1
|
Liu X, Yu E, Zhao Q, Han H, Li Q. Enzymes as green and sustainable tools for DNA data storage. Chem Commun (Camb) 2025; 61:2891-2905. [PMID: 39834292 DOI: 10.1039/d4cc06351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA is considered as an ideal supramolecular material for information storage with high storage density and long-term stability. Enzymes, as green and sustainable tools, offer several unique advantages for DNA-based information storage. These advantages include low cost and reduced generation of hazardous wastes during DNA synthesis, as well as the improvements in data reading speed and data recovery accuracy. Moreover, enzymes could achieve scalable data steganography. In this review, we introduced the exciting application strategies of enzymatic tools in each step of DNA information storage (writing, storing, retrieval and reading). We further address the challenges and opportunities associated with enzymatic tools for DNA information storage, aiming at developing new techniques to overcome these obstacles.
Collapse
Affiliation(s)
- Xutong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Enyang Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Qixuan Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Nur A, Lai JY, Ch'ng ACW, Choong YS, Wan Isa WYH, Lim TS. A review of in vitro stochastic and non-stochastic affinity maturation strategies for phage display derived monoclonal antibodies. Int J Biol Macromol 2024; 277:134217. [PMID: 39069045 DOI: 10.1016/j.ijbiomac.2024.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies identified using display technologies like phage display occasionally suffers from a lack of affinity making it unsuitable for application. This drawback is circumvented with the application of affinity maturation. Affinity maturation is an essential step in the natural evolution of antibodies in the immune system. The evolution of molecular based methods has seen the development of various mutagenesis approaches. This allows for the natural evolutionary process during somatic hypermutation to be replicated in the laboratories for affinity maturation to fine-tune the affinity and selectivity of antibodies. In this review, we will discuss affinity maturation strategies for mAbs generated through phage display systems. The review will highlight various in vitro stochastic and non-stochastic affinity maturation approaches that includes but are not limited to random mutagenesis, site-directed mutagenesis, and gene synthesis.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
3
|
Schultz PG. Synthesis at the Interface of Chemistry and Biology. Acc Chem Res 2024; 57:2631-2642. [PMID: 39198974 PMCID: PMC11443489 DOI: 10.1021/acs.accounts.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
Chemical synthesis as a tool to control the structure and properties of matter is at the heart of chemistry─from the synthesis of fine chemicals and polymers to drugs and solid-state materials. But as the field evolves to tackle larger and larger molecules and molecular complexes, the traditional tools of synthetic chemistry become limiting. In contrast, Mother Nature has developed very different strategies to create the macromolecules and molecular systems that make up the living cell. Our focus has been to ask whether we can use the synthetic strategies and machinery of Mother Nature, together with modern chemical tools, to create new macromolecules, and even whole organisms with properties not existing in nature. One such example involves reprogramming the complex, multicomponent machinery of ribosomal protein synthesis to add new building blocks to the genetic code, overcoming a billion-year constraint on the chemical nature of proteins. This methodology exploits the concept of bioorthogonality to add unique codons, tRNAs and aminoacyl-tRNA synthetases to cells to encode amino acids with physical, chemical and biological properties not found in nature. As a result, we can make precise changes to the structures of proteins, much like those made by chemists to small molecules and beyond those possible by biological approaches alone. This technology has made it possible to probe protein structure and function in vitro and in vivo in ways heretofore not possible, and to make therapeutic proteins with enhanced pharmacology. A second example involves exploiting the molecular diversity of the humoral immune system together with synthetic transition state analogues to make catalytic antibodies, and then expanding this diversity-based strategy (new to chemists at the time) to drug discovery and materials science. This work ushered in a new nature-inspired synthetic strategy in which large libraries of natural or synthetic molecules are designed and then rationally selected or screened for new function, increasing the efficiency by which we can explore chemical space for new physical, chemical and biological properties. A final example is the use of large chemical libraries, robotics and high throughput phenotypic cellular screens to identify small synthetic molecules that can be used to probe and manipulate the complex biology of the cell, exemplified by druglike molecules that control cell fate. This approach provides new insights into complex biology that complements genomic approaches and can lead to new drugs that act by novel mechanisms of action, for example to selectively regenerate tissues. These and other advances have been made possible by using our knowledge of molecular structure and reactivity hand in hand with our understanding of and ability to manipulate the complex machinery of living cells, opening a new frontier in synthesis. This Account overviews the work in my lab and with our collaborators, from our early days to the present, that revolves around this central theme.
