1
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
3
|
Zhang R, Wang P, Ma X, Wu Y, Luo C, Qiu L, Zeshan B, Yang Z, Zhou Y, Wang X. Nanopore-Based Direct RNA-Sequencing Reveals a High-Resolution Transcriptional Landscape of Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2021; 13:2531. [PMID: 34960801 PMCID: PMC8706258 DOI: 10.3390/v13122531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The TRS-mediated discontinuous transcription process is a hallmark of Arteriviruses. Precise assessment of the intricate subgenomic RNA (sg mRNA) populations is required to understand the kinetics of viral transcription. It is difficult to reconstruct and comprehensively quantify splicing events using short-read sequencing, making the identification of transcription-regulatory sequences (TRS) particularly problematic. Here, we applied long-read direct RNA sequencing to characterize the recombined RNA molecules produced in porcine alveolar macrophages during early passage infection of porcine reproductive and respiratory syndrome virus (PRRSV). Based on sequencing two PRRSV isolates, namely XM-2020 and GD, we revealed a high-resolution and diverse transcriptional landscape in PRRSV. The data revealed intriguing differences in subgenomic recombination types between the two PRRSVs while also demonstrating TRS-independent heterogeneous subpopulation not previously observed in Arteriviruses. We find that TRS usage is a regulated process and share the common preferred TRS in both strains. This study also identified a substantial number of TRS-mediated transcript variants, including alternative-sg mRNAs encoding the same annotated ORF, as well as putative sg mRNAs encoded nested internal ORFs, implying that the genetic information encoded in PRRSV may be more intensively expressed. Epigenetic modifications have emerged as an essential regulatory layer in gene expression. Here, we gained a deeper understanding of m5C modification in poly(A) RNA, elucidating a potential link between methylation and transcriptional regulation. Collectively, our findings provided meaningful insights for redefining the transcriptome complexity of PRRSV. This will assist in filling the research gaps and developing strategies for better control of the PRRS.
Collapse
Affiliation(s)
- Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Xin Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Yifan Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Chen Luo
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Li Qiu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Basit Zeshan
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Johar Town, Lahore 54000, Pakistan;
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (R.Z.); (P.W.); (X.M.); (Y.W.); (C.L.); (L.Q.); (Z.Y.)
| |
Collapse
|
4
|
Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021; 593:362-371. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.
Collapse
|
5
|
de Breyne S, Vindry C, Guillin O, Condé L, Mure F, Gruffat H, Chavatte L, Ohlmann T. Translational control of coronaviruses. Nucleic Acids Res 2020; 48:12502-12522. [PMID: 33264393 PMCID: PMC7736815 DOI: 10.1093/nar/gkaa1116] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.
Collapse
Affiliation(s)
- Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Olivia Guillin
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lionel Condé
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| |
Collapse
|
6
|
Lin CH, Yang CY, Wang M, Ou SC, Lo CY, Tsai TL, Wu HY. Effects of Coronavirus Persistence on the Genome Structure and Subsequent Gene Expression, Pathogenicity and Adaptation Capability. Cells 2020; 9:E2322. [PMID: 33086697 PMCID: PMC7589090 DOI: 10.3390/cells9102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses are able to establish persistence. However, how coronaviruses react to persistence and whether the selected viruses have altered their characteristics remain unclear. In this study, we found that the persistent infection of bovine coronavirus (BCoV), which is in the same genus as SARS-COV-2, led to alterations of genome structure, attenuation of gene expression, and the synthesis of subgenomic mRNA (sgmRNA) with a previously unidentified pattern. Subsequent analyses revealed that the altered genome structures were associated with the attenuation of gene expression. In addition, the genome structure at the 5' terminus and the cellular environment during the persistence were responsible for the sgmRNA synthesis, solving the previously unanswered question regarding the selection of transcription regulatory sequence for synthesis of BCoV sgmRNA 12.7. Although the BCoV variants (BCoV-p95) selected under the persistence replicated efficiently in cells without persistent infection, its pathogenicity was still lower than that of wild-type (wt) BCoV. Furthermore, in comparison with wt BCoV, the variant BCoV-p95 was not able to efficiently adapt to the challenges of alternative environments, suggesting wt BCoV is genetically robust. We anticipate that the findings derived from this fundamental research can contribute to the disease control and treatments against coronavirus infection including SARS-CoV-2.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung 40201, Taiwan;
| | - Shan-Chia Ou
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chen-Yu Lo
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Tsung-Lin Tsai
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-H.L.); (C.-Y.Y.); (C.-Y.L.); (T.-L.T.)
| |
Collapse
|
7
|
Ke TY, Liao WY, Wu HY. A leaderless genome identified during persistent bovine coronavirus infection is associated with attenuation of gene expression. PLoS One 2013; 8:e82176. [PMID: 24349214 PMCID: PMC3861326 DOI: 10.1371/journal.pone.0082176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023] Open
Abstract
The establishment of persistent viral infection is often associated with the selection of one or more mutant viruses. For example, it has been found that an intraleader open reading frame (ORF) in genomic and subgenomic mRNA (sgmRNA) molecules is selected during bovine coronavirus (BCoV) persistence which leads to translation attenuation of the downstream ORF. Here, we report the unexpected identification of leaderless genomes, in addition to leader-containing genomes, in a cell culture persistently infected with BCoV. The discovery was made by using a head-to-tail ligation method that examines genomic 5′-terminal sequences at different times postinfection. Functional analyses of the leaderless genomic RNA in a BCoV defective interfering (DI) RNA revealed that (1) the leaderless genome was able to serve as a template for the synthesis of negative-strand genome, although it cannot perform replicative positive-strand genomic RNA synthesis, and (2) the leaderless genome retained its function in translation and transcription, although the efficiency of these processes was impaired. Therefore, this previously unidentified leaderless genome is associated with the attenuation of genome expression. Whether the leaderless genome contributes to the establishment of persistent infection remains to be determined.
