1
|
Yin L, Stern LJ. HLA-DM Focuses on Conformational Flexibility Around P1 Pocket to Catalyze Peptide Exchange. Front Immunol 2013; 4:336. [PMID: 24146666 PMCID: PMC3797982 DOI: 10.3389/fimmu.2013.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/03/2013] [Indexed: 11/13/2022] Open
Abstract
Peptides presented by major histocompatibility complex class II (MHCII) molecules to CD4+ T cells play a central role in the initiation of adaptive immunity. This antigen presentation process is characterized by the proteolytic cleavage of foreign and self proteins, and loading of the resultant peptides onto MHCII molecules. Loading and exchange of antigenic peptides is catalyzed by a non-classical MHCII molecule, HLA-DM. The impact of HLA-DM on epitope selection has been appreciated for a long time. However, the molecular mechanism by which HLA-DM mediates peptide exchange remains elusive. Here, we review recent efforts in elucidating how HLA-DM works, highlighted by two recently solved co-structures of HLA-DM bound to HLA-DO (a natural inhibitor of HLA-DM), or to HLA-DR1 (a common MHCII). In light of these efforts, a model for HLA-DM action in which HLA-DM utilizes conformational flexibility around the P1 pocket of the MHCII-peptide complex to catalyze peptide exchange is proposed.
Collapse
Affiliation(s)
- Liusong Yin
- Department of Pathology, University of Massachusetts Medical School , Worcester, MA , USA
| | | |
Collapse
|
2
|
Ferrante A. HLA-DM: arbiter conformationis. Immunology 2013; 138:85-92. [PMID: 23113687 DOI: 10.1111/imm.12030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022] Open
Abstract
The recognition by CD4(+) T cells of peptides bound to class II MHC (MHCII) molecules expressed on the surface of antigen-presenting cells is a key step in the initiation of an adaptive immune response. Presentation of peptides is the outcome of an intracellular selection process occurring in dedicated endosomal compartments involving, among others, an MHCII-like molecule named HLA-DM (DM). The impact of DM on the epitope selection machinery has been known for more than 15 years. However, the mechanism by which DM skews the presented repertoire in favour of kinetically stable complexes has remained elusive. Here, a review of the most recent observations in the field is presented, pointing to the possibility that DM decides the survival of a peptide-MHCII complex (pMHCII) on the basis of its conformational flexibility, which is a function of the 'tightness' of interaction between the peptide and the MHCII at a specific region of the binding site.
Collapse
Affiliation(s)
- Andrea Ferrante
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
| |
Collapse
|
3
|
Call MJ. Small molecule modulators of MHC class II antigen presentation: Mechanistic insights and implications for therapeutic application. Mol Immunol 2011; 48:1735-43. [DOI: 10.1016/j.molimm.2011.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 02/02/2023]
|
4
|
McFarland BJ, Beeson C. Binding interactions between peptides and proteins of the class II major histocompatibility complex. Med Res Rev 2002; 22:168-203. [PMID: 11857638 DOI: 10.1002/med.10006] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The activation of helper T cells by peptides bound to proteins of the class II Major Histocompatibility Complex (MHC II) is pivotal to the initiation of an immune response. The primary functional requirement imposed on MHC II proteins is the ability to efficiently bind thousands of different peptides. Structurally, this is reflected in a unique architecture of binding interactions. The peptide is bound in an extended conformation within a groove on the membrane distal surface of the protein that is lined with several pockets that can accommodate peptide side-chains. Conserved MHC II protein residues also form hydrogen bonds along the length of the peptide main-chain. Here we review recent advances in the study of peptide-MHC II protein reactions that have led to an enhanced understanding of binding energetics. These results demonstrate that peptide-MHC II protein complexes achieve high affinity binding from the array of hydrogen bonds that are energetically segregated from the pocket interactions, which can then add to an intrinsic hydrogen bond-mediated affinity. Thus, MHC II proteins are unlike antibodies, which utilize cooperativity among binding interactions to achieve high affinity and specificity. The significance of these observations is discussed within the context of possible mechanisms for the HLA-DM protein that regulates peptide presentation in vivo and the design of non-peptide molecules that can bind MHC II proteins and act as vaccines or immune modulators.
