1
|
Guo LT, Helgadóttir S, Söll D, Ling J. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor. Nucleic Acids Res 2012; 40:7967-74. [PMID: 22661575 PMCID: PMC3439900 DOI: 10.1093/nar/gks507] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNAGln is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNAGln, and an amidotransferase converts Glu-tRNAGln to Gln-tRNAGln. The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNAGln. It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.
Collapse
Affiliation(s)
- Li-Tao Guo
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Sunna Helgadóttir
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
- *To whom correspondence should be addressed. Tel: +1 203 432 6205; Fax: +1 203 432 6202;
| | - Jiqiang Ling
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
- Correspondence may also be addressed to Dieter Söll. Tel: +1 203 432 6200; Fax: +1 203 432 6202;
| |
Collapse
|
2
|
Jaric J, Bilokapic S, Lesjak S, Crnkovic A, Ban N, Weygand-Durasevic I. Identification of amino acids in the N-terminal domain of atypical methanogenic-type Seryl-tRNA synthetase critical for tRNA recognition. J Biol Chem 2009; 284:30643-51. [PMID: 19734148 DOI: 10.1074/jbc.m109.044099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Seryl-tRNA synthetase (SerRS) from methanogenic archaeon Methanosarcina barkeri, contains an idiosyncratic N-terminal domain, composed of an antiparallel beta-sheet capped by a helical bundle, connected to the catalytic core by a short linker peptide. It is very different from the coiled-coil tRNA binding domain in bacterial-type SerRS. Because the crystal structure of the methanogenic-type SerRSxtRNA complex has not been obtained, a docking model was produced, which indicated that highly conserved helices H2 and H3 of the N-terminal domain may be important for recognition of the extra arm of tRNA(Ser). Based on structural information and the docking model, we have mutated various positions within the N-terminal region and probed their involvement in tRNA binding and serylation. Total loss of activity and inability of the R76A variant to form the complex with cognate tRNA identifies Arg(76) located in helix H2 as a crucial tRNA-interacting residue. Alteration of Lys(79) positioned in helix H2 and Arg(94) in the loop between helix H2 and beta-strand A4 have a pronounced effect on SerRSxtRNA(Ser) complex formation and dissociation constants (K(D)) determined by surface plasmon resonance. The replacement of residues Arg(38) (located in the loop between helix H1 and beta-strand A2), Lys(141) and Asn(142) (from H3), and Arg(143) (between H3 and H4) moderately affect both the serylation activity and the K(D) values. Furthermore, we have obtained a striking correlation between these results and in vivo effects of these mutations by quantifying the efficiency of suppression of bacterial amber mutations, after coexpression of the genes for M. barkeri suppressor tRNA(Ser) and a set of mMbSerRS variants in Escherichia coli.
Collapse
Affiliation(s)
- Jelena Jaric
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
3
|
Sathyapriya R, Vishveshwara S. Structure networks of E. coli glutaminyl-tRNA synthetase: Effects of ligand binding. Proteins 2007; 68:541-50. [PMID: 17444518 DOI: 10.1002/prot.21401] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is well known that proteins undergo backbone as well as side chain conformational changes upon ligand binding, which is not necessarily confined to the active site. Both the local and the global conformational changes brought out by ligand-binding have been extensively studied earlier. However, the global changes have been reported mainly at the protein backbone level. Here we present a method that explicitly takes into account the side chain interactions, yet providing a global view of the ligand-induced conformational changes. This is achieved through the analysis of Protein Structure Networks (PSN), constructed from the noncovalent side chain interactions in the protein. Here, E. coli Glutaminyl-tRNA synthetase (GlnRS) in the ligand-free and different ligand-bound states is used as a case study to assess the effect of binding of tRNA, ATP, and the amino acid Gln to GlnRS. The PSNs are constructed on the basis of the strength of noncovalent interactions existing between the side chains of amino acids. The parameters like the size of the largest cluster, edge to node ratio, and the total number of hubs are used to quantitatively assess the structure network changes. These network parameters have effectively captured the ligand-induced structural changes at a global structure network level. Hubs, the highly connected amino acids, are also identified from these networks. Specifically, we are able to characterize different types of hubs based on the comparison of structure networks of the GlnRS system. The differences in the structure networks in both the presence and the absence of the ligands are reflected in these hubs. For instance, the characterization of hubs that are present in both the ligand-free and all the ligand-bound GlnRS (the invariant hubs) might implicate their role in structural integrity. On the other hand, identification of hubs unique to a particular ligand-bound structure (the exclusive hubs) not only highlights the structural differences mediated by ligand-binding at the structure network level, but also highlights significance of these amino acids hubs in binding to the ligand and catalyzing the biochemical function. Further, the hubs identified from this study could be ideal targets for mutational studies to ascertain the ligand-induced structure-function relationships in E. coli GlnRS. The formalism used in this study is simple and can be applied to other protein-ligands in general to understand the allosteric changes mediated by the binding of ligands.