Collapse
Affiliation(s)
- Ting-Yung Ke
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Wei-Yu Liao
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
| | - Hung-Yi Wu
- Institute of Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan ROC
- * E-mail:
| |
Collapse
|
8
|
Reselection of a genomic upstream open reading frame in mouse hepatitis coronavirus 5'-untranslated-region mutants. J Virol 2013; 88:846-58. [PMID: 24173235 DOI: 10.1128/jvi.02831-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An AUG-initiated upstream open reading frame (uORF) encoding a potential polypeptide of 3 to 13 amino acids (aa) is found within the 5' untranslated region (UTR) of >75% of coronavirus genomes based on 38 reference strains. Potential CUG-initiated uORFs are also found in many strains. The AUG-initiated uORF is presumably translated following genomic 5'-end cap-dependent ribosomal scanning, but its function is unknown. Here, in a reverse-genetics study with mouse hepatitis coronavirus, the following were observed. (i) When the uORF AUG-initiating codon was replaced with a UAG stop codon along with a U112A mutation to maintain a uORF-harboring stem-loop 4 structure, an unimpaired virus with wild-type (WT) growth kinetics was recovered. However, reversion was found at all mutated sites within five virus passages. (ii) When the uORF was fused with genomic (main) ORF1 by converting three in-frame stop codons to nonstop codons, a uORF-ORF1 fusion protein was made, and virus replicated at WT levels. However, a frameshifting G insertion at virus passage 7 established a slightly 5'-extended original uORF. (iii) When uAUG-eliminating deletions of 20, 30, or 51 nucleotides (nt) were made within stem-loop 4, viable but debilitated virus was recovered. However, a C80U mutation in the first mutant and an A77G mutation in the second appeared by passage 10, which generated alternate uORFs that correlated with restored WT growth kinetics. In vitro, the uORF-disrupting nondeletion mutants showed enhanced translation of the downstream ORF1 compared with the WT. These results together suggest that the uORF represses ORF1 translation yet plays a beneficial but nonessential role in coronavirus replication in cell culture.
Collapse
|
9
|
An upstream open reading frame modulates ebola virus polymerase translation and virus replication. PLoS Pathog 2013; 9:e1003147. [PMID: 23382680 PMCID: PMC3561295 DOI: 10.1371/journal.ppat.1003147] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 12/06/2012] [Indexed: 12/18/2022] Open
Abstract
Ebolaviruses, highly lethal zoonotic pathogens, possess longer genomes than most other non-segmented negative-strand RNA viruses due in part to long 5′ and 3′ untranslated regions (UTRs) present in the seven viral transcriptional units. To date, specific functions have not been assigned to these UTRs. With reporter assays, we demonstrated that the Zaire ebolavirus (EBOV) 5′-UTRs lack internal ribosomal entry site function. However, the 5′-UTRs do differentially regulate cap-dependent translation when placed upstream of a GFP reporter gene. Most dramatically, the 5′-UTR derived from the viral polymerase (L) mRNA strongly suppressed translation of GFP compared to a β-actin 5′-UTR. The L 5′-UTR is one of four viral genes to possess upstream AUGs (uAUGs), and ablation of each uAUG enhanced translation of the primary ORF (pORF), most dramatically in the case of the L 5′-UTR. The L uAUG was sufficient to initiate translation, is surrounded by a “weak” Kozak sequence and suppressed pORF translation in a position-dependent manner. Under conditions where eIF2α was phosphorylated, the presence of the uORF maintained translation of the L pORF, indicating that the uORF modulates L translation in response to cellular stress. To directly address the role of the L uAUG in virus replication, a recombinant EBOV was generated in which the L uAUG was mutated to UCG. Strikingly, mutating two nucleotides outside of previously-defined protein coding and cis-acting regulatory sequences attenuated virus growth to titers 10–100-fold lower than a wild-type virus in Vero and A549 cells. The mutant virus also exhibited decreased viral RNA synthesis as early as 6 hours post-infection and enhanced sensitivity to the stress inducer thapsigargin. Cumulatively, these data identify novel mechanisms by which EBOV regulates its polymerase expression, demonstrate their relevance to virus replication and identify a potential therapeutic target. Filoviruses (Ebola and Marburg viruses) are emerging zoonotic pathogens that cause lethal hemorrhagic fever in humans and have the potential to be employed as bioterrorism agents. Currently, approved therapeutics to treat filovirus infections are not available and new treatment strategies could be facilitated by improved mechanistic insight into the virus replication cycle. Compared to other related viruses, filovirus messenger RNAs have unusually long 5′ untranslated regions (UTRs) with undefined functions. In the Zaire ebolavirus (EBOV) genome, four of its seven messenger RNAs have 5′-UTRs with a small upstream open reading frame (uORF). We found that a uORF present in the EBOV polymerase (L) 5′-UTR suppresses L protein production and established a reporter assay to demonstrate that this uORF maintains L translation following the induction of an innate immune response; a phenomenon observed with several uORF-containing cellular messenger RNAs. The presence of the uORF is important for optimal virus replication, because a mutant virus lacking the upstream reading frame replicates less efficiently than a wildtype virus, an attenuation which is more pronounced following the induction of cellular stress. These studies define a novel mechanism by which filovirus upstream open reading frames modulate virus protein translation in the face of an innate immune response and highlight their importance in filovirus replication.
Collapse
|
10
|
An optimal cis-replication stem-loop IV in the 5' untranslated region of the mouse coronavirus genome extends 16 nucleotides into open reading frame 1. J Virol 2011; 85:5593-605. [PMID: 21430057 DOI: 10.1128/jvi.00263-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 288-nucleotide (nt) 3' untranslated region (UTR) in the genome of the bovine coronavirus (BCoV) and 339-nt 3' UTR in the severe acute respiratory syndrome (SARS) coronavirus (SCoV) can each replace the 301-nt 3' UTR in the mouse hepatitis coronavirus (MHV) for virus replication, thus demonstrating common 3' cis-replication signals. Here, we show that replacing the 209-nt MHV 5' UTR with the ∼63%-sequence-identical 210-nt BCoV 5' UTR by reverse genetics does not yield viable virus, suggesting 5' end signals are more stringent or possibly are not strictly 5' UTR confined. To identify potential smaller, 5'-common signals, each of three stem-loop (SL) signaling domains and one inter-stem-loop domain from the BCoV 5' UTR was tested by replacing its counterpart in the MHV genome. The SLI/II domain (nucleotides 1 to 84) and SLIII domain (nucleotides 85 to 141) each immediately enabled near-wild-type (wt) MHV-like progeny, thus behaving similarly to comparable 5'-proximal regions of the SCoV 5' UTR as shown by others. The inter-stem-loop domain (nt 142 to 173 between SLs III and IV) enabled small plaques only after genetic adaptation. The SLIV domain (nt 174 to 210) required a 16-nt extension into BCoV open reading frame 1 (ORF1) for apparent stabilization of a longer BCoV SLIV (nt 174 to 226) and optimal virus replication. Surprisingly, pleiomorphic SLIV structures, including a terminal loop deletion, were found among debilitated progeny from intra-SLIV chimeras. The results show the inter-stem-loop domain to be a potential novel species-specific cis-replication element and that cis-acting SLIV in the viral genome extends into ORF1 in a manner that stabilizes its lower stem and is thus not 5' UTR confined.
