1
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
2
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Fostier CR, Ousalem F, Leroy EC, Ngo S, Soufari H, Innis CA, Hashem Y, Boël G. Regulation of the macrolide resistance ABC-F translation factor MsrD. Nat Commun 2023; 14:3891. [PMID: 37393329 PMCID: PMC10314930 DOI: 10.1038/s41467-023-39553-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
Antibiotic resistance ABC-Fs (ARE ABC-Fs) are translation factors that provide resistance against clinically important ribosome-targeting antibiotics which are proliferating among pathogens. Here, we combine genetic and structural approaches to determine the regulation of streptococcal ARE ABC-F gene msrD in response to macrolide exposure. We show that binding of cladinose-containing macrolides to the ribosome prompts insertion of the leader peptide MsrDL into a crevice of the ribosomal exit tunnel, which is conserved throughout bacteria and eukaryotes. This leads to a local rearrangement of the 23 S rRNA that prevents peptide bond formation and accommodation of release factors. The stalled ribosome obstructs the formation of a Rho-independent terminator structure that prevents msrD transcriptional attenuation. Erythromycin induction of msrD expression via MsrDL, is suppressed by ectopic expression of mrsD, but not by mutants which do not provide antibiotic resistance, showing correlation between MsrD function in antibiotic resistance and its action on this stalled complex.
Collapse
Affiliation(s)
- Corentin R Fostier
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Farès Ousalem
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Elodie C Leroy
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Heddy Soufari
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
- SPT Labtech Ltd., SG8 6HB, Melbourn, United Kingdom
| | - C Axel Innis
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France
| | - Yaser Hashem
- ARNA Laboratory, UMR 5320, U1212, Institut Européen de Chimie et Biologie, Univ. Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, 33607, Pessac, France.
| | - Grégory Boël
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005, Paris, France.
| |
Collapse
|
4
|
Lee BS, Choi WJ, Lee SW, Ko BJ, Yoo TH. Towards Engineering an Orthogonal Protein Translation Initiation System. Front Chem 2021; 9:772648. [PMID: 34765589 PMCID: PMC8576571 DOI: 10.3389/fchem.2021.772648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
In the last two decades, methods to incorporate non-canonical amino acids (ncAAs) into specific positions of a protein have advanced significantly; these methods have become general tools for engineering proteins. However, almost all these methods depend on the translation elongation process, and strategies leveraging the initiation process have rarely been reported. The incorporation of a ncAA specifically at the translation initiation site enables the installation of reactive groups for modification at the N-termini of proteins, which are attractive positions for introducing abiological groups with minimal structural perturbations. In this study, we attempted to engineer an orthogonal protein translation initiation system. Introduction of the identity elements of Escherichia coli initiator tRNA converted an engineered Methanococcus jannaschii tRNATyr into an initiator tRNA. The engineered tRNA enabled the site-specific incorporation of O-propargyl-l-tyrosine (OpgY) into the amber (TAG) codon at the translation initiation position but was inactive toward the elongational TAG codon. Misincorporation of Gln was detected, and the engineered system was demonstrated only with OpgY. We expect further engineering of the initiator tRNA for improved activity and specificity to generate an orthogonal translation initiation system.
Collapse
Affiliation(s)
- Byeong Sung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Woon Jong Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sang Woo Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
5
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|
6
|
Lahry K, Gopal A, Sah S, Shah RA, Varshney U. Metabolic Flux of N 10-Formyltetrahydrofolate Plays a Critical Role in the Fidelity of Translation Initiation in Escherichia coli. J Mol Biol 2020; 432:5473-5488. [PMID: 32795532 DOI: 10.1016/j.jmb.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
One-carbon metabolism produces methionine and N10-formyl-tetrahydrofolate (N10-fTHF) required for aminoacylation and formylation of initiator tRNA (i-tRNA), respectively. In Escherichia coli, N10-fTHF is made from 5, 10-methylene-THF by a two-step reaction using 5,10-methylene-THF dehydrogenase/cyclohydrolase (FolD). The i-tRNAs from all domains of life possess a highly conserved sequence of three consecutive G-C base pairs (3GC pairs) in their anticodon stem. A 3GC mutant i-tRNA (wherein the 3GC pairs are mutated to those found in elongator tRNAMet) is incompetent in initiation in E. coli (even though it is efficiently aminoacylated and formylated). Here, we show that E. coli strains having mutations in FolD (G122D or C58Y or P140L) allow a plasmid encoded 3GC mutant i-tRNA to participate in initiation. In vitro, the FolD mutants are highly compromised in their dehydrogenase/cyclohydrolase activities leading to reduced production of N10-fTHF and decreased rates of i-tRNA formylation. The perturbation of one-carbon metabolism by trimethoprim (inhibitor of dihydrofolate reductase) phenocopies FolD deficiency and allows initiation with the 3GC mutant i-tRNA. This study reveals an important crosstalk between one-carbon metabolism and the fidelity of translation initiation via formylation of i-tRNA, and suggests that augmentation of the age old sulfa drugs with FolD inhibitors could be an important antibacterial strategy.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Aiswarya Gopal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
7
|
Tharp JM, Krahn N, Varshney U, Söll D. Hijacking Translation Initiation for Synthetic Biology. Chembiochem 2020; 21:1387-1396. [PMID: 32023356 PMCID: PMC7237318 DOI: 10.1002/cbic.202000017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Genetic code expansion (GCE) has revolutionized the field of protein chemistry. Over the past several decades more than 150 different noncanonical amino acids (ncAAs) have been co-translationally installed into proteins within various host organisms. The vast majority of these ncAAs have been incorporated between the start and stop codons within an open reading frame. This requires that the ncAA be able to form a peptide bond at the α-amine, limiting the types of molecules that can be genetically encoded. In contrast, the α-amine of the initiating amino acid is not required for peptide bond formation. Therefore, including the initiator position in GCE allows for co-translational insertion of more diverse molecules that are modified, or completely lacking an α-amine. This review explores various methods which have been used to initiate protein synthesis with diverse molecules both in vitro and in vivo.
Collapse
Affiliation(s)
- Jeffery M Tharp
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
8
|
Vincent RM, Wright BW, Jaschke PR. Measuring Amber Initiator tRNA Orthogonality in a Genomically Recoded Organism. ACS Synth Biol 2019; 8:675-685. [PMID: 30856316 DOI: 10.1021/acssynbio.9b00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using engineered initiator tRNA for precise control of protein translation within cells has great promise within future orthogonal translation systems to decouple housekeeping protein metabolism from that of engineered genetic systems. Previously, E. coli strain C321.ΔA. exp lacking all UAG stop codons was created, freeing this "amber" stop codon for other purposes. An engineered "amber initiator" tRNACUAfMet that activates translation at UAG codons is available, but little is known about this tRNA's orthogonality. Here, we combine for the first time the amber initiator tRNACUAfMet in C321.ΔA. exp and measure its cellular effects. We found that the tRNACUAfMet expression resulted in a nearly 200-fold increase in fluorescent reporter expression with a unimodal population distribution and no apparent cellular fitness defects. Proteomic analysis revealed upregulated ribosome-associated, tRNA degradation, and amino acid biosynthetic proteins, with no evidence for off-target translation initiation. In contrast to previous work, we show that UAG-initiated proteins carry N-terminal methionine, but have no evidence for glutamine. Together, our results identify beneficial features of using the amber initiator tRNACUAfMet to control gene expression while also revealing fundamental challenges to using engineered initiator tRNAs as the basis for orthogonal translation initiation systems.
