1
|
Boyd DF, Jordan SV, Balachandran S. ZBP1-driven cell death in severe influenza. Trends Microbiol 2025:S0966-842X(24)00324-X. [PMID: 39809680 DOI: 10.1016/j.tim.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity. Recent studies have begun to define the molecular mechanisms by which IAV triggers lytic cell death. Z-form nucleic-acid-binding protein 1 (ZBP1) senses replicating IAV and drives programmed cell death (PCD) in infected cells, including apoptosis and necroptosis in AECs and pyroptosis in myeloid cells. Necroptosis and pyroptosis, both lytic forms of death, contribute to pathogenesis during severe infections. Pharmacological blockade of necroptosis shows strong therapeutic potential in mouse models of lethal influenza. We suggest that targeting ZBP1-initiated necroinflammatory cell lysis, either alone or in combination antiviral drugs, will provide clinical benefit in severe influenza.
Collapse
Affiliation(s)
- David F Boyd
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | - Summer Vaughn Jordan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
2
|
Romero MF, Krall JB, Nichols PJ, Vantreeck J, Henen MA, Dejardin E, Schulz F, Vicens Q, Vögeli B, Diallo MA. Novel Z-DNA binding domains in giant viruses. J Biol Chem 2024; 300:107504. [PMID: 38944123 PMCID: PMC11298590 DOI: 10.1016/j.jbc.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
Collapse
Affiliation(s)
- Miguel F Romero
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jeffrey B Krall
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Jillian Vantreeck
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA
| | - Emmanuel Dejardin
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Quentin Vicens
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, Aurora, Colorado, USA.
| | - Mamadou Amadou Diallo
- GIGA I3 - Molecular Immunology and Signal Transduction, University of Liège, Liège, Belgium.
| |
Collapse
|
3
|
El-Khoury R, Cabrero C, Movilla S, Kaur H, Friedland D, Domínguez A, Thorpe J, Roman M, Orozco M, González C, Damha MJ. Formation of left-handed helices by C2'-fluorinated nucleic acids under physiological salt conditions. Nucleic Acids Res 2024; 52:7414-7428. [PMID: 38874502 PMCID: PMC11260457 DOI: 10.1093/nar/gkae508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024] Open
Abstract
Recent findings in cell biology have rekindled interest in Z-DNA, the left-handed helical form of DNA. We report here that two minimally modified nucleosides, 2'F-araC and 2'F-riboG, induce the formation of the Z-form under low ionic strength. We show that oligomers entirely made of these two nucleosides exclusively produce left-handed duplexes that bind to the Zα domain of ADAR1. The effect of the two nucleotides is so dramatic that Z-form duplexes are the only species observed in 10 mM sodium phosphate buffer and neutral pH, and no B-form is observed at any temperature. Hence, in contrast to other studies reporting formation of Z/B-form equilibria by a preference for purine glycosidic angles in syn, our NMR and computational work revealed that sequential 2'F…H2N and intramolecular 3'H…N3' interactions stabilize the left-handed helix. The equilibrium between B- and Z- forms is slow in the 19F NMR time scale (≥ms), and each conformation exhibited unprecedented chemical shift differences in the 19F signals. This observation led to a reliable estimation of the relative population of B and Z species and enabled us to monitor B-Z transitions under different conditions. The unique features of 2'F-modified DNA should thus be a valuable addition to existing techniques for specific detection of new Z-binding proteins and ligands.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Cristina Cabrero
- Instituto de Química Física Blas Cabrera, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Santiago Movilla
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Harneesh Kaur
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - David Friedland
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Arnau Domínguez
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - James D Thorpe
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Morgane Roman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Carlos González
- Instituto de Química Física Blas Cabrera, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
4
|
Herbert A. The ancient Z-DNA and Z-RNA specific Zα fold has evolved modern roles in immunity and transcription through the natural selection of flipons. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240080. [PMID: 39092141 PMCID: PMC11293857 DOI: 10.1098/rsos.240080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 08/04/2024]
Abstract
