1
|
Youk S, Lee DH, Song CS. Differing Expression and Potential Immunological Role of C-Type Lectin Receptors of Two Different Chicken Breeds against Low Pathogenic H9N2 Avian Influenza Virus. Pathogens 2024; 13:95. [PMID: 38276168 PMCID: PMC10818356 DOI: 10.3390/pathogens13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Diverse immune responses in different chicken lines can result in varying clinical consequences following avian influenza virus (AIV) infection. We compared two widely used layer breeds, Lohmann Brown (LB) and Lohmann White (LW), to examine virus replication and immune responses against H9N2 AIV infection. The transcription profile in the spleen of H9N2-infected chickens was compared using a microarray. Confirmatory real-time RT-PCR was used to measure the expression of C-type lectin, OASL, and MX1 genes. Additionally, to investigate the role of chicken lectin receptors in vitro, two C-type lectin receptors (CLRs) were expressed in DF-1 cells, and the early growth of the H9N2 virus was evaluated. The LB chickens shed a lower amount of virus from the cloaca compared with the LW chickens. Different expression levels of C-type lectin-like genes were observed in the transcription profile, with no significant differences in OASL or MX gene expression. Real-time RT-PCR indicated a sharp decrease in C-type lectin levels in the spleen of H9N2-infected LW chickens. In vitro studies demonstrated that cells overexpressing CLR exhibited lower virus replication, while silencing of homeostatic CLR had no effect on AIV replication. This study demonstrated distinct immune responses to H9N2 avian influenza in LB and LW chickens, particularly with differences in C-type lectin expression, potentially leading to lower virus shedding in LB chickens.
Collapse
Affiliation(s)
- Sungsu Youk
- Microbiology Laboratory, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Dong-Hun Lee
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Chang-Seon Song
- Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Goto RM, Warden CD, Shiina T, Hosomichi K, Zhang J, Kang TH, Wu X, Glass MC, Delany ME, Miller MM. The Gallus gallus RJF reference genome reveals an MHCY haplotype organized in gene blocks that contain 107 loci including 45 specialized, polymorphic MHC class I loci, 41 C-type lectin-like loci, and other loci amid hundreds of transposable elements. G3 (BETHESDA, MD.) 2022; 12:jkac218. [PMID: 35997588 PMCID: PMC9635633 DOI: 10.1093/g3journal/jkac218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
MHCY is a second major histocompatibility complex-like gene region in chickens originally identified by the presence of major histocompatibility complex class I-like and class II-like gene sequences. Up to now, the MHCY gene region has been poorly represented in genomic sequence data. A high density of repetitive sequence and multiple members of several gene families prevented the accurate assembly of short-read sequence data for MHCY. Identified here by single-molecule real-time sequencing sequencing of BAC clones for the Gallus gallus Red Jungle Fowl reference genome are 107 MHCY region genes (45 major histocompatibility complex class I-like, 41 c-type-lectin-like, 8 major histocompatibility complex class IIβ, 8 LENG9-like, 4 zinc finger protein loci, and a single only zinc finger-like locus) located amid hundreds of retroelements within 4 contigs representing the region. Sequences obtained for nearby ribosomal RNA genes have allowed MHCY to be precisely mapped with respect to the nucleolar organizer region. Gene sequences provide insights into the unusual structure of the MHCY class I molecules. The MHCY class I loci are polymorphic and group into 22 types based on predicted amino acid sequences. Some MHCY class I loci are full-length major histocompatibility complex class I genes. Others with altered gene structure are considered gene candidates. The amino acid side chains at many of the polymorphic positions in MHCY class I are directed away rather than into the antigen-binding groove as is typical of peptide-binding major histocompatibility complex class I molecules. Identical and nearly identical blocks of genomic sequence contribute to the observed multiplicity of identical MHCY genes and the large size (>639 kb) of the Red Jungle Fowl MHCY haplotype. Multiple points of hybridization observed in fluorescence in situ hybridization suggest that the Red Jungle Fowl MHCY haplotype is made up of linked, but physically separated genomic segments. The unusual gene content, the evidence of highly similar duplicated segments, and additional evidence of variation in haplotype size distinguish polymorphic MHCY from classical polymorphic major histocompatibility complex regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Tae Hyuk Kang
- Integrative Genomics Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | - Xiwei Wu
- Integrative Genomics Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | | | | | - Marcia M Miller
- Corresponding author: Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA.
| |
Collapse
|
3
|
Halabi S, Kaufman J. New vistas unfold: Chicken MHC molecules reveal unexpected ways to present peptides to the immune system. Front Immunol 2022; 13:886672. [PMID: 35967451 PMCID: PMC9372762 DOI: 10.3389/fimmu.2022.886672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
The functions of a wide variety of molecules with structures similar to the classical class I and class II molecules encoded by the major histocompatibility complex (MHC) have been studied by biochemical and structural studies over decades, with many aspects for humans and mice now enshrined in textbooks as dogma. However, there is much variation of the MHC and MHC molecules among the other jawed vertebrates, understood in the most detail for the domestic chicken. Among the many unexpected features in chickens is the co-evolution between polymorphic TAP and tapasin genes with a dominantly-expressed class I gene based on a different genomic arrangement compared to typical mammals. Another important discovery was the hierarchy of class I alleles for a suite of properties including size of peptide repertoire, stability and cell surface expression level, which is also found in humans although not as extreme, and which led to the concept of generalists and specialists in response to infectious pathogens. Structural studies of chicken class I molecules have provided molecular explanations for the differences in peptide binding compared to typical mammals. These unexpected phenomena include the stringent binding with three anchor residues and acidic residues at the peptide C-terminus for fastidious alleles, and the remodelling binding sites, relaxed binding of anchor residues in broad hydrophobic pockets and extension at the peptide C-terminus for promiscuous alleles. The first few studies for chicken class II molecules have already uncovered unanticipated structural features, including an allele that binds peptides by a decamer core. It seems likely that the understanding of how MHC molecules bind and present peptides to lymphocytes will broaden considerably with further unexpected discoveries through biochemical and structural studies for chickens and other non-mammalian vertebrates.
Collapse
Affiliation(s)
- Samer Halabi
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Jim Kaufman,
| |
Collapse
|
4
|
Abstract
Compared to the major histocompatibility complex (MHC) of typical mammals, the chicken BF/BL region is small and simple, with most of the genes playing central roles in the adaptive immune response. However, some genes of the chicken MHC are almost certainly involved in innate immunity, such as the complement component C4 and the lectin-like receptor/ligand gene pair BNK and Blec. The poorly expressed classical class I molecule BF1 is known to be recognised by natural killer (NK) cells and, analogous to mammalian immune responses, the classical class I molecules BF1 and BF2, the CD1 homologs and the butyrophilin homologs called BG may be recognised by adaptive immune lymphocytes with semi-invariant receptors in a so-called adaptate manner. Moreover, the TRIM and BG regions next to the chicken MHC, along with the genetically unlinked Y and olfactory/scavenger receptor regions on the same chromosome, have multigene families almost certainly involved in innate and adaptate responses. On this chicken microchromosome, the simplicity of the adaptive immune gene systems contrasts with the complexity of the gene systems potentially involved in innate immunity.
Collapse
|
5
|
Tregaskes CA, Kaufman J. Chickens as a simple system for scientific discovery: The example of the MHC. Mol Immunol 2021; 135:12-20. [PMID: 33845329 PMCID: PMC7611830 DOI: 10.1016/j.molimm.2021.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023]
Abstract
Chickens have played many roles in human societies over thousands of years, most recently as an important model species for scientific discovery, particularly for embryology, virology and immunology. In the last few decades, biomedical models like mice have become the most important model organism for understanding the mechanisms of disease, but for the study of outbred populations, they have many limitations. Research on humans directly addresses many questions about disease, but frank experiments into mechanisms are limited by practicality and ethics. For research into all levels of disease simultaneously, chickens combine many of the advantages of humans and of mice, and could provide an independent, integrated and overarching system to validate and/or challenge the dogmas that have arisen from current biomedical research. Moreover, some important systems are simpler in chickens than in typical mammals. An example is the major histocompatibility complex (MHC) that encodes the classical MHC molecules, which play crucial roles in the innate and adaptive immune systems. Compared to the large and complex MHCs of typical mammals, the chicken MHC is compact and simple, with single dominantly-expressed MHC molecules that can determine the response to infectious pathogens. As a result, some fundamental principles have been easier to discover in chickens, with the importance of generalist and specialist MHC alleles being the latest example.
