1
|
Baldwin I, Robey EA. Adjusting to self in the thymus: CD4 versus CD8 lineage commitment and regulatory T cell development. J Exp Med 2024; 221:e20230896. [PMID: 38980291 PMCID: PMC11232887 DOI: 10.1084/jem.20230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.
Collapse
Affiliation(s)
- Isabel Baldwin
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Steier Z, Kim EJY, Aylard DA, Robey EA. The CD4 Versus CD8 T Cell Fate Decision: A Multiomics-Informed Perspective. Annu Rev Immunol 2024; 42:235-258. [PMID: 38271641 DOI: 10.1146/annurev-immunol-083122-040929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.
Collapse
Affiliation(s)
- Zoë Steier
- Department of Bioengineering and Center for Computational Biology, University of California, Berkeley, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, Berkeley and San Francisco, California, USA
- Current affiliation: Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Broad Institute of MIT and Harvard; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Esther Jeong Yoon Kim
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Dominik A Aylard
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Ellen A Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
3
|
Ostmeyer J, Cowell L, Greenberg B, Christley S. Reconstituting T cell receptor selection in-silico. Genes Immun 2021; 22:187-193. [PMID: 34127826 DOI: 10.1038/s41435-021-00141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Each T cell receptor (TCR) gene is created without regard for which substances (antigens) the receptor can recognize. T cell selection culls developing T cells when their TCRs (i) fail to recognize major histocompatibility complexes (MHCs) that act as antigen presenting platforms or (ii) recognize with high affinity self-antigens derived from healthy cells and tissue. While T cell selection has been thoroughly studied, little is known about which TCRs are retained or removed by this process. Therefore, we develop an approach using TCR gene sequencing and machine learning to identify patterns in TCR protein sequences influencing the outcome of T cell receptor selection. We verify the trained models classify TCRs from developing T cells as being before selection and TCRs from mature T cells as being after selection. Our approach may provide future avenues for studying the relationship between T cell selection and conditions like autoimmune diseases.
Collapse
Affiliation(s)
- Jared Ostmeyer
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Lindsay Cowell
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Abstract
The peripheral T cell repertoire is sculpted from prototypic T cells in the thymus bearing randomly generated T cell receptors (TCR) and by a series of developmental and selection steps that remove cells that are unresponsive or overly reactive to self-peptide–MHC complexes. The challenge of understanding how the kinetics of T cell development and the statistics of the selection processes combine to provide a diverse but self-tolerant T cell repertoire has invited quantitative modeling approaches, which are reviewed here.
Collapse
Affiliation(s)
- Andrew J Yates
- Departments of Systems and Computational Biology, Microbiology and Immunology, Albert Einstein College of Medicine , New York, NY , USA
| |
Collapse
|
5
|
Abstract
During alphabeta T cell development, cells diverge into alternate CD4 helper and CD8(+) cytotoxic T cell lineages. The precise correlation between a T cell's CD8 and CD4 choice and its TCR specificity to class I or class II MHC was noted more than 20 years ago, and establishing the underlying mechanism has remained a focus of intense study since then. This review deals with three formerly discrete topics that are gradually becoming interconnected: the role of TCR signaling in lineage commitment, the regulation of expression of the CD4 and CD8 genes, and transcriptional regulation of lineage commitment. It is widely accepted that TCR signaling exerts a decisive influence on lineage choice, although the underlying mechanism remains intensely debated. Current evidence suggests that both duration and intensity of TCR signaling may control lineage choice, as proposed by the kinetic signaling and quantitative instructive models, respectively. Alternate expression of the CD4 and CD8 genes is the most visible manifestation of lineage choice, and much progress has been made in defining the responsible cis elements and transcription factors. Finally, important clues to the molecular basis of lineage commitment have been provided by the recent identification of the transcription factor ThPOK as a key regulator of lineage choice. ThPOK is selectively expressed in class II-restricted cells at the CD4(+)8(lo) stage and is necessary and sufficient for development to the CD4 lineage. Given the central role of ThPOK in lineage commitment, understanding its upstream regulation and downstream gene targets is expected to reveal further important aspects of the molecular machinery underlying lineage commitment.
Collapse
Affiliation(s)
- Xi He
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
6
|
Adoro S, Erman B, Sarafova SD, Van Laethem F, Park JH, Feigenbaum L, Singer A. Targeting CD4 coreceptor expression to postselection thymocytes reveals that CD4/CD8 lineage choice is neither error-prone nor stochastic. THE JOURNAL OF IMMUNOLOGY 2008; 181:6975-83. [PMID: 18981117 DOI: 10.4049/jimmunol.181.10.6975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism by which CD4/CD8 lineage choice is coordinated with TCR specificity during positive selection remains an unresolved problem in immunology. The stochastic/selection model proposes that CD4/CD8 lineage choice in TCR-signaled CD4(+)CD8(+) thymocytes occurs randomly and therefore is highly error-prone. This perspective is strongly supported by "coreceptor rescue" experiments in which transgenic CD4 coreceptors were ectopically expressed on thymocytes throughout their development and caused significant numbers of cells bearing MHC-II-specific TCR to differentiate into mature, CD8 lineage T cells. However, it is not known if forced coreceptor expression actually rescued positively selected thymocytes making an incorrect lineage choice or if it influenced developing thymocytes into making an incorrect lineage choice. We have now reassessed coreceptor rescue and the concept that lineage choice is highly error-prone with a novel CD4 transgene (referred to as E8(I)-CD4) that targets expression of transgenic CD4 coreceptors specifically to thymocytes that have already undergone positive selection and adopted a CD8 lineage fate. Unlike previous CD4 transgenes, the E8(I)-CD4 transgene has no effect on early thymocyte development and cannot itself influence CD4/CD8 lineage choice. We report that the E8(I)-CD4 transgene did in fact induce expression of functional CD4 coreceptor proteins on newly arising CD8 lineage thymocytes precisely at the point in thymic development that transgenic CD4 coreceptors would putatively rescue MHC-II-specific thymocytes that incorrectly adopted the CD8 lineage. However, the E8(I)-CD4 transgene did not reveal any MHC-II-selected thymocytes that adopted the CD8 lineage fate. These results demonstrate that CD4/CD8 lineage choice is neither error-prone nor stochastic.