The Zα fold specifically binds to both Z-DNA and Z-RNA, left-handed nucleic acid structures that form under physiological conditions and are encoded by flipons. I trace the Zα fold back to unicellular organisms representing all three domains of life and to the realm of giant nucleocytoplasmic DNA viruses (NCVs). The canonical Zα fold is present in the earliest known holozoan unicellular symbiont Capsaspora owczarzaki and persists in vertebrates and some invertebrates, but not in plants or fungi. In metazoans, starting with porifera, Zα is incorporated into the double-stranded RNA editing enzyme ADAR and reflects an early symbiont relationship with NCV. In vertebrates, Zα is also present in ZBP1 and PKZ proteins that recognize host-derived Z-RNAs to defend against modern-day viruses. A related Zα fold, also likely to bind Z-DNA, is present in proteins thought to modulate gene expression, including a subset of prokaryote arsR proteins and the p15 (PC4) family present in algae. Other Zα variants that probably play a more general role in the reinitiation of transcription include the archaeal and human transcription factor E and the human RNA polymerase 3 subunit C proteins. The roles in immunity and transcription underlie the natural selection of flipons.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Charlestown, MA02129, USA
| |
Collapse
|
5
|
Herbert A. Flipons and small RNAs accentuate the asymmetries of pervasive transcription by the reset and sequence-specific microcoding of promoter conformation. J Biol Chem 2023; 299:105140. [PMID: 37544644 PMCID: PMC10474125 DOI: 10.1016/j.jbc.2023.105140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
The role of alternate DNA conformations such as Z-DNA in the regulation of transcription is currently underappreciated. These structures are encoded by sequences called flipons, many of which are enriched in promoter and enhancer regions. Through a change in their conformation, flipons provide a tunable mechanism to mechanically reset promoters for the next round of transcription. They act as actuators that capture and release energy to ensure that the turnover of the proteins at promoters is optimized to cell state. Likewise, the single-stranded DNA formed as flipons cycle facilitates the docking of RNAs that are able to microcode promoter conformations and canalize the pervasive transcription commonly observed in metazoan genomes. The strand-specific nature of the interaction between RNA and DNA likely accounts for the known asymmetry of epigenetic marks present on the histone tetramers that pair to form nucleosomes. The role of these supercoil-dependent processes in promoter choice and transcriptional interference is reviewed. The evolutionary implications are examined: the resilience and canalization of flipon-dependent gene regulation is contrasted with the rapid adaptation enabled by the spread of flipon repeats throughout the genome. Overall, the current findings underscore the important role of flipons in modulating the readout of genetic information and how little we know about their biology.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery Division, InsideOutBio, Charlestown, Massachusetts, USA.
| |
Collapse
|
6
|
Z-DNA and Z-RNA: Methods-Past and Future. Methods Mol Biol 2023; 2651:295-329. [PMID: 36892776 DOI: 10.1007/978-1-0716-3084-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A quote attributed to Yogi Berra makes the observation that "It's tough to make predictions, especially about the future," highlighting the difficulties posed to an author writing a manuscript like the present. The history of Z-DNA shows that earlier postulates about its biology have failed the test of time, both those from proponents who were wildly enthusiastic in enunciating roles that till this day still remain elusive to experimental validation and those from skeptics within the larger community who considered the field a folly, presumably because of the limitations in the methods available at that time. If anything, the biological roles we now know for Z-DNA and Z-RNA were not anticipated by anyone, even when those early predictions are interpreted in the most favorable way possible. The breakthroughs in the field were made using a combination of methods, especially those based on human and mouse genetic approaches informed by the biochemical and biophysical characterization of the Zα family of proteins. The first success was with the p150 Zα isoform of ADAR1 (adenosine deaminase RNA specific), with insights into the functions of ZBP1 (Z-DNA-binding protein 1) following soon after from the cell death community. Just as the replacement of mechanical clocks by more accurate designs changed expectations about navigation, the discovery of the roles assigned by nature to alternative conformations like Z-DNA has forever altered our view of how the genome operates. These recent advances have been driven by better methodology and by better analytical approaches. This article will briefly describe the methods that were key to these discoveries and highlight areas where new method development is likely to further advance our knowledge.