Collapse
|
11
|
Abstract
Coronaviruses possess the largest known RNA genome, a 27- to 32-kb (+)-strand molecule that replicates in the cytoplasm. During virus replication, a 3' coterminal nested set of five to eight subgenomic (sg) mRNAs are made that are also 5' coterminal with the genome, because they carry the genomic leader as the result of discontinuous transcription at intergenic donor signals during (-)-strand synthesis when templates for sgmRNA synthesis are made. An unanswered question is whether the sgmRNAs, which appear rapidly and abundantly, undergo posttranscriptional amplification. Here, using RT-PCR and sequence analyses of head-to-tail-ligated (-) strands, we show that after transfection of an in vitro-generated marked sgmRNA into virus-infected cells, the sgmRNA, like the genome, can function as a template for (-)-strand synthesis. Furthermore, when the transfected sgmRNA contains an internally placed RNA-dependent RNA polymerase template-switching donor signal, discontinuous transcription occurs at this site, and a shorter, 3' terminally nested leader-containing sgmRNA is made, as evidenced by its leader-body junction and by the expression of a GFP gene. Thus, in principle, the longer-nested sgmRNAs in a natural infection, all of which contain potential internal template-switching donor signals, can function to increase the number of the shorter 3'-nested sgmRNAs. One predicted advantage of this behavior for coronavirus survivability is an increased chance of maintaining genome fitness in the 3' one-third of the genome via a homologous recombination between the (now independently abundant) WT sgmRNA and a defective genome.
Collapse
|
12
|
Delgui L, González D, Rodríguez JF. Infectious bursal disease virus persistently infects bursal B-lymphoid DT40 cells. J Gen Virol 2009; 90:1148-1152. [DOI: 10.1099/vir.0.008870-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious bursal disease virus (IBDV), an important avian pathogen, exhibits a specific tropism for immature B-lymphocyte populations. We have investigated the ability of IBDV to replicate in chicken B-lymphoid DT40 cells, a tumour cell line derived from the bursa of Fabricius of a chicken infected with avian leukosis virus. Our results show that IBDV persistently infects DT40 cells. Establishment of the persistent infection is associated with an extensive remodelling of the hypervariable region of the VP2 capsid polypeptide, accumulating 14 amino acid changes during the first 60 days of the persistent infection. The amino acid sequence of the non-structural VP5 polypeptide, involved in virus dissemination, is not altered during the persistent infection. Results described in this report constitute the first demonstration of the ability of IBDV to establish a persistent infection in vitro.
Collapse
Affiliation(s)
- Laura Delgui
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | - Dolores González
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | - José F. Rodríguez
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
13
|
Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc Natl Acad Sci U S A 2008; 105:19944-9. [PMID: 19036930 DOI: 10.1073/pnas.0808116105] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.
Collapse
|
14
|
Zhang J, Timoney PJ, MacLachlan NJ, McCollum WH, Balasuriya UBR. Persistent equine arteritis virus infection in HeLa cells. J Virol 2008; 82:8456-64. [PMID: 18579588 PMCID: PMC2519626 DOI: 10.1128/jvi.01249-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 01/22/2023] Open
Abstract
The horse-adapted virulent Bucyrus (VB) strain of equine arteritis virus (EAV) established persistent infection in high-passage-number human cervix cells (HeLa-H cells; passages 170 to 221) but not in low-passage-number human cervix cells (HeLa-L cells; passages 95 to 115) or in several other cell lines that were evaluated. However, virus recovered from the 80th passage of the persistently infected HeLa-H cells (HeLa-H-EAVP80) readily established persistent infection in HeLa-L cells. Comparative sequence analysis of the entire genomes of the VB and HeLa-H-EAVP80 viruses identified 16 amino acid substitutions, including 4 in the replicase (nsp1, nsp2, nsp7, and nsp9) and 12 in the structural proteins (E, GP2, GP3, GP4, and GP5). Reverse genetic studies clearly showed that substitutions in the structural proteins but not the replicase were responsible for the establishment of persistent infection in HeLa-L cells by the HeLa-H-EAVP80 virus. It was further demonstrated that recombinant viruses with substitutions in the minor structural proteins E and GP2 or GP3 and GP4 were unable to establish persistent infection in HeLa-L cells but that recombinant viruses with combined substitutions in the E (Ser53-->Cys and Val55-->Ala), GP2 (Leu15-->Ser, Trp31-->Arg, Val87-->Leu, and Ala112-->Thr), GP3 (Ser115-->Gly and Leu135-->Pro), and GP4 (Tyr4-->His and Ile109-->Phe) proteins or with a single point mutation in the GP5 protein (Pro98-->Leu) were able to establish persistent infection in HeLa-L cells. In summary, an in vitro model of EAV persistence in cell culture was established for the first time. This system can provide a valuable model for studying virus-host cell interactions, especially virus-receptor interactions.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Science, Maxwell H Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546-0099, USA
| | | | | | | | | |
Collapse
|
15
|
Archambault D, Kheyar A, de Vries AAF, Rottier PJM. The intraleader AUG nucleotide sequence context is important for equine arteritis virus replication. Virus Genes 2006; 33:59-68. [PMID: 16791420 PMCID: PMC7088518 DOI: 10.1007/s11262-005-0030-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 11/02/2005] [Indexed: 11/05/2022]
Abstract
The 5(-terminal leader sequence of the equine arteritis virus (EAV) genome contains an open reading frame (ORF) with an AUG codon in a suboptimal context for initiation of protein synthesis. To investigate the significance of this intraleader ORF (ILO), an expression plasmid was generated carrying a DNA copy of the subgenomic mRNA7 behind a T7 promoter. Capped RNA transcribed from this construct was shown to direct, in an in vitro translation system, the synthesis of leader peptide as well as N protein. Site-directed mutations aimed to either optimize or weaken the sequence context of the ILO start codon affected leader peptide synthesis as predicted; no peptide was detected when the initiation codon was incapacitated. Translation of the downstream N gene was inversely affected by leader peptide production, consistent with a ribosomal leaky scanning mechanism. To investigate the role of the leader peptide in the EAV replication life cycle we generated, using an infectious EAV cDNA clone, two mutant viruses in one of which the ILO start codon was in an optimal Kozak context for translation initiation while in the other the codon was again incapacitated. Surprisingly, both mutant viruses were equally viable and exhibited similar phenotypes in BHK-21 cells. However, their replication kinetics and viral yields were reduced relative to that of the wild-type parental virus, as were their plaque sizes. Importantly, the mutations introduced into the viruses appeared to be rapidly and precisely repaired upon passaging. Already after one viral passage a significant fraction of the viruses had regained the wild-type sequence as well as its phenotype. The results demonstrate that EAV replication is not dependent on the synthesis of the intraleader peptide. Rather, the leader peptide does not seem to have any function in the EAV life cycle. As we discuss, the available data indicate that the ILO 5( nucleotide sequence per se, not its functioning in translation initiation, is of critical importance for EAV replication.