Collapse
Affiliation(s)
- Benjamin J McFarland
- Program in Biomolecular Structure and Design, Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700
| | | |
Collapse
|
5
|
Xu M, Li J, Gulfo JV, Von Hofe E, Humphreys RE. MHC class II allosteric site drugs: new immunotherapeutics for malignant, infectious and autoimmune diseases. Scand J Immunol 2001; 54:39-44. [PMID: 11439146 DOI: 10.1046/j.1365-3083.2001.00964.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The discovery of the interactions of the 'Ii-Key' segment of the Ii protein with the major histocmpatibility complex (MHC) Class II allosteric site, which is adjacent to the antigenic peptide-binding site, creates therapeutic opportunities by regulating the antigenic peptide binding to MHC class II molecules. The binding of Ii-Key to the MHC class II allosteric site loosens the hold of the MHC Class II 'clamshell' on antigenic peptides and leads to highly efficient antigenic peptide charging to or releasing from the MHC class II antigenic peptide-binding groove. Ii-Key peptide-induced spilling of bound antigenic peptide, or replacement with inert blockers, leads to 'inert immunosuppression'. Highly efficient replacement of ambient with vaccine peptides by Ii-Key permits 'active immunosuppression' for antigen-specific control of autoimmune diseases in the absence of cytokines or adjuvants. On the other hand, active immunization against cancer or infectious disease can result from epitope replacement mediated by Ii-Key and accompanied by cytokines or other adjuvants. Finally, linking the Ii-Key peptide through a simple polymethylene bridge to an antigenic sequence vastly increases the potency of MHC Class II peptide vaccines. In summary, the discovery of the MHC class II allosteric site allows one to increase the efficiency of MHC class II-related, antigenic epitope-specific therapy for malignant, infectious, and autoimmune diseases. The focus of this review is on the mechanism and potential clinical use of such novel allosteric site-directed, Ii-key drugs.
Collapse
Affiliation(s)
- M Xu
- Antigen Express, Inc., One Innovation Drive, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
6
|
García-Echeverría C, Jiang L, Ramsey TM, Sharma SK, Chen YP. A new Antennapedia-derived vector for intracellular delivery of exogenous compounds. Bioorg Med Chem Lett 2001; 11:1363-6. [PMID: 11378355 DOI: 10.1016/s0960-894x(01)00208-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe the design, synthesis and cell translocation capacity of a peptide derived from the third alpha-helix of the homeodomain of Antennapedia. The new sequence appears to be an efficient and nontoxic means to deliver a covalently linked peptide cargo into cells.
Collapse
|
7
|
Abstract
The immune system has evolved complex mechanisms for the recognition and elimination of pathogens. CD4+ helper T lymphocytes play a central role in orchestrating immune responses and their activation is carefully regulated. These cells selectively recognize short peptide antigens stably associated with membrane-bound class II histocompatibility glycoproteins that are selectively expressed in specialized antigen presenting cells. The class II-peptide complexes are generated through a series of events that occur in membrane-bound compartments within antigen presenting cells that, collectively, have become known as the class II antigen processing pathway. In the present paper, our current understanding of this pathway is reviewed with emphasis on mechanisms that regulate peptide binding by class II histocompatibility molecules.
Collapse
Affiliation(s)
- P E Jensen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Benmohamed L, Thomas A, Bossus M, Brahimi K, Wubben J, Gras-Masse H, Druilhe P. High immunogenicity in chimpanzees of peptides and lipopeptides derived from four new Plasmodium falciparum pre-erythrocytic molecules. Vaccine 2000; 18:2843-55. [PMID: 10812228 DOI: 10.1016/s0264-410x(00)00068-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated the immunogenicity in chimpanzees of twelve synthetic peptides derived from four new Plasmodium falciparum molecules expressed at pre-erythrocytic stages of the human malaria parasite. These parasite molecules were initially selected through their ability to be recognized by stage restricted human antibodies. Twelve 20- to 41-mer peptides representing potential human B- or T-cell epitopes were selected from these proteins, and synthesized. Six of these were modified by a C-terminal lipidic chain in order to re-inforce their immunogenicity. Strong B- and T-helper cell responses were induced in chimpanzees by lipopeptides injected without adjuvant and by peptides in Montanide. All twelve peptides induced CD4(+) T-cell proliferative responses, as well as the secretion of IFN-gamma (some of them at very high levels) and eleven peptides induced antibody responses. The immune responses elicited in this way were reactive with native parasite proteins, as shown by recall studies with sporozoite stage proteins, and proved to be long-lasting (up to 10 months after immunization). Our results support the strategy employed to select these four new malarial antigens and the corresponding peptides, and suggest that the immunizing formulations are both efficient and clinically acceptable.