Collapse
|
7
|
Tang Q. Z-nucleic acids: Uncovering the functions from past to present. Eur J Immunol 2022; 52:1700-1711. [PMID: 36165274 PMCID: PMC9827954 DOI: 10.1002/eji.202249968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Since Z-nucleic acid was identified in the 1970s, much is still unknown about its biological functions and nature in vivo. Recent studies on adenosine deaminase acting on RNA 1 (ADAR1) and Z-DNA-binding protein 1 (ZBP1) have highlighted its function in immune responses. Specifically, Z-RNAs, either endogenous or induced by viral infection, are sensed by ZBP1 and activate necroptosis. Z-RNAs act as the stimuli that induce innate immune responses through various pathways, including melanoma differentiation-associated protein 5 (MAD5)-mitochondrial antiviral-signaling protein (MAVS)-mediated type I IFN activation and proteinase kinase R (PKR)-dependent integrated stress response, and their immunostimulatory potential is curtailed by RNA editing conducted by ADAR1. Aberrant immune responses induced by Z-RNAs are associated with human diseases. They also induce pathogenesis in mice. Unlike Z-RNAs, the biological functions of Z-DNAs were barely studied, especially in mammals. Moreover, the origin or sequence preference of Z-nucleic acids requires further investigation. Such knowledge will expand our understanding of Z-nucleic acids, including from which genomic loci and under which circumstances they form, and the mechanisms by which they participate in the physiological activities. In this review, we provide insights in Z-nucleic acid research and highlight the unsolved puzzles.
Collapse
Affiliation(s)
- Qiannan Tang
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina,Centre for Immune‐Related Diseases at Shanghai Institute of ImmunologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Tashiro R, Sugiyama H. Photoreaction of DNA Containing 5-Halouracil and its Products. Photochem Photobiol 2022; 98:532-545. [PMID: 34543451 PMCID: PMC9197447 DOI: 10.1111/php.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
5-Halouracil, which is a DNA base analog in which the methyl group at the C5 position of thymine is replaced with a halogen atom, has been used in studies of DNA damage. In DNA strands, the uracil radical generated from 5-halouracil causes DNA damage via a hydrogen-abstraction reaction. We analyzed the photoreaction of 5-halouracil in various DNA structures and revealed that the reaction is DNA structure-dependent. In this review, we summarize the results of the analysis of the reactivity of 5-halouracil in various DNA local structures. Among the 5-halouracil molecules, 5-bromouracil has been used as a probe in the analysis of photoinduced electron transfer through DNA. The analysis of groove-binder/DNA and protein/DNA complexes using a 5-bromouracil-based electron transfer system is also described.
Collapse
Affiliation(s)
- Ryu Tashiro
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cyo, Suzuka, Mie, 513-8670, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Kim SH, Jung HJ, Lee IB, Lee NK, Hong SC. Sequence-dependent cost for Z-form shapes the torsion-driven B-Z transition via close interplay of Z-DNA and DNA bubble. Nucleic Acids Res 2021; 49:3651-3660. [PMID: 33744929 PMCID: PMC8053131 DOI: 10.1093/nar/gkab153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
Despite recent genome-wide investigations of functional DNA elements, the mechanistic details about their actions remain elusive. One intriguing possibility is that DNA sequences with special patterns play biological roles, adopting non-B-DNA conformations. Here we investigated dynamics of thymine-guanine (TG) repeats, microsatellite sequences and recurrently found in promoters, as well as cytosine–guanine (CG) repeats, best-known Z-DNA forming sequence, in the aspect of Z-DNA formation. We measured the energy barriers of the B–Z transition with those repeats and discovered the sequence-dependent penalty for Z-DNA generates distinctive thermodynamic and kinetic features in the torque-induced transition. Due to the higher torsional stress required for Z-form in TG repeats, a bubble could be induced more easily, suppressing Z-DNA induction, but facilitate the B–Z interconversion kinetically at the transition midpoint. Thus, the Z-form by TG repeats has advantages as a torsion buffer and bubble selector while the Z-form by CG repeats likely behaves as torsion absorber. Our statistical physics model supports quantitatively the populations of Z-DNA and reveals the pivotal roles of bubbles in state dynamics. All taken together, a quantitative picture for the transition was deduced within the close interplay among bubbles, plectonemes and Z-DNA.