Collapse
Affiliation(s)
- Denis Archambault
- Department of Biological Sciences, University of Québec at Montréal, Succursale Centre-Ville, P.O. Box 8888, H3C 3P8, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
16
|
Pasternak AO, Spaan WJM, Snijder EJ. Nidovirus transcription: how to make sense...? J Gen Virol 2006; 87:1403-1421. [PMID: 16690906 DOI: 10.1099/vir.0.81611-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC P4-26, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
17
|
Yamate M, Yamashita M, Goto T, Tsuji S, Li YG, Warachit J, Yunoki M, Ikuta K. Establishment of Vero E6 cell clones persistently infected with severe acute respiratory syndrome coronavirus. Microbes Infect 2005; 7:1530-40. [PMID: 16269264 PMCID: PMC7110502 DOI: 10.1016/j.micinf.2005.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/07/2005] [Accepted: 05/16/2005] [Indexed: 12/28/2022]
Abstract
Little information is available on persistent infection of severe acute respiratory syndrome (SARS) coronavirus (CoV). In this study, we established persistent infection of SARS-CoV in the Vero E6 cell line. Acute infection of Vero E6 with SARS-CoV produced a lytic infection with characteristic rounding cytopathic effects (CPE) and the production of a large number of infectious particles in the culture fluid within 3 days post-infection. Upon subsequent culturing of the remaining adherent cells, the cells gradually proliferated and recovered normal morphology similar to that of the parental cells, and continued to produce large numbers of infectious viral particles during the observation period of 5 months. Among a total of 87 cell clones obtained from the persistently infected Vero E6, only four cell clones (named #13, #18, #21, and #34) were positive for viral RNA. Clones #13, #18, and #34 shifted to viral RNA-negative during subsequent cultures, while #21 continuously produced infectious particles at a high rate. The SARS-CoV receptor, angiotensin-converting enzyme 2, was almost completely down regulated from the cell surface of persistently infected cells. Western blot analysis as well as electron microscopy indicated that the ratios of spike to nucleocapsid protein in clone #21 as well as its parental persistently infected cells were lower than that in the cells in the acute phase of infection. These Vero E6 cells persistently infected with SARS-CoV may be useful for clarifying the mechanism of the persistent infection and also for elucidating the possible pathophysiologic significance of such long-term maintenance of this virus.
Collapse
Affiliation(s)
- Masanobu Yamate
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu Y, Zhang X. Expression of cellular oncogene Bcl-xL prevents coronavirus-induced cell death and converts acute infection to persistent infection in progenitor rat oligodendrocytes. J Virol 2005; 79:47-56. [PMID: 15596800 PMCID: PMC538726 DOI: 10.1128/jvi.79.1.47-56.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine coronavirus mouse hepatitis virus (MHV) causes persistent infection of the central nervous system (CNS) in rodents, which has been associated with demyelination. However, the precise mechanism of MHV persistence in the CNS remains elusive. Here we show that the progenitor oligodendrocytes (central glial 4 [CG-4] cells) derived from newborn rat brain were permissive to MHV infection, which resulted in cell death, although viral replication was restricted. Interestingly, treatment with fetal bovine serum or exogenous expression of cellular oncogene Bcl-xL prevented CG-4 cells from MHV-induced cell death. Significantly, overexpression of Bcl-xL alone was sufficient to convert acute to persistent, nonproductive infection in CG-4 cells. This finding indicates that intracellular factors rather than viral components play a critical role in establishing viral persistence in CNS cells. Although viral genomic RNAs continuously persisted in Bcl-xL-expressing CG-4 cells over 10 passages, infectious virus could no longer be isolated beyond 2 passages of the cell. Such a phenomenon resembles the persistent MHV infection in animal CNS. Thus, the establishment of a persistent, nonproductive infection in CG-4 cells may provide a useful in vitro model for studying viral persistence in animal CNS. The data also suggest that direct virus-host cell interaction is one of the underlying mechanisms that regulate viral persistence in CNS cells.
Collapse
Affiliation(s)
- Yin Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | |
Collapse
|
19
|
Raman S, Bouma P, Williams GD, Brian DA. Stem-loop III in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. J Virol 2003; 77:6720-30. [PMID: 12767992 PMCID: PMC156170 DOI: 10.1128/jvi.77.12.6720-6730.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Higher-order structures in the 5' untranslated region (UTR) of plus-strand RNA viruses are known in many cases to function as cis-acting elements in RNA translation, replication, or transcription. Here we describe evidence supporting the structure and a cis-acting function in defective interfering (DI) RNA replication of stem-loop III, the third of four predicted higher-order structures mapping within the 210-nucleotide (nt) 5' UTR of the 32-kb bovine coronavirus (BCoV) genome. Stem-loop III maps at nt 97 through 116, has a calculated free energy of -9.1 kcal/mol in the positive strand and -3.0 kcal/mol in the negative strand, and has associated with it beginning at nt 100 an open reading frame (ORF) potentially encoding an 8-amino-acid peptide. Stem-loop III is presumed to function in the positive strand, but its strand of action has not been established. Stem-loop III (i) shows phylogenetic conservation among group 2 coronaviruses and appears to have a homolog in coronavirus groups 1 and 3, (ii) has in all coronaviruses for which sequence is known a closely associated short, AUG-initiated intra-5' UTR ORF, (iii) is supported by enzyme structure-probing evidence in BCoV RNA, (iv) must maintain stem integrity for DI RNA replication in BCoV DI RNA, and (v) shows a positive correlation between maintenance of the short ORF and maximal DI RNA accumulation in BCoV DI RNA. These results indicate that stem-loop III in the BCoV 5' UTR is a cis-acting element for DI RNA replication and that its associated intra-5' UTR ORF may function to enhance replication. It is postulated that these two elements function similarly in the virus genome.