Collapse
Affiliation(s)
- Peter G. Schultz
- Department of Chemistry,
L.S. Sam Skaggs Presidential Chair, Scripps
Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Rahman M, Marzullo BP, Lam PY, Barrow MP, Holman SW, Ray AD, O'Connor PB. Unveiling the intricacy of gapmer oligonucleotides through advanced tandem mass spectrometry approaches and scan accumulation for 2DMS. Analyst 2024; 149:4687-4701. [PMID: 39101388 PMCID: PMC11382339 DOI: 10.1039/d4an00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Antisense oligonucleotides (ASOs) are crucial for biological applications as they bind to complementary RNA sequences, modulating protein expression. ASOs undergo synthetic modifications like phosphorothioate (PS) backbone and locked nucleic acid (LNA) to enhance stability and specificity. Tandem mass spectrometry (MS) techniques were employed to study gapmer ASOs, which feature a DNA chain within RNA segments at both termini, revealing enhanced cleavages with ultraviolet photodissociation (UVPD) and complementary fragment ions from collision-induced dissociation (CID) and electron detachment dissociation (EDD). 2DMS, a data-independent analysis technique, allowed for comprehensive coverage and identification of shared fragments across multiple precursor ions. EDD fragmentation efficiency correlated with precursor ion charge states, with higher charges facilitating dissociation due to intramolecular repulsions. An electron energy of 22.8 eV enabled electron capture and radical-based cleavage. Accumulating multiple scans and generating average spectra improved signal intensity, aided by denoising algorithms. Data analysis utilised a custom Python script capable of handling modifications and generating unique mass lists.
Collapse
Affiliation(s)
- Mohammed Rahman
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Bryan P Marzullo
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Pui Yiu Lam
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Stephen W Holman
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, AstraZeneca, SK10 2NA, UK
| | - Andrew D Ray
- New Modalities & Parental Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
5
|
Ashraf MA, Raza MA, Amjad MN, Ud Din G, Yue L, Shen B, Chen L, Dong W, Xu H, Hu Y. A comprehensive review of influenza B virus, its biological and clinical aspects. Front Microbiol 2024; 15:1467029. [PMID: 39296301 PMCID: PMC11408344 DOI: 10.3389/fmicb.2024.1467029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Influenza B virus (IBV) stands as a paradox, often overshadowed by its more notorious counterpart, influenza A virus (IAV). Yet, it remains a captivating and elusive subject of scientific inquiry. Influenza B is important because it causes seasonal flu outbreaks that can lead to severe respiratory illnesses, including bronchitis, pneumonia, and exacerbations of chronic conditions like asthma. Limitations in the influenza B virus's epidemiological, immunological, and etiological evolution must be addressed promptly. This comprehensive review covers evolutionary epidemiology and pathogenesis, host-virus interactions, viral isolation and propagation, advanced molecular detection assays, vaccine composition and no animal reservoir for influenza B virus. Complex viral etiology begins with intranasal transmission of influenza B virus with the release of a segmented RNA genome that attacks host cell machinery for transcription and translation within the nucleus and the release of viral progeny. Influenza B virus prevalence in domesticated and wild canines, sea mammals, and birds is frequent, yet there is no zoonosis. The periodic circulation of influenza B virus indicates a 1-3-year cycle for monophyletic strain replacement within the Victoria strain due to frequent antigenic drift in the HA near the receptor-binding site (RBS), while the antigenic stability of Yamagata viruses portrays a more conservative evolutionary pattern. Additionally, this article outlines contemporary antiviral strategies, including pharmacological interventions and vaccination efforts. This article serves as a resource for researchers, healthcare professionals, and anyone interested in the mysterious nature of the influenza B virus. It provides valuable insights and knowledge essential for comprehending and effectively countering this viral foe, which continues to pose a significant public health threat.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Ghavi Hossein-Zadeh N. An overview of recent technological developments in bovine genomics. Vet Anim Sci 2024; 25:100382. [PMID: 39166173 PMCID: PMC11334705 DOI: 10.1016/j.vas.2024.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Cattle are regarded as highly valuable animals because of their milk, beef, dung, fur, and ability to draft. The scientific community has tried a number of strategies to improve the genetic makeup of bovine germplasm. To ensure higher returns for the dairy and beef industries, researchers face their greatest challenge in improving commercially important traits. One of the biggest developments in the last few decades in the creation of instruments for cattle genetic improvement is the discovery of the genome. Breeding livestock is being revolutionized by genomic selection made possible by the availability of medium- and high-density single nucleotide polymorphism (SNP) arrays coupled with sophisticated statistical techniques. It is becoming easier to access high-dimensional genomic data in cattle. Continuously declining genotyping costs and an increase in services that use genomic data to increase return on investment have both made a significant contribution to this. The field of genomics has come a long way thanks to groundbreaking discoveries such as radiation-hybrid mapping, in situ hybridization, synteny analysis, somatic cell genetics, cytogenetic maps, molecular markers, association studies for quantitative trait loci, high-throughput SNP genotyping, whole-genome shotgun sequencing to whole-genome mapping, and genome editing. These advancements have had a significant positive impact on the field of cattle genomics. This manuscript aimed to review recent advances in genomic technologies for cattle breeding and future prospects in this field.
