining of CD74 in the MKN-45 cell line under the stimulation of lipopolysaccharide (LPS) was measured by flow cytometry. MIF, CD74 and TLR4 co-localization in the MKN-45 cell line was performed by the immunoprecipitation. RESULTS CD74, MIF and TLR4 were found to be expressed in gastric cancer and increased significantly in the advanced stage, and were also associated with lymph node metastasis. Correlation analysis revealed that CD74 was positively correlated with MIF (r = 0.2367, P < 0.01) and both proteins were also associated with TLR4 (r = 0.4414, r = 0.5001, respectively, P < 0.01). LPS can significantly promote MKN-45 cell proliferation (3.027 ± 0.388 vs 4.201 ± 0.092, P < 0.05), induce MIF production (54.333 ± 2.906 pg/mL vs 29.667 ± 3.180 pg/mL, P < 0.01) and cell surface expression of CD74 (75.6% ± 4.046% vs 9.4% ± 0.964%, P < 0.01) at LPS concentration of 1 μg/mL compared to medium control. Knockdown of CD74 or using anti-CD74 and MIF antagonist ISO-1 significantly reduced LPS-induced MKN-45 cell proliferation (4.201 ± 0.092 vs 3.337 ± 0.087, 4.534 ± 0.222 vs 3.368 ± 0.290, 4.058 ± 0.292 vs 2.934 ± 0.197, respectively, P < 0.01). MIF, CD74 and TLR4 could co-localize in the MKN-45 cell line. CONCLUSION Upregulation of MIF, CD74 and TLR4 are associated with increasing clinical stage and provide an opportunity as novel gastric cancer chemoprevention and/or treatment strategy.
Collapse
|
38
|
Expression of macrophage migration inhibitory factor and CD74 in cervical squamous cell carcinoma. Int J Gynecol Cancer 2012; 21:1004-12. [PMID: 21792010 DOI: 10.1097/igc.0b013e31821c45b7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) and CD74 emerge as important players in pathogenesis and angiogenesis of several types of malignant tumors. The purpose of this study was to evaluate the expression of MIF and CD74 in cervical squamous cell carcinoma and explore the potential roles they play in cervical tumor angiogenesis. METHODS Macrophage migration inhibitory factor and CD74 expression was assessed by immunohistochemistry in 209 cases with various degrees of cervical epithelial lesions, including 40 normal cervical epithelia, 43 mild cervical intraepithelial neoplasia 1 (CIN 1), 41 moderate-severe cervical intraepithelial neoplasia (CIN 2 to 3), and 85 cervical squamous cell carcinomas (SCCs). CD34 staining was used for counting microvessel density. Semiquantitative reverse transcription polymerase chain reaction and Western blot were used to detect messenger RNA and protein levels of MIF and CD74 in normal and malignant cervical tissues and cervical cancer cell lines SiHa and C-33A. The concentration of vascular endothelial growth factor (VEGF) in the conditioned media of cervical cancer cells was analyzed by enzyme-linked immunosorbent assay. RESULTS Immunohistochemical analysis showed that MIF and CD74 expression was significantly higher in CIN than in the normal samples and higher in SCC than in CIN. The overexpression of MIF was correlated with deep stromal infiltration but not with the other clinicopathologic features of SCC. Correlation analyses revealed that MIF was positively related to CD74, and both protein levels were associated with microvessel density. Exogenous MIF induced VEGF secretion in SiHa and C-33A cells in a dose-dependent manner, which can be inhibited by MIF-specific inhibitor (ISO-1) or anti-CD74 antibody. CONCLUSION Overexpression of MIF and CD74 in SCC and its precancerous lesions and the up-regulation of VEGF secretion in cervical cancer cells indicate that MIF and CD74 may play critical roles in the pathogenesis and angiogenesis of cervical cancer.