Collapse
Affiliation(s)
- Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Singer A, Adoro S, Park JH. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol 2008; 8:788-801. [PMID: 18802443 DOI: 10.1038/nri2416] [Citation(s) in RCA: 347] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following successful gene rearrangement at alphabeta T-cell receptor (TCR) loci, developing thymocytes express both CD4 and CD8 co-receptors and undergo a life-or-death selection event, which is known as positive selection, to identify cells that express TCRs with potentially useful ligand specificities. Positively selected thymocytes must then differentiate into either CD4(+) helper T cells or CD8(+) cytotoxic T cells, a crucial decision known as CD4/CD8-lineage choice. In this Review, we summarize recent advances in our understanding of the cellular and molecular events involved in lineage-fate decision and discuss them in the context of the major models of CD4/CD8-lineage choice.
Collapse
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
8
|
Abstract
Decisions by uncommitted cells to differentiate down one lineage pathway or another is fundamental to developmental biology. In the immune system, lymphocyte precursors commit to T- or B-cell lineages and T-cell precursors to CD4 or CD8 independently of foreign antigen. T and B cells must also decide whether or not to respond to antigen and when a response is initiated, what sort of response to make such as the type of antibody, CD4 or CD8, and CD4 Th1 or Th2. The two basic mechanisms for these decision-making processes are selection and instruction. Selection depends on prior stochastic production of precommitted cells, which are then selected to respond by an appropriate signal; for example, CD8 and CD4 responses selected by peptide presented in association with major histocompatibility complex class I or II. In contrast, instruction occurs when an uncommitted precursor embarks upon a differentiation pathway in response to a particular set of signals; for example, Th1 and Th2 lineage commitment. In this paper, the signals that determine Th1 and Th2 differentiation are examined with a mathematical model and shown to act as a bistable switch permitting either Tbet or Gata3 to be expressed in an individual cell but not both. The model is used to show how the Tbet Gata3 network within an individual cell interacts with cytokine signals between cells and suggests how Th1 and Th2 lineage commitment can become irreversible. These considerations provide an example of how mathematical models can be used to gain a better understanding of lymphocyte differentiation in an immune response.
Collapse
Affiliation(s)
- Robin E Callard
- Immunobiology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, UK.
| |
Collapse
|
9
|
Liu X, Taylor BJ, Sun G, Bosselut R. Analyzing expression of perforin, Runx3, and Thpok genes during positive selection reveals activation of CD8-differentiation programs by MHC II-signaled thymocytes. THE JOURNAL OF IMMUNOLOGY 2005; 175:4465-74. [PMID: 16177089 DOI: 10.4049/jimmunol.175.7.4465] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intrathymic positive selection matches CD4-CD8 lineage differentiation to MHC specificity. However, it is unclear whether MHC signals induce lineage choice or simply select thymocytes of the appropriate lineage. To investigate this issue, we assessed thymocytes undergoing positive selection for expression of the CD8 lineage markers perforin and Runx3. Using both population-based and single-cell RT-PCR analyses, we found large subsets of MHC class II (MHC-II)-signaled thymocytes expressing these genes within the CD4+ 8+ and CD4+ 8(int), but not the CD4+ 8- populations of signaling competent mice. This indicates that MHC-II signals normally fail to impose CD4 differentiation and further implies that the number of mature CD8 single-positive (SP) thymocytes greatly underestimates CD8 lineage choice. We next examined whether MHC-II-restricted CD4+ 8- thymocytes remain competent to initiate CD8 lineage gene expression. In mice in which expression of the tyrosine kinase Zap70 and thereby TCR signaling were impaired selectively in SP thymocytes, MHC-II-signaled CD4+ 8- thymocytes expressed perforin and Runx3 and failed to up-regulate the CD4 marker Thpok. This indicated that impairing TCR signals at the CD4 SP stage switched gene expression patterns from CD4- to CD8-lineage specific. We conclude from these findings that MHC-II-signaled thymocytes remain competent to initiate CD8-specific gene expression even after CD8 down-regulation and that CD4 lineage differentiation is not fixed before the CD4 SP stage.