Collapse
Affiliation(s)
- R Sathyapriya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
4
|
Banerjee R, Dubois DY, Gauthier J, Lin SX, Roy S, Lapointe J. The zinc-binding site of a class I aminoacyl-tRNA synthetase is a SWIM domain that modulates amino acid binding via the tRNA acceptor arm. ACTA ACUST UNITED AC 2004; 271:724-33. [PMID: 14764088 DOI: 10.1111/j.1432-1033.2003.03976.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In its tRNA acceptor end binding domain, the glutamyl-tRNA synthetase (GluRS) of Escherichia coli contains one atom of zinc that holds the extremities of a segment (Cys98-x-Cys100-x24-Cys125-x-His127) homologous to the Escherichia coli glutaminyl-tRNA synthetase (GlnRS) loop where a leucine residue stabilizes the peeled-back conformation of tRNAGln acceptor end. We report here that the GluRS zinc-binding region belongs to the novel SWIM domain family characterized by the signature C-x-C-xn-C-x-H (n = 6-25), and predicted to interact with DNA or proteins. In the presence of tRNAGlu, the GluRS C100Y variant has a lower affinity for l-glutamate than the wild-type enzyme, with Km and Kd values increased 12- and 20-fold, respectively. On the other hand, in the absence of tRNAGlu, glutamate binds with the same affinity to the C100Y variant and to wild-type GluRS. In the context of the close structural and mechanistic similarities between GluRS and GlnRS, these results indicate that the GluRS SWIM domain modulates glutamate binding to the active site via its interaction with the tRNAGlu acceptor arm. Phylogenetic analyses indicate that ancestral GluRSs had a strong zinc-binding site in their SWIM domain. Considering that all GluRSs require a cognate tRNA to activate glutamate, and that some of them have different or no putative zinc-binding residues in the corresponding positions, the properties of the C100Y variant suggest that the GluRS SWIM domains evolved to position correctly the tRNA acceptor end in the active site, thereby contributing to the formation of the glutamate binding site.
Collapse
Affiliation(s)
- Rajat Banerjee
- Department of Biophysics, Bose Institute, Calcutta, West Bengal, India
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
The crystal structure of ligand-free E. coli glutaminyl-tRNA synthetase (GlnRS) at 2.4 A resolution shows that substrate binding is essential to construction of a catalytically proficient active site. tRNA binding generates structural changes throughout the enzyme, repositioning key active site peptides that bind glutamine and ATP. The structure gives insight into longstanding questions regarding the tRNA dependence of glutaminyl adenylate formation, the coupling of amino acid and tRNA selectivities, and the roles of specific pathways for transmission of tRNA binding signals to the active site. Comparative analysis of the unliganded and tRNA-bound structures shows, in detail, how flexibility is built into the enzyme architecture and suggests that the induced-fit transitions are a key underlying determinant of both amino acid and tRNA specificity.
Collapse
Affiliation(s)
- Luke D Sherlin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
6
|
Abstract
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
7
|
Nissan TA, Oliphant B, Perona JJ. An engineered class I transfer RNA with a class II tertiary fold. RNA (NEW YORK, N.Y.) 1999; 5:434-445. [PMID: 10094311 PMCID: PMC1369771 DOI: 10.1017/s1355838299981827] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Structure-based engineering of the tertiary fold of Escherichia coli tRNA(Gln)2 has enabled conversion of this transfer RNA to a class II structure while retaining recognition properties of a class I glutamine tRNA. The new tRNA possesses the 20-nt variable stem-loop of Thermus thermophilus tRNA(Ser). Enlargement of the D-loop appears essential to maintaining a stable tertiary structure in this species, while rearrangement of a base triple in the augmented D-stem is critical for efficient glutaminylation. These data provide new insight into structural determinants distinguishing the class I and class II tRNA folds, and demonstrate a marked sensitivity of glutaminyl-tRNA synthetase to alteration of tRNA tertiary structure.