Collapse
Affiliation(s)
- Sook Ho Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea.,GRI-TPC International Research Center, Sejong University, Seoul, 05006 Korea
| | - Hae Jun Jung
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| | - Nam-Kyung Lee
- Department of Physics and Astronomy, Sejong University, Seoul, 05006 Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841 Korea.,Department of Physics, Korea University, Seoul, 02841 Korea
| |
Collapse
|
10
|
Abstract
Left-handed Z-DNA/Z-RNA is bound with high affinity by the Zα domain protein family that includes ADAR (a double-stranded RNA editing enzyme), ZBP1 and viral orthologs regulating innate immunity. Loss-of-function mutations in ADAR p150 allow persistent activation of the interferon system by Alu dsRNAs and are causal for Aicardi-Goutières Syndrome. Heterodimers of ADAR and DICER1 regulate the switch from RNA- to protein-centric immunity. Loss of DICER1 function produces age-related macular degeneration, a different type of Alu-mediated disease. The overlap of Z-forming sites with those for the signal recognition particle likely limits invasion of primate genomes by Alu retrotransposons.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42, 8th Street, Unit 3412, Charlestown, MA 02129 USA
| |
Collapse
|
11
|
Maelfait J, Liverpool L, Bridgeman A, Ragan KB, Upton JW, Rehwinkel J. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J 2017; 36:2529-2543. [PMID: 28716805 PMCID: PMC5579359 DOI: 10.15252/embj.201796476] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/04/2017] [Accepted: 06/13/2017] [Indexed: 11/09/2022] Open
Abstract
Nucleic acids are potent triggers for innate immunity. Double‐stranded DNA and RNA adopt different helical conformations, including the unusual Z‐conformation. Z‐DNA/RNA is recognised by Z‐binding domains (ZBDs), which are present in proteins implicated in antiviral immunity. These include ZBP1 (also known as DAI or DLM‐1), which induces necroptosis, an inflammatory form of cell death. Using reconstitution and knock‐in models, we report that mutation of key amino acids involved in Z‐DNA/RNA binding in ZBP1's ZBDs prevented necroptosis upon infection with mouse cytomegalovirus. Induction of cell death was cell autonomous and required RNA synthesis but not viral DNA replication. Accordingly, ZBP1 directly bound to RNA via its ZBDs. Intact ZBP1‐ZBDs were also required for necroptosis triggered by ectopic expression of ZBP1 and caspase blockade, and ZBP1 cross‐linked to endogenous RNA. These observations show that Z‐RNA may constitute a molecular pattern that induces inflammatory cell death upon sensing by ZBP1.
Collapse
Affiliation(s)
- Jonathan Maelfait
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Layal Liverpool
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Katherine B Ragan
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jason W Upton
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Harteis S, Schneider S. Making the bend: DNA tertiary structure and protein-DNA interactions. Int J Mol Sci 2014; 15:12335-63. [PMID: 25026169 PMCID: PMC4139847 DOI: 10.3390/ijms150712335] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022] Open
Abstract
DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence ("base readout") as well as the intrinsic DNA structure ("shape recognition"). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics.
Collapse
Affiliation(s)
- Sabrina Harteis
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Sabine Schneider
- Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
13
|
Zalpha-domains: at the intersection between RNA editing and innate immunity. Semin Cell Dev Biol 2011; 23:275-80. [PMID: 22085847 DOI: 10.1016/j.semcdb.2011.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 10/24/2011] [Accepted: 11/01/2011] [Indexed: 11/21/2022]
Abstract
The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.
Collapse
|
14
|
TAKAOKA A, TANIGUCHI T. Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev 2008; 60:847-57. [PMID: 18280611 DOI: 10.1016/j.addr.2007.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 12/18/2007] [Indexed: 11/27/2022]
Abstract
The detection of microbial components by pattern recognition receptors (PRRs) and the subsequent triggering of innate immune responses constitute the first line of defense against infections. Recently, much attention has been focused on cytosolic nucleic acid receptors; the activation of these receptors commonly evokes a robust innate immune response, the hallmark of which is the induction of type I interferon (IFN) genes. In addition to receptors for RNA, receptors that detect DNA exposed in the cytosol and activate innate immune responses have long been thought to exist. Recently, DAI (DLM-1/ZBP1) has been identified as a candidate cytosolic DNA sensor. Cytosolic signaling by DNA-activated DAI (DLM-1/ZBP1) signaling results in activation of the two pathways of gene transcription critical to innate immune responses, the IRF and NF-kappaB pathways. In this review, we summarize our current view of activation mechanism and immunological roles of DAI (DLM-1/ZBP1) and related molecules. In addition, we also discuss the issue of self vs. non-self DNA recognition by DAI (DLM-1/ZBP1) and other DNA sensors in terms of the possible involvement in autoimmune abnormalities.
