1
|
Terrell M, Morel L. The Intersection of Cellular and Systemic Metabolism: Metabolic Syndrome in Systemic Lupus Erythematosus. Endocrinology 2022; 163:bqac067. [PMID: 35560001 PMCID: PMC9155598 DOI: 10.1210/endocr/bqac067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/19/2022]
Abstract
A high prevalence of metabolic syndrome (MetS) has been reported in multiple cohorts of systemic lupus erythematosus (SLE) patients, most likely as one of the consequences of autoimmune pathogenesis. Although MetS has been associated with inflammation, its consequences on the lupus immune system and on disease manifestations are largely unknown. The metabolism of immune cells is altered and overactivated in mouse models as well as in patients with SLE, and several metabolic inhibitors have shown therapeutic benefits. Here we review recent studies reporting these findings, as well as the effect of dietary interventions in clinical and preclinical studies of SLE. We also explore potential causal links between systemic and immunometabolism in the context of lupus, and the knowledge gap that needs to be addressed.
Collapse
Affiliation(s)
- Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, Croker BP, Michailidis G, Garrett TJ, Mohamadzadeh M, Morel L. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med 2020; 12:eaax2220. [PMID: 32641487 PMCID: PMC7739186 DOI: 10.1126/scitranslmed.aax2220] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/04/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The autoimmune disease systemic lupus erythematosus (SLE) is characterized by the production of pathogenic autoantibodies. It has been postulated that gut microbial dysbiosis may be one of the mechanisms involved in SLE pathogenesis. Here, we demonstrate that the dysbiotic gut microbiota of triple congenic (TC) lupus-prone mice (B6.Sle1.Sle2.Sle3) stimulated the production of autoantibodies and activated immune cells when transferred into germfree congenic C57BL/6 (B6) mice. Fecal transfer to B6 mice induced autoimmune phenotypes only when the TC donor mice exhibited autoimmunity. Autoimmune pathogenesis was mitigated by horizontal transfer of the gut microbiota between co-housed lupus-prone TC mice and control congenic B6 mice. Metabolomic screening identified an altered distribution of tryptophan metabolites in the feces of TC mice including an increase in kynurenine, which was alleviated after antibiotic treatment. Low dietary tryptophan prevented autoimmune pathology in TC mice, whereas high dietary tryptophan exacerbated disease. Reducing dietary tryptophan altered gut microbial taxa in both lupus-prone TC mice and control B6 mice. Consequently, fecal transfer from TC mice fed a high tryptophan diet, but not a low tryptophan diet, induced autoimmune phenotypes in germfree B6 mice. The interplay of gut microbial dysbiosis, tryptophan metabolism and host genetic susceptibility in lupus-prone mice suggest that aberrant tryptophan metabolism may contribute to autoimmune activation in this disease.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Minghao Gong
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yong Ge
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Byron P Croker
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - George Michailidis
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32610, USA.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
4
|
Martirosyan A, Aminov R, Manukyan G. Environmental Triggers of Autoreactive Responses: Induction of Antiphospholipid Antibody Formation. Front Immunol 2019; 10:1609. [PMID: 31354742 PMCID: PMC6635959 DOI: 10.3389/fimmu.2019.01609] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Antiphospholipid antibodies (aPLs) comprise a diverse family of autoantibodies targeted against proteins with the affinity toward negatively charged phospholipids or protein-phospholipid complexes. Their clinical significance, including prothrombotic potential of anti-cardiolipin antibodies (aCLs), anti-β2-glycoprotein I antibodies (aβ2-GPIs), and lupus anti-coagulant (LA), is well-established. However, the ontogeny of these pathogenic aPLs remains less clear. While transient appearance of aPLs could be induced by various environmental factors, in genetically predisposed individuals these factors may eventually lead to the development of the antiphospholipid syndrome (APS). Since the first description of APS, it has been found that a wide variety of microbial and viral agents influence aPLs production and contribute to clinical manifestations of APS. Many theories attempted to explain the pathogenic potential of different environmental factors as well as a phenomenon termed molecular mimicry between β2-GPI molecule and infection-relevant structures. In this review, we summarize and critically assess the pathogenic and non-pathogenic formation of aPLs and its contribution to the development of APS.
Collapse
Affiliation(s)
- Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology, Yerevan, Armenia.,Russian-Armenian (Slavonic) University, Yerevan, Armenia
| | - Rustam Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology, Yerevan, Armenia.,Russian-Armenian (Slavonic) University, Yerevan, Armenia
| |
Collapse
|
5
|
Mesenchymal Stem Cell Treatment in Mice Models of Systemic Lupus Erythematosus. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2016. [DOI: 10.1007/978-3-319-46733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Ruff WE, Vieira SM, Kriegel MA. The role of the gut microbiota in the pathogenesis of antiphospholipid syndrome. Curr Rheumatol Rep 2015; 17:472. [PMID: 25475595 DOI: 10.1007/s11926-014-0472-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infectious triggers are associated with the induction of transient antiphospholipid antibodies. One therefore wonders if microbes that permanently colonize us play a role in the pathogenesis of antiphospholipid syndrome (APS). The microbiota represents the collection of all microorganisms colonizing humans and is necessary for normal host physiology. The microbiota, however, is a constant stress on the immune system, which is tasked with recognizing and eliminating pathogenic microbes while tolerating commensal populations. A growing body of literature supports a critical role for the commensal-immune axis in the development of autoimmunity against colonized barriers (e.g., gut or skin) and sterile organs (e.g., pancreas or joints). Whether these interactions affect the development and sustainment of autoreactive CD4(+) T cells and pathogenic autoantibodies in APS is unknown. This review provides an overview of the current understanding of the commensal-immune axis in autoimmunity with a focus on the potential relevance to APS. Additionally, we discuss emerging findings supporting the involvement of the gut microbiota in a spontaneous model of APS, the (NZW × BXSB)F1 hybrid, and formalize hypotheses to explain how interactions between the immune system and the microbiota may influence human APS etiopathogenesis.