Collapse
Affiliation(s)
- Xiaolong Liu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The mechanism of CD4-CD8 lineage commitment, which ensures the correlation between T cell receptor specificity and adoption of the T killer or T helper phenotype, has long been the subject of intense debate. Various approaches are slowly elucidating the underlying molecular pathways. Analysis of the function of T cell receptor signaling (the 'top-down' approach) supports the view that differences in signal strength and/or duration 'instruct' alternative commitment. Analysis of the transcriptional regulation of the genes encoding CD4 and CD8 (the 'bottom-up' approach) has identified critical cis-acting elements and their interacting factors. Finally, identification of the transcription factor Th-POK as a central component of the CD4 lineage-determining pathway has provided a new starting point from which to unravel this intriguing process 'from the inside out'.
Collapse
|
11
|
Bosselut R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat Rev Immunol 2004; 4:529-40. [PMID: 15229472 DOI: 10.1038/nri1392] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
12
|
Singer A, Bosselut R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv Immunol 2004; 83:91-131. [PMID: 15135629 DOI: 10.1016/s0065-2776(04)83003-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
13
|
Abstract
Cell-fate decisions are controlled typically by conserved receptors that interact with co-evolved ligands. Therefore, the lineage-specific differentiation of immature CD4+ CD8+ T cells into CD4+ or CD8+ mature T cells is unusual in that it is regulated by clonally expressed, somatically generated T-cell receptors (TCRs) of unpredictable fine specificity. Yet, each mature T cell generally retains expression of the co-receptor molecule (CD4 or CD8) that has an MHC-binding property that matches that of its TCR. Two models were proposed initially to explain this remarkable outcome--'instruction' of lineage choice by initial signalling events or 'selection' after a stochastic fate decision that limits further development to cells with coordinated TCR and co-receptor specificities. Aspects of both models now appear to be correct; mistake-prone instruction of lineage choice precedes a subsequent selection step that filters out most incorrect decisions.
Collapse
Affiliation(s)
- Ronald N Germain
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA.
| |
Collapse
|
14
|
Leung RK, Thomson K, Gallimore A, Jones E, Van den Broek M, Sierro S, Alsheikhly AR, McMichael A, Rahemtulla A. Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat Immunol 2001; 2:1167-73. [PMID: 11694883 DOI: 10.1038/ni733] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanism of T cell lineage commitment remains controversial; to examine it we deleted the CD4-silencer element in the germ line of a mouse using a combination of gene targeting and Cre/LoxP-mediated recombination. We found that these mice were unable to extinguish CD4 expression either in immature thymocytes or mature CD8+ cytotoxic T cells (CTLs), which resulted in the development of major histocompatibility complex class II-restricted double-positive CTLs in the periphery. This finding strongly supports a stochastic over an instructive mechanism of coreceptor down-regulation.
Collapse
Affiliation(s)
- R K Leung
- Nuffield Department of Clinical Medicine, University of Oxford, Level 7, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bosselut R, Feigenbaum L, Sharrow SO, Singer A. Strength of signaling by CD4 and CD8 coreceptor tails determines the number but not the lineage direction of positively selected thymocytes. Immunity 2001; 14:483-94. [PMID: 11336693 DOI: 10.1016/s1074-7613(01)00128-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study has assessed the impact of the intracellular domains of CD4 and CD8 on positive selection and lineage direction of MHC class I-restricted thymocytes. Contrary to current presumption, we found that the CD4 tail promotes the generation of both CD4+ and CD8+ T cells without preference for the CD4+ T cell lineage. We also found that the identity of the coreceptor tail and hence the strength of coreceptor signaling determine the number of thymocytes undergoing positive selection but not their ultimate CD4/CD8 phenotype. These findings demonstrate that the strength of coreceptor signaling has a significant quantitative but not qualitative impact on positive selection and provide a simple explanation for the greater numbers of CD4+ than CD8+ T cells selected in the normal thymus.
Collapse
Affiliation(s)
- R Bosselut
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
16
|
Abstract
During development, alphabeta T cells undergo positive or negative selection and CD4(+)/CD8(+) lineage commitment-events that have a major impact on the functionality of the T cell repertoire. The precise mechanisms of these differentiative steps remain elusive. Research this year has focused on quantitative models of signaling. For positive selection, the timing and extent of ERK activation may be important. For lineage commitment, the extent of Lck recruitment and activation may be the decisive factor. Next, the search is on for the genes that commit the cell to the fate determined by these quantitative differences in signals.
Collapse
Affiliation(s)
- K A Hogquist
- Center for Immunology, University of Minnesota, MMC 334, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Wack A, Coles M, Norton T, Hostert A, Kioussis D. Early onset of CD8 transgene expression inhibits the transition from DN3 to DP thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1236-42. [PMID: 10903721 DOI: 10.4049/jimmunol.165.3.1236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this paper we show that the effects of transgenic coreceptor expression on thymocyte development depend on the onset of transgene expression. Thus, a CD8 transgene expressed on CD44+CD25+ (DN2) and CD44-CD25+ (DN3) cells causes a partial block at the stage when TCRbeta selection takes place and diminishes expansion at the subsequent developmental stages, resulting in increased DN3 and markedly reduced double-positive (DP) thymocyte numbers. This effect is evident on a polyclonal TCR repertoire as well as in TCR-transgenic mice (F5). By contrast, a CD8 transgene that leads to the same degree of overexpression on DP thymocytes, but is not expressed on double-negative subsets, has no effect on thymus size or composition. Therefore, the reduction of DP thymocyte numbers in CD8 TCRtg mice can be attributed to interferences at early developmental stages rather than to increased negative selection of DP cells.