Collapse
Affiliation(s)
- Clive A Tregaskes
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Jim Kaufman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom; University of Edinburgh, Institute for Immunology and Infection Research, Ashworth Laboratories, Kings Buildings, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
6
|
Manjula P, Bed'Hom B, Hoque MR, Cho S, Seo D, Chazara O, Lee SH, Lee JH. Genetic diversity of MHC-B in 12 chicken populations in Korea revealed by single-nucleotide polymorphisms. Immunogenetics 2020; 72:367-379. [PMID: 32839847 DOI: 10.1007/s00251-020-01176-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
This study used a single-nucleotide polymorphism (SNP) panel to characterise the diversity in the major histocompatibility complex B region (MHC-B) in 12 chicken populations in Korea. Samples were genotyped for 96 MHC-B SNPs using an Illumina GoldenGate genotyping assay. The MHC-B SNP haplotypes were predicted using 58 informative SNPs and a coalescence-based Bayesian algorithm implemented by the PHASE program and a manual curation process. In total, 117 haplotypes, including 24 shared and 93 unique haplotypes, were identified. The unique haplotype numbers ranged from 0 in Rhode Island Red to 32 in the Korean native commercial chicken population 2 ("Hanhyup-3ho"). Population and haplotype principal component analysis (PCA) indicated no clear population structure based on the MHC haplotypes. Three haplotype clusters (A, B, C) segregated in these populations highlighted the relationship between the haplotypes in each cluster. The sequences from two clusters (B and C) overlapped, whereas the sequences from the third cluster (A) were very different. Overall, native breeds had high genetic diversity in the MHC-B region compared with the commercial breeds. This highlights their immune capabilities and genetic potential for resistance to many different pathogens.
Collapse
Affiliation(s)
- Prabuddha Manjula
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bertrand Bed'Hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005, Paris, France
| | | | - Sunghyun Cho
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dongwon Seo
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Olympe Chazara
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Seung Hwan Lee
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
7
|
Zhang J, Goto RM, Miller MM. A simple means for MHC-Y genotyping in chickens using short tandem repeat sequences. Immunogenetics 2020; 72:325-332. [PMID: 32488290 DOI: 10.1007/s00251-020-01166-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/28/2020] [Indexed: 12/28/2022]
Abstract
Described here is a new, more efficient method for defining major histocompatibility complex-Y (MHC-Y) genotypes in chickens. The MHC-Y region is genetically independent from the classical MHC (MHC-B) region. MHC-Y is highly polymorphic and potentially important in the genetics of disease resistance. MHC-Y haplotypes contain variable numbers of specialized MHC class I-like genes, along with members of four additional gene families. Previously, MHC-Y haplotypes were defined by patterns of restriction fragments (RF) generated in labor-intensive procedures that were difficult to use to define MHC-Y genotypes for large numbers of samples. The method reported here is much simpler. MHC-Y genotypes are distinguished via patterns of PCR products generated from heritable short tandem repeat (STR) regions found immediately upstream of the MHC class I-like genes located throughout MHC-Y haplotypes. To validate the method, fully pedigreed families were analyzed for STR-defined haplotypes in light of haplotypes defined previously by RF patterns. STR-defined MHC-Y patterns segregate in fully pedigreed families as expected and correspond with haplotypes assigned by RF patterns. The patterns provided in STR chromatograms generated by capillary electrophoresis are distinct for different haplotypes and can be scored easily. Investigations into the influence of MHC-Y genetics on immune responses can now realistically be conducted with large sample sets.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ronald M Goto
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Marcia M Miller
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
8
|
Not all birds have a single dominantly expressed MHC-I gene: Transcription suggests that siskins have many highly expressed MHC-I genes. Sci Rep 2019; 9:19506. [PMID: 31862923 PMCID: PMC6925233 DOI: 10.1038/s41598-019-55800-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023] Open
Abstract
Passerine birds belong to the most species rich bird order and are found in a wide range of habitats. The extremely polymorphic adaptive immune system of passerines, identified through their major histocompatibility complex class I genes (MHC-I), may explain some of this extreme radiation. Recent work has shown that passerines have higher numbers of MHC-I gene copies than other birds, but little is currently known about expression and function of these gene copies. Non-passerine birds have a single highly expressed MHC-I gene copy, a pattern that seems unlikely in passerines. We used high-throughput sequencing to study MHC-I alleles in siskins (Spinus spinus) and determined gene expression, phylogenetic relationships and sequence divergence. We verified between six and 16 MHC-I alleles per individual and 97% of these were expressed. Strikingly, up to five alleles per individual had high expression. Out of 88 alleles 18 were putatively non-classical with low sequence divergence and expression, and found in a single phylogenetic cluster. The remaining 70 alleles were classical, with high sequence divergence and variable degrees of expression. Our results contradict the suggestion that birds only have a single dominantly expressed MHC-I gene by demonstrating several highly expressed MHC-I gene copies in a passerine.
Collapse
|
9
|
Afrache H, Tregaskes CA, Kaufman J. A potential nomenclature for the Immuno Polymorphism Database (IPD) of chicken MHC genes: progress and problems. Immunogenetics 2019; 72:9-24. [PMID: 31741010 PMCID: PMC6971145 DOI: 10.1007/s00251-019-01145-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022]
Abstract
Among the genes with the highest allelic polymorphism and sequence diversity are those encoding the classical class I and class II molecules of the major histocompatibility complex (MHC). Although many thousands of MHC sequences have been deposited in general sequence databases like GenBank, the availability of curated MHC sequences with agreed nomenclature has been enormously beneficial. Along with the Immuno Polymorphism Database-IMunoGeneTics/human leukocyte antigen (IPD-IMGT/HLA) database, a collection of databases for curated sequences of immune importance has been developed. A recent addition is an IPD-MHC database for chickens. For many years, the nomenclature system for chicken MHC genes has been based on a list of standard, presumed to be stable, haplotypes. However, these standard haplotypes give different names to identical sequences. Moreover, the discovery of new recombinants between haplotypes and a rapid increase in newly discovered alleles leaves the old system untenable. In this review, a new nomenclature is considered, for which alleles of different loci are given names based on the system used for other MHCs, and then haplotypes are named according to the alleles present. The new nomenclature system is trialled, first with standard haplotypes and then with validated sequences from the scientific literature. In the trial, some class II B sequences were found in both class II loci, presumably by gene conversion or inversion, so that identical sequences would receive different names. This situation prompts further suggestions to the new nomenclature system. In summary, there has been progress, but also problems, with the new IPD-MHC system for chickens.
Collapse
Affiliation(s)
- Hassnae Afrache
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Clive A Tregaskes
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB2 0ES, UK.
| |
Collapse
|
10
|
Two class I genes of the chicken MHC have different functions: BF1 is recognized by NK cells while BF2 is recognized by CTLs. Immunogenetics 2018; 70:599-611. [DOI: 10.1007/s00251-018-1066-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022]
|
11
|
Tu Y, Shu J, Ji G, Zhang M, Zou J. Monitoring conservation effects on a Chinese indigenous chicken breed using major histocompatibility complex B-G gene and DNA Barcodes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1558-1564. [PMID: 29642684 PMCID: PMC6127593 DOI: 10.5713/ajas.17.0627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We report monitoring conservation effect for a Chinese indigenous chicken (Langshan) breed using major histocompatibility complex (MHC) and DNA barcords. METHODS The full length of MHC B-G gene and mitochondrial cytochrome oxidase I (COI) gene in generations 0, 5, 10, 15, 16, and 17 was measured using re-sequencing and sequencing procedures, respectively. RESULTS There were 292 single nucleotide polymorphisms of MHC B-G gene identified in six generations. Heterozygosity (He) and polymorphic information content (PIC) of MHC B-G gene in generations 10, 15, 16, and 17 remained stable. He and PIC of MHC B-G gene were different in six generations, with G10, G15, G16, G17 >G5>G0 (p<0.05). For the COI gene, there were five haplotypes in generations 0, 5, 10, 15, 16, and 17. Where Hap2 and Hap4 were the shared haplotypes, 164 individuals shared Hap2 haplotypes, while Hap1 and Hap3 were the shared haplotypes in generations 0 and 5 and Hap5 was a shared haplotype in generations 10, 15, 16, and 17. The sequence of COI gene in 6 generations was tested by Tajima's and D value, and the results were not significant, which were consistent with neutral mutation. There were no differences in generations 10, 15, 16, and 17for measured phenotypic traits. In other generations, for annual egg production, with G5, G10, G15, G16, G17>G0 (p<0.05). For age at the first egg and age at sexual maturity, with G10, G15, G16, G17>G5>G0 (p<0.05). CONCLUSION Combined with the results of COI gene DNA barcodes, MHC B-G gene, and phenotypic traits we can see that genetic diversity remained stable from generations 10 to 17 and the equimultiple random matching pedigrees conservation population conservation effect of Langshan chicken was effective as measured by these criteria.