Collapse
|
15
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions. DNA Cell Biol 2003; 22:141-69. [PMID: 12804114 DOI: 10.1089/104454903321655783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The selection of DNA fragments containing simple d(GT)(n) and composite d(GT)(m). d(GA)(n) microsatellites during affinity binding of mouse genomic DNA to type III cytoplasmic intermediate filaments (cIFs) in vitro, and the detection of such repeats, often as parts of nuclear matrix attachment region (MAR)-like DNA, in SDS-stable DNA-vimentin crosslinkage products isolated from intact fibroblasts, prompted a detailed study of the interaction of type III cIF proteins with left-handed Z-DNA formed from d(GT)(17) and d(CG)(17) repeats under the topological tension of negatively supercoiled plasmids. Although d(GT)(n) tracts possess a distinctly lower Z-DNA-forming potential than d(CG)(n) tracts, the filament proteins produced a stronger electrophoretic mobility shift with a plasmid carrying a d(GT)(17) insert than with plasmids containing different d(CG)(n) inserts, consistent with the facts that the B-Z transition of d(GT)(n) repeats requires a higher negative superhelical density than that of d(CG)(n) repeats and the affinity of cIF proteins for plasmid DNA increases with its superhelical tension. That both types of dinucleotide repeat had indeed undergone B-Z transition was confirmed by S1 nuclease and chemical footprinting analysis of the plasmids, which also demonstrated efficient protection by cIF proteins from nucleolytic and chemical attack of the Z-DNA helices as such, as well as of the flanking B-Z junctions. The analysis also revealed sensibilization of nucleotides in the center of one of the two strands of a perfect d(CG)(17) insert toward S1 nuclease, indicating cIF protein-induced bending of the repeat. In all these assays, vimentin and glial fibrillary acidic protein (GFAP) showed comparable activities, versus desmin, which was almost inactive. In addition, vimentin and GFAP exhibited much higher affinities for the Z-DNA conformation of brominated, linear d(CG)(25) repeats than for the B-DNA configuration of the unmodified oligonucleotides. While double-stranded DNA was incapable of chasing the Z-DNA from its protein complexes, and Holliday junction and single-stranded (ss)DNA were distinguished by reasonable competitiveness, phosphatidylinositol (PI) and, particularly, phosphatidylinositol 4,5-diphosphate (PIP(2)) turned out to be extremely potent competitors. Because PIP(2) is an important member of the nuclear PI signal transduction cascade, it might exert a regulatory influence on the binding of cIF proteins to Z- and other DNA conformations. From this interaction of cIF proteins with Z- and bent DNA and their previously detected affinities for MAR-like, ss, triple helical, and four-way junction DNA, it may be concluded that the filament proteins play a general role in such nuclear matrix-associated processes as DNA replication, recombination, repair, and transcription.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
16
|
Oyoshi T, Kawai K, Sugiyama H. Efficient C2'alpha-hydroxylation of deoxyribose in protein-induced Z-form DNA. J Am Chem Soc 2003; 125:1526-31. [PMID: 12568612 DOI: 10.1021/ja028388g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA local conformations are thought to play an important biological role in processes such as gene expression by altering DNA-protein interactions. Although left-handed Z-form DNA is one of the best-characterized and significant local structures of DNA, having been extensively investigated for more than two decades, the biological relevance of Z-form DNA remains unclear. This is presumably due to the lack of a versatile detection method in a living cell. Previously, we demonstrated that the incorporation of a methyl group at the guanine C8 position (m(8)G) dramatically stabilizes the Z-form of short oligonucleotides in a variety of sequences. To develop a photochemical method to detect Z-form DNA, we examined the photoreaction of 5-iodouracil-containing Z-form d(CGCG(I)UGCG)(ODN 1)/d(Cm(8)GCAm(8)GCG)(ODN 2) in 2 M NaCl and found stereospecific C2'alpha-hydroxylation occurred at G(4) to provide d(CGCrGUGCG), 5. Recently, Rich and co-workers [Schwartz et al. Science 1999, 284, 1841. Schwartz et al. Nat. Struct. Biol. 2001, 8, 761] found that an ubiquitous RNA editing enzyme, adenosine deaminase 1 (ADAR1), and tumor-associated protein DML-1 specifically bind to Z-form DNA. In the present study, we investigate the photoreactivity of octanucleotide ODN 1-2 in Z-form induced by Zalpha, which is the NH(2)-terminal domain of ADAR1 responsible for tight binding of ADAR1. Detailed product analysis revealed that the C2'alpha-hydroxylated products 5 and 6 produced significantly higher yields in Z-form ODN 1-2 induced by Zalpha compared with that in 2 M NaCl. Upon treatment with ribonuclease T1, 5 and 6 were quantitatively hydrolyzed at the 3'-phosphodiester bond of the rG residue to provide d(UGCG) as a common hydrolyzed fragment on the 3' side. Quantitative analysis demonstrated that the amount of photochemically formed 5 and 6 from ODN 1-2 directly correlated with the proportion of Z-form induced by Zalpha or NaCl. These results suggest that this photochemical and enzymatic procedure can be used as a specific probe for the existence of local Z-form structure in cellular DNA.