Collapse
Affiliation(s)
- Navid Ghavi Hossein-Zadeh
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-1314, Iran
| |
Collapse
|
7
|
Jo S, Shin H, Joe SY, Baek D, Park C, Chun H. Recent progress in DNA data storage based on high-throughput DNA synthesis. Biomed Eng Lett 2024; 14:993-1009. [PMID: 39220021 PMCID: PMC11362454 DOI: 10.1007/s13534-024-00386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 09/04/2024] Open
Abstract
DNA data storage has emerged as a solution for storing massive volumes of data by utilizing nucleic acids as a digital information medium. DNA offers exceptionally high storage density, long durability, and low maintenance costs compared to conventional storage media such as flash memory and hard disk drives. DNA data storage consists of the following steps: encoding, DNA synthesis (i.e., writing), preservation, retrieval, DNA sequencing (i.e., reading), and decoding. Out of these steps, DNA synthesis presents a bottleneck due to imperfect coupling efficiency, low throughput, and excessive use of organic solvents. Overcoming these challenges is essential to establish DNA as a viable data storage medium. In this review, we provide the overall process of DNA data storage, presenting the recent progress of each step. Next, we examine a detailed overview of DNA synthesis methods with an emphasis on their limitations. Lastly, we discuss the efforts to overcome the constraints of each method and their prospects.
Collapse
Affiliation(s)
- Seokwoo Jo
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Haewon Shin
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Sung-yune Joe
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - David Baek
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Chaewon Park
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841 Korea
| |
Collapse
|
8
|
Yu M, Tang X, Li Z, Wang W, Wang S, Li M, Yu Q, Xie S, Zuo X, Chen C. High-throughput DNA synthesis for data storage. Chem Soc Rev 2024; 53:4463-4489. [PMID: 38498347 DOI: 10.1039/d3cs00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Zhenhua Li
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Weidong Wang
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Qiuliyang Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Sijia Xie
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Chang Chen
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| |
Collapse
|
9
|
Ma Y, Zhang Z, Jia B, Yuan Y. Automated high-throughput DNA synthesis and assembly. Heliyon 2024; 10:e26967. [PMID: 38500977 PMCID: PMC10945133 DOI: 10.1016/j.heliyon.2024.e26967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
DNA synthesis and assembly primarily revolve around the innovation and refinement of tools that facilitate the creation of specific genes and the manipulation of entire genomes. This multifaceted process encompasses two fundamental steps: the synthesis of lengthy oligonucleotides and the seamless assembly of numerous DNA fragments. With the advent of automated pipetting workstations and integrated experimental equipment, a substantial portion of repetitive tasks in the field of synthetic biology can now be efficiently accomplished through integrated liquid handling workstations. This not only reduces the need for manual labor but also enhances overall efficiency. This review explores the ongoing advancements in the oligonucleotide synthesis platform, automated DNA assembly techniques, and biofoundries. The development of accurate and high-throughput DNA synthesis and assembly technologies presents both challenges and opportunities.