Collapse
Affiliation(s)
- Sharmila Raman
- Department of Microbiology, University of Tennessee, College of Veterinary Medicine, Knoxville, Tennessee 37996-0845, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
21
|
Alonso S, Izeta A, Sola I, Enjuanes L. Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J Virol 2002; 76:1293-308. [PMID: 11773405 PMCID: PMC135778 DOI: 10.1128/jvi.76.3.1293-1308.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Accepted: 10/19/2001] [Indexed: 11/20/2022] Open
Abstract
The transcription regulatory sequences (TRSs) of the coronavirus transmissible gastroenteritis virus (TGEV) have been characterized by using a helper virus-dependent expression system based on coronavirus-derived minigenomes to study the synthesis of subgenomic mRNAs. The TRSs are located at the 5' end of TGEV genes and include a highly conserved core sequence (CS), 5'-CUAAAC-3', that is essential for mediating a 100- to 1,000-fold increase in mRNA synthesis when it is located in the appropriate context. The relevant sequences contributing to TRS activity have been studied by extending the CS 5' upstream and 3' downstream. Sequences from virus genes flanking the CS influenced transcription levels from moderate (10- to 20-fold variation) to complete mRNA synthesis silencing, as shown for a canonical CS at nucleotide (nt) 120 from the initiation codon of the S gene that did not lead to the production of the corresponding mRNA. An optimized TRS has been designed comprising 88 nt from the N gene TRS, the CS, and 3 nt 3' to the M gene CS. Further extension of the 5'-flanking nucleotides (i.e., by 176 nt) decreased subgenomic RNA levels. The expression of a reporter gene (beta-glucuronidase) by using the selected TRS led to the production of 2 to 8 microg of protein per 10(6) cells. The presence of an appropriate Kozak context led to a higher level of protein expression. Virus protein levels were shown to be dependent on transcription and translation regulation.
Collapse
MESH Headings
- 3' Flanking Region/physiology
- 5' Flanking Region/physiology
- Animals
- Base Sequence
- Binding Sites
- Cell Line
- Conserved Sequence/physiology
- Coronavirus M Proteins
- Coronavirus Nucleocapsid Proteins
- DNA, Viral
- Gene Expression Regulation, Viral
- Genes, Viral
- Genome, Viral
- Male
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleocapsid/genetics
- Nucleocapsid Proteins
- Open Reading Frames
- RNA, Messenger/biosynthesis
- RNA, Viral/biosynthesis
- Regulatory Sequences, Nucleic Acid/physiology
- Spike Glycoprotein, Coronavirus
- Swine
- Transcription, Genetic
- Transmissible gastroenteritis virus/genetics
- Viral Envelope Proteins/genetics
- Viral Matrix Proteins/genetics
Collapse
Affiliation(s)
- Sara Alonso
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Tan C, Chang L, Shen S, Liu DX, Kwang J. Comparison of the 5' leader sequences of North American isolates of reference and field strains of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Genes 2001; 22:209-17. [PMID: 11324758 PMCID: PMC7088843 DOI: 10.1023/a:1008179726163] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 5' leader is documented to be an important regulatory element in many (+) ssRNAvirus genome. To understand the significance of the 5' leader RNA of PRRSV, we determined the complete leader sequences of fifteen different North American strains of PRRSV and predicted their secondary structures. Viruses analysed included three reference strains and nine field strains originating from different geographic locations. To further examine the leader region, one of the field strains was adapted to grow in tissue culture, and three clones were isolated. We also predicted the secondary structures of two European strains based on their published sequences. The predicted RNA secondary structures of the leader sequences suggested the existence of three conserved domains formed by the 5' region of the leader among the North American strains, two of which were conserved in the European strains. A variable structural domain was predicted from the 3' region of the leader sequences of the North American strains, where all tissue culture-adapted isolates were characterized by a stem-loop while field isolates were characterized by an internal bulge within the stem-loop.
Collapse
Affiliation(s)
- C Tan
- Institute of Molecular Agrobiology, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
23
|
Goldstein LA, Chen WT. Identification of an alternatively spliced seprase mRNA that encodes a novel intracellular isoform. J Biol Chem 2000; 275:2554-9. [PMID: 10644713 DOI: 10.1074/jbc.275.4.2554] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Seprase is a homodimeric 170-kDa integral membrane gelatinase that is related to the ectoenzyme dipeptidyl peptidase IV. We have identified an alternatively spliced seprase messenger from the human melanoma cell line LOX that encodes a novel truncated isoform, seprase-s. The splice variant mRNA is generated by an out-of-frame deletion of a 1223-base pair exonic region that encodes part of the cytoplasmic tail, transmembrane, and the membrane proximal-central regions of the extracellular domain (Val(5) through Ser(412)) of the seprase 97-kDa subunit (seprase-l). The seprase-s mRNA has an elongated 5' leader (548 nucleotides) that harbors at least two upstream open reading frames that inhibit seprase-s expression from a downstream major open reading frame. Deletion mutagenesis of the wild type splice variant cDNA confirms that initiation of the seprase-s coding sequence begins with an ATG codon that corresponds to Met(522) of seprase-l. The seprase-s open reading frame encodes a 239-amino acid polypeptide with an M(r) approximately 27,000 that precisely overlaps the carboxyl-terminal catalytic region of seprase-l.