Collapse
Affiliation(s)
- Takanori Oyoshi
- Division of Biofunctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Surugadai, Kanda, Chiyoda, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
17
|
Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A. Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 1999; 284:1841-5. [PMID: 10364558 DOI: 10.1126/science.284.5421.1841] [Citation(s) in RCA: 302] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The editing enzyme double-stranded RNA adenosine deaminase includes a DNA binding domain, Zalpha, which is specific for left-handed Z-DNA. The 2.1 angstrom crystal structure of Zalpha complexed to DNA reveals that the substrate is in the left-handed Z conformation. The contacts between Zalpha and Z-DNA are made primarily with the "zigzag" sugar-phosphate backbone, which provides a basis for the specificity for the Z conformation. A single base contact is observed to guanine in the syn conformation, characteristic of Z-DNA. Intriguingly, the helix-turn-helix motif, frequently used to recognize B-DNA, is used by Zalpha to contact Z-DNA.
Collapse
Affiliation(s)
- T Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
18
|
Schwartz T, Lowenhaupt K, Kim YG, Li L, Brown BA, Herbert A, Rich A. Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1. J Biol Chem 1999; 274:2899-906. [PMID: 9915827 DOI: 10.1074/jbc.274.5.2899] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zalpha is a peptide motif that binds to Z-DNA with high affinity. This motif binds to alternating dC-dG sequences stabilized in the Z-conformation by means of bromination or supercoiling, but not to B-DNA. Zalpha is part of the N-terminal region of double-stranded RNA adenosine deaminase (ADAR1), a candidate enzyme for nuclear pre-mRNA editing in mammals. Zalpha is conserved in ADAR1 from many species; in each case, there is a second similar motif, Zbeta, separated from Zalpha by a more divergent linker. To investigate the structure-function relationship of Zalpha, its domain structure was studied by limited proteolysis. Proteolytic profiles indicated that Zalpha is part of a domain, Zab, of 229 amino acids (residues 133-361 in human ADAR1). This domain contains both Zalpha and Zbeta as well as a tandem repeat of a 49-amino acid linker module. Prolonged proteolysis revealed a minimal core domain of 77 amino acids (positions 133-209), containing only Zalpha, which is sufficient to bind left-handed Z-DNA; however, the substrate binding is strikingly different from that of Zab. The second motif, Zbeta, retains its structural integrity only in the context of Zab and does not bind Z-DNA as a separate entity. These results suggest that Zalpha and Zbeta act as a single bipartite domain. In the presence of substrate DNA, Zab becomes more resistant to proteases, suggesting that it adopts a more rigid structure when bound to its substrate, possibly with conformational changes in parts of the protein.
Collapse
Affiliation(s)
- T Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS, Lyubchenko YL, Rich A. The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res 1998; 26:3486-93. [PMID: 9671809 PMCID: PMC147729 DOI: 10.1093/nar/26.15.3486] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Z-DNA, the left-handed conformer of DNA, is stabilized by the negative supercoiling generated during the movement of an RNA polymerase through a gene. Recently, we have shown that the editing enzyme ADAR1 (double-stranded RNA adenosine deaminase, type 1) has two Z-DNA binding motifs, Zalpha and Zbeta, the function of which is currently unknown. Here we show that a peptide containing the Zalpha motif binds with high affinity to Z-DNA as a dimer, that the binding site is no larger than 6 bp and that the Zalpha domain can flip a range of sequences, including d(TA)3, into the Z-DNAconformation. Evidence is also presented to show that Zalpha and Zbeta interact to form a functional DNA binding site. Studies with atomic force microscopy reveal that binding of Zalpha to supercoiled plasmids is associated with relaxation of the plasmid. Pronounced kinking of DNA is observed, and appears to be induced by binding of Zalpha. The results reported here support a model where the Z-DNA binding motifs target ADAR1 to regions of negative supercoiling in actively transcribing genes. In this situation, binding by Zalpha would be dependent upon the local level of negative superhelicity rather than the presence of any particular sequence.