Collapse
Affiliation(s)
- Yunjie Tu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| | - Jingting Shu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| | - Gaige Ji
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| | - Ming Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| | - Jianmin Zou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China.,Key lab of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou, Jiangsu, 225125, China
| |
Collapse
|
12
|
Jarvi SI, Bianchi KR, Farias ME, Txakeeyang A, McFarland T, Belcaid M, Asano A. Characterization of class II β chain major histocompatibility complex genes in a family of Hawaiian honeycreepers: 'amakihi (Hemignathus virens). Immunogenetics 2016; 68:461-475. [PMID: 26971289 DOI: 10.1007/s00251-016-0908-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Hawaiian honeycreepers (Drepanidinae) have evolved in the absence of mosquitoes for over five million years. Through human activity, mosquitoes were introduced to the Hawaiian archipelago less than 200 years ago. Mosquito-vectored diseases such as avian malaria caused by Plasmodium relictum and Avipoxviruses have greatly impacted these vulnerable species. Susceptibility to these diseases is variable among and within species. Due to their function in adaptive immunity, the role of major histocompatibility complex genes (Mhc) in disease susceptibility is under investigation. In this study, we evaluate gene organization and levels of diversity of Mhc class II β chain genes (exon 2) in a captive-reared family of Hawaii 'amakihi (Hemignathus virens). A total of 233 sequences (173 bp) were obtained by PCR+1 amplification and cloning, and 5720 sequences were generated by Roche 454 pyrosequencing. We report a total of 17 alleles originating from a minimum of 14 distinct loci. We detected three linkage groups that appear to represent three distinct haplotypes. Phylogenetic analysis revealed one variable cluster resembling classical Mhc sequences (DAB) and one highly conserved, low variability cluster resembling non-classical Mhc sequences (DBB). High net evolutionary divergence values between DAB and DBB resemble that seen between chicken BLB system and YLB system genes. High amino acid identity among non-classical alleles from 12 species of passerines (DBB) and four species of Galliformes (YLB) was found, suggesting that these non-classical passerine sequences may be related to the Galliforme YLB sequences.
Collapse
Affiliation(s)
- Susan I Jarvi
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA.
| | - Kiara R Bianchi
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Margaret Em Farias
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Ann Txakeeyang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Thomas McFarland
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| | - Mahdi Belcaid
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, Kane'ohe, HI, USA
| | - Ashley Asano
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA
| |
Collapse
|
13
|
Miller MM, Taylor RL. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci 2016; 95:375-92. [PMID: 26740135 PMCID: PMC4988538 DOI: 10.3382/ps/pev379] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022] Open
Abstract
Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry.
Collapse
Affiliation(s)
- Marcia M Miller
- Beckman Research Institute, City of Hope, Department of Molecular and Cellular Biology, Duarte, CA 91010
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
14
|
Zeng QQ, Zhong GH, He K, Sun DD, Wan QH. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus). Int J Immunogenet 2015; 43:8-17. [PMID: 26700854 DOI: 10.1111/iji.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/22/2015] [Indexed: 11/29/2022]
Abstract
Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci.
Collapse
Affiliation(s)
- Q-Q Zeng
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - G-H Zhong
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - K He
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - D-D Sun
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Q-H Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Reed KM, Benoit B, Wang X, Greenshields MA, Hughes CHK, Mendoza KM. Conserved MHC gene orthologs genetically map to the turkey MHC- B. Cytogenet Genome Res 2014; 144:31-8. [PMID: 25277209 DOI: 10.1159/000366440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 11/19/2022] Open
Abstract
The avian MHC-associated gene set includes orthologs to genes found throughout the human major histocompatibility complex (MHC), including some loci of the evolutionarily conserved class III region. In the turkey and other Galliformes, genes linked to the MHC have been identified because they are closely associated with class I or class II genes. This study was designed to evaluate additional class III genes for linkage to the avian MHC to further determine conservation of these loci in birds. BLAST searches were used to locate sequences in the turkey genome with similarity to genes shared between the MHC of Xenopus and humans. Primers were designed to target 25 genes, and putative orthologs were amplified by PCR and sequenced. Sequence polymorphisms were identified for 15 genes in turkey reference mapping families, and 8 genes showed significant genetic linkage to the turkey MHC-B locus. These new genetic markers and linkage relationships broaden our understanding of the composition of the avian MHC and expand the gene content for the turkey MHC-B.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minn., USA
| | | | | | | | | | | |
Collapse
|
16
|
Taniguchi Y, Matsumoto K, Matsuda H, Yamada T, Sugiyama T, Homma K, Kaneko Y, Yamagishi S, Iwaisaki H. Structure and polymorphism of the major histocompatibility complex class II region in the Japanese Crested Ibis, Nipponia nippon. PLoS One 2014; 9:e108506. [PMID: 25247679 PMCID: PMC4172706 DOI: 10.1371/journal.pone.0108506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/21/2014] [Indexed: 12/15/2022] Open
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic genomic region that plays a central role in the immune system. Despite its functional consistency, the genomic structure of the MHC differs substantially among organisms. In birds, the MHC-B structures of Galliformes, including chickens, have been well characterized, but information about other avian MHCs remains sparse. The Japanese Crested Ibis (Nipponia nippon, Pelecaniformes) is an internationally conserved, critically threatened species. The current Japanese population of N. nippon originates from only five founders; thus, understanding the genetic diversity among these founders is critical for effective population management. Because of its high polymorphism and importance for disease resistance and other functions, the MHC has been an important focus in the conservation of endangered species. Here, we report the structure and polymorphism of the Japanese Crested Ibis MHC class II region. Screening of genomic libraries allowed the construction of three contigs representing different haplotypes of MHC class II regions. Characterization of genomic clones revealed that the MHC class II genomic structure of N. nippon was largely different from that of chicken. A pair of MHC-IIA and -IIB genes was arranged head-to-head between the COL11A2 and BRD2 genes. Gene order in N. nippon was more similar to that in humans than to that in chicken. The three haplotypes contained one to three copies of MHC-IIA/IIB gene pairs. Genotyping of the MHC class II region detected only three haplotypes among the five founders, suggesting that the genetic diversity of the current Japanese Crested Ibis population is extremely low. The structure of the MHC class II region presented here provides valuable insight for future studies on the evolution of the avian MHC and for conservation of the Japanese Crested Ibis.
Collapse
Affiliation(s)
- Yukio Taniguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Keisuke Matsumoto
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirokazu Matsuda
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahisa Yamada
- Department of Agrobiology, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshie Sugiyama
- Department of Agrobiology, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kosuke Homma
- Field Center for Sustainable Agriculture and Forestry, Niigata University, Niigata, Japan
| | | | | | - Hiroaki Iwaisaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns. PLoS Genet 2014; 10:e1004417. [PMID: 24901252 PMCID: PMC4046983 DOI: 10.1371/journal.pgen.1004417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 04/14/2014] [Indexed: 11/19/2022] Open
Abstract
Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5′ untranslated regions (5′UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood. Many immune genes are multigene families, presumably in response to pathogen variation. Some multigene families undergo expansion and contraction, leading to copy number variation (CNV), presumably due to more intense selection. Recently, the butyrophilin family in humans and other mammals has come under scrutiny, due to genetic associations with autoimmune diseases as well as roles in immune co-regulation and antigen presentation. Butyrophilin genes exhibit allelic polymorphism, but gene number appears stable within a species. We found that the BG homologues in chickens are very different, with great changes between haplotypes. We characterised one haplotype in detail, showing that there are two single BG genes, one on chromosome 2 and the other in the major histocompatibility complex (BF-BL region) on chromosome 16, and a family of BG genes in a tandem array in the BG region nearby. These genes have specific expression in cells and tissues, but overall are expressed in either haemopoietic cells or tissues. The two singletons have relatively stable evolutionary histories, but the BG region undergoes dynamic expansion and contraction, with the production of hybrid genes. Thus, chicken BG genes appear to evolve much more quickly than their closest homologs in mammals, presumably due to increased pressure from pathogens.
Collapse
|
18
|
Bauer MM, Miller MM, Briles WE, Reed KM. Genetic variation at the MHC in a population of introduced wild turkeys. Anim Biotechnol 2013; 24:210-28. [PMID: 23777350 DOI: 10.1080/10495398.2013.767267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey ( Meleagris gallopavo ) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys ( Meleagris gallopavo silvestris ) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.
Collapse
Affiliation(s)
- Miranda M Bauer
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | | | | | | |
Collapse
|
19
|
Miller MM, Robinson CM, Abernathy J, Goto RM, Hamilton MK, Zhou H, Delany ME. Mapping genes to chicken microchromosome 16 and discovery of olfactory and scavenger receptor genes near the major histocompatibility complex. J Hered 2013; 105:203-15. [PMID: 24336927 DOI: 10.1093/jhered/est091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trisomy mapping is a powerful method for assigning genes to chicken microchromosome 16 (GGA 16). The single chicken nucleolar organizer region (NOR), the 2 major histocompatibility complex regions (MHC-Y and MHC-B), and CD1 genes were all previously assigned to GGA 16 using trisomy mapping. Here, we combined array comparative genomic hybridization with trisomy mapping to screen unassigned genomic scaffolds (consigned temporarily to chrUn_random) for sequences originating from GGA 16. A number of scaffolds mapped to GGA 16. Among these were scaffolds that contain genes for olfactory (OR) and cysteine-rich domain scavenger (SRCR) receptors, along with a number of genes that encode putative immunoglobulin-like receptors and other molecules. We used high-resolution cytogenomic analyses to confirm assignment of OR and SRCR genes to GGA 16 and to pinpoint members of these gene families to the q-arm in partially overlapping regions between the centromere and the NOR. Southern blots revealed sequence polymorphism within the OR/SRCR region and linkage with the MHC-Y region, thereby providing evidence for conserved linkage between OR genes and the MHC within birds. This work localizes OR genes to the vicinity of the chicken MHC and assigns additional genes, including immune defense genes, to GGA 16.