Collapse
|
39
|
Zuo J, Thomas WA, Haigh TA, Fitzsimmons L, Long HM, Hislop AD, Taylor GS, Rowe M. Epstein-Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2. PLoS Pathog 2011; 7:e1002455. [PMID: 22216005 PMCID: PMC3245307 DOI: 10.1371/journal.ppat.1002455] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 11/08/2011] [Indexed: 02/07/2023] Open
Abstract
Evasion of immune T cell responses is crucial for viruses to establish persistence in the infected host. Immune evasion mechanisms of Epstein-Barr virus (EBV) in the context of MHC-I antigen presentation have been well studied. In contrast, viral interference with MHC-II antigen presentation is less well understood, not only for EBV but also for other persistent viruses. Here we show that the EBV encoded BZLF1 can interfere with recognition by immune CD4+ effector T cells. This impaired T cell recognition occurred in the absence of a reduction in the expression of surface MHC-II, but correlated with a marked downregulation of surface CD74 on the target cells. Furthermore, impaired CD4+ T cell recognition was also observed with target cells where CD74 expression was downregulated by shRNA-mediated inhibition. BZLF1 downregulated surface CD74 via a post-transcriptional mechanism distinct from its previously reported effect on the CIITA promoter. In addition to being a chaperone for MHC-II αβ dimers, CD74 also functions as a surface receptor for macrophage Migration Inhibitory Factor and enhances cell survival through transcriptional upregulation of Bcl-2 family members. The immune-evasion function of BZLF1 therefore comes at a cost of induced toxicity. However, during EBV lytic cycle induced by BZLF1 expression, this toxicity can be overcome by expression of the vBcl-2, BHRF1, at an early stage of lytic infection. We conclude that by inhibiting apoptosis, the vBcl-2 not only maintains cell viability to allow sufficient time for synthesis and accumulation of infectious virus progeny, but also enables BZLF1 to effect its immune evasion function. Epstein-Barr virus (EBV) is a herpesvirus and an important human pathogen that can cause diseases ranging from non-malignant proliferative disease to fully malignant cancers of lymphocytes and epithelial cells. The persistence of EBV in healthy individuals relies on the balance between host immune responses and viral immune evasion. As CD4+ immune T cell responses include both helper and cytotoxic functions, viral mechanisms for interfering with MHC class II antigen presentation to CD4+ T cells have the potential to greatly influence the outcome of viral infections. Our work on Epstein-Barr virus provides a new paradigm for viral immune evasion of MHC-II presented antigen by targeting CD74. CD74 is a dual function protein; it serves as a surviving receptor as well as a chaperone for MHC-II antigen presentation. Therefore, downregulation of CD74 as a T cell evasion strategy comes at the cost of potentially inducing cell death. However, EBV also encodes a vBcl-2 to attenuate the toxicity associated with reduced CD74, thus enabling the immune-impairment function to be effected. We expect that future studies will identify other viruses utilizing a similar strategy to evade CD4+ immune T cell responses.
Collapse
Affiliation(s)
- Jianmin Zuo
- Cancer Research UK Birmingham Cancer Centre, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Graber DJ, Harris BT, Hickey WF. Strain-dependent variation in the early transcriptional response to CNS injury using a cortical explant system. J Neuroinflammation 2011; 8:122. [PMID: 21942980 PMCID: PMC3192692 DOI: 10.1186/1742-2094-8-122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/26/2011] [Indexed: 12/21/2022] Open
Abstract
Background While it is clear that inbred strains of mice have variations in immunological responsiveness, the influence of genetic background following tissue damage in the central nervous system is not fully understood. A cortical explant system was employed as a model for injury to determine whether the immediate transcriptional response to tissue resection revealed differences among three mouse strains. Methods Immunological mRNAs were measured in cerebral cortex from SJL/J, C57BL/6J, and BALB/cJ mice using real time RT-PCR. Freshly isolated cortical tissue and cortical sections incubated in explant medium were examined. Levels of mRNA, normalized to β-actin, were compared using one way analysis of variance with pooled samples from each mouse strain. Results In freshly isolated cerebral cortex, transcript levels of many pro-inflammatory mediators were not significantly different among the strains or too low for comparison. Constitutive, baseline amounts of CD74 and antisecretory factor (ASF) mRNAs, however, were higher in SJL/J and C57BL/6J, respectively. When sections of cortical tissue were incubated in explant medium, increased message for a number of pro-inflammatory cytokines and chemokines occurred within five hours. Message for chemokines, IL-1α, and COX-2 transcripts were higher in C57BL/6J cortical explants relative to SJL/J and BALB/cJ. IL-1β, IL-12/23 p40, and TNF-α were lower in BALB/cJ explants relative to SJL/J and C57BL/6J. Similar to observations in freshly isolated cortex, CD74 mRNA remained higher in SJL/J explants. The ASF mRNA in SJL/J explants, however, was now lower than levels in both C57BL/6J and BALB/cJ explants. Conclusions The short-term cortical explant model employed in this study provides a basic approach to evaluate an early transcriptional response to neurological damage, and can identify expression differences in genes that are influenced by genetic background.