Collapse
Affiliation(s)
- T A Nissan
- Department of Chemistry, University of California at Santa Barbara 93106-9510, USA
| | | | | |
Collapse
|
8
|
Mandal AK, Bhattacharyya A, Bhattacharyya S, Bhattacharyya T, Roy S. A cognate tRNA specific conformational change in glutaminyl-tRNA synthetase and its implication for specificity. Protein Sci 1998; 7:1046-51. [PMID: 9568911 PMCID: PMC2143984 DOI: 10.1002/pro.5560070422] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformational changes that occur upon substrate binding are known to play crucial roles in the recognition and specific aminoacylation of cognate tRNA by glutaminyl-tRNA synthetase. In a previous study we had shown that glutaminyl-tRNA synthetase labeled selectively in a nonessential sulfhydryl residue by an environment sensitive probe, acrylodan, monitors many of the conformational changes that occur upon substrate binding. In this article we have shown that the conformational change that occurs upon tRNA(Gln) binding to glnRS/ATP complex is absent in a noncognate tRNA tRNA(Glu)-glnRS/ATP complex. CD spectroscopy indicates that this cognate tRNA(Gln)-induced conformational change may involve only a small change in secondary structure. The Van't Hoff plot of cognate and noncognate tRNA binding in the presence of ATP is similar, suggesting similar modes of interaction. It was concluded that the cognate tRNA induces a local conformational change in the synthetase that may be one of the critical elements that causes enhanced aminoacylation of the cognate tRNA over the noncognate ones.
Collapse
Affiliation(s)
- A K Mandal
- Department of Biophysics, Bose Institute, Calcutta, India
| | | | | | | | | |
Collapse
|
9
|
Liu DR, Magliery TJ, Pastrnak M, Schultz PG. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A 1997; 94:10092-7. [PMID: 9294168 PMCID: PMC23315 DOI: 10.1073/pnas.94.19.10092] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/1997] [Indexed: 02/05/2023] Open
Abstract
In an effort to expand the scope of protein mutagenesis, we have completed the first steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the generation of an "orthogonal" suppressor tRNA that is uniquely acylated in Escherichia coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino acid. To this end, eight mutations were introduced into tRNA2Gln based on an analysis of the x-ray crystal structure of the glutaminyl-tRNA aminoacyl synthetase (GlnRS)-tRNA2Gln complex and on previous biochemical data. The resulting tRNA satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase including GlnRS, and it functions efficiently in protein translation. Repeated rounds of DNA shuffling and oligonucleotide-directed mutagenesis followed by genetic selection resulted in mutant GlnRS enzymes that efficiently acylate the engineered tRNA with glutamine in vitro. The mutant GlnRS and engineered tRNA also constitute a functional synthetase-tRNA pair in vivo. The nature of the GlnRS mutations, which occur both at the protein-tRNA interface and at sites further away, is discussed.
Collapse
Affiliation(s)
- D R Liu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
10
|
Schmitt E, Panvert M, Mechulam Y, Blanquet S. General structure/function properties of microbial methionyl-tRNA synthetases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:539-47. [PMID: 9208948 DOI: 10.1111/j.1432-1033.1997.00539.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alignment of the sequences of methionyl-tRNA synthetases from various microbial sources shows low levels of identities. However, sequence identities are clustered in a limited number of sites, most of which contain peptide patterns known to support the activity of the Escherichia coli enzyme. In the present study, site-directed mutagenesis was used to probe the role of these conserved residues in the case of the Bacillus stearothermophilus methionyl-tRNA synthetase. The B. stearothermophilus enzyme was chosen in this study because it can be produced as an active truncated monomeric form, similar to the monomeric derivative of E. coli methionyl-tRNA synthetase produced by mild proteolysis. The two core enzyme molecules share only 27% identical residues. The results allowed the identification of the binding sites for ATP, methionine and tRNA, as well as that responsible for the tight binding of the zinc ion to the enzyme. It is concluded that the thermostable synthetase adopts a three-dimensional folding very similar to that of the E. coli one. Therefore, the two methionyl-tRNA synthetase sequences, although significantly different, maintain a common scaffold with the functionally important residues exposed at constant positions. Sequence alignments suggest that the above conclusion can be generalized to the known methionyl-tRNA synthetases from various sources.