Collapse
Affiliation(s)
- A Herbert
- Department of Biology Room 68-233, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dobi A, v Agoston D. Submillimolar levels of calcium regulates DNA structure at the dinucleotide repeat (TG/AC)n. Proc Natl Acad Sci U S A 1998; 95:5981-6. [PMID: 9600903 PMCID: PMC27571 DOI: 10.1073/pnas.95.11.5981] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/1997] [Accepted: 03/26/1998] [Indexed: 02/07/2023] Open
Abstract
Submillimolar levels of calcium, similar to the physiological total (bound + free) intranuclear concentration (0.01-1 mM), induced a conformational change within d(TG/AC)n, one of the frequent dinucleotide repeats of the mammalian genome. This change is calcium-specific, because no other tested cation induced it and it was detected as a concentration-dependent transition from B- to a non-B-DNA conformation expanding from 3' end toward the 5' of the repeat. Genomic footprinting of various rat brain regions revealed the existence of similar non-B-DNA conformation within a d(TG/AC)28 repeat of the endogenous enkephalin gene only in enkephalin-expressing caudate nucleus and not in the nonexpressing thalamus. Binding assays demonstrated that DNA could bind calcium and can compete with calmodulin for calcium.
Collapse
Affiliation(s)
- A Dobi
- Molecular Control of Neurodifferentiation, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
|
22
|
Sponer J, Gabb HA, Leszczynski J, Hobza P. Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. Biophys J 1997; 73:76-87. [PMID: 9199773 PMCID: PMC1180910 DOI: 10.1016/s0006-3495(97)78049-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Base-stacking interactions in canonical and crystal B-DNA and in Z-DNA steps are studied using the ab initio quantum-chemical method with inclusion of electron correlation. The stacking energies in canonical B-DNA base-pair steps vary from -9.5 kcal/mol (GG) to -13.2 kcal/mol (GC). The many-body nonadditivity term, although rather small in absolute value, influences the sequence dependence of stacking energy. The base-stacking energies calculated for CGC and a hypothetical TAT sequence in Z-configuration are similar to those in B-DNA. Comparison with older quantum-chemical studies shows that they do not provide even a qualitatively correct description of base stacking. We also evaluate the base-(deoxy)ribose stacking geometry that occurs in Z-DNA and in nucleotides linked by 2',5'-phosphodiester bonds. Although the molecular orbital analysis does not rule out the charge-transfer n-pi* interaction of the sugar 04' with the aromatic base, the base-sugar contact is stabilized by dispersion energy similar to that of stacked bases. The stabilization amounts to almost 4 kcal/mol and is thus comparable to that afforded by normal base-base stacking. This enhancement of the total stacking interaction could contribute to the propensity of short d(CG)n sequences to adopt the Z-conformation.