Collapse
Affiliation(s)
- L Benmohamed
- Unité de Parasitologie Bio-Médicale, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Anderson TG, McConnell HM. Interpretation of biphasic dissociation kinetics for isomeric class II major histocompatibility complex-peptide complexes. Biophys J 1999; 77:2451-61. [PMID: 10545347 PMCID: PMC1300521 DOI: 10.1016/s0006-3495(99)77081-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antigenic peptides bound to class II major histocompatibility complex (MHC) proteins play a key role in the distinction between "self" and "nonself" by the cellular immune system. Although the formation and dissociation of these complexes are often thought of in terms of the simple mechanism [formula in text], studies of MHC-peptide dissociation kinetics suggest that multiple interconverting forms of the bound MHC-peptide complex can be formed. However, the precise relationship between observed dissociation data and proposed multiple-complex mechanisms has not been systematically examined. Here we provide a mathematical analysis to fill this gap and attempt to clarify the kinetic behavior that is expected to result from the proposed mechanisms. We also examine multiple-complex dynamics that can be "hidden" in conventional experiments. Although we focus on MHC-peptide interactions, the analysis provided here is fully general and applies to any ligand-receptor system having two distinct bound states.
Collapse
Affiliation(s)
- T G Anderson
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
10
|
Schmitt L, Kratz JR, Davis MM, McConnell HM. Catalysis of peptide dissociation from class II MHC-peptide complexes. Proc Natl Acad Sci U S A 1999; 96:6581-6. [PMID: 10359754 PMCID: PMC21957 DOI: 10.1073/pnas.96.12.6581] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Certain peptides such as dynorphin A [dynA-(1-13)] enhance the release of antigenic peptides bound to class II MHC molecules at neutral pH. This enhanced release has been termed push off. Previous work has shown that the antigenic pigeon cytochrome c peptide PCC-(89-104) has at least two conformational isomers when bound to the class II MHC protein I-Ek. We have accordingly studied the push off of PCC-(89-104) from the complex PCC-(89-104)/I-Ek to see whether these isomeric conformations are distinguished by the push-off effect. A comparison of the association and dissociation kinetics of PCC-(89-104)/I-Ek in the presence of dynA-(1-13) shows that dynA-(1-13) does not simply replace PCC-(89-104) but rather acts catalytically. The major product is peptide-free I-Ek, which is receptive to further peptide binding. Evidence is presented that a two peptide-one MHC complex is formed in solution. This ternary complex represents the first step of the mechanism of push off. 19F NMR data are presented that indicate that dynA-(1-13) interacts specifically with only one of the two isomeric complexes of PCC-(89-104) and I-Ek. A push-off mechanism is proposed in which dynA-(1-13) binds outside the peptide binding groove. In a second step, the dissociation of one of the two isomers is specifically enhanced. Thus the push-off effect may be useful for identifying conformational isomers and for separating them.