Collapse
MESH Headings
- Animals
- CD8 Antigens/biosynthesis
- CD8 Antigens/genetics
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Division/genetics
- Cell Division/immunology
- Crosses, Genetic
- Flow Cytometry
- Gene Expression Regulation/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Humans
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin-2/biosynthesis
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transgenes/immunology
Collapse
Affiliation(s)
- A Wack
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Itano A, Robey E. Highly efficient selection of CD4 and CD8 lineage thymocytes supports an instructive model of lineage commitment. Immunity 2000; 12:383-9. [PMID: 10795736 DOI: 10.1016/s1074-7613(00)80190-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We undertook a kinetic analysis of the generation of mature T cells in TCR and coreceptor transgenic mice using BrdU labeling. We observed that the selection efficiency of mature CD4-CD8+ and CD4+CD8- thymocytes could be as high as 40% and 90% of CD4+CD8+ precursors, respectively. The surprisingly high efficiency of selection favors an instructional model of lineage commitment and is incompatible with a stochastic model in which the efficiency of selection would be no greater than 100% in both lineages combined.
Collapse
Affiliation(s)
- A Itano
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
19
|
Salmon P, Mong M, Kang XJ, Cado D, Robey E. The Role of CD8α′ in the CD4 Versus CD8 Lineage Choice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
During thymic development the recognition of MHC proteins by developing thymocytes influences their lineage commitment, such that recognition of class I MHC leads to CD8 T cell development, whereas recognition of class II MHC leads to CD4 T cell development. The coreceptors CD8 and CD4 may contribute to these different outcomes through interactions with class I and class II MHC, respectively, and through interactions with the tyrosine kinase p56lck (Lck) via their cytoplasmic domains. In this paper we provide evidence that an alternatively spliced form of CD8 that cannot interact with Lck (CD8α′) can influence the CD4 vs CD8 lineage decision. Constitutive expression of a CD8 minigene transgene that encodes both CD8α and CD8α′ restores CD8 T cell development in CD8α mutant mice, but fails to permit the development of mismatched CD4 T cells bearing class I-specific TCRs. These results indicate that CD8α′ favors the development of CD8-lineage T cells, perhaps by reducing Lck activity upon class I MHC recognition in the thymus.
Collapse
Affiliation(s)
- Patrick Salmon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Mimi Mong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Xiao-Jun Kang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Dragana Cado
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ellen Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
20
|
Wack A, Corbella P, Harker N, Roderick K, Norton T, Williams K, Williams O, Kioussis D. Th Cells and Th2 Responses Can Develop in the Absence of MHC Class II-CD4 Interactions. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In this paper, we address the question whether CD4 and MHC class II expression are necessary for the development of the T helper lineage during thymocyte maturation and for activation-induced Th2 responses. To bypass the CD4-MHC class II interaction requirements for positive selection and activation, we used mice that are doubly transgenic for CD8 and for the MHC class I-restricted TCR F5. This transgene combination leads to MHC class I-dependent maturation of CD4 lineage cells. Upon activation, these CD4 lineage T cells secrete IL-4 and give help to B cells but show no cytotoxic activity. Remarkably, neither MHC class II nor CD4 expression are necessary for the generation and helper functions of these cells. This suggests that under normal conditions, coreceptor-MHC interactions are necessary to ensure the canonical combinations of coreceptor and function in developing thymocytes, but that they do not determine functional commitment. Our results also imply that expression of the CD4 gene does not influence, but is merely associated with the decision to establish the T helper program. In addition, we show that activation through TCR-MHC class I interactions can induce Th2 responses independently of CD4 and MHC class II expression.
Collapse
Affiliation(s)
- Andreas Wack
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Paola Corbella
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Nicola Harker
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Kathleen Roderick
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Trisha Norton
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Keith Williams
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Owen Williams
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Dimitris Kioussis
- Division of Molecular Immunology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| |
Collapse
|
21
|
Arsov I, Vukmanović S. Dual MHC Class I and Class II Restriction of a Single T Cell Receptor: Distinct Modes of Tolerance Induction by Two Classes of Autoantigens. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In the final stages of thymic development, immature T cells undergo three distinct processes (positive selection, negative selection, and lineage commitment) that all depend on interactions of thymocyte TCRs with MHC molecules. It is currently thought that TCRs are preferentially restricted by either MHC class I or class II molecules. In this report, we present direct evidence that the TCR previously described as H-Y/H-2Db specific cross-reacts with H-2IAb if expressed in CD4+ cells. We also demonstrate an increase in thymocyte numbers in H-Y TCR-trangenic mice deficient in MHC class II, suggesting a relatively discrete form of negative selection by MHC class II compared with that induced by H-Y/H-2Db. We propose that inability to generate CD4+ T cells expressing H-Y TCR in different experimental settings may be due to tolerance to self-MHC class II. These results, therefore, support an intriguing possibility that tolerance to self may influence and/or interfere with the outcome of the lineage commitment.