Collapse
Affiliation(s)
- Marcia M Miller
- the Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | | | | | | | | | | | | |
Collapse
|
20
|
Venkataraman GM, Geraghty D, Fox J, Graves SS, Zellmer E, Storer BE, Torok-Storb BJ, Storb R. Canine DLA-79 gene: an improved typing method, identification of new alleles and its role in graft rejection and graft-versus-host disease. ACTA ACUST UNITED AC 2013; 81:204-11. [PMID: 23510416 DOI: 10.1111/tan.12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 12/01/2022]
Abstract
Developing a preclinical canine model that predicts outcomes for hematopoietic cell transplantation in humans requires a model that mimics the degree of matching between human donor and recipient major histocompatibility complex (MHC) genes. The polymorphic class I and class II genes in mammals are typically located in a single chromosome as part of the MHC complex. However, a divergent class I gene in dogs, designated dog leukocyte antigen-79 (DLA-79), is located on chromosome 18 while other MHC genes are on chromosome 12. This gene is not taken into account while DLA matching for transplantation. Though divergent, this gene shares significant similarity in sequence and exon-intron architecture with other class I genes, and is transcribed. Little is known about the polymorphisms of DLA-79 and their potential role in transplantation. This study was aimed at exploring the reason for high rate of rejection seen in DLA-matched dogs given reduced intensity conditioning, in particular, the possibility that DLA-79 allele mismatches may be the cause. We found that about 82% of 407 dogs typed were homozygous for a single, reference allele. Owing to the high prevalence of a single allele, 87 of the 108 dogs (∼80%) transplanted were matched for DLA-79 with their donor. In conclusion, we have developed an efficient method to type alleles of a divergent MHC gene in dogs and identified two new alleles. We did not find any statistical correlation between DLA-79 allele disparity and graft rejection or graft-versus-host disease, among our transplant dogs.
Collapse
Affiliation(s)
- G M Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Monson MS, Mendoza KM, Velleman SG, Strasburg GM, Reed KM. Expression profiles for genes in the turkey major histocompatibility complex B-locus. Poult Sci 2013; 92:1523-34. [PMID: 23687148 DOI: 10.3382/ps.2012-02951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic region of the genome essential to immune responses and animal health. In galliforms, the MHC is divided into 2 genetically unlinked regions (MHC-B and MHC-Y). Many MHC-B genes are involved in adaptive or innate immunity, yet others have nonimmune or unknown functions. The sequenced MHC-B region of the turkey (Meleagris gallopavo) contains 40 genes, the majority of which are predicted transcripts based on comparison with the chicken or quail, without direct evidence for expression. This study was designed to test for the presence of MHC-B gene transcripts in a panel of immune and nonimmune system tissues from domestic turkeys. This analysis provides the first locus-wide examination of MHC-B gene expression in any avian species. Most MHC-B genes were broadly expressed across tissues. Expression of all predicted genes was verified by reverse-transcription PCR, including B-butyrophilin 2 (BTN2), a predicted gene with no previous evidence for expression in any species. Previously undescribed splice variants were also detected and sequenced from 3 genes. Characterization of MHC-B expression patterns helps elucidate unknown gene functions and potential gene coregulation. Determining turkey MHC-B expression profiles increases our overall understanding of the avian MHC and provides a necessary resource for future research on the immunological response of these genes.
Collapse
Affiliation(s)
- M S Monson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, 55108, USA
| | | | | | | | | |
Collapse
|
22
|
Butter C, Staines K, van Hateren A, Davison TF, Kaufman J. The peptide motif of the single dominantly expressed class I molecule of the chicken MHC can explain the response to a molecular defined vaccine of infectious bursal disease virus (IBDV). Immunogenetics 2013; 65:609-18. [PMID: 23644721 PMCID: PMC3710569 DOI: 10.1007/s00251-013-0705-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/17/2013] [Indexed: 12/22/2022]
Abstract
In contrast to typical mammals, the chicken MHC (the BF-BL region of the B locus) has strong genetic associations with resistance and susceptibility to infectious pathogens as well as responses to vaccines. We have shown that the chicken MHC encodes a single dominantly expressed class I molecule whose peptide-binding motifs can determine resistance to viral pathogens, such as Rous sarcoma virus and Marek’s disease virus. In this report, we examine the response to a molecular defined vaccine, fp-IBD1, which consists of a fowlpox virus vector carrying the VP2 gene of infectious bursal disease virus (IBDV) fused with β-galactosidase. We vaccinated parental lines and two backcross families with fp-IBD1, challenged with the virulent IBDV strain F52/70, and measured damage to the bursa. We found that the MHC haplotype B15 from line 15I confers no protection, whereas B2 from line 61 and B12 from line C determine protection, although another locus from line 61 was also important. Using our peptide motifs, we found that many more peptides from VP2 were predicted to bind to the dominantly expressed class I molecule BF2*1201 than BF2*1501. Moreover, most of the peptides predicted to bind BF2*1201 did in fact bind, while none bound BF2*1501. Using peptide vaccination, we identified one B12 peptide that conferred protection to challenge, as assessed by bursal damage and viremia. Thus, we show the strong genetic association of the chicken MHC to a T cell vaccine can be explained by peptide presentation by the single dominantly expressed class I molecule.
Collapse
Affiliation(s)
- Colin Butter
- Institute for Animal Health, Compton, Reading, Berkshire RG20 7NN UK
- The Pirbright Institute, Compton Laboratory, Compton, RG20 7NN UK
| | - Karen Staines
- Institute for Animal Health, Compton, Reading, Berkshire RG20 7NN UK
- The Pirbright Institute, Compton Laboratory, Compton, RG20 7NN UK
| | - Andrew van Hateren
- Institute for Animal Health, Compton, Reading, Berkshire RG20 7NN UK
- Institute for Life Science, University of Southampton, Building 85, M55, Southampton, SO17 1BJ UK
| | - T. Fred Davison
- Institute for Animal Health, Compton, Reading, Berkshire RG20 7NN UK
| | - Jim Kaufman
- Institute for Animal Health, Compton, Reading, Berkshire RG20 7NN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| |
Collapse
|
23
|
Wang B, Ekblom R, Strand TM, Portela-Bens S, Höglund J. Sequencing of the core MHC region of black grouse (Tetrao tetrix) and comparative genomics of the galliform MHC. BMC Genomics 2012; 13:553. [PMID: 23066932 PMCID: PMC3500228 DOI: 10.1186/1471-2164-13-553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The MHC, which is regarded as the most polymorphic region in the genomes of jawed vertebrates, plays a central role in the immune system by encoding various proteins involved in the immune response. The chicken MHC-B genomic region has a highly streamlined gene content compared to mammalian MHCs. Its core region includes genes encoding Class I and Class IIB molecules but is only ~92Kb in length. Sequences of other galliform MHCs show varying degrees of similarity as that of chicken. The black grouse (Tetrao tetrix) is a wild galliform bird species which is an important model in conservation genetics and ecology. We sequenced the black grouse core MHC-B region and combined this with available data from related species (chicken, turkey, gold pheasant and quail) to perform a comparative genomics study of the galliform MHC. This kind of analysis has previously been severely hampered by the lack of genomic information on avian MHC regions, and the galliformes is still the only bird lineage where such a comparison is possible. RESULTS In this study, we present the complete genomic sequence of the MHC-B locus of black grouse, which is 88,390 bp long and contains 19 genes. It shows the same simplicity as, and almost perfect synteny with, the corresponding genomic region of chicken. We also use 454-transcriptome sequencing to verify expression in 17 of the black grouse MHC-B genes. Multiple sequence inversions of the TAPBP gene and TAP1-TAP2 gene block identify the recombination breakpoints near the BF and BLB genes. Some of the genes in the galliform MHC-B region also seem to have been affected by selective forces, as inferred from deviating phylogenetic signals and elevated rates of non-synonymous nucleotide substitutions. CONCLUSIONS We conclude that there is large synteny between the MHC-B region of the black grouse and that of other galliform birds, but that some duplications and rearrangements have occurred within this lineage. The MHC-B sequence reported here will provide a valuable resource for future studies on the evolution of the avian MHC genes and on links between immunogenetics and ecology of black grouse.
Collapse
Affiliation(s)
- Biao Wang
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Robert Ekblom
- Evolutionary Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Tanja M Strand
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
- Swedish Institute for Communicable Disease Control, Department of Preparedness, Nobels väg, , 18, Solna, SE-171 82, Sweden
| | - Silvia Portela-Bens
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| | - Jacob Höglund
- Population Biology and Conservation Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-752 36, Sweden
| |
Collapse
|
24
|
Schut E, Aguilar JRD, Merino S, Magrath MJL, Komdeur J, Westerdahl H. Characterization of MHC-I in the blue tit (Cyanistes caeruleus) reveals low levels of genetic diversity and trans-population evolution across European populations. Immunogenetics 2011; 63:531-42. [PMID: 21559782 PMCID: PMC3132404 DOI: 10.1007/s00251-011-0532-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/21/2011] [Indexed: 01/04/2023]
Abstract
The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations.