Collapse
Affiliation(s)
- David J Graber
- Dept, Pathology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
| | | | | |
Collapse
|
42
|
Abstract
The introduction of autologous stem cell transplantation combined with the introduction of immunomodulatory drugs (IMiDs) and proteasome inhibitors has significantly improved survival of multiple myeloma patients. However, ultimately the majority of patients will develop refractory disease, indicating the need for new treatment modalities. In preclinical and clinical studies, promising results have been obtained with several monoclonal antibodies (mAbs) targeting the myeloma tumor cell or the bone marrow microenvironment. The mechanisms underlying the therapeutic efficacy of these mAbs include direct induction of tumor cell apoptosis via inhibition or activation of target molecules, complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC). The capability of IMiDs to enhance ADCC and the modulation of various important signaling cascades in myeloma cells by both bortezomib and IMiDs forms the rationale to combine these novel agents with mAbs as new treatment strategies for myeloma patients. In this review, we will give an overview of various mAbs directly targeting myeloma tumor cells or indirectly via effects on the bone marrow microenvironment. Special focus will be on the combination of these mAbs with IMiDs or bortezomib.
Collapse
|
43
|
Abstract
INTRODUCTION The advent of anti-CD20 monoclonal antibody (mAb) rituximab heralded a new era in the treatment of non-Hodgkin's lymphoma leading to significant improvements in outcome for patients. This unprecedented success has changed the mindset of the clinical community and catalyzed the interest in the pharmaceutical industry to develop the next-generation of antibodies and antibody conjugates in cancer. AREAS COVERED There are an ever increasing number of newer generation anti-CD20 and rituximab 'bio-similars' undergoing early phase clinical development. In addition emerging novel therapies including antibody drug conjugates (brentuximab vedotin, SGN-35) and mAb against T-cell lymphomas antigens (e.g., zanolimumab) offer hope of improved outcome for other lymphomas. Bispecific T-cell-engaging antibodies and combination immunotherapy, also provide the promise of further improvements. Radiolabelled antibodies or radioimmunotherapy (RIT) has also demonstrated high clinical activity and two drugs namely 131I-tositumomab (Bexxar) and 90Y-ibritumomab (Zevalin) are licensed. EXPERT OPINION Despite the large numbers of new anti-CD20 mAb currently undergoing clinical testing, improving on clinical efficacy of rituximab is a substantial challenge. Further improvements in outcome for patients will require rigorous testing in well designed clinical trials alongside the translation of new insights into mechanism of mAb action that lead to improvements in clinical efficacy.
Collapse
Affiliation(s)
- Sam Mayes
- University of Manchester, Manchester Academic Health Science Centre, School of Cancer and Enabling Sciences, School of Medicine, Manchester, M20 4BX, UK
| | | | | |
Collapse
|
44
|
Borghese F, Clanchy FIL. CD74: an emerging opportunity as a therapeutic target in cancer and autoimmune disease. Expert Opin Ther Targets 2011; 15:237-51. [PMID: 21208136 DOI: 10.1517/14728222.2011.550879] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION CD74, also known as the invariant chain, participates in several key processes of the immune system, including antigen presentation, B-cell differentiation and inflammatory signaling. Despite being described more than 3 decades ago, new functions and novel interactions for this evolutionarily conserved molecule are still being unraveled. As a participant in several immunological processes and an indicator of disease in some conditions, it has potential as a therapeutic target. AREAS COVERED The relationship between the structure of CD74 variants and their physiological functions is detailed in this review. The function of CD74 in several cell lineages is examined with a focus on the interactions with cathepsins and, in an inflammatory milieu, the pro-inflammatory cytokine macrophage migratory inhibitory factor. The role of CD74 signaling in inflammatory and carcinogenic processes is outlined as is the use of CD74 as a therapeutic target (in cancer) and tool (as a vaccine). EXPERT OPINION CD74 has several roles within the cell and throughout the immune system. Most prominent amongst these are the complex relationships with MIF and cathepsins. Modulation of CD74 function shows promise for the effective amelioration of disease.