Collapse
Affiliation(s)
- L A Goldstein
- Department of Medicine, Division of Medical Oncology, State University of New York, Stony Brook, New York 11794-8160, USA
| | | |
Collapse
|
24
|
Senanayake SD, Brian DA. Translation from the 5' untranslated region (UTR) of mRNA 1 is repressed, but that from the 5' UTR of mRNA 7 is stimulated in coronavirus-infected cells. J Virol 1999; 73:8003-9. [PMID: 10482548 PMCID: PMC112815 DOI: 10.1128/jvi.73.10.8003-8009.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Viral gene products are generally required in widely differing amounts for successful virus growth and assembly. For coronaviruses, regulation of transcription is a major contributor to these differences, but regulation of translation may also be important. Here, we examine the possibility that the 5' untranslated regions (UTRs), unique for each of the nine species of mRNA in the bovine coronavirus and ranging in length from 70 nucleotides (nt) to 210 nt (inclusive of the common 5'-terminal 65-nt leader), can differentially affect the rate of protein accumulation. When the natural 77-nt 5' UTR on synthetic transcripts of mRNA 7 (mRNA for N and I proteins) was replaced with the 210-nt 5' UTR from mRNA 1 (genomic RNA, mRNA for viral polymerase), approximately twofold-less N, or (N) CAT fusion reporter protein, was made in vitro. Twofold less was also made in vivo in uninfected cells when a T7 RNA polymerase-driven transient-transfection system was used. In coronavirus-infected cells, this difference surprisingly became 12-fold as the result of both a stimulated translation from the 77-nt 5' UTR and a repression of translation from the 210-nt 5' UTR. These results reveal that a differential 5' UTR-directed regulation of translation can occur in coronavirus-infected cells and lead us to postulate that the direction and degree of regulation is carried out by viral or virally induced cellular factors acting in trans on cis-acting elements within the 5' UTR.
Collapse
Affiliation(s)
- S D Senanayake
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845, USA
| | | |
Collapse
|
25
|
Singh M. A novel internal open reading frame product expressed from a polycistronic mRNA of porcine epidemic diarrhoea virus may not contribute to virus attenuation. J Gen Virol 1999; 80 ( Pt 8):1959-1963. [PMID: 10466791 DOI: 10.1099/0022-1317-80-8-1959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-culture-adapted (ca) porcine epidemic diarrhoea virus (PEDV) contains three internal open reading frames (I ORF) within the nucleocapsid protein gene and lacks the downstream counterpart of porcine transmissible gastroenteritis virus ORF7 or feline infectious peritonitis virus ORF6a. To confirm whether such features also exist in wild-type (wt) PEDV, the 3' 1800 nucleotides of its genome were sequenced and were found to be identical to those of ca virus. The coding potential of I-1 ORF was ascertained by transient expression in Vero cells followed by immunofluorescence using antipeptide sera. The I-1 protein was synthesized as a 12 kDa non-phosphorylated PEDV-specific protein that was not present in detectable amounts in virions. However, a low copy number of I-1 in the virion would suggest it is a structural component. Nevertheless, identical nucleotide sequences and gene expression strategies of attenuated ca virus and its virulent parent, wt PEDV, demonstrate that the 3' 1800 nucleotides or the genes and gene products encoded therein may not contribute to virus attenuation.
Collapse
Affiliation(s)
- Mahender Singh
- Institute of Virology, Faculty of Veterinary Medicine, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland1
| |
Collapse
|
26
|
Kheyar A, St-Laurent G, Diouri M, Dufresne J, Archambault D. Sequence determination and genetic analysis of the leader region of various equine arteritis virus isolates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:805-12. [PMID: 9782362 DOI: 10.1007/978-1-4615-5331-1_105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The entire leader sequence of ten equine arteritis virus (EAV) isolates including the Bucyrus reference strain was determined and analyzed at the primary nucleotide and secondary structure levels. The leader sequence of eight EAV isolates was determined to be 206 nucleotides (nt) in length, whereas those of the 86AB-A1 and 86NY-A1 isolates were found to be 205 and 207 nt in length, respectively. The sequence identity of the leader sequences between the different isolates and the Bucyrus reference strain ranged from 94.2 to 98.5%. An AUG start codon found at position 14 in all EAV isolates could initiate an open reading frame (ORF) that could produce a polypeptide of 37 amino acids, except for the 86NY-A1 isolate where the intraleader polypeptide would contain 54 amino acids. Five patterns of computer-predicted RNA secondary structures were identified in the ten EAV leader regions analyzed. All EAV isolates showed three conserved stem-loops (designated A, B and C). An additional conserved stem-loop (D) was observed in six EAV isolates, including the Bucyrus reference strain. Based on the presence or absence of stem-loop D, all EAV isolates analyzed in this study could be tentatively classified into two genogroups (I and II). The significance of the intraleader ORF and the predicted secondary structures has yet to be determined.
Collapse
Affiliation(s)
- A Kheyar
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | | | | | |
Collapse
|
27
|
Kheyar A, St-Laurent G, Diouri M, Archambault D. Nucleotide sequence and genetic analysis of the leader region of Canadian, American and European equine arteritis virus isolates. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 1998; 62:224-30. [PMID: 9684053 PMCID: PMC1189480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The extreme 5' end, the entire leader sequence of the Arvac vaccine strain, and 10 equine arteritis virus (EAV) isolates, including the ATCC Bucyrus reference strain and 5 Canadian field isolates, were determined and compared at the primary nucleotide and secondary structure levels. The leader sequence of eight EAV isolates, including the Bucyrus reference strain, and the leader sequence of the Arvac vaccine strain was determined to be 206 nt in length (not including the putative 5' cap structure-associated nucleotide) whereas those of the 86AB-A1 and 86NY-A1 isolates were found to be 205 and 207 nt in length, respectively. The sequence identity of the leader sequences, between the different isolates and the Bucyrus reference strain, ranged from 94.2 to 98.5%. Phylogenetic analysis and estimation of genetic distances, based on the leader nucleic acid sequences, showed that all EAV isolates/strains are likely to represent a large phylogenetically-related group. An AUG start codon found at position 14 in all EAV isolates/strains could initiate an open reading frame (ORF) that could produce a polypeptide of 37 amino acids, except for the 86NY-A1 isolate where the intraleader polypeptide would contain 54 amino acids. Computer-predicted RNA secondary structures were identified in the 11 EAV leader regions analyzed. All EAV isolates/strains showed 3 conserved stem-loops (designated A, B and C). An additional conserved stem-loop (D) was observed in 7 EAV isolates, including the Bucyrus reference strain. The leader region distal to stem-loop D did not contain conserved sequences or stem-loop structures common to the EAV isolates/strains.