Collapse
Affiliation(s)
- Yuxin Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Shigemori H, Fujita S, Tamiya E, Wakida SI, Nagai H. Solid-Phase Collateral Cleavage System Based on CRISPR/Cas12 and Its Application toward Facile One-Pot Multiplex Double-Stranded DNA Detection. Bioconjug Chem 2023; 34:1754-1765. [PMID: 37782626 PMCID: PMC10587867 DOI: 10.1021/acs.bioconjchem.3c00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Indexed: 10/04/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 12 (Cas12) system is attracting interest for its potential as a next-generation nucleic acid detection tool. The system can recognize double-stranded DNA (dsDNA) based on Cas12-CRISPR RNA (crRNA) and induce signal transduction by collateral cleavage. This property is expected to simplify comprehensive genotyping. Here, we report a solid-phase collateral cleavage (SPCC) reaction by CRISPR/Cas12 and its application toward one-pot multiplex dsDNA detection with minimal operational steps. In the sensor, Cas12-crRNA and single-stranded DNA (ssDNA) are immobilized on the sensing surface and act as enzyme and reporter substrates, respectively. We also report a dual-target dsDNA sensor prepared by immobilizing Cas12-crRNA and a fluorophore-labeled ssDNA reporter on separate spots. When a spot captures a target dsDNA sequence, it cleaves the ssDNA reporter on the same spot and reduces its fluorescence by 42.1-57.3%. Crucially, spots targeting different sequences do not show a reduction in fluorescence, thus confirming the one-pot multiplex dsDNA detection by SPCC. Furthermore, the sequence specificity has a two-base resolution, and the detectable concentration for the target dsDNA is at least 10-9 M. In the future, the SPCC-based sensor array could achieve one-pot comprehensive genotyping by using an array spotter as a reagent-immobilizing method.
Collapse
Affiliation(s)
- Hiroki Shigemori
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Graduate
School of Human Development and Environment, Kobe University, 3-11
Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Satoshi Fujita
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Institute
of Scientific and Industrial Research (SANKEN), Osaka University, 8-1
Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shin-ichi Wakida
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Institute
of Scientific and Industrial Research (SANKEN), Osaka University, 8-1
Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hidenori Nagai
- Advanced
Photonics and Biosensing Open Innovation Laboratory (PhotoBIO-OIL),
National Institute of Advanced Industrial Science and Technology (AIST), Photonics Center Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
- Graduate
School of Human Development and Environment, Kobe University, 3-11
Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| |
Collapse
|
11
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
12
|
Slott S, Astakhova K. MicroRNA Pools Synthesized Using Tandem Solid-Phase Oligonucleotide Synthesis. J Org Chem 2023. [PMID: 37389967 DOI: 10.1021/acs.joc.3c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Herein, we describe a new approach to make pools of microRNA targeting breast cancer cells. The microRNA pools were synthesized at once on the same solid support using the "Tandem Oligonucleotide Synthesis" strategy. We make up to four consecutive microRNAs (miR129-1-5p, miR31, miR206, and miR27b-3p) using 2'/3'OAc nucleotide phosphoramidites, with the total length of the pool reaching 88 nucleotides. The developed phosphoramidites, when combined, give a cleavable moiety that separates the microRNAs and is cleaved using standard post-RNA synthesis cleavage conditions. Furthermore, we investigate making branched pools (microRNA dendrimers) versus linear pools as a strategy to further improve the product yields. Our approach provides with microRNA pools in high yields, which is of relevance to the growing demand on synthetic RNA oligomers for nucleic acid research and technology.
Collapse
Affiliation(s)
- Sofie Slott
- Department of Chemistry, Technical University of Denmark, 206-207, 2800 Kgs. Lyngby, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 206-207, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
14
|
Luo Y, Cao Z, Liu Y, Zhang R, Yang S, Wang N, Shi Q, Li J, Dong S, Fan C, Zhao J. The emerging landscape of microfluidic applications in DNA data storage. LAB ON A CHIP 2023; 23:1981-2004. [PMID: 36946437 DOI: 10.1039/d2lc00972b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA has been considered a promising alternative to the current solid-state devices for digital information storage. The past decade has witnessed tremendous progress in the field of DNA data storage contributed by researchers from various disciplines. However, the current development status of DNA storage is still far from practical use, mainly due to its high material cost and time consumption for data reading/writing, as well as the lack of a comprehensive, automated, and integrated system. Microfluidics, being capable of handling and processing micro-scale fluid samples in a massively paralleled and highly integrated manner, has gradually been recognized as a promising candidate for addressing the aforementioned issues. In this review, we provide a discussion on recent efforts of applying microfluidics to advance the development of DNA data storage. Moreover, to showcase the tremendous potential that microfluidics can contribute to this field, we will further highlight the recent advancements of applying microfluidics to the key functional modules within the DNA data storage workflow. Finally, we share our perspectives on future directions for how to continue the infusion of microfluidics with DNA data storage and how to advance toward a truly integrated system and reach real-life applications.