Collapse
Affiliation(s)
- William E Ruff
- Department of Immunobiology, Yale University School of Medicine, 300 George St, Suite 353G, New Haven, CT, 06511, USA,
| | | | | |
Collapse
|
7
|
Abstract
There is growing evidence that the commensal bacteria in the gastrointestinal tract (the gut microbiota) influence the development of autoimmunity in rodent models. Since humans have co-evolved with commensals for millennia, it is likely that people, who are genetically predisposed to autoimmunity, harbor gut microbial communities that similarly influence the onset and/or severity of disease. Beyond the current efforts to identify such disease-promoting or -preventing commensals ("pathobionts" or "symbionts"), it will be important to determine what factors modulate them. Dietary changes are known to affect both the composition and function of the gut microbial communities, which in turn can alter the innate and adaptive immune system. In this review, we focus on the relationships between diet, microbiota, and autoimmune diseases. We hypothesize that the beneficial and life-prolonging effects of caloric restriction on a variety of autoimmune models including lupus might partly be mediated by its effects on the gut microbiome and associated virome, the collection of all viruses in the gut. We give recent examples of the immunomodulatory potential of select gut commensals and their products or diet-derived metabolites in murine models of arthritis, multiple sclerosis, and type 1 diabetes. Lastly, we summarize the published phenotypes of germ-free mouse models of lupus and speculate on any role of the diet-sensitive microbiome and virome in systemic lupus and the related antiphospholipid syndrome.
Collapse
|
8
|
Immune deviation and alleviation of allergic reactions in mice subjected to dietary restriction. Biosci Biotechnol Biochem 2009; 73:2705-11. [PMID: 19966458 DOI: 10.1271/bbb.90561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined cytokine production and allergic reactions in mice fed ad libitum (AL) and subjected to dietary restriction (DR). DR retarded the increase in body weight, and peripheral blood T cells in the DR mice produced less IFN-gamma and more IL-4 in response to immobilized anti-CD3 mAb. Systemic immunization and intranasal challenge with ovalbumin (OVA) induced accumulation of leukocytes into the lung, increase in IL-4 level in bronchoalveolar lavage fluid (BALF), and rise in serum IgE in the AL mice. In contrast, these allergic symptoms were alleviated in the DR mice. Furthermore, the relative proportion of IL-4-producing T cells responsive to OVA was less in the DR mice than the AL mice. DR tended to decrease the proportion and cytolytic activity of NK cells in the spleen, especially in younger mice. These results indicate that DR can prevent the expansion of allergen-specific IL-4-producing T cells followed by suppression of the allergic reaction, but might dampen NK cell activity.
Collapse
|
9
|
Abstract
Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. As a hormone, leptin regulates food intake and basal metabolism, and is sexually dimorphic - that is, its serum concentration is higher in females than in males with a similar body fat mass. As a cytokine, leptin can affect thymic homeostasis and the secretion of acute-phase reactants such as interleukin-1 and tumour-necrosis factor. Similar to other pro-inflammatory cytokines, leptin promotes T helper 1 (TH1)-cell differentiation and can modulate the onset and progression of autoimmune responses in several animal models of disease. Here, we review the advances and controversy for a role of leptin in the pathophysiology of immune responses.
Collapse
Affiliation(s)
- Antonio La Cava
- Autoimmunity and Tolerance Laboratory, Department of Medicine, University of California Los Angeles, 1000 Veteran Avenue 32-59, Los Angeles, California 90095-1670, USA.
| | | |
Collapse
|
10
|
Shibolet O, Alper R, Avraham Y, Berry EM, Ilan Y. Immunomodulation of experimental colitis via caloric restriction: role of Nk1.1+ T cells. Clin Immunol 2002; 105:48-56. [PMID: 12483993 DOI: 10.1006/clim.2002.5260] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inflammatory bowel diseases are immune-mediated disorders. Dietary restriction and NK1.1+ liver-associated lymphocytes (LAL) are considered to be involved in immunomodulation of autoimmune diseases. Our aim was to evaluate the effect of caloric restriction on experimental colitis and to determine NK1.1+ LAL function in immunoregulation. Experimental colitis was induced in C57 black mice by intracolonic instillation of trinitrobenzene sulfonic acid. Caloric restriction to 60% of the daily requirement was started 2 weeks prior to, or simultaneously with, colitis induction and continued throughout the study. Control mice were fed ad libitum. Colitis was assessed by standard clinical and macroscopic scores. To determine the mechanism involved in immunomodulation, liver lymphocytes were isolated and analyzed for NK1.1+ T-cell markers by FACS. T-cell function was evaluated by T-cell proliferation. Serum cytokines were measured by ELISA. Dietary restriction to 60% markedly ameliorated experimental colitis in both groups. These mice gained weight and showed improved macroscopic parameters of colitis. NK1.1+ LAL numbers increased fourfold and NKT cytotoxicity twofold in caloric-restricted mice. The antigen-specific T-cell proliferation index decreased (from 4.45 in controls to 1.15), and IFN-gamma and IL-12 serum levels decreased (from 290 to 200 pg and from 122 to 53 pg, respectively) in caloric-restricted mice. Our conclusion was that dietary restriction induced immunomodulation of experimental colitis and ameliorated the disease. This effect was mediated via an increase in NK1.1+ T lymphocytes, which may play a critical role in keeping the T-cell balance in immunoregulation.
Collapse
Affiliation(s)
- Oren Shibolet
- Liver Unit, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|