Collapse
Affiliation(s)
- Federica Borghese
- Sapienza University of Rome, Department of Clinical Medicine, Clinical Immunology Unit, Umberto I Policlinico di Roma, 155 Viale del Policlinico, Rome, IT 00161
| | | |
Collapse
|
45
|
Gil F, Pérez-Filgueira M, Barderas MG, Pastor-Vargas C, Alonso C, Vivanco F, Escribano JM. Targeting antigens to an invariant epitope of the MHC Class II DR molecule potentiates the immune response to subunit vaccines. Virus Res 2011; 155:55-60. [DOI: 10.1016/j.virusres.2010.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
46
|
Landsverk OJB, Barois N, Gregers TF, Bakke O. Invariant chain increases the half-life of MHC II by delaying endosomal maturation. Immunol Cell Biol 2010; 89:619-29. [PMID: 21116285 DOI: 10.1038/icb.2010.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mounting adaptive immune responses requires the cell surface expression of major histocompatibility class II molecules (MHC II) loaded with antigenic peptide. However, in the absence of antigenic stimuli, the surface population of MHC II is highly dynamic and exhibits a high turnover. Several studies have focused on the regulation of MHC II, and it is now recognized that ubiquitination is one key mechanism operating in the turnover of MHC II in B cells and dendritic cells. Here, we describe how the invariant chain (Ii) can prolong the half-life of MHC II through its action on the endocytic pathway. We find that in cells expressing intermediate-to-high levels of Ii, the half-life of MHC II is increased, with MHC II accumulating in slowly-maturing endosomes. The accumulation in endosomes is not due to retention of new MHC II directed from the endoplasmatic reticulum, as also mature, not Ii associated, MHC II is preserved. We suggest that this alternative endocytic pathway induced by Ii would serve to enhance the rate, quantity and diversity of MHC II antigen presentation by concentrating MHC II into specialized compartments and reducing the need for new MHC II synthesis upon antigen encounter.
Collapse
Affiliation(s)
- Ole J B Landsverk
- Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo and Rikshospitalet, Oslo University Hospital Norway, Oslo, Norway
| | | | | | | |
Collapse
|
47
|
Gold DV, Stein R, Burton J, Goldenberg DM. Enhanced expression of CD74 in gastrointestinal cancers and benign tissues. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2010; 4:1-12. [PMID: 21228923 PMCID: PMC3016099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 11/21/2010] [Indexed: 05/30/2023]
Abstract
CD74, a transmembrane glycoprotein that associates with MHC II, is an important chaperone that regulates antigen presentation for immune response. In addition, CD74 is the receptor for macrophage migration-inhibitory factor which, when bound to CD74, initiates survival pathways and cell proliferation. Formalin fixed, paraffin embedded clinical specimens were evaluated by immunohistochemical procedures for expression of CD74. Overall, expression of CD74 within gastrointestinal carcinomas showed a statistically greater expression than in the normal tissue counterparts (P<0.001 or better). CD74 expression was observed in 95% of pancreatic carcinomas with the majority of cases presenting a mostly intense, diffuse labeling pattern. The results suggested a trend towards greater expression within the higher grade carcinomas (P=0.06). Colorectal and gastric carcinomas gave similar results with 60% and 86%, respectively, positive for CD74 with an intense, diffuse staining pattern. We hypothesized that precursor lesions would express levels of CD74 as high, or higher, than their respective carcinomas, since activation of survival pathways would be of particular importance at the early stages of neoplastic development. For PanIN lesions there was greater expression of CD74 within higher grade, PanIN-3 lesions, whereas the colonic adenomas showed no such trend, but overall, a higher frequency and intensity of CD74 labeling than was observed within the colon carcinomas. These findings are supportive of a role for CD74 in the development and maintenance of gastrointestinal neo-plasia, and provide a rationale for development of therapeutic agents that are able to block CD74 function, specifically within the tumor cell.