Collapse
Affiliation(s)
- Elske Schut
- Animal Ecology Group/Behavioural Ecology and Self-Organisation, Centre for Ecological and Evolutionary Studies, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
25
|
Reed KM, Bauer MM, Monson MS, Benoit B, Chaves LD, O'Hare TH, Delany ME. Defining the turkey MHC: identification of expressed class I- and class IIB-like genes independent of the MHC-B. Immunogenetics 2011; 63:753-71. [PMID: 21710346 DOI: 10.1007/s00251-011-0549-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/07/2011] [Indexed: 12/14/2022]
Abstract
The MHC of the turkey (Meleagris gallopavo) is divided into two genetically unlinked regions; the MHC-B and MHC-Y. Although previous studies found the turkey MHC-B to be highly similar to that of the chicken, little is known of the gene content and extent of the MHC-Y. This study describes two partially overlapping large-insert BAC clones that genetically and physically map to the turkey MHC chromosome (MGA18) but to a region that assorts independently of MHC-B. Within the sequence assembly, 14 genes were predicted including new class I- and class IIB-like loci. Additional unassembled sequences corresponded to multiple copies of the ribosomal RNA repeat unit (18S-5.8S-28S). Thus, this newly identified MHC region appears to represent a physical boundary of the turkey MHC-Y. High-resolution multi-color fluorescence in situ hybridization studies confirm rearrangement of MGA18 relative to the orthologous chicken chromosome (GGA16) in regard to chromosome architecture, but not gene order. The difference in centromere position between the species is indicative of multiple chromosome rearrangements or alternate events such as neocentromere formation/centromere inactivation in the evolution of the MHC chromosome. Comparative sequencing of commercial turkeys (six amplicons totaling 7.6 kb) identified 68 single nucleotide variants defining nine MHC-Y haplotypes. Sequences of the new class I- and class IIB-like genes are most similar to MHC-Y genes in the chicken. All three loci are expressed in the spleen. Differential transcription of the MHC-Y class IIB-like loci was evident as one class IIB-like locus was only expressed in some individuals.
Collapse
Affiliation(s)
- Kent M Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA,
| | | | | | | | | | | | | |
Collapse
|
26
|
Cloutier A, Mills JA, Baker AJ. Characterization and locus-specific typing of MHC class I genes in the red-billed gull (Larus scopulinus) provides evidence for major, minor, and nonclassical loci. Immunogenetics 2011; 63:377-94. [PMID: 21327606 DOI: 10.1007/s00251-011-0516-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/28/2011] [Indexed: 12/23/2022]
Abstract
A major challenge facing studies of major histocompatibility complex (MHC) evolution in birds is the difficulty in genotyping alleles at individual loci, and the consequent inability to investigate sequence variation and selection pressures for each gene. In this study, four MHC class I loci were isolated from the red-billed gull (Larus scopulinus), representing both the first characterized MHCI genes within Charadriiformes (shorebirds, gulls, and allies) and the first full-length MHCI sequences described outside Galloanserae (gamebirds + waterfowl). Complete multilocus genotypes were obtained for 470 individuals using a combination of reference-strand conformation analysis and direct sequencing of gene-specific amplification products, and variation of peptide-binding region (PBR) exons was surveyed for all loci. Each gene is transcribed and has conserved sequence features characteristic of antigen-presenting MHCI molecules. However, higher allelic variation, a more even allele frequency distribution, and evidence of positive selection acting on a larger number of PBR residues suggest that only one locus (Lasc-UAA) functions as a major classical MHCI gene. Lasc-UBA, with more limited variation and PBR motifs that encompass a subset of Lasc-UAA diversity, was assigned a putative minor classical function, whereas the divergent and largely invariant binding-groove motifs of Lasc-UCA and -UDA are suggestive of nonclassical loci with specialized ligand-binding roles.
Collapse
Affiliation(s)
- Alison Cloutier
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
27
|
Characterisation of class II B MHC genes from a ratite bird, the little spotted kiwi (Apteryx owenii). Immunogenetics 2011; 63:223-33. [PMID: 21221966 DOI: 10.1007/s00251-010-0503-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 12/11/2010] [Indexed: 12/15/2022]
|
28
|
Solinhac R, Leroux S, Galkina S, Chazara O, Feve K, Vignoles F, Morisson M, Derjusheva S, Bed'hom B, Vignal A, Fillon V, Pitel F. Integrative mapping analysis of chicken microchromosome 16 organization. BMC Genomics 2010; 11:616. [PMID: 21050458 PMCID: PMC3091757 DOI: 10.1186/1471-2164-11-616] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chicken karyotype is composed of 39 chromosome pairs, of which 9 still remain totally absent from the current genome sequence assembly, despite international efforts towards complete coverage. Some others are only very partially sequenced, amongst which microchromosome 16 (GGA16), particularly under-represented, with only 433 kb assembled for a full estimated size of 9 to 11 Mb. Besides the obvious need of full genome coverage with genetic markers for QTL (Quantitative Trait Loci) mapping and major genes identification studies, there is a major interest in the detailed study of this chromosome because it carries the two genetically independent MHC complexes B and Y. In addition, GGA16 carries the ribosomal RNA (rRNA) genes cluster, also known as the NOR (nucleolus organizer region). The purpose of the present study is to construct and present high resolution integrated maps of GGA16 to refine its organization and improve its coverage with genetic markers. RESULTS We developed 79 STS (Sequence Tagged Site) markers to build a physical RH (radiation hybrid) map and 34 genetic markers to extend the genetic map of GGA16. We screened a BAC (Bacterial Artificial Chromosome) library with markers for the MHC-B, MHC-Y and rRNA complexes. Selected clones were used to perform high resolution FISH (Fluorescent In Situ Hybridization) mapping on giant meiotic lampbrush chromosomes, allowing meiotic mapping in addition to the confirmation of the order of the three clusters along the chromosome. A region with high recombination rates and containing PO41 repeated elements separates the two MHC complexes. CONCLUSIONS The three complementary mapping strategies used refine greatly our knowledge of chicken microchromosome 16 organisation. The characterisation of the recombination hotspots separating the two MHC complexes demonstrates the presence of PO41 repetitive sequences both in tandem and inverted orientation. However, this region still needs to be studied in more detail.
Collapse
Affiliation(s)
- Romain Solinhac
- UMR INRA/ENVT Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L. Adaptive Divergence of Ancient Gene Duplicates in the Avian MHC Class II. Mol Biol Evol 2010; 27:2360-74. [DOI: 10.1093/molbev/msq120] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Balakrishnan CN, Ekblom R, Völker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt DW, Graves T, Griffin DK, Warren WC, Edwards SV. Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol 2010; 8:29. [PMID: 20359332 PMCID: PMC2907588 DOI: 10.1186/1741-7007-8-29] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/01/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. RESULTS The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. CONCLUSION The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.
Collapse
Affiliation(s)
- Christopher N Balakrishnan
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Current address: Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, USA
| | - Robert Ekblom
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK
- Department of Population Biology and Conservation Biology, Uppsala University, Uppsala, Sweden
| | - Martin Völker
- Department of Biosciences, University of Kent, Kent, UK
| | | | - Ricardo Godinez
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Kotkiewicz
- School of Medicine, Genome Sequencing Center, Washington University, St Louis, MO, USA
| | - David W Burt
- Roslin Institute, Division of Genetics & Genomics, University of Edinburgh, Edinburgh, UK
| | - Tina Graves
- School of Medicine, Genome Sequencing Center, Washington University, St Louis, MO, USA
| | | | - Wesley C Warren
- School of Medicine, Genome Sequencing Center, Washington University, St Louis, MO, USA
| | - Scott V Edwards
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
31
|
Chaves LD, Krueth SB, Reed KM. Defining the turkey MHC: sequence and genes of the B locus. THE JOURNAL OF IMMUNOLOGY 2009; 183:6530-7. [PMID: 19864609 DOI: 10.4049/jimmunol.0901310] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The MHC, the most polymorphic and gene dense region in the vertebrate genome, contains many loci essential to immunity. In mammals, this region spans approximately 4 Mb. Studies of avian species have found the MHC to be greatly reduced in size and gene content with an overall locus organization differing from that of mammals. The chicken MHC has been mapped to two distinct regions (MHC-B and -Y) of a single chromosome. MHC-B haplotypes possess tightly linked genes encoding the classical MHC molecules and few other disease resistance genes. Furthermore, chicken haplotypes possess a dominantly expressed class I and class II B locus that have a significant effect on the progression or regression of pathogenic disease. In this study, we present the MHC-B region of the turkey (Meleagris gallopavo) as a similarly constricted locus, with 34 genes identified within a 0.2-Mb region in near-perfect synteny with that of the chicken MHC-B. Notable differences between the two species are three BG and class II B loci in the turkey compared with one BG and two class II B loci in the chicken MHC-B. The relative size and high level of similarity of the turkey MHC in relation to that of the chicken suggest that similar associations with disease susceptibility and resistance may also be found in turkey.