Collapse
Affiliation(s)
- Russel M. Vincent
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bradley W. Wright
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Paul R. Jaschke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
9
|
Shetty S, Shah RA, Chembazhi UV, Sah S, Varshney U. Two highly conserved features of bacterial initiator tRNAs license them to pass through distinct checkpoints in translation initiation. Nucleic Acids Res 2018; 45:2040-2050. [PMID: 28204695 PMCID: PMC5389676 DOI: 10.1093/nar/gkw854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/13/2022] Open
Abstract
Eubacterial translation initiation involves assembly of tRNAfMet, mRNA, initiation factors (IFs) and 30S ribosome in a 30S pre-initiation complex (30S pre-IC), which rearranges and joins 50S ribosome to form 70S IC. Upon releasing IFs, 70S IC becomes elongation-competent 70S. The direct recruitment of initiator tRNA (tRNAfMet) into the ribosomal P-site, crucial in accurate initiation of translation, is attributed to two conserved features of tRNAfMet: (i) formylation of amino acid attached to it and, (ii) the presence of three consecutive G-C base pairs (3GC base pairs) in the anticodon stem. However, the precise roles of these two conserved features of tRNAfMet during the various steps of initiation remain unclear. Using natural and engineered tRNAs, we show that the 3GC pairs license tRNAfMet transitions from 30S to 70S IC and then to elongation-competent 70S by release of IF3. Of the 3GC pairs, the middle GC pair (G30-C40), or merely G30 (in a specific context) suffices in this role and is essential for the sustenance of Escherichia coli. Furthermore, rescue of formylase deficient E. coli by overproduced tRNAfMet reveals that the feature of formylation licenses initial targeting of tRNAfMet to 30S ribosome
Collapse
Affiliation(s)
- Sunil Shetty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Riyaz A Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ullas V Chembazhi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
10
|
A tRNA's fate is decided at its 3' end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:433-441. [PMID: 29374586 DOI: 10.1016/j.bbagrm.2018.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
tRNAs are key players in translation and are additionally involved in a wide range of distinct cellular processes. The vital importance of tRNAs becomes evident in numerous diseases that are linked to defective tRNA molecules. It is therefore not surprising that the structural intactness of tRNAs is continuously scrutinized and defective tRNAs are eliminated. In this process, erroneous tRNAs are tagged with single-stranded RNA sequences that are recognized by degrading exonucleases. Recent discoveries have revealed that the CCA-adding enzyme - actually responsible for the de novo synthesis of the 3'-CCA end - plays an indispensable role in tRNA quality control by incorporating a second CCA triplet that is recognized as a degradation tag. In this review, we give an update on the latest findings regarding tRNA quality control that turns out to represent an interplay of the CCA-adding enzyme and RNases involved in tRNA degradation and maturation. In particular, the RNase-induced turnover of the CCA end is now recognized as a trigger for the CCA-adding enzyme to repeatedly scrutinize the structural intactness of a tRNA. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
|
11
|
Van Melderen L, Jurenas D, Garcia-Pino A. Messing up translation from the start: How AtaT inhibits translation initiation in E. coli. RNA Biol 2018; 15:303-307. [PMID: 29099338 DOI: 10.1080/15476286.2017.1391439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Toxin-antitoxin systems (TA) are widespread in bacteria and archea. They are commonly found in chromosomes and mobile genetic elements. These systems move from different genomic locations and bacterial hosts through horizontal gene transfer, using mobile elements as vehicles. Their potential roles in bacterial physiology are still a matter of debate in the field. The mechanisms of action of different toxin families have been deciphered at the molecular level. Intriguingly, the vast majority of these toxins target protein synthesis. They use a variety of molecular mechanisms and inhibit nearly every step of the translation process. Recently, we have identified a novel toxin, AtaT, presenting acetyltransferase activity. 1 Our work uncovered the molecular activity of AtaT: it specifically acetylates the methionine moiety on the initiator Met-tRNAfMet. This modification drastically impairs recognition by initiation factor 2 (IF2), thereby inhibiting the initiation step of translation.
Collapse
Affiliation(s)
- Laurence Van Melderen
- a Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| | - Dukas Jurenas
- a Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) , Gosselies , Belgium.,b Department of Biochemistry and Molecular Biology , Vilnius University Joint Life Sciences Center , Vilnius , Lithuania
| | - Abel Garcia-Pino
- a Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB) , Gosselies , Belgium
| |
Collapse
|
12
|
Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit M. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 2017; 45:3615-3626. [PMID: 28334756 PMCID: PMC5397182 DOI: 10.1093/nar/gkx070] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Our understanding of translation underpins our capacity to engineer living systems. The canonical start codon (AUG) and a few near-cognates (GUG, UUG) are considered as the ‘start codons’ for translation initiation in Escherichia coli. Translation is typically not thought to initiate from the 61 remaining codons. Here, we quantified translation initiation of green fluorescent protein and nanoluciferase in E. coli from all 64 triplet codons and across a range of DNA copy number. We detected initiation of protein synthesis above measurement background for 47 codons. Translation from non-canonical start codons ranged from 0.007 to 3% relative to translation from AUG. Translation from 17 non-AUG codons exceeded the highest reported rates of non-cognate codon recognition. Translation initiation from non-canonical start codons may contribute to the synthesis of peptides in both natural and synthetic biological systems.
Collapse
Affiliation(s)
- Ariel Hecht
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jeff Glasgow
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Paul R Jaschke
- Department of Bioengineering, Stanford, CA 94305, USA.,Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lukmaan A Bawazer
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Matthew S Munson
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jennifer R Cochran
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Drew Endy
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
14
|
Bhattacharyya S, Varshney U. Evolution of initiator tRNAs and selection of methionine as the initiating amino acid. RNA Biol 2016; 13:810-9. [PMID: 27322343 DOI: 10.1080/15476286.2016.1195943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transfer RNAs (tRNAs) have been important in shaping biomolecular evolution. Initiator tRNAs (tRNAi), a special class of tRNAs, carry methionine (or its derivative, formyl-methionine) to ribosomes to start an enormously energy consuming but a highly regulated process of protein synthesis. The processes of tRNAi evolution, and selection of methionine as the universal initiating amino acid remain an enigmatic problem. We constructed phylogenetic trees using the whole sequence, the acceptor-TψC arm ('minihelix'), and the anticodon-dihydrouridine arm regions of tRNAi from 158 species belonging to all 3 domains of life. All the trees distinctly assembled into 3 domains of life. Large trees, generated using data for all the tRNAs of a vast number of species, fail to reveal the major evolutionary events and identity of the probable elongator tRNA sequences that could be ancestor of tRNAi. Therefore, we constructed trees using the minihelix or the whole sequence of species specific tRNAs, and iterated our analysis on 50 eubacterial species. We identified tRNA(Pro), tRNA(Glu), or tRNA(Thr) (but surprisingly not elongator tRNA(Met)) as probable ancestors of tRNAi. We then determined the factors imposing selection of methionine as the initiating amino acid. Overall frequency of occurrence of methionine, whose metabolic cost of synthesis is the highest among all amino acids, remains almost unchanged across the 3 domains of life. Our correlation analysis shows that its high metabolic cost is independent of many physicochemical properties of the side chain. Our results indicate that selection of methionine, as the initiating amino acid was possibly a consequence of the evolution of one-carbon metabolism, which plays an important role in regulating translation initiation.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Umesh Varshney
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India.,b Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur , Bangalore , India
| |
Collapse
|
15
|
Shetty S, Bhattacharyya S, Varshney U. Is the cellular initiation of translation an exclusive property of the initiator tRNAs? RNA Biol 2016; 12:675-80. [PMID: 25996503 DOI: 10.1080/15476286.2015.1043507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Translation of mRNAs is the primary function of the ribosomal machinery. Although cells allow for a certain level of translational errors/mistranslation (which may well be a strategic need), maintenance of the fidelity of translation is vital for the cellular function and fitness. The P-site bound initiator tRNA selects the start codon in an mRNA and specifies the reading frame. A direct P-site binding of the initiator tRNA is a function of its special structural features, ribosomal elements, and the initiation factors. A highly conserved feature of the 3 consecutive G:C base pairs (3 GC pairs) in the anticodon stem of the initiator tRNAs is vital in directing it to the P-site. Mutations in the 3 GC pairs diminish/abolish initiation under normal physiological conditions. Using molecular genetics approaches, we have identified conditions that allow initiation with the mutant tRNAs in Escherichia coli. During our studies, we have uncovered a novel phenomenon of in vivo initiation by elongator tRNAs. Here, we recapitulate how the cellular abundance of the initiator tRNA, and nucleoside modifications in rRNA are connected with the tRNA selection in the P-site. We then discuss our recent finding of how a conserved feature in the mRNA, the Shine-Dalgarno sequence, influences tRNA selection in the P-site.