Collapse
Affiliation(s)
- Ivica Arsov
- Michael Heidelberger Division of Immunology, Department of Pathology and Kaplan Cancer Center, New York University Medical Center, New York, NY 10016
| | - Stanislav Vukmanović
- Michael Heidelberger Division of Immunology, Department of Pathology and Kaplan Cancer Center, New York University Medical Center, New York, NY 10016
| |
Collapse
|
22
|
Abstract
A system to innocuously visualize T cell lineage commitment is described. Using a "knock-in" approach, we have generated mice expressing a beta-galactosidase reporter in place of CD4; expression of beta-galactosidase in these animals appears to be an accurate and early indicator of CD4 gene transcription. We have exploited this knock-in line to trace CD4/CD8 lineage commitment in the thymus, avoiding important pitfalls of past experimental approaches. Our results argue in favor of a selective model of thymocyte commitment, demonstrating a fundamentally symmetrical process: engagement of either class of major histocompatibility complex (MHC) molecule by a differentiating CD4(+)CD8(+) cell can give rise to T cell antigen receptor (TCR)hi thymocytes of either lineage. Key findings include (a) direct demonstration of a substantial number of CD4-committed, receptor/coreceptor-mismatched cells in MHC class II- deficient mice, a critical prediction of the selective model; (b) highly efficient rescue of such "mismatched" intermediates by forced expression of CD8 in a TCR transgenic line, and an explanation of why previous experiments of this nature were less successful-a major past criticism of the selective model; (c) direct demonstration of an analogous, though smaller, population of CD8-committed mismatched intermediates in class I-deficient animals. Finally, we found no evidence of a CD4 default pathway.
Collapse
Affiliation(s)
- S Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
23
|
Abstract
The outcome of positive selection of T lymphocytes is that there is a close match between the lineage adopted by a particular cell (CD4+ or CD8+) and the specificity of the T-cell receptor for the class of Major Histocompatibility Complex molecule recognized. How this match is obtained has been a matter of debate. We review the evidence, from recent and older experiments, that indicates that the process follows a selective logic, rather than an instructive one.
Collapse
Affiliation(s)
- S Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP) Strasbourg, France.
| | | | | | | |
Collapse
|
24
|
Abstract
Recent studies suggest that lineage commitment steps, which occur during T-cell differentiation, follow principles in common with fate specification in simple invertebrates. Here we review T-cell development from the perspective of developmental biology. We present models for alpha beta vs gamma delta and CD4 vs CD8 lineage commitment that are consistent with previously published and newly presented experiments.
Collapse
Affiliation(s)
- S M Hedrick
- Department of Biology, University of California, San Diego, La Jolla, USA.
| | | |
Collapse
|
25
|
Mitnacht R, Bischof A, Torres-Nagel N, Hünig T. Opposite CD4/CD8 Lineage Decisions of CD4+8+ Mouse and Rat Thymocytes to Equivalent Triggering Signals: Correlation with Thymic Expression of a Truncated CD8α Chain in Mice But Not Rats. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.2.700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Unselected CD4+8+ rat thymocytes, generated in vitro from their direct precursors, are readily converted to functional TCRhigh T cells by stimulation with immobilized TCR-specific mAb plus IL-2. Lineage decision invariably occurs toward CD4−8+, regardless of the timing of TCR stimulation after entry into the CD4+8+ compartment or the concentration of TCR-specific mAb used for stimulation. CD4-specific mAb synergizes with suboptimal TCR-specific mAb in inducing T cell maturation, but lineage decision remains exclusively CD4−8+. These results contrast with those obtained in mice, in which Abs to the TCR complex were shown to promote CD4+8− T cell maturation from CD4+8+ thymocytes. Surprisingly, when rat and mouse CD4+8+ thymocytes were stimulated with PMA/ionomycin under identical conditions, the opposite lineage commitment was observed, i.e., mouse thymocytes responded with the generation of CD4+8− and rat thymocytes with the generation of CD4−8+ cells. It thus seems that CD4+8+ thymocytes of the two species respond with opposite lineage decisions to strong activating signals such as given by TCR-specific mAb or PMA/ionomycin. A possible key to this difference lies in the availability of p56lck for coreceptor-supported signaling. We show that in contrast to mouse CD4+8+ thymocytes, which express both a complete and a truncated CD8α-chain (CD8α′) unable to bind p56lck, rat thymocytes only express full-length CD8α molecules. Mice, but not rats, therefore may use CD8α′ as a “dominant negative” coreceptor chain to attenuate the CD8 signal, thereby facilitating MHC class II recognition through the higher amount of p56lck delivered, and rats may use a different mechanism for MHC class distinction during positive selection.