Collapse
Affiliation(s)
- Lee D Chaves
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
32
|
Schulten E, Briles W, Taylor R. Rous sarcoma growth in lines congenic for major histocompatibility (B) complex recombinants. Poult Sci 2009; 88:1601-7. [DOI: 10.3382/ps.2009-00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Delany ME, Robinson CM, Goto RM, Miller MM. Architecture and organization of chicken microchromosome 16: order of the NOR, MHC-Y, and MHC-B subregions. J Hered 2009; 100:507-14. [PMID: 19617522 DOI: 10.1093/jhered/esp044] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we present a high-resolution cytogenomic analysis of chicken microchromosome 16. We established the location of the major histocompatibility complex (MHC)-B and -Y subregions relative to each other and to the nucleolus organizer region (NOR) encoding the 18S-5.8S-28S ribosomal DNA. To do so, we employed multicolor fluorescence in situ hybridization using large-insert bacterial artificial chromosome clones with fully sequenced inserts or repetitive sequence probes specific for the subregion of interest. We show that the MHC-Y and -B regions are located on the same side of the NOR, rather than opposite ends, as previously proposed. On the q arm, the MHC-Y is closely adjacent to the NOR, whereas the MHC-B is distal near the q-terminus. A relatively large GC-rich region separates the 2 MHC subregions and includes a specialized structure, a secondary constriction. We propose that the GC-rich large physical distance is the basis for the lack of genetic linkage between the NOR and MHC-B and between the MHC-Y and -B. An integrated model for GGA 16 is presented that incorporates gene complex order in the context of key architectural features including p and q arms, primary (centromere) and secondary constrictions, telomeres, as well as AT- and GC-rich regions.
Collapse
Affiliation(s)
- Mary E Delany
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
34
|
Promerová M, Albrecht T, Bryja J. Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics 2009; 61:451-61. [PMID: 19452149 DOI: 10.1007/s00251-009-0375-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/20/2009] [Indexed: 11/25/2022]
Affiliation(s)
- M Promerová
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec 122, 675 02 Konesín, Czech Republic.
| | | | | |
Collapse
|
35
|
Hee CS, Gao S, Miller MM, Goto RM, Ziegler A, Daumke O, Uchanska-Ziegler B. Expression, purification and preliminary X-ray crystallographic analysis of the chicken MHC class I molecule YF1*7.1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:422-5. [PMID: 19342797 PMCID: PMC2664777 DOI: 10.1107/s1744309109009026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/11/2009] [Indexed: 05/17/2024]
Abstract
YF1*7.1 is an allele of a polymorphic major histocompatibility complex (MHC) class I-like locus within the chicken Y gene complex. With the aim of understanding the possible role of the YF1*7.1 molecule in antigen presentation, the complex of YF1*7.1 heavy chain and beta(2)-microglobulin was reconstituted and purified without a peptide. Crystals diffracted synchrotron radiation to 1.32 A resolution and belonged to the monoclinic space group P2(1). The phase problem was solved by molecular replacement. A detailed examination of the structure may provide insight into the type of ligand that could be bound by the YF1*7.1 molecule.
Collapse
Affiliation(s)
- Chee Seng Hee
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Song Gao
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Marcia M. Miller
- Division of Molecular Biology, City of Hope, Beckman Research Institute, Duarte, CA 91010, USA
| | - Ronald M. Goto
- Division of Molecular Biology, City of Hope, Beckman Research Institute, Duarte, CA 91010, USA
| | - Andreas Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| |
Collapse
|
36
|
Yan RQ, Wu ZM, Fang QM, Zhang ZL, Zhang J, Li XS, Hao HF, Xia C. Reconstruction of a chicken BF2 protein complex and identification of binding nonamer peptides derived from avian influenza virus hemagglutinin. Vet Immunol Immunopathol 2008; 126:91-101. [DOI: 10.1016/j.vetimm.2008.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 06/09/2008] [Accepted: 06/23/2008] [Indexed: 11/25/2022]
|
37
|
Hosomichi K, Miller MM, Goto RM, Wang Y, Suzuki S, Kulski JK, Nishibori M, Inoko H, Hanzawa K, Shiina T. Contribution of mutation, recombination, and gene conversion to chicken MHC-B haplotype diversity. THE JOURNAL OF IMMUNOLOGY 2008; 181:3393-9. [PMID: 18714011 DOI: 10.4049/jimmunol.181.5.3393] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Mhc is a highly conserved gene region especially interesting to geneticists because of the rapid evolution of gene families found within it. High levels of Mhc genetic diversity often exist within populations. The chicken Mhc is the focus of considerable interest because of the strong, reproducible infectious disease associations found with particular Mhc-B haplotypes. Sequence data for Mhc-B haplotypes have been lacking thereby hampering efforts to systematically resolve which genes within the Mhc-B region contribute to well-defined Mhc-B-associated disease responses. To better understand the genetic factors that generate and maintain genomic diversity in the Mhc-B region, we determined the complete genomic sequence for 14 Mhc-B haplotypes across a region of 59 kb that encompasses 14 gene loci ranging from BG1 to BF2. We compared the sequences using alignment, phylogenetic, and genome profiling methods. We identified gene structural changes, synonymous and non-synonymous polymorphisms, insertions and deletions, and allelic gene rearrangements or exchanges that contribute to haplotype diversity. Mhc-B haplotype diversity appears to be generated by a number of mutational events. We found evidence that some Mhc-B haplotypes are derived by whole- and partial-allelic gene conversion and homologous reciprocal recombination, in addition to nucleotide mutations. These data provide a framework for further analyses of disease associations found among these 14 haplotypes and additional haplotypes segregating and evolving in wild and domesticated populations of chickens.
Collapse
Affiliation(s)
- Kazuyoshi Hosomichi
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu G, Wang Q, Tong T, Xiao Y, Bai Y, Liu S, Wu D. Construction and functional test of a chicken MHC-I (BF2*15)/peptide tetramer. Vet Immunol Immunopathol 2007; 122:1-7. [PMID: 18077001 PMCID: PMC7126500 DOI: 10.1016/j.vetimm.2007.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 10/16/2007] [Accepted: 10/25/2007] [Indexed: 11/25/2022]
Abstract
The major histocompatibility complex class I (MHC class I) peptide tetramer is a sensitive and valuable tool to evaluate antigen-specific cytotoxic T lymphocytes (CTLs) of many animal species. To date, no chicken MHC class I peptide tetramer has been reported. In this report, we describe construction and functional evaluation of a chicken MHC-I (BF2*15)/peptide tetramer. To construct the chicken MHC class I peptide tetramer, genes of the chicken MHC-I α chain (BF2*15) and β2 microglobulin (Chβ2m) were synthesized by RT-PCR from the total RNA of PBMCs and the signal sequences were deleted. The BF2*15 was then fused with the BirA substrate peptide (BSP) sequence at the C terminus. Next, the synthesized PCR products of BF2*15 and Chβ2m were cloned into the expression vector pET-28a (+) and expressed in Escherichia coli strain BL21 (DE3). Highly purified BF2*15-BSP heavy chain and Chβ2m were obtained by a Ni2+ NTA column affinity purification, yielding approximately 1.6 mg of BF2*15-BSP and 2.4 mg of Chβ2m per 1 g of the pelleted bacteria. The purified BF2*15-BSP heavy chain and Chβ2m were refolded with synthetic peptide originated from infectious bronchitis virus nucleoprotein (IBV N71–78) in refolding buffer to generate the monomer of BF2*15/peptide complex. The monomer was then biotinylated and tetramerized using PE-labeled streptavidin. Upon functional evaluation of the construct by using flowcytometry, we observed that 3.65% of CTLs were specific to IBV nucleoprotein. This demonstrates that the CTL response of IBV-infected chicks could effectively be evaluated using the prepared MHC-I BF2*15/peptide tetramer.
Collapse
Affiliation(s)
- Guangliang Liu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
MacDonald MRW, Veniamin SM, Guo X, Xia J, Moon DA, Magor KE. Genomics of antiviral defenses in the duck, a natural host of influenza and hepatitis B viruses. Cytogenet Genome Res 2007; 117:195-206. [PMID: 17675860 DOI: 10.1159/000103180] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 03/21/2007] [Indexed: 01/01/2023] Open
Abstract
We review our progress using genomics approaches to examine key antiviral defenses of the White Pekin mallard duck, Anas platyrhynchos. Our interest stems from the fact that ducks are the natural host of avian influenza, and are an important animal model for hepatitis B research. First, we have conducted an expressed sequence tag (EST) project and identified more than 200 immune relevant genes in the duck. Our analysis of these genes allows us to evaluate the homology between ducks and their closest genetic model organism, the chicken. We have also constructed genomic and cDNA libraries from the same individual duck, allowing us to directly compare expressed sequences with those present in the genome. These resources allow us to determine the organization and expression of regions of the genome important in antiviral defenses. Here we examine the organization of the immunoglobulin heavy chain locus, the Major Histocompatibility Complex class I region, the lectin immunoreceptors and Toll-like receptor 7. We discuss our research-in-progress in the context of the immune defense against viruses, particularly influenza.