Collapse
Affiliation(s)
- Sunil Shetty
- a Department of Microbiology and Cell Biology; Indian Institute of Science ; Bangalore , India
| | | | | |
Collapse
|
16
|
Conserved residues in yeast initiator tRNA calibrate initiation accuracy by regulating preinitiation complex stability at the start codon. Genes Dev 2014; 28:502-20. [PMID: 24589778 PMCID: PMC3950347 DOI: 10.1101/gad.236547.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic initiator tRNA (tRNAi) contains several highly conserved, unique sequence features, yet their importance in accurate start codon selection is unknown. Using genetic and biochemical analyses, Dong et al. show that conserved bases throughout tRNAi, from the anticodon stem to the acceptor stem, play key roles in ensuring the fidelity of start codon recognition. This work delineates specific molecular functions for signature initiator tRNA residues and establishes their importance for initiation accuracy in living eukaryotic cells. Eukaryotic initiator tRNA (tRNAi) contains several highly conserved unique sequence features, but their importance in accurate start codon selection was unknown. Here we show that conserved bases throughout tRNAi, from the anticodon stem to acceptor stem, play key roles in ensuring the fidelity of start codon recognition in yeast cells. Substituting the conserved G31:C39 base pair in the anticodon stem with different pairs reduces accuracy (the Sui− [suppressor of initiation codon] phenotype), whereas eliminating base pairing increases accuracy (the Ssu− [suppressor of Sui−] phenotype). The latter defect is fully suppressed by a Sui− substitution of T-loop residue A54. These genetic data are paralleled by opposing effects of Sui− and Ssu− substitutions on the stability of methionylated tRNAi (Met-tRNAi) binding (in the ternary complex [TC] with eIF2-GTP) to reconstituted preinitiation complexes (PICs). Disrupting the C3:G70 base pair in the acceptor stem produces a Sui− phenotype and also reduces the rate of TC binding to 40S subunits in vitro and in vivo. Both defects are suppressed by an Ssu− substitution in eIF1A that stabilizes the open/POUT conformation of the PIC that exists prior to start codon recognition. Our data indicate that these signature sequences of tRNAi regulate accuracy by distinct mechanisms, promoting the open/POUT conformation of the PIC (for C3:G70) or destabilizing the closed/PIN state (for G31:C39 and A54) that is critical for start codon recognition.
Collapse
|
17
|
Abstract
In all domains of life, initiator tRNA functions exclusively at the first step of protein synthesis while elongator tRNAs extend the polypeptide chain. Unique features of initiator tRNA enable it to preferentially bind the ribosomal P site and initiate translation. Recently, we showed that the abundance of initiator tRNA also contributes to its specialized role. This motivates the question, can a cell also use elongator tRNA to initiate translation under certain conditions? To address this, we introduced non-AUG initiation codons CCC (Pro), GAG (Glu), GGU (Gly), UCU (Ser), UGU (Cys), ACG (Thr), AAU (Asn), and AGA (Arg) into the uracil DNA glycosylase gene (ung) used as a reporter gene. Enzyme assays from log-phase cells revealed initiation from non-AUG codons when intracellular initiator tRNA levels were reduced. The activity increased significantly in stationary phase. Further increases in initiation from non-AUG codons occurred in both growth phases upon introduction of plasmid-borne genes of cognate elongator tRNAs. Since purine-rich Shine-Dalgarno sequences occur frequently on mRNAs (in places other than the canonical AUG codon initiation contexts), initiation with elongator tRNAs from the alternate contexts may generate proteome diversity under stress without compromising genomic integrity. Thus, by changing the relative amounts of initiator and elongator tRNAs within the cell, we have blurred the distinction between the two classes of tRNAs thought to be frozen through years of evolution.
Collapse
|
18
|
Abstract
Of all tRNAs, initiator tRNA is unique in its ability to start protein synthesis by directly binding the ribosomal P-site. This ability is believed to derive from the almost universal presence of three consecutive G-C base (3G-C) pairs in the anticodon stem of initiator tRNA. Consistent with the hypothesis, a plasmid-borne initiator tRNA with one, two, or all 3G-C pairs mutated displays negligible initiation activity when tested in a WT Escherichia coli cell. Given this, the occurrence of unconventional initiator tRNAs lacking the 3G-C pairs, as in some species of Mycoplasma and Rhizobium, is puzzling. We resolve the puzzle by showing that the poor activity of unconventional initiator tRNAs in E. coli is because of competition from a large pool of the endogenous WT initiator tRNA (possessing the 3G-C pairs). We show that E. coli can be sustained on an initiator tRNA lacking the first and third G-C pairs; thereby reducing the 3G-C rule to a mere middle G-C requirement. Two general inferences following from our findings, that the activity of a mutant gene product may depend on its abundance in the cell relative to that of the WT, and that promiscuous initiation with elongator tRNAs has the potential to enhance phenotypic diversity without affecting genomic integrity, have been discussed.
Collapse
|
19
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
20
|
Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis. Nat Struct Mol Biol 2011; 18:1043-51. [PMID: 21857664 PMCID: PMC3167956 DOI: 10.1038/nsmb.2098] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/14/2011] [Indexed: 01/27/2023]
Abstract
Translocation of transfer RNAs (tRNAs) through the ribosome during protein synthesis involves large-scale structural rearrangements of the ribosome and the ribosome-bound tRNAs that are accompanied by extensive and dynamic remodeling of tRNA-ribosome interactions. The contributions that rearranging individual tRNA-ribosome interactions make to directing tRNA movements during translocation, however, remain largely unknown. To address this question, we have used single-molecule fluorescence resonance energy transfer to characterize the dynamics of ribosomal pre-translocation (PRE) complex analogs carrying either wild-type or systematically mutagenized tRNAs. Our data reveal how specific tRNA-ribosome interactions regulate the rate with which the PRE complex rearranges into a critical, on-pathway translocation intermediate and how these interactions control the stability of the resulting configuration. More interestingly, our results suggest that the conformational flexibility of the tRNA molecule itself plays a crucial role in directing the structural dynamics of the PRE complex during translocation.