Collapse
Affiliation(s)
- L Schmitt
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
11
|
Oshima M, Yokoi T, Deitiker P, Atassi MZ. T cell responses in EAMG-susceptible and non-susceptible mouse strains after immunization with overlapping peptides encompassing the extracellular part of Torpedo californica acetylcholine receptor alpha chain. Implication to role in myasthenia gravis of autoimmune T-cell responses against receptor degradation products. Autoimmunity 1998; 27:79-90. [PMID: 9583739 DOI: 10.3109/08916939809008038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To study the role in myasthenia gravis (MG) of peptides resulting from acetylcholine receptor (AChR) degradation, we examined the ability of AChR peptides to induce T cell responses that are capable of cross-reacting with intact AChR. The studies were carried out in an experimental autoimmune MG (EAMG)-susceptible mouse strain [C57BL/6 (B6)] as well as in two non-susceptible strains [B6.C-H-2bm12 (bm12) and C3H/He]. A set of overlapping peptides encompassing the extracellular part (residues 1-210) of the alpha-chain of Torpedo californica (t) AChR were used, individually or in equimolar mixtures, as immunogens. In B6, immunization with peptides alpha45-60, alpha111-126, alpha146-162 and alpha182-198 gave T cells that responded in vitro to the correlate immunizing peptide. Only the T cells against the latter three peptides cross-reacted with tAChR. Peptide alpha146-162 exhibited the highest in vitro reaction with the immunizing peptide and cross-reaction with tAChR. T cells obtained by immunization of B6 with an equimolar mixture of the peptides responded in vitro to peptides alpha111-126, alpha146-162 and alpha182-198 and cross-reacted very strongly with tAChR. In bm12 and C3H/He, a number of peptides evoked, when used individually as immunogens, strong or moderate T cell responses that recognized in vitro the correlate immunizing peptide but cross-reacted poorly with tAChR. Immunization with the mixture of the peptides gave T cells that recognized several peptides in each strain butdid not cross-react with alpha146-162 or tAChR. The results indicate that the ability to recognize alpha146-162 or AChR by T cells against peptides resulting from receptor degradation can account for the susceptibility to, and aggravation of, MG in B6.
Collapse
Affiliation(s)
- M Oshima
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
12
|
Oshima M, Middlebrook JL, Atassi MZ. Antibodies and T cells against synthetic peptides of the C-terminal domain (Hc) of botulinum neurotoxin type A and their cross-reaction with Hc. Immunol Lett 1998; 60:7-12. [PMID: 9541456 DOI: 10.1016/s0165-2478(97)00124-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Seventeen peptides containing T cell and/or antibody (Ab) epitopes previously localized on Hc of botulinum neurotoxin type A were used in SJL and BALB/c mice as immunogens either individually or as an equimolar mixture of groups that contained epitopes of T cells, Abs or both, to determine their abilities to generate T cells and/or Abs that recognize intact Hc. In SJL, peptide 897-915 which included both T cell and Ab epitopes, elicited Abs that cross-reacted very strongly with Hc. In BALB/c, peptides 869-887, 883-901, 981-999 and 1275-1296 which contained Ab epitopes generated Abs that cross-reacted strongly with Hc. A mixture of peptides that contained T cell and Ab epitopes was effective in both strains in eliciting T cells and Abs that cross-reacted with Hc. This mixture form gave a quicker rise (after two injections) in cross-reactive (with Hc) Ab titer as compared to other peptide mixtures or the individual peptides, and sustained in BALB/c a high Ab titer upon further booster injections. Some of the regions that elicited crossreactive immunity to Hc have sequence similarity to other clostridial toxins, suggesting that one or more of these synthetic peptides might provide cross-protection against those toxins.
Collapse
Affiliation(s)
- M Oshima
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Pareja E, Tobes R, Martín J, Nieto A. The tetramer model: a new view of class II MHC molecules in antigenic presentation to T cells. TISSUE ANTIGENS 1997; 50:421-8. [PMID: 9389315 DOI: 10.1111/j.1399-0039.1997.tb02896.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Crystallographic studies suggest a plausible divalent interaction between T-cell receptor (TCR) and MHC class II molecules. In addition, biochemical data suggest that these divalent MHC molecules are preformed at the membrane of the antigen-presenting cell. The tetramer model is based on these preformed tetrameric class II molecules that can be loaded with identical or different peptides in their two grooves. This enables divalent class II molecules to deliver two different messages to T cell: 1) a two-peptide message, in which the tetramer with two identical peptides is able to cross-link two TCRs triggering full activation of a T cell. At the thymic level we propose that this message induces negative selection; or 2) a one-peptide message: only one of the peptides loaded in the class II tetramer is able to interact with that TCR. This message would be involved in triggering partial activation phenomena in mature lymphocytes, whereas in thymocytes this message would mediate positive selection. Since high concentrations of a peptide would favor the load of tetramers with identical peptides, the tetramer could therefore be viewed as a quantitative-qualitative transducer that would trigger different responses depending on the concentration of antigenic peptides.