Collapse
Affiliation(s)
- M R W MacDonald
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Chaves LD, Krueth SB, Reed KM. Characterization of the turkey MHC chromosome through genetic and physical mapping. Cytogenet Genome Res 2007; 117:213-20. [PMID: 17675862 DOI: 10.1159/000103182] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 09/07/2006] [Indexed: 11/19/2022] Open
Abstract
Previous studies in the chicken have identified a single microchromosome (GGA16) containing the ribosomal DNA (rDNA) and two genetically unlinked MHC regions, MHC-B and MHC-Y. Chicken DNA sequence from these loci was used to develop PCR primers for amplification of homologous fragments from the turkey (Meleagris gallopavo). PCR products were sequenced and overgo probes were designed to screen the CHORI 260 turkey BAC library. BAC clones corresponding to the turkey rDNA, MHC-B and MHC-Y were identified. BAC end and subclone sequencing confirmed identity and homology of the turkey BAC clones to the respective chicken loci. Based on subclone sequences, single-nucleotide polymorphisms (SNPs) segregating within the UMN/NTBF mapping population were identified and genotyped. Analysis of SNP genotypes found the B and Y to be genetically unlinked in the turkey. Silver staining of metaphase chromosomes identified a single pair of microchromosomes with nucleolar organizer regions (NORs). Physical locations of the rDNA and MHC loci were determined by fluorescence in situ hybridization (FISH) of the BAC clones to metaphase chromosomes. FISH clearly positioned the rDNA distal to the Y locus on the q-arm of the MHC chromosome and the MHC-B on the p-arm. An internal telomere array on the MHC chromosome separates the B and Y loci.
Collapse
Affiliation(s)
- L D Chaves
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
41
|
The major histocompatibility complex (Mhc) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken. BMC Genomics 2006; 7:322. [PMID: 17184537 PMCID: PMC1769493 DOI: 10.1186/1471-2164-7-322] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/21/2006] [Indexed: 11/30/2022] Open
Abstract
Background The quail and chicken major histocompatibility complex (Mhc) genomic regions have a similar overall organization but differ markedly in that the quail has an expanded number of duplicated class I, class IIB, natural killer (NK)-receptor-like, lectin-like and BG genes. Therefore, the elucidation of genetic factors that contribute to the greater Mhc diversity in the quail would help to establish it as a model experimental animal in the investigation of avian Mhc associated diseases. Aims and approaches The main aim here was to characterize the genetic and genomic features of the transcribed major quail MhcIIB (CojaIIB) region that is located between the Tapasin and BRD2 genes, and to compare our findings to the available information for the chicken MhcIIB (BLB). We used four approaches in the study of the quail MhcIIB region, (1) haplotype analyses with polymorphic loci, (2) cloning and sequencing of the RT-PCR CojaIIB products from individuals with different haplotypes, (3) genomic sequencing of the CojaIIB region from the individuals with the different haplotypes, and (4) phylogenetic and duplication analysis to explain the variability of the region between the quail and the chicken. Results Our results show that the Tapasin-BRD2 segment of the quail Mhc is highly variable in length and in gene transcription intensity and content. Haplotypic sequences were found to vary in length between 4 to 11 kb. Tapasin-BRD2 segments contain one or two major transcribed CojaIIBs that were probably generated by segmental duplications involving c-type lectin-like genes and NK receptor-like genes, gene fusions between two CojaIIBs and transpositions between the major and minor CojaIIB segments. The relative evolutionary speed for generating the MhcIIBs genomic structures from the ancestral BLB2 was estimated to be two times faster in the quail than in the chicken after their separation from a common ancestor. Four types of genomic rearrangement elements (GRE), composed of simple tandem repeats (STR), were identified in the MhcIIB genomic segment located between the Tapasin-BRD2 genes. The GREs have many more STR numbers in the quail than in the chicken that displays strong linkage disequilibrium. Conclusion This study suggests that the Mhc classIIB region has a flexible genomic structure generated by rearrangement elements and rapid SNP accumulation probably as a consequence of the quail adapting to environmental conditions and pathogens during its migratory history after its divergence from the chicken.
Collapse
|
42
|
Zhang YX, Chen SL, Liu YG, Sha ZX, Liu ZJ. Major histocompatibility complex class IIB allele polymorphism and its association with resistance/susceptibility to Vibrio anguillarum in Japanese flounder (Paralichthys olivaceus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:600-10. [PMID: 16874444 DOI: 10.1007/s10126-005-6185-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 04/25/2006] [Indexed: 05/11/2023]
Abstract
The full length of major histocompatibility complex (MHC) class IIB cDNA was cloned from a Chinese population of Paralichthys olivaceus by homology cloning and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The MHC IIB genomic sequence is 1,864 bp long and consists of 34-bp 5'UTR, 741-bp open reading frame, 407-bp 3'UTR, 96-bp intron1, 392-bp intron2, 85-bp intron3, and 109-bp intron4. Phylogenetic analysis showed that the putative MHC class IIB amino acid of the Chinese P. olivaceus shared 28.3% to 85.4% identity with that of the reported MHC class IIB in other species. A significant association between MHC IIB polymorphism and disease resistance/susceptibility was found in Chinese P. olivaceus. Thirteen different MHC IIB alleles were identified among 411 clones from 84 individuals. Among the 280 (268) nucleotides, 32 (11.4%) nucleotide positions were variable. Most alleles such as alleles a, b, c, d, e, f, j, k, i, m were commonly found in both resistant and susceptible stock. Via chi2 test, allele d was significantly more prevalent in individuals from susceptible stock than from resistant stock, and their percentages were 23.80% and 7.14%, respectively. In addition, allele g occurred in 9 and allele h in 4 of 42 resistant individuals that were not present in the susceptible stock; their percentages were 21.4% and 9.52%, respectively. Although allele l was found only in 8 individuals from the susceptible stock, its percentage is 19.05%.
Collapse
Affiliation(s)
- Y X Zhang
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Zhang YX, Chen SL. Molecular identification, polymorphism, and expression analysis of major histocompatibility complex class IIA and B genes of turbot (Scophthalmus maximus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:611-23. [PMID: 16832747 DOI: 10.1007/s10126-005-6174-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 04/29/2006] [Indexed: 05/10/2023]
Abstract
Major histocompatibility complex (MHC) class II has a central role in the adaptive immune system by presenting foreign peptides to the T-cell receptor. The full lengths of MHC class II A and B cDNA were cloned from turbot by homology cloning and rapid amplification of cDNA ends polymerase chain reaction (RACE PCR), and genomic organization, molecular polymorphism, and expression of turbot class IIB gene were examined to study the function of class IIB gene in fish. The deduced amino acid sequence of turbot class II A (GenBank accession no.DQ001730) and turbot class IIB (GenBank accession no. DQ094170) had 69.8%, 67.6%, 65.5%, 59.2%, 54.5%, 52.8%, 46.2%, 46.6%, 28.3%, 28.5%, 22.2% identity and 71.5%, 70.7%, 67.1%, 68.4%, 46.7%, 53.5%, 46.7%, 50.0%, 25.2%, 29.2%, 27.6% identity with those of Japanese flounder, striped sea bass, red sea bream, cichlid, rainbow trout, Atlantic salmon, carp, zebrafish, nurse shark, mouse and human, respectively. Eleven class IIB alleles were identified from three turbot individuals. The amino acid sequence of turbot class IIB designated as Scma-DAB*0101 had 86.9%, 88.6%, 88.6%, 89.4%, 87.8%, 86.9%, 84.1%, 86.5%, 87.3%, 77.1%, and 86.9% identity with those of turbot class IIB 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 (Scma-DAB*0201- Scma-DAB*1201), respectively. Six different class IIB alleles observed in a single individual may infer the existence of three loci at least. Semiquantitative reverse transcriptase PCR (RT-PCR) demonstrated that turbot class IIA and B were ubiquitously expressed in normal tissues. Challenge of turbot with pathogenic bacteria, Vibrio anguillarum, resulted in a significant decrease in the expression of MHC class IIB mRNA from 24 h to 48 h after infection in liver and head kidney, and a significant decrease from 24 h to 72 h after infection in spleen, followed by an increase after 96 h, respectively.
Collapse
Affiliation(s)
- Yu-Xi Zhang
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | | |
Collapse
|
44
|
Li XS, Fang QM, Yan RQ, Gao FS, Hao HF, Jia ZH, Lin CY, Xia C. Extensive analysis of different allelelic structures of the chicken BF2 and β2m proteins. Vet Immunol Immunopathol 2006; 113:215-23. [PMID: 16797725 DOI: 10.1016/j.vetimm.2006.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 03/22/2006] [Indexed: 11/30/2022]
Abstract
No information is available to date on the different allelelic structures of the chicken MHC class I (BF2) and beta2m proteins. To elucidate the structure, new allelic beta2m and five different BF2 genes were expressed solubly and purified in a pMAL-p2X/E. coli TB1 system. The 2D structure was detected by circular dichroism (CD) spectroscopy, and the 3D structures of their peptide-binding domain (PBD) were analyzed by homology modeling. The sequence lengths of the alpha-helix, beta-sheet, turn, and random coil in the five BF2 proteins were 69-73 aa, 67-72 aa, 35-37 aa, and 94-98 aa, respectively. The new beta2m protein displayed a typical beta-sheet. Homology modeling of the different BF2 and beta2m proteins demonstrated similarities to the structure of human and rat MHC class I proteins. The 3D structure, however, revealed that the BF2 and beta2m structures were unique. The correct refolding of recombinant BF2 and beta2m proteins might be a powerful tool to further detect antigenic peptides.