Collapse
Affiliation(s)
- Rita Mitnacht
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Astrid Bischof
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nora Torres-Nagel
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Dembic Z, Munthe LA, Schenck K, Mueller C, Bogen B. Transient overexpression of CD4 enhances allelic exclusion of T-cell receptor (TCR) α chains and promotes positive selection of class II-restricted TCR-transgenic thymocytes. Mol Immunol 1998. [DOI: 10.1016/s0161-5890(98)80014-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Sebzda E, Choi M, Fung-Leung WP, Mak TW, Ohashi PS. Peptide-induced positive selection of TCR transgenic thymocytes in a coreceptor-independent manner. Immunity 1997; 6:643-53. [PMID: 9175842 DOI: 10.1016/s1074-7613(00)80352-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell receptor (TCR) transgenic thymocytes specific for the LCMV gp peptide are normally positively selected to the CD8 lineage. Transgenic thymocyte development was substantially reduced in the absence of these CD8 coreceptors. However, efficient positive selection was restored when TCR transgenic CD8-/- fetal thymic lobes were cultured with a peptide variant of the wild-type ligand. These mature thymocytes were functional, as shown by their ability to respond against strong peptide agonists. Additional experiments demonstrated that transgenic positive selection was peptide-specific. These results prove that CD8 does not possess essential signaling properties that are necessary for T cell development. In addition, the unilateral commitment of transgenic thymocytes to mature CD4-TCR(hi) T cells expressing intracellular perforin suggests that there must be some instructive component to CD4 down-regulation and lineage commitment during thymocyte selection.
Collapse
Affiliation(s)
- E Sebzda
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Canada
| | | | | | | | | |
Collapse
|
28
|
Lucas B, Germain RN. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 1996; 5:461-77. [PMID: 8934573 DOI: 10.1016/s1074-7613(00)80502-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD4+ CD8+ TCRlo thymocytes are the precursors of CD4+ and CD8+ mature T cells, whose receptors show specific recognition of peptide-MHC class II and MHC class I complexes, respectively. How T cells emerge from the intrathymic differentiation process with selective expression of either CD8 molecule or CD4 molecule coordinated with the MHC class specificity of the TCR has been the subject of intense examination. Many previous studies of this question have been based on the assumption that extinction of CD4 or CD8 expression by the precursor thymocytes was a steady, uninterrupted process. Here we show that this is an incorrect assumption, with CD4 and CD8 expression undergoing an unexpectedly complex series of expression changes involving down-modulation, kinetically asymmetric up-regulation, and then selective loss. Based on these data, we propose a model for the differentiation pathway of alphabeta TCR thymocytes that explains previous, apparently contradictory findings and establishes useful parameters for future studies at the cellular and gene level.
Collapse
Affiliation(s)
- B Lucas
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-1892, USA
| | | |
Collapse
|
29
|
Matechak EO, Killeen N, Hedrick SM, Fowlkes BJ. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity 1996; 4:337-47. [PMID: 8612128 DOI: 10.1016/s1074-7613(00)80247-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The generation of mature CD4 T cells from CD4+CD8+ precursor thymocytes usually requires corecognition of class II MHC by a TCR and CD4, while the production of mature CD8 T cells requires corecognition of class I MHC by a TCR and CD8. To assess the role of the CD4 coreceptor in development and lineage commitment, we generated CD4-deficient mice expressing a transgenic class II-specific TCR. Surprisingly, in the absence of CD4 a large number of T cells mature, but these cells appear in the CD8 lineage. Thus, when CD4 is present, the majority of immature T cells with this class II-specific TCR choose the CD4 lineage but develop in the CD8 pathway when CD4 is absent. The results indicate that even for TCRs that are not dependent on coreceptor for MHC recognition, the coreceptor can influence the lineage choice. These findings are considered in terms of a quantitative signaling model for CD4/CD8 lineage commitment.
Collapse
Affiliation(s)
- E O Matechak
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0420, USA
| | | | | | | |
Collapse
|
30
|
Itano A, Salmon P, Kioussis D, Tolaini M, Corbella P, Robey E. The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. J Exp Med 1996; 183:731-41. [PMID: 8642277 PMCID: PMC2192343 DOI: 10.1084/jem.183.3.731] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thymocytes must bind major histocompatibility complex (MHC) proteins on thymic epithelial cells in order to mature into either CD8+ cytotoxic T cells or CD4+ helper T cells. Thymic precursors express both CD8 and CD4, and it has been suggested that the intracellular signals generated by CD8 or CD4 binding to class I or II MHC, respectively, might influence the fate of uncommitted cells. Here we test the notion that intracellular signaling by CD4 directs the development of thymocytes to a CD4 lineage. A hybrid protein consisting of the CD8 extracellular and transmembrane domains and the cytoplasmic domain of CD4 (CD884) should bind class I MHC but deliver a CD4 intracellular signal. We find that expression of a hybrid CD884 protein in thymocytes of transgenic mice leads to the development of large numbers of class I MHC-specific, CD4 lineage T cells. We discuss these results in terms of current models for CD4 and CD8 lineage commitment.
Collapse
Affiliation(s)
- A Itano
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Killeen N, Littman DR. The regulation and function of the CD4 coreceptor during T lymphocyte development. Curr Top Microbiol Immunol 1996; 205:89-106. [PMID: 8575199 DOI: 10.1007/978-3-642-79798-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The data reviewed in this chapter suggest that the primary developmental function of the CD4 and CD8 coreceptors is to improve the efficacy by which a thymocyte recognizes peptide/MHC. During positive selection, DP thymocytes down-regulate expression of either CD4 or CD8 in response to signals that originate from the TCR/coreceptor complex. Experiments with transgenic and MHC-null mice have shown that coreceptor down-regulation and lineage commitment can occur stochastically in a manner that is independent of TCR specificity for MHC. Nevertheless, the positive selection of a given thymocyte is contingent on sustained expression of the coreceptor that is appropriate for the MHC specificity of its TCR. In most cases, loss of the required coreceptor blocks developmental progression and results in thymocyte apoptosis. CD4 expression is controlled by both positive and negative regulatory sequences embedded in the CD4 gene and it is likely that similar sequences regulate the CD8 gene. The down-regulation of coreceptor expression is coupled to a functional commitment which ensures that mature CD4+ T cells have a helper phenotype and CD8+ T cells have a cytotoxic phenotype. The molecular basis for this coupling and the identity of the switching mechanism which governs coreceptor regulation remain to be determined.