Collapse
Affiliation(s)
- E Pareja
- Sección de Biologia Teórica, Subdirección de Investigación y Docencia, Hospital Virgen de las Nieves, Granada, Spain.
| | | | | | | |
Collapse
|
14
|
Tompkins SM, Moore JC, Jensen PE. An insulin peptide that binds an alternative site in class II major histocompatibility complex. J Exp Med 1996; 183:857-66. [PMID: 8642290 PMCID: PMC2192356 DOI: 10.1084/jem.183.3.857] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report that a peptide from the B chain of insulin, B(10-30), binds with high affinity to multiple class II proteins, including IAb,d,k, IEd,k, and DR1. The ability of B(10-30) to inhibit the binding of other peptide antigens to class II does not correlate with its affinity for class II. B(10-30) only weakly inhibits the binding of antigenic peptides. Conversely, peptides with high affinity for the peptide-binding groove of various class II proteins do not inhibit B(10-30) binding. The rate of association of B(10-30) with class II is unusually rapid, approaching saturation in 1-2 h compared with 1-2 d for classical peptide antigens in the same conditions. The dissociation rate is also relatively rapid. The B(10-30) peptide inhibits the binding of the super-antigen staphylococcal enterotoxin B (SEB) to IAk. It also inhibits SEB-mediated T cell activation. These observations support the conclusion that B(10-30) binds to a site outside the peptide-binding groove. Our findings indicate that short-lived peptide-class II complexes can be formed through interactions involving the SEB-binding site and raise the possibility that alternative complexes may serve as T cell receptor ligands.
Collapse
Affiliation(s)
- S M Tompkins
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
15
|
Fineschi B, Arneson LS, Naujokas MF, Miller J. Proteolysis of major histocompatibility complex class II-associated invariant chain is regulated by the alternatively spliced gene product, p41. Proc Natl Acad Sci U S A 1995; 92:10257-61. [PMID: 7479763 PMCID: PMC40775 DOI: 10.1073/pnas.92.22.10257] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Invariant chain (Ii) is an intracellular type II transmembrane glycoprotein that is associated with major histocompatibility complex class II molecules during biosynthesis. Ii exists in two alternatively spliced forms, p31 and p41. Both p31 and p41 facilitate folding of class II molecules, promote egress from the endoplasmic reticulum, prevent premature peptide binding, and enhance localization to proteolytic endosomal compartments that are thought to be the sites for Ii degradation, antigen processing, and class II-peptide association. In spite of the dramatic and apparently equivalent effects that p31 and p41 have on class II biosynthesis, the ability of invariant chain to enhance antigen presentation to T cells is mostly restricted to p41. Here we show that degradation of Ii leads to the generation of a 12-kDa amino-terminal fragment that in p41-positive, but not in p31-positive, cells remains associated with class II molecules for an extended time. Interestingly, we find that coexpression of the two isoforms results in a change in the pattern of p31 degradation such that endosomal processing of p31 also leads to extended association of a similar 12-kDa fragment with class II molecules. These data raise the possibility that p41 may have the ability to impart its pattern of proteolytic processing on p31 molecules expressed in the same cells. This would enable a small number of p41 molecules to modify the post-translational transport and/or processing of an entire cohort of class II-Ii complexes in a manner that could account for the unique ability of p41 to enhance antigen presentation.
Collapse
Affiliation(s)
- B Fineschi
- Department of Pharmacology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
16
|
Adams S, Humphreys RE. Invariant chain peptides enhancing or inhibiting the presentation of antigenic peptides by major histocompatibility complex class II molecules. Eur J Immunol 1995; 25:1693-702. [PMID: 7614997 DOI: 10.1002/eji.1830250632] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two soluble invariant chain (Ii) peptides with overlapping sequences had contrasting effects on the presentation of antigenic peptides by murine Ad, Ak, Ed, and Ek major histocompatibility complex (MHC) class II molecules. Naturally produced class II-associated invariant chain peptides human (h)Ii81-104/murine (m)Ii80-103 inhibited antigen presentation on these MHC class II alleles in a manner consistent with competitive inhibition. The Ii-4 peptides hIi77-92/mIi76-91 enhanced presentation of antigenic peptides on I-E class II alleles by promoting the exchange of peptides at the cell surface. Treatment of antigen-presenting cells (APC) with Ii-4 before the addition of antigenic peptide greatly enhanced subsequent T cell responses, while treatment of APC with Ii-4 after antigenic peptide binding decreased subsequent T cell responses. The hIi81-104 and mIi80-103 peptides inhibited T cell responses in both types of assays. The binding of biotinylated antigenic peptide to MHC class II-transfected L cells, as measured by flow cytometry, was inhibited by mIi80-103 and enhanced by mIi-4. Segments of Ii fragments remaining associated with MHC class II, or released Ii peptides, appear to regulate the formation of stable antigenic peptide/MHC class II complexes either positively or negatively through interactions at or near the antigenic peptide binding site. These findings open a pathway for the design of novel therapeutics based on the structure and function of natural and rationally designed fragments of Ii.