Collapse
|
21
|
Widmann J, Harris JK, Lozupone C, Wolfson A, Knight R. Stable tRNA-based phylogenies using only 76 nucleotides. RNA (NEW YORK, N.Y.) 2010; 16:1469-77. [PMID: 20558546 PMCID: PMC2905747 DOI: 10.1261/rna.726010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/16/2010] [Indexed: 05/29/2023]
Abstract
tRNAs are among the most ancient, highly conserved sequences on earth, but are often thought to be poor phylogenetic markers because they are short, often subject to horizontal gene transfer, and easily change specificity. Here we use an algorithm now commonly used in microbial ecology, UniFrac, to cluster 175 genomes spanning all three domains of life based on the phylogenetic relationships among their complete tRNA pools. We find that the overall pattern of similarities and differences in the tRNA pools recaptures universal phylogeny to a remarkable extent, and that the resulting tree is similar to the distribution of bootstrapped rRNA trees from the same genomes. In contrast, the trees derived from tRNAs of identical specificity or of individual isoacceptors generally produced trees of lower quality. However, some tRNA isoacceptors were very good predictors of the overall pattern of organismal evolution. These results show that UniFrac can extract meaningful biological patterns from even phylogenies with high level of statistical inaccuracy and horizontal gene transfer, and that, overall, the pattern of tRNA evolution tracks universal phylogeny and provides a background against which we can test hypotheses about the evolution of individual isoacceptors.
Collapse
Affiliation(s)
- Jeremy Widmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
22
|
Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc Natl Acad Sci U S A 2009; 106:15702-7. [PMID: 19717422 DOI: 10.1073/pnas.0908077106] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determining the mechanism by which tRNAs rapidly and precisely transit through the ribosomal A, P, and E sites during translation remains a major goal in the study of protein synthesis. Here, we report the real-time dynamics of the L1 stalk, a structural element of the large ribosomal subunit that is implicated in directing tRNA movements during translation. Within pretranslocation ribosomal complexes, the L1 stalk exists in a dynamic equilibrium between open and closed conformations. Binding of elongation factor G (EF-G) shifts this equilibrium toward the closed conformation through one of at least two distinct kinetic mechanisms, where the identity of the P-site tRNA dictates the kinetic route that is taken. Within posttranslocation complexes, L1 stalk dynamics are dependent on the presence and identity of the E-site tRNA. Collectively, our data demonstrate that EF-G and the L1 stalk allosterically collaborate to direct tRNA translocation from the P to the E sites, and suggest a model for the release of E-site tRNA.
Collapse
|
23
|
Murta SMF, Vickers TJ, Scott DA, Beverley SM. Methylene tetrahydrofolate dehydrogenase/cyclohydrolase and the synthesis of 10-CHO-THF are essential in Leishmania major. Mol Microbiol 2009; 71:1386-401. [PMID: 19183277 PMCID: PMC2692627 DOI: 10.1111/j.1365-2958.2009.06610.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
10-Formyl tetrahydrofolate (10-CHO-THF) is a key metabolite in C1 carbon metabolism, arising through the action of formate-tetrahydrofolate ligase (FTL) and/or 5,10-methenyltetrahydrofolate cyclohydrolase/5,10-methylene tetrahydrofolate dehydrogenase (DHCH). Leishmania major possesses single DHCH1 and FTL genes encoding exclusively cytosolic proteins, unlike other organisms where isoforms occur in the mitochondrion as well. Recombinant DHCH1 showed typical NADP(+)-dependent methylene tetrahydrofolate DH and 5,10-methenyltetrahydrofolate CH activities, and the DH activity was potently inhibited by a substrate analogue 5,10-CO-THF (K(i) 105 nM), as was Leishmania growth (EC(50) 1.1 microM). Previous studies showed null ftl(-) mutants were normal, raising the possibility that loss of the purine synthetic pathway had rendered 10-CHO-THF dispensable in evolution. We were unable to generate dhch1(-) null mutants by gene replacement, despite using a wide spectrum of nutritional supplements expected to bypass DHCH function. We applied an improved method for testing essential genes in Leishmania, based on segregational loss of episomal complementing genes rather than transfection; analysis of approximately 1400 events without successful loss of DHCH1 again established its requirement. Lastly, we employed 'genetic metabolite complementation' using ectopically expressed FTL as an alternative source of 10-CHO-THF; now dhch1(-) null parasites were readily obtained. These data establish a requirement for 10-CHO-THF metabolism in L. major, and provide genetic and pharmacological validation of DHCH as a target for chemotherapy, in this and potentially other protozoan parasites.
Collapse
Affiliation(s)
| | | | | | - Stephen M. Beverley
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Barraud P, Schmitt E, Mechulam Y, Dardel F, Tisné C. A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Nucleic Acids Res 2008; 36:4894-901. [PMID: 18653533 PMCID: PMC2528185 DOI: 10.1093/nar/gkn462] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In all organisms, translational initiation takes place on the small ribosomal subunit and two classes of methionine tRNA are present. The initiator is used exclusively for initiation of protein synthesis while the elongator is used for inserting methionine internally in the nascent polypeptide chain. The crystal structure of Escherichia coli initiator tRNAfMet has been solved at 3.1 Å resolution. The anticodon region is well-defined and reveals a unique structure, which has not been described in any other tRNA. It encompasses a Cm32•A38 base pair with a peculiar geometry extending the anticodon helix, a base triple between A37 and the G29-C41 pair in the major groove of the anticodon stem and a modified stacking organization of the anticodon loop. This conformation is associated with the three GC basepairs in the anticodon stem, characteristic of initiator tRNAs and suggests a mechanism by which the translation initiation machinery could discriminate the initiator tRNA from all other tRNAs.
Collapse
Affiliation(s)
- Pierre Barraud
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, CNRS, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | |
Collapse
|
25
|
Das G, Thotala DK, Kapoor S, Karunanithi S, Thakur SS, Singh NS, Varshney U. Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli. EMBO J 2008; 27:840-51. [PMID: 18288206 DOI: 10.1038/emboj.2008.20] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 01/18/2008] [Indexed: 11/09/2022] Open
Abstract
Translation initiation from the ribosomal P-site is the specialty of the initiator tRNAs (tRNA(fMet)). Presence of the three consecutive G-C base pairs (G29-C41, G30-C40 and G31-C39) in their anticodon stems, a highly conserved feature of the initiator tRNAs across the three kingdoms of life, has been implicated in their preferential binding to the P-site. How this feature is exploited by ribosomes has remained unclear. Using a genetic screen, we have isolated an Escherichia coli strain, carrying a G122D mutation in folD, which allows initiation with the tRNA(fMet) containing mutations in one, two or all the three G-C base pairs. The strain shows a severe deficiency of methionine and S-adenosylmethionine, and lacks nucleoside methylations in rRNA. Targeted mutations in the methyltransferase genes have revealed a connection between the rRNA modifications and the fundamental process of the initiator tRNA selection by the ribosome.