Collapse
Affiliation(s)
- N Killeen
- Department of Microbiology and Immunology, University of California at San Francisco 94143-0414, USA
| | | |
Collapse
|
33
|
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/immunology
- Humans
- Major Histocompatibility Complex
- Mice
- Mice, Transgenic
- Models, Immunological
- Models, Structural
- Protein Precursors/chemistry
- Protein Precursors/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
Collapse
|
34
|
Kisielow P, Miazek A. Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor. J Exp Med 1995; 181:1975-84. [PMID: 7759993 PMCID: PMC2192069 DOI: 10.1084/jem.181.6.1975] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Positive selection of T cells is a complex developmental process generating long-lived, functionally mature CD4+CD8- and CD4-CD8+ cells from short-lived, immature CD4+CD8+ precursors. The process is initiated in the thymus by interaction of the alpha beta TCR with molecules encoded by the MHC, occurs without cell division, and involves rescue from programmed cell death (PCD), as well as induction of differentiation and maturation of selected precursors. It is unclear whether development of small, positively selected CD4+CD8+ thymocytes (characterized by up-regulated levels of TCR and CD69 molecules) depends on further interactions with MHC molecules and, if so, whether such interactions are required for survival, for maturation, or for both. The involvement of the TCR and/or CD4/CD8 coreceptors in transmitting additional signals is also unknown. We have examined these questions by analyzing survival and differentiation of early (CD4+CD8+TCRhi) and later (CD4-CD8+TCRhi) postselection stages of thymocytes from normal and bcl-2 transgenic mice expressing transgenic, class I MHC-restricted TCR, upon intrathymic transfer into recipients that lacked ligands either for both the TCR and CD8 coreceptor, or for the TCR only. The results provide direct evidence that induction of differentiation of CD4+CD8+ thymocytes by recognition of MHC molecules does not rescue them from PCD and is insufficient to activate the entire maturation program. Both processes require continual engagement of the TCR by positively selecting MHC molecules that, at least in the case of class I MHC-restricted CD4-CD8+ T cells, cannot be substituted by the engagement of coreceptor alone.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Antigens, Differentiation, T-Lymphocyte/immunology
- Apoptosis/immunology
- Cell Differentiation/immunology
- Cell Division
- Cell Separation/methods
- Cells, Cultured
- Crosses, Genetic
- Flow Cytometry
- Immunophenotyping
- Major Histocompatibility Complex
- Mice
- Mice, Inbred AKR
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Species Specificity
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- P Kisielow
- Basel Institute for Immunology, Switzerland
| | | |
Collapse
|
35
|
Lucas B, Vasseur F, Penit C. Stochastic coreceptor shut-off is restricted to the CD4 lineage maturation pathway. J Exp Med 1995; 181:1623-33. [PMID: 7722442 PMCID: PMC2191984 DOI: 10.1084/jem.181.5.1623] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Kinetics of mature T cell generation in the thymus of normal or major histocompatibility complex (MHC) class I- or II-deficient mice were studied by the bromodeoxyuridine pulse labeling method. As previously described, the early activation and final maturation phases were found to be synchronous for the two T cell lineages, but CD4+8- cells were generated faster than CD4-8+ cells in MHC class I- and II-deficient mice, respectively. CD8 downregulation started on day 2 after cell proliferation even in the absence of MHC class II expression. CD8 downregulation thus appears to be stochastic at its beginning. By contrast, CD4 shut-off was found totally instructive, as the generation of CD4lo8+ cells with a high TCR density was not observed in class I-deficient mice. The analysis of the V beta 14 TCR frequencies in CD4/8 subsets in normal and MHC-deficient mice confirmed that CD4 and CD8 generation pathways are not symmetrical. These findings show that commitment towards the CD4+8- or CD4-8+ phenotype is controlled at the CD8lo step for the former and at the CD4+8+ double-positive stage for the latter.
Collapse
Affiliation(s)
- B Lucas
- Unité 345 Institut de la Santé et de la Recherche Médicale, CHU Necker-Enfants, Paris, France
| | | | | |
Collapse
|
36
|
Abstract
In the past year, significant technical developments have provided the opportunity to investigate the more mechanistic features of positive selection. Major progress has been made in determining the structure and function of the early pre-T cell receptor, in defining cell types that mediate positive selection, and in analyzing the contribution of MHC and co-receptors to CD4/CD8 lineage commitment. The most revealing studies have been those addressing the role of peptides in thymic selection.