Collapse
Affiliation(s)
- Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shijia Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shurong Dong
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| |
Collapse
|
15
|
Aparna GM, Tetala KKR. Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays. Biomolecules 2023; 13:602. [PMID: 37189350 PMCID: PMC10135839 DOI: 10.3390/biom13040602] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, immobilization techniques, and detection strategies. The aim of this review is to explore the development of biomolecule-based microarray applications since 2018 onwards. Here, we have covered a different array of printing strategies, substrate surface modification, biomolecule immobilization strategies, detection techniques, and biomolecule-based microarray applications. The period of 2018-2022 focused on using biomolecule-based microarrays for the identification of biomarkers, detection of viruses, differentiation of multiple pathogens, etc. A few potential future applications of microarrays could be for personalized medicine, vaccine candidate screening, toxin screening, pathogen identification, and posttranslational modifications.
Collapse
Affiliation(s)
| | - Kishore K. R. Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamilnadu, India;
| |
Collapse
|
16
|
Uda RM, Nishimoto N. Photoinduced adsorption of oligonucleotides on polyvinyl chloride films containing malachite green derivative. SOFT MATTER 2023; 19:2058-2063. [PMID: 36779852 DOI: 10.1039/d2sm01163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
DNA adsorption on the micrometer scale in a simple and cost-effective manner has received considerable interest. We prepared a film by casting an organic solvent containing polyvinyl chloride and a malachite green derivative, which can be photoionized to afford a cationic moiety for interaction with DNA. In this article, we report photoinduced oligonucleotide adsorption on a film that offers spatial and temporal control over oligonucleotide adsorption. Fluorescence microscopy was used to observe the oligonucleotide adsorption. Oligonucleotides of various sequences and lengths were also examined. UV irradiation using a photomask having 100 μm-diameter holes promoted the oligonucleotide adsorption on the film, whereas there was hardly any oligonucleotide adsorbed on the non-irradiated area. We found that the nucleobase contributed to the adsorption and part of the anchor in the oligonucleotide chain was responsible for the adsorption on the film.
Collapse
Affiliation(s)
- Ryoko M Uda
- Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| | - Noriko Nishimoto
- Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| |
Collapse
|
17
|
Abstract
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Collapse
Affiliation(s)
- Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
18
|
Bhandari N, Walambe R, Kotecha K, Khare SP. A comprehensive survey on computational learning methods for analysis of gene expression data. Front Mol Biosci 2022; 9:907150. [PMID: 36458095 PMCID: PMC9706412 DOI: 10.3389/fmolb.2022.907150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/28/2022] [Indexed: 09/19/2023] Open
Abstract
Computational analysis methods including machine learning have a significant impact in the fields of genomics and medicine. High-throughput gene expression analysis methods such as microarray technology and RNA sequencing produce enormous amounts of data. Traditionally, statistical methods are used for comparative analysis of gene expression data. However, more complex analysis for classification of sample observations, or discovery of feature genes requires sophisticated computational approaches. In this review, we compile various statistical and computational tools used in analysis of expression microarray data. Even though the methods are discussed in the context of expression microarrays, they can also be applied for the analysis of RNA sequencing and quantitative proteomics datasets. We discuss the types of missing values, and the methods and approaches usually employed in their imputation. We also discuss methods of data normalization, feature selection, and feature extraction. Lastly, methods of classification and class discovery along with their evaluation parameters are described in detail. We believe that this detailed review will help the users to select appropriate methods for preprocessing and analysis of their data based on the expected outcome.
Collapse
Affiliation(s)
- Nikita Bhandari
- Computer Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
| | - Rahee Walambe
- Electronics and Telecommunication Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
- Symbiosis Center for Applied AI (SCAAI), Symbiosis International (Deemed University), Pune, India
| | - Ketan Kotecha
- Computer Science Department, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
- Symbiosis Center for Applied AI (SCAAI), Symbiosis International (Deemed University), Pune, India
| | - Satyajeet P. Khare
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
19
|
Torres-Huerta AL, Antonio-Pérez A, García-Huante Y, Alcázar-Ramírez NJ, Rueda-Silva JC. Biomolecule-Based Optical Metamaterials: Design and Applications. BIOSENSORS 2022; 12:962. [PMID: 36354471 PMCID: PMC9688573 DOI: 10.3390/bios12110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.