Collapse
Affiliation(s)
- Gautam Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Köhrer C, RajBhandary UL. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods 2008; 44:129-38. [PMID: 18241794 PMCID: PMC2277081 DOI: 10.1016/j.ymeth.2007.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022] Open
Abstract
Here we describe the many applications of acid urea polyacrylamide gel electrophoresis (acid urea PAGE) followed by Northern blot analysis to studies of tRNAs and aminoacyl-tRNA synthetases. Acid urea PAGE allows the electrophoretic separation of different forms of a tRNA, discriminated by changes in bulk, charge, and/or conformation that are brought about by aminoacylation, formylation, or modification of a tRNA. Among the examples described are (i) analysis of the effect of mutations in the Escherichia coli initiator tRNA on its aminoacylation and formylation; (ii) evidence of orthogonality of suppressor tRNAs in mammalian cells and yeast; (iii) analysis of aminoacylation specificity of an archaeal prolyl-tRNA synthetase that can aminoacylate archaeal tRNA(Pro) with cysteine, but does not aminoacylate archaeal tRNA(Cys) with cysteine; (iv) identification and characterization of the AUA-decoding minor tRNA(Ile) in archaea; and (v) evidence that the archaeal minor tRNA(Ile) contains a modified base in the wobble position different from lysidine found in the corresponding eubacterial tRNA.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/analysis
- Animals
- Archaea/metabolism
- Blotting, Northern/methods
- Electrophoresis, Polyacrylamide Gel/methods
- Humans
- Hydrogen-Ion Concentration
- Lysine/analogs & derivatives
- Lysine/biosynthesis
- Protein Engineering/methods
- Pyrimidine Nucleosides/biosynthesis
- RNA, Bacterial/isolation & purification
- RNA, Transfer/analysis
- RNA, Transfer/isolation & purification
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Met/metabolism
- Urea
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 2005; 69:101-23. [PMID: 15755955 PMCID: PMC1082788 DOI: 10.1128/mmbr.69.1.101-123.2005] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The first section describes the ribosomal features relevant to the initiation process. Subsequent sections describe the structure, function, and interactions of the mRNA, the initiator tRNA, and the initiation factors IF1, IF2, and IF3. Finally, we provide an overview of mechanisms of regulation of the translation initiation event. Translation occurs on ribonucleoprotein complexes called ribosomes. The ribosome is composed of a large subunit and a small subunit that hold the activities of peptidyltransfer and decode the triplet code of the mRNA, respectively. Translation initiation is promoted by IF1, IF2, and IF3, which mediate base pairing of the initiator tRNA anticodon to the mRNA initiation codon located in the ribosomal P-site. The mechanism of translation initiation differs for canonical and leaderless mRNAs, since the latter is dependent on the relative level of the initiation factors. Regulation of translation occurs primarily in the initiation phase. Secondary structures at the mRNA ribosomal binding site (RBS) inhibit translation initiation. The accessibility of the RBS is regulated by temperature and binding of small metabolites, proteins, or antisense RNAs. The future challenge is to obtain atomic-resolution structures of complete initiation complexes in order to understand the mechanism of translation initiation in molecular detail.
Collapse
Affiliation(s)
- Brian Søgaard Laursen
- Department of Molecular Biology, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
28
|
Mayer C, Stortchevoi A, Köhrer C, Varshney U, RajBhandary UL. Initiator tRNA and its role in initiation of protein synthesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:195-206. [PMID: 12762022 DOI: 10.1101/sqb.2001.66.195] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C Mayer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
29
|
Stortchevoi A, Varshney U, RajBhandary UL. Common location of determinants in initiator transfer RNAs for initiator-elongator discrimination in bacteria and in eukaryotes. J Biol Chem 2003; 278:17672-9. [PMID: 12639964 DOI: 10.1074/jbc.m212890200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determinant in eukaryotic initiator tRNAs is located in the TPsiC stem, whereas a secondary negative determinant is the A1:U72 base pair at the end of the acceptor stem. Here we show that E. coli initiator tRNA also has a secondary negative determinant for elongation and that it is the U50.G64 wobble base pair, located at the same position in the TPsiC stem as the primary negative determinant in eukaryotic initiator tRNAs. Mutation of the U50.G64 wobble base pair to C50:G64 or U50:A64 base pairs increases the in vivo amber suppressor activity of initiator tRNA mutants that have changes in the acceptor stem and in the anticodon sequence necessary for amber suppressor activity. Binding assays of the mutant aminoacyl-tRNAs carrying the C50 and A64 changes to the elongation factor EF-Tu.GTP show marginally higher affinity of the C50 and A64 mutant tRNAs and increased stability of the EF-Tu.GTP. aminoacyl-tRNA ternary complexes. Other results show a large effect of the amino acid attached to a tRNA, glutamine versus methionine, on the binding affinity toward EF-Tu.GTP and on the stability of the EF-Tu.GTP.aminoacyl-tRNA ternary complex.
Collapse
Affiliation(s)
- Alexei Stortchevoi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
30
|
Martin NC. Location alters tRNA identity: Trypanosoma brucei's cytosolic elongator tRNAMet is both the initiator and elongator in mitochondria. Proc Natl Acad Sci U S A 2002; 99:1110-2. [PMID: 11830652 PMCID: PMC122152 DOI: 10.1073/pnas.042011199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nancy C Martin
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40059, USA.
| |
Collapse
|
31
|
Abstract
The flatworm mitochondrial genetic code, which has been used for all species of the Platyhelminthes, is mainly characterized by AUA codon for isoleucine, AAA codon for asparagine and UAA codon for tyrosine. In eight species of cestodes (Echinococcus multilocularis, Echinococcus granlosus, Taenia solium Taenia saginata, Taenia hydatigena, Taenia crassiceps, Hymenolepis nama and Mesocestoides corti), the cytochrome c oxidase subunit I (COI) genes were partially sequenced to verify this genetic code. Comparison of the COI-encoding nucleotide sequences with those of human, sea urchin, fruit fly, nematode and yeast indicated that the assignments of AUA and AAA codons are adequate for cestodes. In addition, the nucleotide sequences of ATPase subunit 6 (ATP6) gene and its flanking region were compared to examine initiation and stop codons. In the related species of T. solium and T. saginata, the deduced amino acid sequences of ATP6 were homogeneous; however, the conversion of initiation codon AUG into GUG was observed in T. saginata. We also found the similar conversion in T. crassiceps. The C-terminal sequences of putative ATP6 proteins were highly conserved among the eight species and the stop codon UAG was altered to UAA in all Taenia species. The features of the gene-junctional region between NADH dehydrogenase subunit 4 (ND4) and glutamine tRNA (tRNAGln) genes also supported that UAA serves as a stop codon. Based on these results, we propose that the flatworm mitochondrial code should be modified for cestodes, particularly, in an initiating methionine codon (GUG) and a terminating codon (UAA).
Collapse
MESH Headings
- Animals
- Base Sequence
- Cestoda/classification
- Cestoda/genetics
- Codon/genetics
- DNA, Helminth/analysis
- DNA, Helminth/genetics
- DNA, Mitochondrial/genetics
- Electron Transport Complex IV/genetics
- Genetic Code
- Helminth Proteins/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Helminth/chemistry
- RNA, Helminth/genetics
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- M Nakao
- Department of Parasitology, Asahikawa Medical College, Hokkaido, Japan.
| | | | | | | | | |
Collapse
|
32
|
Thanedar S, Kumar NV, Varshney U. The fate of the initiator tRNAs is sensitive to the critical balance between interacting proteins. J Biol Chem 2000; 275:20361-7. [PMID: 10748005 DOI: 10.1074/jbc.m001238200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Formylation of the initiator tRNA is essential for normal growth of Escherichia coli. The initiator tRNA containing the U35A36 mutation (CUA anticodon) initiates from UAG codon. However, an additional mutation at position 72 (72A --> G) renders the tRNA (G72/U35A36) inactive in initiation because it is defective in formylation. In this study, we isolated U1G72/U35A36 tRNA containing a wobble base pair at 1-72 positions as an intragenic suppressor of the G72 mutation. The U1G72/U35A36 tRNA is formylated and participates in initiation. More importantly, we show that the mismatch at 1-72 positions of the initiator tRNA, which was thus far thought to be the hallmark of the resistance of this tRNA against peptidyl-tRNA hydrolase (PTH), is not sufficient. The amino acid attached to the initiator tRNA is also important in conferring protection against PTH. Further, we show that the relative levels of PTH and IF2 influence the path adopted by the initiator tRNAs in protein synthesis. These findings provide an important clue to understand the dual function of the single tRNA(Met) in initiation and elongation, in the mitochondria of various organisms.