Collapse
Affiliation(s)
- Xin Sheng Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
SHIINA T, HOSOMICHI K, HANZAWA K. Comparative genomics of the poultry major histocompatibility complex. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00333.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Yan RQ, Li XS, Yang TY, Xia C. Structures and homology modeling of chicken major histocompatibility complex protein class I (BF2 and β2m). Mol Immunol 2006; 43:1040-6. [PMID: 16112197 DOI: 10.1016/j.molimm.2005.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/06/2005] [Indexed: 11/24/2022]
Abstract
In order to elucidate the two-dimensional (2D) and three-dimensional (3D) structures of chicken major histocompatibility complex (MHC) class I protein (BF2 and beta2m) and further reconstruct their complex identifying the virus-derived antigenic peptides, the mature protein of BF2 and beta2m genes were expressed solubility in pMAL-p2X/Escherichia coli. TB1 system. The expressed MBP-BF2- and MBP-beta2m-fusion proteins were purified, and cleaved by the factor Xa protease. Subsequently, the monomers were further separated, and the purified MBP-BF2, -beta2m, and MBP were analyzed by circular dichroism (CD) spectrum. The contents of alpha-helix, beta-sheet, turn, and random coil in BF2 protein were 72, 102, 70, and 90 amino acids (aa), respectively. The beta2m proteins displayed a typical beta-sheet and the contents of alpha-helix, beta-sheet, turn, and random coil were 0, 46, 30, and 22 aa, respectively. Homology modeling of BF2 and beta2m proteins were similar as the 3D structure of human MHC class I (HLA-A2). The results showed that pMAL-p2X expression and purification system could be used to obtain the right conformational BF2 and beta2m proteins, and the 2D and 3D structures of BF2 and beta2m were revealed to be similar to human's. The recombinant BF2 and beta2m-based proteins might be a powerful tool for further detecting antigenic peptides.
Collapse
Affiliation(s)
- Ruo Qian Yan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
47
|
Moon DA, Veniamin SM, Parks-Dely JA, Magor KE. The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. THE JOURNAL OF IMMUNOLOGY 2006; 175:6702-12. [PMID: 16272326 DOI: 10.4049/jimmunol.175.10.6702] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class I proteins mediate a variety of functions in antiviral defense. In humans and mice, three MHC class I loci each contribute one or two alleles and each can present a wide variety of peptide Ags. In contrast, many lower vertebrates appear to use a single MHC class I locus. Previously we showed that a single locus was predominantly expressed in the mallard duck (Anas platyrhynchos) and that locus was adjacent to the polymorphic transporter for the Ag-processing (TAP2) gene. Characterization of a genomic clone from the same duck now allows us to compare genes to account for their differential expression. The clone carried five MHC class I genes and the TAP genes in the following gene order: TAP1, TAP2, UAA, UBA, UCA, UDA, and UEA. We designated the predominantly expressed gene UAA. Transcripts corresponding to the UDA locus were expressed at a low level. No transcripts were found for three loci, UBA, UCA, and UEA. UBA had a deletion within the promoter sequences. UCA carried a stop codon in-frame. UEA did not have a polyadenylation signal sequence. All sequences differed primarily in peptide-binding pockets and otherwise had the hallmarks of classical MHC class I alleles. Despite the presence of additional genes in the genome, the duck expresses predominantly one MHC class I gene. The limitation to one expressed MHC class I gene may have functional consequences for the ability of ducks to eliminate viral pathogens, such as influenza.
Collapse
Affiliation(s)
- Debra A Moon
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
48
|
Yan RQ, Li XS, Yang TY, Xia C. Characterization of BF2 and β2m in three Chinese chicken lines. Vet Immunol Immunopathol 2005; 108:417-25. [PMID: 16039723 DOI: 10.1016/j.vetimm.2005.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Revised: 05/16/2005] [Accepted: 06/09/2005] [Indexed: 12/20/2022]
Abstract
Twenty-four BF2 genes and 10 beta(2)m genes from Chinese Sanhuang (SH), Wuji (WJ), and Zhenzhu (ZZ) chicken lines were cloned, and the amino acid replacement rates of the BF2 polypeptide binding domain were investigated. For this purpose, 13 BF2 genes from the SH-chicken line (BF2*01sh-BF2*13sh), six BF2 genes from the WJ-chicken line (BF2*01wj-BF2*06wj), and five BF2 genes from the ZZ-chicken line (BF2*01zz-BF2*05zz) were analyzed. The overall conservation of BF2 alleles could be observed within the sequences, and relative conservation was also displayed in the peptide-binding domain, CD8(+) interaction sites, and beta(2)m contact sites. Based on the amino acid similarity, BF2 from the three chicken lines could be divided into eleven gene groups, and five novel gene groups were observed. Although the amino acid similarity among the different alleles was 75.7-99.2%, within an allelic group the members shared >91% amino acid identity with each other. In addition, beta(2)m genes from the three Chinese chicken lines were also clustered into two gene groups: I and II. Between groups I and II, the amino acid identical ratio was much lower (81.9-84.0%). Group I is close to that of the reported chicken beta(2)m, whereas group II represents a new allelic group. The results suggest that five new BF2 groups and a new beta(2)m group exist in the three Chinese chicken lines.
Collapse
Affiliation(s)
- Ruo Qian Yan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, PR China
| | | | | | | |
Collapse
|
49
|
Xia C, Hu T, Yang T, Wang L, Xu G, Lin C. cDNA cloning, genomic structure and expression analysis of the goose (Anser cygnoides) MHC class I gene. Vet Immunol Immunopathol 2005; 107:291-302. [PMID: 16005079 DOI: 10.1016/j.vetimm.2005.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022]
Abstract
To provide data for studies on avian disease resistance, goose MHC class I cDNA (Ancy-MHC I) was cloned from a goose cDNA library, it's genomic structure and expression analysis were investigated. The mature peptides of Ancy-MHC I cDNA encoded 333 amino acids. The genomic organization is composed of eight exons and seven introns. Based on the genetic distance, six Ancy-MHC I genes from six individuals can be classified into four lineages. A total of nineteen amino acid positions in peptide-binding domain showed high scores by Wu-kabat index analysis. The Ancy-MHC I amino acid sequence displayed seven critical HLA-A2 amino acids that bind with antigen polypeptides, and have an 85.4-98.9% amino acid homology with each genes, and a 59.8-66.0% amino acid homology with chicken MHC class I. Expression analyses using Q-RT-PCR to detect the tissue-specific expression of Ancy-MHC I mRNA in an adult goose. The result appeared that Ancy-MHC I cDNA was expressed in the liver, spleen, intestine, kidney, lung, pancreas, heart, brain, and skin. The phylogenetic tree appears to branch in an order consistent with accepted evolutionary pathways.
Collapse
Affiliation(s)
- Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.
| | | | | | | | | | | |
Collapse
|
50
|
Miller MM, Wang C, Parisini E, Coletta RD, Goto RM, Lee SY, Barral DC, Townes M, Roura-Mir C, Ford HL, Brenner MB, Dascher CC. Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci U S A 2005; 102:8674-9. [PMID: 15939884 PMCID: PMC1150814 DOI: 10.1073/pnas.0500105102] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Indexed: 12/11/2022] Open
Abstract
Many of the genes that comprise the vertebrate adaptive immune system are conserved across wide evolutionary time scales. Most notably, homologs of the mammalian MHC gene family have been found in virtually all jawed vertebrates, including sharks, bony fishes, reptiles, and birds. The CD1 family of antigen-presenting molecules are related to the MHC class I family but have evolved to bind and present lipid antigens to T cells. Here, we describe two highly divergent nonclassical MHC class I genes found in the chicken (Gallus gallus) that have sequence homology to the mammalian CD1 family of proteins. One of the chicken CD1 genes expresses a full-length transcript, whereas the other has multiple splice variants. Both Southern blot and single nucleotide polymorphism analysis indicates that chicken CD1 is relatively nonpolymorphic. Moreover, cross-hybridizing bands are present in other bird species, suggesting broad conservation in the avian class. Northern analysis of chicken tissue shows a high level of CD1 expression in the bursa and spleen. In addition, molecular modeling predicts that the potential antigen-binding pocket is probably hydrophobic, a universal characteristic of CD1 molecules. Genomic analysis indicates that the CD1 genes are located on chicken chromosome 16 and maps to within 200 kb of the chicken MHC B locus, suggesting that CD1 genes diverged from classical MHC genes while still linked to the major histocompatibility complex locus. The existence of CD1 genes in an avian species suggests that the origin of CD1 extends deep into the evolutionary history of terrestrial vertebrates.
Collapse
Affiliation(s)
- Marcia M Miller
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Smith 516C, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|