Collapse
Affiliation(s)
- B J Fowlkes
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | | |
Collapse
|
37
|
Abstract
T cells with helper activity can be found in mice that lack expression of the CD4 glycoprotein. The CD4 promoter is active in these cells; they respond to antigens presented by MHC class II molecules; they do not express CD8 and they do not depend on MHC class I for their development. By such criteria, these CD8- T cells resemble normal CD4+ helper T cells. The development of the helper lineage in CD4-null mice can be potentiated by expression of transgenes that encode either wild type CD4, or a deletion mutant of CD4 that lacks the cytoplasmic tail and therefore cannot interact with the tyrosine kinase p56lck. These observations suggest that CD4 is not absolutely required for the specification of the helper cell lineage. The role of the CD4 molecule in the development of T cells and possible mechanisms by which it achieves its functions are discussed.
Collapse
Affiliation(s)
- N Killeen
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA
| | | |
Collapse
|
38
|
Affiliation(s)
- P Kisielow
- Basel Institute for Immunology, Switzerland
| | | |
Collapse
|
39
|
Pircher H, Ohashi PS, Boyd RL, Hengartner H, Brduscha K. Evidence for a selective and multi-step model of T cell differentiation: CD4+CD8low thymocytes selected by a transgenic T cell receptor on major histocompatibility complex class I molecules. Eur J Immunol 1994; 24:1982-7. [PMID: 7916293 DOI: 10.1002/eji.1830240907] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have characterized a prominent (15-20%) thymocyte population expressing CD4 at a high and CD8 at a low level (CD4+8lo) in mice transgenic for a T cell receptor (TCR) restricted by major histocompatibility complex (MHC) class I molecules. The results demonstrate that the CD4+8lo population is an intermediate stage between immature CD4+8+ and end-stage CD4+8- thymocytes and that the survival of these cells crucially depends on the successful interaction of the transgenic TCR with self MHC class I molecules. In addition we demonstrate that the avidity of the interaction between TCR and self MHC class I molecules determines whether CD4+8lo thymocytes are found in significant numbers in this transgenic model. Our findings support a selective and multi-step model of T cell differentiation in the thymus.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8 Antigens/immunology
- Cell Differentiation/immunology
- Cells, Cultured
- Flow Cytometry
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/growth & development
Collapse
Affiliation(s)
- H Pircher
- Institute of Experimental Immunology, University of Zürich, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Baron A, Hafen K, von Boehmer H. A human CD4 transgene rescues CD4-CD8+ cells in beta 2-microglobulin-deficient mice. Eur J Immunol 1994; 24:1933-6. [PMID: 8056052 DOI: 10.1002/eji.1830240834] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The specificity of the alpha beta T cell receptor for class I or class II major histocompatibility complex (MHC) molecules determines whether a mature T cell will be of the CD4-CD8+ or CD4+CD8- phenotype, respectively. We show here that a human CD4 transgene can rescue a significant fraction of CD4-CD8+ T cells in beta 2-microglobulin-deficient mice. Cells with this phenotype could be induced to become potent killers of targets expressing allogeneic MHC antigens, indicating that lineage commitment can precede the rescue of developing cells by the T cell receptor for antigen and the CD4 coreceptor.
Collapse
Affiliation(s)
- A Baron
- Basel Institute for Immunology, Switzerland
| | | | | |
Collapse
|
41
|
Robey E, Itano A, Fanslow WC, Fowlkes BJ. Constitutive CD8 expression allows inefficient maturation of CD4+ helper T cells in class II major histocompatibility complex mutant mice. J Exp Med 1994; 179:1997-2004. [PMID: 7515104 PMCID: PMC2191509 DOI: 10.1084/jem.179.6.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although mature CD4+ T cells bear T cell receptors (TCRs) that recognize class II major histocompatibility complex (MHC) and mature CD8+ T cells bear TCRs that recognize class I MHC, it is possible that the initial commitment of an immature thymocyte to a CD4 or CD8 lineage is made without regard to the specificity of the TCR. According to this model, CD4+ cells with class I TCR do not mature because the CD8 coreceptor is required for class I MHC recognition and positive selection. If this model is correct, constitutive expression of CD8 should allow CD4+ T cells with class I-specific TCRs to develop. In this report, we show that mature peripheral CD4+ cells are present in class II MHC-deficient mice that express a constitutive CD8.1 transgene. These cells share a number of properties with the major class II MHC-selected CD4 population, including the ability to express CD40 ligand upon activation. Although mature CD4 cells are also detectable in the thymus of class II MHC mutant/CD8.1 transgenic mice, they represent a small fraction of the mature CD4 cells found in mice that express class II MHC. These results indicate that some T cells choose the CD4 helper lineage independent of their antigen receptor specificity; however, the inefficiency of generating class I-specific CD4 cells leaves open the possibility that an instructive signal generated upon MHC recognition may bias lineage commitment.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/metabolism
- CD4 Antigens/metabolism
- CD40 Antigens
- CD8 Antigens/biosynthesis
- Flow Cytometry
- Gene Expression
- Genes, MHC Class II
- Histocompatibility Antigens Class II/genetics
- Lymph Nodes/immunology
- Lymphocyte Activation
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- T-Lymphocytes, Helper-Inducer/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- E Robey
- Department of Molecular and Cell Biology, University of California at Berkeley 94720
| | | | | | | |
Collapse
|