Collapse
Affiliation(s)
- A Kheyar
- Département des Sciences Biologiques, Université du Québec à Montréal
| | | | | | | |
Collapse
|
28
|
Hsue B, Masters PS. A bulged stem-loop structure in the 3' untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 1997; 71:7567-78. [PMID: 9311837 PMCID: PMC192104 DOI: 10.1128/jvi.71.10.7567-7578.1997] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 3' untranslated region (UTR) of the positive-sense RNA genome of the coronavirus mouse hepatitis virus (MHV) contains sequences that are necessary for the synthesis of negative-strand viral RNA as well as sequences that may be crucial for both genomic and subgenomic positive-strand RNA synthesis. We have found that the entire 3' UTR of MHV could be replaced by the 3' UTR of bovine coronavirus (BCV), which diverges overall by 31% in nucleotide sequence. This exchange between two viruses that are separated by a species barrier was carried out by targeted RNA recombination. Our results define regions of the two 3' UTRs that are functionally equivalent despite having substantial sequence substitutions, deletions, or insertions with respect to each other. More significantly, our attempts to generate an unallowed substitution of a particular portion of the BCV 3' UTR for the corresponding region of the MHV 3' UTR led to the discovery of a bulged stem-loop RNA secondary structure, adjacent to the stop codon of the nucleocapsid gene, that is essential for MHV viral RNA replication.
Collapse
Affiliation(s)
- B Hsue
- Department of Biomedical Sciences, University at Albany, State University of New York, 12201, USA
| | | |
Collapse
|
29
|
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
30
|
Abstract
The mRNA encoding the 49-kDa nucleocapsid protein (N) of the bovine coronavirus is bicistronic. A 23-kDa protein, termed the I protein for the 'internal' open reading frame (ORF), is also synthetized but in the +1 reading frame beginning 61 nt downstream of the N start codon. Sequences flanking the N and I start codons suggest that the I ORF might be accessed by scanning ribosomes passing over the N start codon. Here we test this idea and demonstrate with translation studies both in vitro and in vivo that the I protein is synthesized according to the leaky scanning model for initiation of translation on the subgenomic N mRNA molecule.
Collapse
Affiliation(s)
| | - David A. Brian
- Corresponding author. Tel.: + 1 423 9744030; fax: +1 423 9744007
| |
Collapse
|
31
|
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997; 48:1-100. [PMID: 9233431 PMCID: PMC7130985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This chapter discusses the manipulation of clones of coronavirus and of complementary DNAs (cDNAs) of defective-interfering (DI) RNAs to study coronavirus RNA replication, transcription, recombination, processing and transport of proteins, virion assembly, identification of cell receptors for coronaviruses, and processing of the polymerase. The nature of the coronavirus genome is nonsegmented, single-stranded, and positive-sense RNA. Its size ranges from 27 to 32 kb, which is significantly larger when compared with other RNA viruses. The gene encoding the large surface glycoprotein is up to 4.4 kb, encoding an imposing trimeric, highly glycosylated protein. This soars some 20 nm above the virion envelope, giving the virus the appearance-with a little imagination-of a crown or coronet. Coronavirus research has contributed to the understanding of many aspects of molecular biology in general, such as the mechanism of RNA synthesis, translational control, and protein transport and processing. It remains a treasure capable of generating unexpected insights.
Collapse
Affiliation(s)
- M M Lai
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | |
Collapse
|
32
|
Chen W, Baric RS. Molecular anatomy of mouse hepatitis virus persistence: coevolution of increased host cell resistance and virus virulence. J Virol 1996; 70:3947-60. [PMID: 8648732 PMCID: PMC190273 DOI: 10.1128/jvi.70.6.3947-3960.1996] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Persistent infection of murine astrocytoma (DBT) cells with mouse hepatitis virus (MHV) has been established. From this in vitro virus-host system, persistence is mediated at the level of cellular MHV receptor (MHVR) expression and increased virus virulence. MHV persistence selects for resistant host cell populations which abate virus replication. Reductions in MHVR expression were significantly associated with increased host resistance, and transfection of MHVR into resistant host cells completely restored the capacity of cells to support efficient replication of MHV strain A59. The emergence of resistant host cells coselected for variant viruses that had increased avidity for MHVR and also recognized different receptors for entry into resistant cells. These data illustrate that MHV persistence in vitro provides a model to identify critical sites of virus-host interaction at the cellular level which are altered during the evolution of host cell resistance to viral infection and the coevolution of virus virulence.
Collapse
Affiliation(s)
- W Chen
- Department of Epidemiology, Program in Infectious Diseases, University of North Carolina at Chapel Hill, 27599-7400, USA
| | | |
Collapse
|
33
|
Chang RY, Krishnan R, Brian DA. The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA. J Virol 1996; 70:2720-9. [PMID: 8627745 PMCID: PMC190128 DOI: 10.1128/jvi.70.5.2720-2729.1996] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 65-nucleotide leader on the cloned bovine coronavirus defective interfering (DI) RNA, when marked by mutations, has been shown to rapidly convert to the wild-type leader of the helper virus following DI RNA transfection into helper virus-infected cells. A model of leader-primed transcription in which free leader supplied in trans by the helper virus interacts by way of its flanking 5'UCUAAAC3' sequence element with the 3'-proximal 3'AGAUUUG5' promoter on the DI RNA minus strand to prime RNA replication has been used to explain this phenomenon. To test this model, the UCUAAAC element which occurs only once in the BCV 5' untranslated region was either deleted or completely substituted in input DI RNA template, and evidence of leader conversion was sought. In both cases, leader conversion occurred rapidly, indicating that this element is not required on input RNA for the conversion event. Substitution mutations mapped the crossover region to a 24-nucleotide segment that begins within the UCUAAAC sequence and extends downstream. Although structure probing of the bovine coronavirus 5' untranslated region indicated that the UCUAAAC element is in the loop of a prominent stem and thus theoretically available for base pair-directed priming, no evidence of an unattached leader early in infection that might have served as a primer for transcription was found by RNase protection studies. These results together suggest that leader conversion on the DI RNA 5' terminus is not guided by the UCUAAAC element and might arise instead from a high-frequency, region-specific, homologous recombination event perhaps during minus-strand synthesis rather than by leader priming during plus-strand synthesis.