Collapse
Affiliation(s)
- S Thanedar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
33
|
Li Y, Holmes WB, Appling DR, RajBhandary UL. Initiation of protein synthesis in Saccharomyces cerevisiae mitochondria without formylation of the initiator tRNA. J Bacteriol 2000; 182:2886-92. [PMID: 10781559 PMCID: PMC101999 DOI: 10.1128/jb.182.10.2886-2892.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein synthesis in eukaryotic organelles such as mitochondria and chloroplasts is widely believed to require a formylated initiator methionyl tRNA (fMet-tRNA(fMet)) for initiation. Here we show that initiation of protein synthesis in yeast mitochondria can occur without formylation of the initiator methionyl-tRNA (Met-tRNA(fMet)). The formylation reaction is catalyzed by methionyl-tRNA formyltransferase (MTF) located in mitochondria and uses N(10)-formyltetrahydrofolate (10-formyl-THF) as the formyl donor. We have studied yeast mutants carrying chromosomal disruptions of the genes encoding the mitochondrial C(1)-tetrahydrofolate (C(1)-THF) synthase (MIS1), necessary for synthesis of 10-formyl-THF, and the methionyl-tRNA formyltransferase (open reading frame YBL013W; designated FMT1). A direct analysis of mitochondrial tRNAs using gel electrophoresis systems that can separate fMet-tRNA(fMet), Met-tRNA(fMet), and tRNA(fMet) shows that there is no formylation in vivo of the mitochondrial initiator Met-tRNA in these strains. In contrast, the initiator Met-tRNA is formylated in the respective "wild-type" parental strains. In spite of the absence of fMet-tRNA(fMet), the mutant strains exhibited normal mitochondrial protein synthesis and function, as evidenced by normal growth on nonfermentable carbon sources in rich media and normal frequencies of generation of petite colonies. The only growth phenotype observed was a longer lag time during growth on nonfermentable carbon sources in minimal media for the mis1 deletion strain but not for the fmt1 deletion strain.
Collapse
Affiliation(s)
- Y Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
34
|
Ramesh V, Mayer C, Dyson MR, Gite S, RajBhandary UL. Induced fit of a peptide loop of methionyl-tRNA formyltransferase triggered by the initiator tRNA substrate. Proc Natl Acad Sci U S A 1999; 96:875-80. [PMID: 9927661 PMCID: PMC15318 DOI: 10.1073/pnas.96.3.875] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 16-aa insertion loop present in eubacterial methionyl-tRNA formyltransferases (MTF) is critical for specific recognition of the initiator tRNA in Escherichia coli. We have studied the interactions between this region of the E. coli enzyme and initiator methionyl-tRNA (Met-tRNA) by using two complementary protection experiments: protection of MTF against proteolytic cleavage by tRNA and protection of tRNA against nucleolytic cleavage by MTF. The insertion loop in MTF is uniquely sensitive to cleavage by trypsin. We show that the substrate initiator Met-tRNA protects MTF against trypsin cleavage, whereas a formylation-defective mutant initiator Met-tRNA, which binds to MTF with approximately the same affinity, does not. Also, mutants of MTF within the insertion loop (which are defective in formylation) are not protected by the initiator Met-tRNA. Thus, a functional enzyme-substrate complex is necessary for protection of MTF against trypsin cleavage. Along with other data, these results strongly suggest that a segment of the insertion loop, which is exposed and unstructured in MTF, undergoes an induced fit in the functional MTF.Met-tRNA complex but not in the nonfunctional one. Footprinting experiments show that MTF specifically protects the acceptor stem and the 3'-end region of the initiator Met-tRNA against cleavage by double and single strand-specific nucleases. This protection also depends on formation of a functional MTF.Met-tRNA complex. Thus, the insertion loop interacts mostly with the acceptor stem of the initiator Met-tRNA, which contains the critical determinants for formylation.
Collapse
Affiliation(s)
- V Ramesh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
35
|
Drabkin HJ, RajBhandary UL. Initiation of protein synthesis in mammalian cells with codons other than AUG and amino acids other than methionine. Mol Cell Biol 1998; 18:5140-7. [PMID: 9710598 PMCID: PMC109099 DOI: 10.1128/mcb.18.9.5140] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1998] [Accepted: 06/12/1998] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis is initiated universally with the amino acid methionine. In Escherichia coli, studies with anticodon sequence mutants of the initiator methionine tRNA have shown that protein synthesis can be initiated with several other amino acids. In eukaryotic systems, however, a yeast initiator tRNA aminoacylated with isoleucine was found to be inactive in initiation in mammalian cell extracts. This finding raised the question of whether methionine is the only amino acid capable of initiation of protein synthesis in eukaryotes. In this work, we studied the activities, in initiation, of four different anticodon sequence mutants of human initiator tRNA in mammalian COS1 cells, using reporter genes carrying mutations in the initiation codon that are complementary to the tRNA anticodons. The mutant tRNAs used are aminoacylated with glutamine, methionine, and valine. Our results show that in the presence of the corresponding mutant initiator tRNAs, AGG and GUC can initiate protein synthesis in COS1 cells with methionine and valine, respectively. CAG initiates protein synthesis with glutamine but extremely poorly, whereas UAG could not be used to initiate protein synthesis with glutamine. We discuss the potential applications of the mutant initiator tRNA-dependent initiation of protein synthesis with codons other than AUG for studying the many interesting aspects of protein synthesis initiation in mammalian cells.
Collapse
Affiliation(s)
- H J Drabkin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
36
|
Ramesh V, Gite S, Li Y, RajBhandary UL. Suppressor mutations in Escherichia coli methionyl-tRNA formyltransferase: role of a 16-amino acid insertion module in initiator tRNA recognition. Proc Natl Acad Sci U S A 1997; 94:13524-9. [PMID: 9391059 PMCID: PMC28339 DOI: 10.1073/pnas.94.25.13524] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The specific formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF; EC 2.1.2.9) is important for the initiation of protein synthesis in eubacteria and in eukaryotic organelles. The determinants for formylation in the tRNA are clustered mostly in the acceptor stem. As part of studies on the molecular mechanism of recognition of the initiator tRNA by MTF, we report here on the isolation and characterization of suppressor mutations in Escherichia coli MTF, which compensate for the formylation defect of a mutant initiator tRNA, lacking a critical determinant in the acceptor stem. We show that the suppressor mutant in MTF has a glycine-41 to arginine change within a 16-amino acid insertion found in MTF from many sources. A mutant with glycine-41 changed to lysine also acts as a suppressor, whereas mutants with changes to aspartic acid, glutamine, and leucine do not. The kinetic parameters of the purified wild-type and mutant Arg-41 and Lys-41 enzymes, determined by using the wild-type and mutant tRNAs as substrates, show that the Arg-41 and Lys-41 mutant enzymes compensate specifically for the strong negative effect of the acceptor stem mutation on formylation. These and other considerations suggest that the 16-amino acid insertion in MTF plays an important role in the specific recognition of the determinants for formylation in the acceptor stem of the initiator tRNA.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Bacterial
- Hydroxymethyl and Formyl Transferases/genetics
- Hydroxymethyl and Formyl Transferases/metabolism
- Kinetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Sequence Homology, Amino Acid
- Suppression, Genetic
Collapse
Affiliation(s)
- V Ramesh
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
37
|
Gite S, RajBhandary UL. Lysine 207 as the site of cross-linking between the 3'-end of Escherichia coli initiator tRNA and methionyl-tRNA formyltransferase. J Biol Chem 1997; 272:5305-12. [PMID: 9030604 DOI: 10.1074/jbc.272.8.5305] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The specific formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for initiation of protein synthesis in Escherichia coli. In attempts to identify regions of MTF that come close to the 3'-end of the tRNA, we oxidized 32P-3'-end-labeled E. coli initiator methionine tRNA with sodium metaperiodate and cross-linked it to MTF. The cross-linked MTF was separated from uncross-linked MTF by DEAE-cellulose chromatography, and the tRNA in the cross-linked MTF was hydrolyzed with nuclease P1 and RNase T1, leaving behind an oxidized fragment of [32P]AMP attached to MTF. Trypsin digestion of the cross-linked MTF followed by high pressure liquid chromatography of the digest yielded two peaks of radioactive peptides, I* and II*. These peptides were characterized by N- and/or C-terminal sequencing and by matrix-assisted laser desorption ionization mass spectroscopy. Peptide I* contained amino acids Gln186-Lys210 with Lys207 as the site of the cross-link. Peptide II*, a partial digestion product, contained amino acids Gln186-Arg214 also with Lys207 as the site of the cross-link. The molecular masses of peptides I* and II* indicate that the final product of the cross-linking reaction between the periodate-oxidized AMP moiety of the tRNA and Lys207 is most likely a morpholino derivative rather than a reduced Schiff's base.