Collapse
Affiliation(s)
- S Adams
- Department of Pharmacology, University of Massachusetts Medical Center, Worcester, USA
| | | |
Collapse
|
17
|
Beeson C, McConnell HM. Kinetic intermediates in the reactions between peptides and proteins of major histocompatibility complex class II. Proc Natl Acad Sci U S A 1994; 91:8842-5. [PMID: 8090733 PMCID: PMC44702 DOI: 10.1073/pnas.91.19.8842] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The kinetics of the reactions between fluorescently labeled sperm whale myoglobin-(110-121) peptide and the murine major histocompatibility complex class II protein I-Ed have been analyzed. The presence in solution of both short- and long-lived protein-peptide complexes is demonstrated by the biphasic dissociation of the myoglobin peptide from I-Ed. The formation of the long-lived terminal complex is preceded by a characteristic induction phase. It is shown that the initially formed complex of the myoglobin peptide and I-Ed is a kinetic intermediate that undergoes a unimolecular reaction to form the terminal complex. Reactions between peptides and the class II proteins thus involve an intermediate structurally distinct from the terminal complex. The terminal complex presumably has a structure that is biologically active and similar to the published class II protein-peptide crystal structure.
Collapse
Affiliation(s)
- C Beeson
- Department of Chemistry, Stanford University, CA 94305
| | | |
Collapse
|
18
|
Urban RG, Chicz RM, Strominger JL. Selective release of some invariant chain-derived peptides from HLA-DR1 molecules at endosomal pH. J Exp Med 1994; 180:751-5. [PMID: 8046351 PMCID: PMC2191616 DOI: 10.1084/jem.180.2.751] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The predominant peptides bound to major histocompatibility complex class II molecules expressed on human B cells are derived from a relatively limited number of self proteins. To determine whether any of the prebound self peptides might be released in endosomes during recycling, water-soluble HLA-DR1 molecules were incubated with a high affinity synthetic peptide at pH 4.0 and 7.0 at 37 degrees C. The resulting bound peptide repertoire was then acid extracted, and separated by reversed-phase high performance liquid chromatography. Using a combination of mass spectrometry and ultraviolet spectroscopy, prebound self peptides and newly bound synthetic peptide were characterized. Most self peptides bound to HLA-DR1 were not appreciably released during extended exposure to pH 4.0. However, some invariant chain-derived peptides were uniquely released at this pH.
Collapse
Affiliation(s)
- R G Urban
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
19
|
Witt SN, McConnell HM. Formation and dissociation of short-lived class II MHC-peptide complexes. Biochemistry 1994; 33:1861-8. [PMID: 8110789 DOI: 10.1021/bi00173a032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The incubation of a detergent-solubilized class II MHC protein with excess peptide at 37 degrees C leads to the formation of long-lived protein-peptide complexes (alpha beta P*), which have reported dissociation half-times at 37 degrees C from 30 to 100 h (alpha beta P*-->alpha beta + P*). Here we report an unexpected temperature effect on the reaction between class II MHC and added peptide. When the detergent-solubilized mouse class II MHC protein I-Ad is incubated with excess labeled peptide at 4 degrees C, a large fraction of the resultant complexes are relatively short-lived, with dissociation half-times at 40 degrees C from 2 to 0.2 h. Short-lived complexes formation and dissociation are both characterized by nonexponential kinetics. Short-lived I-A(d)-peptide complexes may contain two peptides, where the second, added fluorescent peptide is prevented from utilizing all the potential intermolecular interactions in the binding site due to the prior partial occupation of the binding site by a prebound peptide.
Collapse
Affiliation(s)
- S N Witt
- Department of Chemistry, Stanford University, California 94305
| | | |
Collapse
|