Collapse
Affiliation(s)
- E Schmitt
- Laboratoire de Biochimie, Unité de Recherche Associeé n 1970 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | |
Collapse
|
11
|
Lenhard B, Filipić S, Landeka I, Skrtić I, Söll D, Weygand-Durasević I. Defining the active site of yeast seryl-tRNA synthetase. Mutations in motif 2 loop residues affect tRNA-dependent amino acid recognition. J Biol Chem 1997; 272:1136-41. [PMID: 8995413 DOI: 10.1074/jbc.272.2.1136] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The active site of class II aminoacyl-tRNA synthetases contains the motif 2 loop, which is involved in binding of ATP, amino acid, and the acceptor end of tRNA. In order to characterize the active site of Saccharomyces cerevisiae seryl-tRNA synthetase (SerRS), we performed in vitro mutagenesis of the portion of the SES1 gene encoding the motif 2 loop. Substitutions of amino acids conserved in the motif 2 loop of seryl-tRNA synthetases from other sources led to loss of complementation of a yeast SES1 null allele strain by the mutant yeast SES1 genes. Steady-state kinetic analyses of the purified mutant SerRS proteins revealed elevated Km values for serine and ATP, accompanied by decreases in kcat (as expected for replacement of residues involved in aminoacyl-adenylate formation). The differences in the affinities for serine and ATP, in the absence and presence of tRNA are consistent with the proposed conformational changes induced by positioning the 3'-end of tRNA into the active site, as observed recently in structural studies of Thermus thermophilus SerRS (Cusack, S., Yaremchuk, A., and Tukalo, M. (1996) EMBO J. 15, 2834-2842). The crystal structure of this moderately homologous prokaryotic counterpart of the yeast enzyme allowed us to produce a model of the yeast SerRS structure and to place the mutations in a structural context. In conjunction with structural data for T. thermophilus SerRS, the kinetic data presented here suggest that yeast seryl-tRNA synthetase displays tRNA-dependent amino acid recognition.
Collapse
Affiliation(s)
- B Lenhard
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Ibba M, Hong KW, Sherman JM, Sever S, Söll D. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc Natl Acad Sci U S A 1996; 93:6953-8. [PMID: 8692925 PMCID: PMC38915 DOI: 10.1073/pnas.93.14.6953] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs both ensure accurate RNA recognition and prevent the binding of noncognate substrates. Here we show for Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) that the accuracy of tRNA recognition also determines the efficiency of cognate amino acid recognition. Steady-state kinetics revealed that interactions between tRNA identity nucleotides and their recognition sites in the enzyme modulate the amino acid affinity of GlnRS. Perturbation of any of the protein-RNA interactions through mutation of either component led to considerable changes in glutamine affinity with the most marked effects seen at the discriminator base, the 10:25 base pair, and the anticodon. Reexamination of the identity set of tRNA(Gln) in the light of these results indicates that its constituents can be differentiated based upon biochemical function and their contribution to the apparent Gibbs' free energy of tRNA binding. Interactions with the acceptor stem act as strong determinants of tRNA specificity, with the discriminator base positioning the 3' end. The 10:25 base pair and U35 are apparently the major binding sites to GlnRS, with G36 contributing both to binding and recognition. Furthermore, we show that E. coli tryptophanyl-tRNA synthetase also displays tRNA-dependent changes in tryptophan affinity when charging a noncognate tRNA. The ability of tRNA to optimize amino acid recognition reveals a novel mechanism for maintaining translational fidelity and also provides a strong basis for the coevolution of tRNAs and their cognate synthetases.