Collapse
Affiliation(s)
- S Gite
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
38
|
Wu XQ, RajBhandary UL. Effect of the amino acid attached to Escherichia coli initiator tRNA on its affinity for the initiation factor IF2 and on the IF2 dependence of its binding to the ribosome. J Biol Chem 1997; 272:1891-5. [PMID: 8999877 DOI: 10.1074/jbc.272.3.1891] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We show that the nature of the amino acid in the formylaminoacyl-tRNA influences initiation factor (IF) 2 dependence of its ribosome binding and that this IF2 dependence reflects the relative affinity of the formylaminoacyl-tRNA for the initiation factor IF2. We compared the template-dependent ribosome binding activities, in the presence of initiation factors, of wild type and anticodon sequence mutants of Escherichia coli initiator tRNAs that carry formylmethionine (fMet), formylglutamine (fGln), or formylvaline (fVal). The fGln-tRNA bound less well than fMet-tRNA whereas the fVal-tRNA bound as well as fMet-tRNA. The rate and extent of binding of fGln-tRNA to the ribosome was significantly increased by further addition of purified initiation factor IF2. In contrast, the binding of fVal-tRNA or fMet-tRNA was not affected much by the addition of IF2. Using gel mobility shift assay, we have measured the apparent Kd values of the IF2.formylaminoacyl-tRNA binary complexes. These are 1.8, 3.5, and 10.5 microM for fMet-tRNA, fVal-tRNA, and fGln-tRNA, respectively.
Collapse
Affiliation(s)
- X Q Wu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
39
|
Guillon JM, Heiss S, Soutourina J, Mechulam Y, Laalami S, Grunberg-Manago M, Blanquet S. Interplay of methionine tRNAs with translation elongation factor Tu and translation initiation factor 2 in Escherichia coli. J Biol Chem 1996; 271:22321-5. [PMID: 8798391 DOI: 10.1074/jbc.271.37.22321] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
According to their role in translation, tRNAs specifically interact either with elongation factor Tu (EFTu) or with initiation factor 2 (IF2). We here describe the effects of overproducing EFTu and IF2 on the elongator versus initiator activities of various mutant tRNAMet species in vivo. The data obtained indicate that the selection of a tRNA through one or the other pathway of translation depends on the relative amounts of the translational factors. A moderate overexpression of EFTu is enough to lead to a misappropriation of initiator tRNA in the elongation process, whereas overproduced IF2 allows the initiation of translation to occur with unformylated tRNA species. In addition, we report that a strain devoid of formylase activity can be cured by the overproduction of tRNAMetf. The present study brings additional evidence for the importance of formylation in defining tRNAMetf initiator identity, as well as a possible explanation for the residual growth of bacterial strains lacking a functional formylase gene such as observed in Guillon, J. M., Mechulam, Y., Schmitter, J.-M., Blanquet, S., and Fayat, G. (1992) J. Bacteriol. 174, 4294-4301.
Collapse
Affiliation(s)
- J M Guillon
- Laboratoire de Biochimie, URA CNRS 1970, Ecole Polytechnique, F91128 Palaiseau cedex, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Enríquez JA, Attardi G. Evidence for aminoacylation-induced conformational changes in human mitochondrial tRNAs. Proc Natl Acad Sci U S A 1996; 93:8300-5. [PMID: 8710865 PMCID: PMC38665 DOI: 10.1073/pnas.93.16.8300] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Analysis by acid polyacrylamide/urea gel electrophoresis of 14 individual mitochondrial tRNAs (mt-tRNAs) from human cells has revealed a variable decrease in mobility of the aminoacylated relative to the nonacylated form, with the degree of separation of the two forms not being correlated with the mass, polar character, or charge of the amino acid. Separation of the charged and uncharged species has been found to be independent of tRNA denaturation, being observed also in the absence of urea. In another approach, electrophoresis through a perpendicular denaturing gradient gel of several individual mt-tRNAs has shown a progressive unfolding of the tRNA with increasing denaturant concentration, which is consistent with an initial disruption of tertiary interactions, followed by the sequential melting of the four stems of the cloverleaf structure. A detailed analysis of the unfolding process of charged and uncharged tRNALys and tRNALeu(UUR) has revealed that the separation of the two forms of these tRNAs persisted throughout the almost entire range of denaturant concentrations used and was lost upon denaturation of the last helical domain(s), which most likely included the amino acid acceptor stem. These observations strongly suggest that the electrophoretic retardation of the charged species reflects an aminoacylation-induced conformational change of the 3'-end of these mt-tRNAs, with possible significant implications in connection with the known role of the acceptor end in tRNA interactions with the ribosomal peptidyl transferase center and the elongation factor Tu.
Collapse
Affiliation(s)
- J A Enríquez
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
41
|
Schmitt E, Mechulam Y, Ruff M, Mitschler A, Moras D, Blanquet S. Crystallization and preliminary X-ray analysis of Escherichia colimethionyl–tRNA fMet formyltransferase. Proteins 1996. [DOI: 10.1002/(sici)1097-0134(199605)25:1<139::aid-prot14>3.0.co;2-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Schmitt E, Mechulam Y, Ruff M, Mitschler A, Moras D, Blanquet S. Crystallization and preliminary X-ray analysis of Escherichia coli methionyl-tRNA(fMet) formyltransferase. Proteins 1996; 25:139-41. [PMID: 8727328 DOI: 10.1002/prot.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Methionyl-tRNA(fMet) formyltransferase from Escherichia coli, a monomer of 34kDa, was overexpressed from its cloned gene fmt (Guillon, J.M., Mechulam, Y., Schmitter, J.M., Blanquet, S., and Fayat, G., J. Bacteriol. 174:4294-4301, 1992) and crystallized using ammonium sulphate as precipitant. The crystals are trigonal and have unit cell parameters a = b = 151.0 A, c = 81.8 A. They belong to space group P3(2)21 and diffract to 2.0 A resolution. The structure is being solved by multiple isomorphous replacement.