Collapse
Affiliation(s)
- David V Gold
- Garden State Cancer Center, Center for Molecular Medicine and Immunology Belleville, NJ 07109, USA.
| | | | | | | |
Collapse
|
48
|
Walseng E, Furuta K, Goldszmid RS, Weih KA, Sher A, Roche PA. Dendritic cell activation prevents MHC class II ubiquitination and promotes MHC class II survival regardless of the activation stimulus. J Biol Chem 2010; 285:41749-54. [PMID: 21047782 DOI: 10.1074/jbc.m110.157586] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of MHC class II (MHC-II) on the surface of antigen-presenting cells, such as dendritic cells (DCs), is tightly regulated during cellular activation. Many cells, including DCs, are activated following stimulation of innate Toll-like receptors (TLRs) by products of microorganisms. In the resting (immature) state, MHC-II is ubiquitinated in immature DCs and is rapidly degraded; however, after activation of these cells with MyD88-dependent TLR ligands, MHC-II ubiquitination is blocked, and MHC-II survival is prolonged. We now show that DC activation using MyD88-dependent TLR ligands, MyD88-independent TLR ligands, and even infection with the intracellular parasite Toxoplasma gondii leads to identical changes in MHC-II expression, ubiquitination, and surface stability, revealing a conserved role for enhanced MHC-II stability after DC activation by different stimuli.
Collapse
Affiliation(s)
- Even Walseng
- Experimental Immunology Branch, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
49
|
Di Bernardo A, Macor P, Guarnotta C, Franco G, Florena AM, Tedesco F, Tripodo C. Humoral immunotherapy of multiple myeloma: perspectives and perplexities. Expert Opin Biol Ther 2010; 10:863-73. [PMID: 20367529 DOI: 10.1517/14712591003774063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD Multiple myeloma (MM) is a hematological malignancy still remaining incurable despite the various therapies available, mainly because of the high fraction of refractory/relapsing cases. Therefore, the development of novel therapeutic approaches is urgently needed to overcome conventional treatment resistance. AREAS COVERED IN THIS REVIEW In the era of targeted therapies, treatments combining a high specificity for neoplastic cells and the capability to interfere with environmental signals should be regarded as the weapons of choice. Monoclonal antibody (mAb)-based humoral immunotherapy could satisfy both these requirements when applied to MM. Indeed, many of the molecules expressed on MM cells, such as CD38, CD40, CD49d, CD138 and CD162 are involved in the adhesive dynamics regulating the crosstalk between MM and the BM-microenvironment. WHAT THE READER WILL GAIN In this study we review those MM-associated molecules that have shown promising antitumor effects as targets of specific mAbs in preclinical settings, thus deserving to be considered for clinical investigation. TAKE HOME MESSAGE mAbs directed against MM-associated adhesion markers should be taken into account in clinical practice, since they could possibly represent the best available combination of tumor cytotoxicity, environmental signal deprivation and immune system redirection.
Collapse
Affiliation(s)
- Andrea Di Bernardo
- Dipartimento di Patologia Umana, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italia
| | | | | | | | | | | | | |
Collapse
|
50
|
Landsverk OJB, Bakke O, Gregers TF. MHC II and the endocytic pathway: regulation by invariant chain. Scand J Immunol 2009; 70:184-93. [PMID: 19703008 DOI: 10.1111/j.1365-3083.2009.02301.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The major histocompatibility complex (MHC) class I and II molecules perform vital functions in innate and adaptive immune responses towards invading pathogens. MHC class I molecules load peptides in the endoplasmatic reticulum (ER) and display them to the T cell receptors (TcR) on CD8(+) T lymphocytes. MHC class II molecules (MHC II) acquire their peptides in endosomes and present these to the TcR on CD4+ T lymphocytes. They are vital for the generation of humoral immune responses. MHC II assembly in the ER and trafficking to endosomes is guided by a specialized MHC II chaperone termed the invariant chain (Ii). Ii self-associates into a trimer in the ER, this provides a scaffold for the assembly of three MHC II heterodimers and blocks their peptide binding grooves, thereby avoiding premature peptide binding. Ii then transports the nascent MHC II to more or less specialized compartment where they can load peptides derived from internalized pathogens.
Collapse
Affiliation(s)
- O J B Landsverk
- Centre for Immune Regulation, Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | | | | |
Collapse
|