Collapse
Affiliation(s)
- M Ibba
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
14
|
Hong KW, Ibba M, Weygand-Durasevic I, Rogers MJ, Thomann HU, Söll D. Transfer RNA-dependent cognate amino acid recognition by an aminoacyl-tRNA synthetase. EMBO J 1996; 15:1983-91. [PMID: 8617245 PMCID: PMC450117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An investigation of the role of tRNA in the catalysis of aminoacylation of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) has revealed that the accuracy of specific interactions between GlnRS and tRNAGln determines amino acid affinity. Mutations in GlnRS at D235, which makes contacts with nucleotides in the acceptor stem of tRNAGln, and at R260 in the enzyme's active site were found to be independent during tRNA binding but interactive for aminoacylation. Characterization of mutants of GlnRS at position 235, showed amino acid recognition to be tRNA mediated. Aminoacylation of tRNA(CUA)Tyr [tyrT (UAG)] by GlnRS-D235H resulted in a 4-fold increase in the Km for the Gln, which was reduced to a 2-fold increase when A73 was replaced with G73. These and previous results suggest that specific interactions between GlnRS and tRNAGln ensure the accurate positioning of the 3' terminus. Disruption of these interactions can change the Km for Gln over a 30-fold range, indicating that the accuracy of aminoacylation is regulated by tRNA at the level of both substrate recognition and catalysis. The observed role of RNA as a cofactor in optimizing amino acid activation suggests that the tRNAGln-GlnRS complex may be partly analogous to ribonucleoprotein enzymes where protein-RNA interactions facilitate catalysis.
Collapse
Affiliation(s)
- K W Hong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
15
|
Li S, Kumar NV, Varshney U, RajBhandary UL. Important role of the amino acid attached to tRNA in formylation and in initiation of protein synthesis in Escherichia coli. J Biol Chem 1996; 271:1022-8. [PMID: 8557626 DOI: 10.1074/jbc.271.2.1022] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In attempts to convert an elongator tRNA to an initiator tRNA, we previously generated a mutant elongator methionine tRNA carrying an anticodon sequence change from CAU to CUA along with the two features important for activity of Escherichia coli initiator tRNA in initiation. This mutant tRNA (Mi:2 tRNA) was active in initiation in vivo but only when aminoacylated with methionine by overproduction of methionyl-tRNA synthetase. Here we show that the Mi:2 tRNA is normally aminoacylated in vivo with lysine and that the tRNA aminoacylated with lysine is a very poor substrate for formylation compared with the same tRNA aminoacylated with methionine. By introducing further changes at base pairs 4:69 and 5:68 in the acceptor stem of the Mi:2 tRNA to those found in the E. coli initiator tRNA, we show that change of the U4:A69 base pair to G4:C69 and overproduction of lysyl-tRNA synthetase and methionyl-tRNA transformylase results in partial formylation of the mutant tRNA and activity of the formyllysyl-tRNAs in initiation of protein synthesis. Thus, the G4: C69 base pair contributes toward formylation of the tRNA and protein synthesis in E. coli can be initiated with formyllysine. We also discuss the implications of these and other results on recognition of tRNAs by E. coli lysyl-tRNA synthetase and on competition in cells among aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- S Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Structure/function relationships accounting for specific tRNA charging by class II aspartyl-tRNA synthetases from Saccharomyces cerevisiae, Escherichia coli and Thermus thermophilus are reviewed. Effects directly linked to tRNA features are emphasized and aspects about synthetase contribution in expression of tRNA(Asp) identity are also covered. Major identity nucleotides conferring aspartate specificity to yeast, E coli and T thermophilus tRNAs comprise G34, U35, C36, C38 and G73, a set of nucleotides conserved in tRNA(Asp) molecules of other biological origin. Aspartate specificity can be enhanced by negative discrimination preventing, eg mischarging of native yeast tRNA(Asp by yeast arginyl-tRNA synthetase. In the yeast system crystallography shows that identity nucleotides are in contact with identity amino acids located in the catalytic and anticodon binding domains of the synthetase. Specificity of RNA/protein interaction involves a conformational change of the tRNA that optimizes the H-bonding potential of the identity signals on both partners of the complex. Mutation of identity nucleotides leads to decreased aspartylation efficiencies accompanied by a loss of specific H-bonds and an altered adaptation of tRNA on the synthetase. Species-specific characteristics of aspartate systems are the number, location and nature of minor identity signals. These features and the structural variations in aspartate tRNAs and synthetases are correlated with mechanistic differences in the aminoacylation reactions catalyzed by the various aspartyl-tRNA synthetases. The reality of the aspartate identity set is verified by its functional expression in a variety of RNA frameworks. Inversely a number of identities can be expressed within a tRNA(Asp) framework. From this emerged the concept of the RNA structural frameworks underlying expression of identities which is illustrated with data obtained with engineered tRNAs. Efficient aspartylation of minihelices is explained by the primordial role of G73. From this and other considerations it is suggested that aspartate identity appeared early in the history of tRNA aminoacylation systems.