Collapse
Affiliation(s)
- J Sponer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
23
|
Kim JM, DasSarma S. Isolation and chromosomal distribution of natural Z-DNA-forming sequences in Halobacterium halobium. J Biol Chem 1996; 271:19724-31. [PMID: 8702677 DOI: 10.1074/jbc.271.33.19724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conditions favoring left-handed Z-DNA such as high salinity (> 4 ), high negative DNA supercoiling, and GC-rich DNA [statistically favoring d(CG)n repeat sequences], are all found in the extremely halophilic archaeum (archaebacterium) Halobacterium halobium. In order to identify and study Z-DNA regions of the H. halobium genome, an affinity chromatography method with high Z-DNA selection efficiency was developed. Supercoiled plasmids were incubated with a Z-DNA-specific antibody (Z22) and passed over a protein A-agarose column, and the bound plasmids were eluted using an ethidium bromide gradient. In control experiments using mixtures of pUC12 (Z-negative) and a d(CG)5-containing (Z-positive) pUC12 derivative, up to 4,000-fold enrichment of the Z-DNA-containing plasmid was demonstrated per cycle of the Z-DNA selection procedure. The selection efficiency was determined by transformation of Escherichia coli DH5alpha with eluted plasmids and blue-white screening on X-gal plates. Twenty recombinant plasmids containing Z-DNA-forming sequences of H. halobium were isolated from a genomic library using affinity chromatography. Z-DNA-forming sequences in selected plasmids were identified by bandshift and antibody footprinting assays using Z22 monoclonal antibody. Alternating purine-pyrimidine sequences ranging from 8 base pairs (bp) to 13 bp with at least a 6-bp alternating d(GC) stretch were found in the Z22 antibody binding regions of isolated plasmids. The distribution of Z-DNA-forming sequences in the Halobacterium salinarum GRB chromosome was analyzed by dot-blot hybridization of an ordered cosmid library using the cloned H. halobium Z-DNA segments as probe. Among the 11 Z-DNA segments tested, five were found to be clustered in a 100-kilobase pair region of the genome, whereas six others were distributed throughout the rest of the genome.
Collapse
Affiliation(s)
- J m Kim
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
25
|
Herbert A, Lowenhaupt K, Spitzner J, Rich A. Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc Natl Acad Sci U S A 1995; 92:7550-4. [PMID: 7638229 PMCID: PMC41377 DOI: 10.1073/pnas.92.16.7550] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A M(r) 140,000 protein has been purified from chicken lungs to apparent homogeneity. The protein binds with high affinity to a non-BNA conformation, which is most likely to the Z-DNA. The protein also has a binding site for double-stranded RNA (dsRNA). Peptide sequences from this protein show similarity to dsRNA adenosine deaminase, an enzyme that deaminates adenosine in dsRNA to form inosine. Assays for this enzyme confirm that dsRNA adenosine deaminase activity and Z-DNA binding are properties of the same molecule. The coupling of these two activities in a single molecule may indicate a distinctive mechanism of gene regulation that is, in part, dependent on DNA topology. As such, DNA topology, through its effects on the efficiency and extent of RNA editing may be important in the generation of new phenotypes during evolution.
Collapse
Affiliation(s)
- A Herbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
26
|
Ebert PR, Hileman JP, Nguyen HT. Primary sequence, copy number, and distribution of mariner transposons in the honey bee. INSECT MOLECULAR BIOLOGY 1995; 4:69-78. [PMID: 7551195 DOI: 10.1111/j.1365-2583.1995.tb00010.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A single honey bee mariner transposon (TnM1a) was sequenced, revealing a transpositionally non-autonomous element of 937 bp delimited by 30 bp perfect inverted terminal repeats. The element is flanked by the TA duplication typical of mariner elements in general. There are approximately 435 copies of TnM1a homologous elements per haploid genome. These elements appear, by Southern blot analysis, to be dispersed throughout the genome. Thirteen individual genomic clones with an average size of 15 kb, were found to contain only a single element each, which also suggests that the elements are not tightly clustered. Finally, mariner elements are neither inactivated by methylation nor sequestered into a methylated fraction of the genome.
Collapse
Affiliation(s)
- P R Ebert
- Department of Entomology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
27
|
Affiliation(s)
- A Rich
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
28
|
Abstract
Extensive studies of DNA secondary structure during the past decade have shown that DNA is a dynamic molecule, whose structure depends on the underlying nucleotide sequence and is influenced by the environment and the overall DNA topology. Three major non-B-DNA structures have been described (Z-DNA, triplex DNA and cruciform DNA) which are stabilized by unconstrained negative supercoiling and can be formed under physiological conditions. In this essay we summarize the DNA primary structure features that are pertinent to the formation of these conformers and present data concerning the occurrence of these sequences in the eukaryotic genome. The evidence in favor of the existence of these unusual DNA structures in vivo is discussed. The effect of alternative non-B-DNA structures on the way DNA is organized in chromatin is considered, and this is followed by evaluation of the data relating these structures to eukaryotic transcription. Some possible mechanisms by which the effect of non-B structures on transcription might be exerted are proposed.
Collapse
Affiliation(s)
- K van Holde
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331-7305
| | | |
Collapse
|