Collapse
Affiliation(s)
- E Schmitt
- Laboratorie de Biochimie, Unité de Recherche Associée no. 1970 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | |
Collapse
|
43
|
Li S, Kumar NV, Varshney U, RajBhandary UL. Important role of the amino acid attached to tRNA in formylation and in initiation of protein synthesis in Escherichia coli. J Biol Chem 1996; 271:1022-8. [PMID: 8557626 DOI: 10.1074/jbc.271.2.1022] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In attempts to convert an elongator tRNA to an initiator tRNA, we previously generated a mutant elongator methionine tRNA carrying an anticodon sequence change from CAU to CUA along with the two features important for activity of Escherichia coli initiator tRNA in initiation. This mutant tRNA (Mi:2 tRNA) was active in initiation in vivo but only when aminoacylated with methionine by overproduction of methionyl-tRNA synthetase. Here we show that the Mi:2 tRNA is normally aminoacylated in vivo with lysine and that the tRNA aminoacylated with lysine is a very poor substrate for formylation compared with the same tRNA aminoacylated with methionine. By introducing further changes at base pairs 4:69 and 5:68 in the acceptor stem of the Mi:2 tRNA to those found in the E. coli initiator tRNA, we show that change of the U4:A69 base pair to G4:C69 and overproduction of lysyl-tRNA synthetase and methionyl-tRNA transformylase results in partial formylation of the mutant tRNA and activity of the formyllysyl-tRNAs in initiation of protein synthesis. Thus, the G4: C69 base pair contributes toward formylation of the tRNA and protein synthesis in E. coli can be initiated with formyllysine. We also discuss the implications of these and other results on recognition of tRNAs by E. coli lysyl-tRNA synthetase and on competition in cells among aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- S Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | |
Collapse
|
44
|
Schmitt E, Guillon JM, Meinnel T, Mechulam Y, Dardel F, Blanquet S. Molecular recognition governing the initiation of translation in Escherichia coli. A review. Biochimie 1996; 78:543-54. [PMID: 8955898 DOI: 10.1016/s0300-9084(96)80001-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Selection of the proper start codon for the synthesis of a polypeptide by the Escherichia coli translation initiation apparatus involves several macromolecular components. These macromolecules interact in a specific and concerted manner to yield the translation initiation complex. This review focuses on recent data concerning the properties of the initiator tRNA and of enzymes and factors involved in the translation initiation process. The three initiation factors, as well as methionyl-tRNA synthetase and methionyl-tRNA(f)Met formyltransferase are described. In addition, the tRNA recognition properties of EF-Tu and peptidyl-tRNA hydrolase are considered. Finally, peptide deformylase and methionine aminopeptidase, which catalyze the amino terminal maturation of nascent polypeptides, can also be associated to the translation initiation process.
Collapse
Affiliation(s)
- E Schmitt
- Laboratoire de Biochimie, URA-CNRS no 1970, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | |
Collapse
|
45
|
Mangroo D, Wu XQ, RajBhandary UL. Escherichia coli initiator tRNA: structure-function relationships and interactions with the translational machinery. Biochem Cell Biol 1995; 73:1023-31. [PMID: 8722017 DOI: 10.1139/o95-109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We showed previously that the sequence and (or) structural elements important for specifying the many distinctive properties of Escherichia coli initiator tRNA are clustered in the acceptor stem and in the anticodon stem and loop. This paper briefly describes this and reviews the results of some recently published studies on the mutant initiator tRNAs generated during this work. First, we have studied the effect of overproduction of methionyl-tRNA transformylase (MTF) and initiation factors IF2 and IF3 on activity of mutant initiator tRNAs that are defective at specific steps in the initiation pathway. Overproduction of MTF rescued specifically the activity of mutant tRNAs defective in formylation but not mutants defective in binding to the P site. Overproduction of IF2 increased the activity of all mutant tRNAs having the CUA anticodon but not of mutant tRNA having the GAC anticodon. Overproduction of IF3 had no effect on the activity of any of the mutant tRNAs tested. Second, for functional studies of mutant initiator tRNA in vivo, we used a CAU --> CUA anticodon sequence mutant that can initiate protein synthesis from UAG instead of AUG. In contrast with the wild-type initiator tRNA, the mutant initiator tRNA has a 2-methylthio-N6-isopentenyl adenosine (ms2i6A) base modification next to the anticodon. Interestingly, this base modification is now important for activity of the mutant tRNA in initiation. In a miaA strain of E. coli deficient in biosynthesis of ms2i6A, the mutant initiator tRNA is much less active in initiation. The defect is specifically in binding to the ribosomal P site.
Collapse
Affiliation(s)
- D Mangroo
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
46
|
Mangroo D, RajBhandary UL. Mutants of Escherichia coli initiator tRNA defective in initiation. Effects of overproduction of methionyl-tRNA transformylase and the initiation factors IF2 and IF3. J Biol Chem 1995; 270:12203-9. [PMID: 7538134 DOI: 10.1074/jbc.270.20.12203] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We describe the effects of overproduction of methionyl-tRNA transformylase and initiation factors IF2 and IF3 on the activity, in vivo, of initiator tRNA mutants defective at specific steps of the initiation process in protein synthesis. The activity of the U35A36/G72 and U35A36/G72G73 mutants, which are defective in formylation, was increased by overproduction of methionyl-tRNA transformylase. In contrast, the activity of the C30:G40/U35A36 mutant, which is formylated normally but is defective in binding to the ribosomal P site, was not increased. Overproduction of IF2 had a strong stimulatory effect on the activity of virtually all the mutants carrying the U35A36 anticodon sequence change, including the U35A36, U35A36/G72, U35A36/G72G73, and the C30:G40/U35A36 mutants. In cells overproducing IF2, the amount of protein made by translation of a mutant mRNA, which uses the U35A36 mutant initiator tRNA, is severalfold higher than that made by translation of a wild type mRNA. We discuss the possible implications of this result on overproduction of proteins and on the order of assembly of the 30 S ribosome.mRNA.fMet-tRNA initiation complex in Escherichia coli. Over-production of IF3 did not affect the initiator activity of any of the tRNA mutants studied.
Collapse
Affiliation(s)
- D Mangroo
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
47
|
Mechulam Y, Meinnel T, Blanquet S. A family of RNA-binding enzymes. the aminoacyl-tRNA synthetases. Subcell Biochem 1995; 24:323-376. [PMID: 7900181 DOI: 10.1007/978-1-4899-1727-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Y Mechulam
- Laboratoire de Biochimie, CNRS n. 240, Ecole Polytechnique, Palaiseau, France
| | | | | |
Collapse
|
48
|
Affiliation(s)
- U L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
49
|
Guillon JM, Mechulam Y, Blanquet S, Fayat G. Importance of formylability and anticodon stem sequence to give a tRNA(Met) an initiator identity in Escherichia coli. J Bacteriol 1993; 175:4507-14. [PMID: 8331078 PMCID: PMC204892 DOI: 10.1128/jb.175.14.4507-4514.1993] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In bacteria, the free amino group of the methionylated initiator tRNA is specifically modified by the addition of a formyl group. The functional relevance of such a formylation for the initiation of translation is not yet precisely understood. Advantage was taken here of the availability of the fmt gene, encoding the Escherichia coli Met-tRNA(fMet) formyltransferase, to measure the influence of variations in the level of formyltransferase activity on the involvement of various mutant tRNA(fMet) and tRNA(mMet) species in either initiation or elongation in vivo. The data obtained established that formylation plays a dual role, firstly, by dictating tRNA(fMet) to engage in the initiation of translation, and secondly, by preventing the misappropriation of this tRNA by the elongation apparatus. The importance of formylation in the initiator identity of tRNA(fMet) was further shown by the demonstration that elongator tRNA(fMet) may be used in initiation and no longer in elongation, provided that it is mutated into a formylatable species and is given the three G.C base pairs characteristic of the anticodon stem of initiator tRNAs.
Collapse
Affiliation(s)
- J M Guillon
- Laboratoire de Biochimie, Unité Associée au Centre National de la Recherche Scientifique 240, Palaiseau, France
| | | | | | | |
Collapse
|