Collapse
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologioues et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
17
|
Mechulam Y, Meinnel T, Blanquet S. A family of RNA-binding enzymes. the aminoacyl-tRNA synthetases. Subcell Biochem 1995; 24:323-376. [PMID: 7900181 DOI: 10.1007/978-1-4899-1727-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Y Mechulam
- Laboratoire de Biochimie, CNRS n. 240, Ecole Polytechnique, Palaiseau, France
| | | | | |
Collapse
|
18
|
Ibba M, Hennecke H. Towards engineering proteins by site-directed incorporation in vivo of non-natural amino acids. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1994; 12:678-82. [PMID: 7764911 DOI: 10.1038/nbt0794-678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Altering protein structure via the techniques of protein engineering has already allowed the development of proteins displaying both modified and novel activities. The only limitation of conventional site-directed mutagenesis, the cornerstone of protein engineering, is that substitutions are restricted to the 20 naturally occurring, proteinogenic amino acids. However, the discovery of a 21st amino acid, selenocysteine, and the development of novel in vitro translation systems have demonstrated that considerably more substitutions are possible. To this end, a number of experimental approaches have been developed that allow the incorporation of synthetic amino acids into proteins. Some of these have already been successfully applied in vitro and efforts to transfer this technology to in vivo systems are now underway.
Collapse
Affiliation(s)
- M Ibba
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum/LFV, Zürich, Switzerland
| | | |
Collapse
|
19
|
Rogers MJ, Adachi T, Inokuchi H, Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proc Natl Acad Sci U S A 1994; 91:291-5. [PMID: 7506418 PMCID: PMC42933 DOI: 10.1073/pnas.91.1.291] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Wild-type Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) poorly aminoacylates opal suppressors (GLN) derived from tRNA(Gln). Mutations in glnS (the gene encoding GlnRS) that compensate for impaired aminoacylation were isolated by genetic selection. Two glnS mutants were obtained by using opal suppressors differing in the nucleotides composing the base pair at 3.70: glnS113 with an Asp-235-->Asn change selected with GLNA3U70 (GLN carrying G3-->A and C70-->U changes), and glnS114 with a Gln-318-->Arg change selected with GLNU70 (GLN carrying a C70-->U change). The Asp-235-->Asn change was identified previously by genetic selection. Additional mutants were isolated by site-directed mutagenesis followed by genetic selection; the mutant enzymes have single amino acid changes (Lys-317-->Arg and Gln-318-->Lys). A number of mutants with no phenotype also were obtained randomly. In vitro aminoacylation of a tRNA(Gln) transcript by GlnRS enzymes with Lys-317-->Arg, Gln-318-->Lys, or Gln-318-->Arg changes shows that the enzyme's kinetic parameters are not greatly affected by the mutations. However, aminoacylation of a tRNA(Gln) transcript with an opal (UCA) anticodon shows that the specificity constants (kcat/Km) for the mutant enzymes were 5-10 times above that of the wild-type GlnRS. Interactions between Lys-317 and Gln-318 with the inside of the L-shaped tRNA and with the side chain of Gln-234 provide a connection between the acceptor end-binding and anticodon-binding domains of GlnRS. The GlnRS mutants isolated suggest that perturbation of the interactions with the inside of the tRNA L shape results in relaxed anticodon recognition.
Collapse
Affiliation(s)
- M J Rogers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | | | | | | |
Collapse
|