Collapse
MESH Headings
- Animals
- Base Composition
- Base Sequence
- Cattle
- Cells, Cultured
- Coronavirus, Bovine/genetics
- DNA Primers
- Defective Viruses/genetics
- Helper Viruses/genetics
- Models, Structural
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Recombination, Genetic
- Templates, Genetic
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- R Y Chang
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA
| | | | | |
Collapse
|
34
|
Kheyar A, St-Laurent G, Archambault D. Sequence determination of the extreme 5' end of equine arteritis virus leader region. Virus Genes 1996; 12:291-5. [PMID: 8883367 PMCID: PMC7089268 DOI: 10.1007/bf00284650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1996] [Accepted: 03/19/1996] [Indexed: 02/02/2023]
Abstract
The extreme 5' end of the leader sequence of four equine arteritis virus (EAV) strains was obtained by using rapid amplification of cDNA end method (5' RACE), and sequenced. Seventeen more nucleotides were added upstream of the 5' end of the EAV published genomic sequence. A common feature among the analyzed EAV isolates was the presence of an AUG start codon within the added sequence and the appearance of an intraleader open reading frame (ORF) of 111 nucleotides which was predicted to encode a peptide of 37 amino acids. The role of this putative intraleader ORF has yet to be determined.
Collapse
Affiliation(s)
- A Kheyar
- Université du Québec à Montréal, Département des Sciences Biologiques, Canada
| | | | | |
Collapse
|
35
|
Chen W, Baric RS. Function of a 5'-end genomic RNA mutation that evolves during persistent mouse hepatitis virus infection in vitro. J Virol 1995; 69:7529-40. [PMID: 7494259 PMCID: PMC189691 DOI: 10.1128/jvi.69.12.7529-7540.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Persistently infected cultures of DBT cells were established with mouse hepatitis virus strain A59 (MHV-A59), and the evolution of the MHV leader RNA and 5' end of the genome was studied through 119 days postinfection. Sequence analysis of independent clones demonstrated an overall mutation frequency approaching 1.2 x 10(-3) to 6.7 x 10(-3). The rate of fixation of mutations was about 1.2 x 10(-5) to 7.6 x 10(-5) per nucleotide (nt) per day. In contrast to finding in bovine coronavirus, the MHV leader RNA sequences were extremely stable and did not evolve significantly during persistent infection. Rather, a 5' untranslated region (UTR) A-to-G mutation at nt 77 in the genomic RNA emerged by day 56 and accumulated until 50 to 80% of the genome-length molecules retained the mutation by 119 days postinfection. Although other 5'-end mutations were noted, only the nt 77 mutation was significantly associated with viral persistence in vitro. Mutations were also found in the 5' end of the p28 coding region, but no specific alterations accumulated in genome-length molecules through 119 days postinfection. The 5' UTR nt 77 mutation resulted in an 18-amino-acid open reading frame (ORF) upstream of the ORF 1a AUG start site. By in vitro translation assays, the small ORF was not translated into detectable product but the mutation significantly enhanced translation of the downstream p28 ORF about 2.5-fold. Variant viruses, containing either the nt 77 A-to-G mutation (V16-ATG+) or wild-type sequences at this locus (V1-ATG-), were isolated at 119 days postinfection. The variant viruses replicated more efficiently than wild-type virus and were extremely cytolytic in DBT cells, suggesting that the A-to-G mutation did not encode a nonlytic or attenuated phenotype. Consistent with the in vitro translation results, a significant increase (approximately 3.5-fold) in p28 expression was also observed with the mutant virus (V16-ATG+) in DBT cells compared with that in wild-type controls. These data indicate that MHV persistence was significantly associated with mutation and evolution in the 5'-end UTR which enhanced the translation of the ORF 1a and potentially ORF 1b polyproteins which function in virus transcription and replication.
Collapse
Affiliation(s)
- W Chen
- Department of Epidemiology, University of North Carolina at Chapel Hill 27599-7400, USA
| | | |
Collapse
|
36
|
Peng D, Koetzner CA, McMahon T, Zhu Y, Masters PS. Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins. J Virol 1995; 69:5475-84. [PMID: 7636993 PMCID: PMC189397 DOI: 10.1128/jvi.69.9.5475-5484.1995] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Targeted RNA recombination was used to construct mouse hepatitis virus (MHV) mutants containing chimeric nucleocapsid (N) protein genes in which segments of the bovine coronavirus N gene were substituted in place of their corresponding MHV sequences. This defined portions of the two N proteins that, despite evolutionary divergence, have remained functionally equivalent. These regions included most of the centrally located RNA-binding domain and two putative spacers that link the three domains of the N protein. By contrast, the amino terminus of N, the acidic carboxy-terminal domain, and a serine- and arginine-rich segment of the central domain could not be transferred from bovine coronavirus to MHV, presumably because these parts of the molecule participate in protein-protein interactions that are specific for each virus (or, possibly, each host). Our results demonstrate that targeted recombination can be used to make extensive substitutions in the coronavirus genome and can generate recombinants that could not otherwise be made between two viruses separated by a species barrier. The implications of these findings for N protein structure and function as well as for coronavirus RNA recombination are discussed.
Collapse
Affiliation(s)
- D Peng
- Department of Biomedical Sciences, State University of New York at Albany, New York, USA
| | | | | | | | | |
Collapse
|
37
|
Chen W, Baric RS. Evolution and persistence mechanisms of mouse hepatitis virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:63-71. [PMID: 8830548 DOI: 10.1007/978-1-4615-1899-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We established and characterized persistently-infected DBT cells with mouse hepatitis virus to study the molecular mechanisms of MHV persistence and evolution in vitro. Following infection, viral mRNA and RF RNA were coordinately reduced by about 70% as compared to acute infection suggesting that the reduction in mRNA synthesis was due to reduced levels of transcriptionally active full length and subgenomic length negative-stranded RNAs. Although the rates of mRNA synthesis were also reduced, the relative percent molar ratio of the mRNAs and RF RNAs were similar to those detected during acute infection. In contrast to the finding during BCV persistence, analysis of the MHV leader RNA indicated that the leader RNA and leader/body junction sequences were extremely stable. These data suggested that polymorphism and mutations resulting in intraleader ORFs was not required for MHV persistence. Conversely MHV persistence was significantly associated with a A to G mutation at nt 77 in the 5' end untranslated region (UTR) of the genomic RNA.
Collapse
Affiliation(s)
- W Chen
- Department of Epidemiology, University of North Carolina at Chapel Hill, USA
| | | |
Collapse
|
38
|
Abstract
This article reviews current knowledge on the mechanisms affecting the fidelity of initiation codon selection, and discusses the effects of structural features in the 5′-non-coding region on the efficiency of translation of messenger RNA molecules.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| |
Collapse
|