Collapse
Affiliation(s)
- Ana Laura Torres-Huerta
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Aurora Antonio-Pérez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Yolanda García-Huante
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City 07340, Mexico
| | - Nayelhi Julieta Alcázar-Ramírez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Juan Carlos Rueda-Silva
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
20
|
Hess JM, Jannen WK, Aalberts DP. The four mRNA bases have quite different (un)folding free energies, applications to RNA splicing and translation initiation with BindOligoNet. J Mol Biol 2022; 434:167578. [DOI: 10.1016/j.jmb.2022.167578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
21
|
Abstract
PURPOSE This article will briefly review the origins and evolution of functional genomics, first describing the experimental technology, and then some of the approaches applied to data analysis and visualization. It will emphasize application of functional genomics to radiation biology, using examples from the author's work to illustrate several key types of analysis. It concludes with a look at non-coding RNA, alternative reading of the genome, and single-cell transcriptomics, some of the innovative areas that may help to shape future research in radiation biology and oncology. CONCLUSIONS Transcriptomic approaches have provided insight into many areas of radiation biology and medicine, and innovations in technology and data analysis approaches promise continued contributions to radiation science in the future.
Collapse
|
22
|
Kleiner RE. Interrogating the transcriptome with metabolically incorporated ribonucleosides. Mol Omics 2021; 17:833-841. [PMID: 34635895 DOI: 10.1039/d1mo00334h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA is a central player in biological processes, but there remain major gaps in our understanding of transcriptomic processes and the underlying biochemical mechanisms regulating RNA in cells. A powerful strategy to facilitate molecular analysis of cellular RNA is the metabolic incorporation of chemical probes. In this review, we discuss current approaches for RNA metabolic labeling with modified ribonucleosides and their integration with Next-Generation Sequencing, mass spectrometry-based proteomics, and fluorescence microscopy in order to interrogate RNA behavior in its native context.
Collapse
Affiliation(s)
- Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
23
|
Sinyakov A, Ryabinin V, Kostina E, Zaytsev D, Chukanov N, Kamaev G. Linkers for oligonucleotide microarray synthesis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Bennet D, Vo‐Dinh T, Zenhausern F. Current and emerging opportunities in biological medium‐based computing and digital data storage. NANO SELECT 2021. [DOI: 10.1002/nano.202100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
| | - Tuan Vo‐Dinh
- Department of Biomedical Engineering Department of Chemistry Fitzpatrick Institute for Photonics Duke University Durham North Carolina USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
- Department of Basic Medical Sciences College of Medicine Phoenix The University of Arizona Phoenix Arizona USA
- Department of Biomedical Engineering; and BIO5 Institute College of Engineering The University of Arizona Tucson Arizona USA
- School of Pharmaceutical Sciences University of Geneva Geneva Switzerland
| |
Collapse
|
25
|
Sinyakov AN, Ryabinin VA, Kostina EV. Application of Array-Based Oligonucleotides for Synthesis of Genetic Designs. Mol Biol 2021. [DOI: 10.1134/s0026893321030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Trost B, Loureiro LO, Scherer SW. Discovery of genomic variation across a generation. Hum Mol Genet 2021; 30:R174-R186. [PMID: 34296264 PMCID: PMC8490016 DOI: 10.1093/hmg/ddab209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Over the past 30 years (the timespan of a generation), advances in genomics technologies have revealed tremendous and unexpected variation in the human genome and have provided increasingly accurate answers to long-standing questions of how much genetic variation exists in human populations and to what degree the DNA complement changes between parents and offspring. Tracking the characteristics of these inherited and spontaneous (or de novo) variations has been the basis of the study of human genetic disease. From genome-wide microarray and next-generation sequencing scans, we now know that each human genome contains over 3 million single nucleotide variants when compared with the ~ 3 billion base pairs in the human reference genome, along with roughly an order of magnitude more DNA—approximately 30 megabase pairs (Mb)—being ‘structurally variable’, mostly in the form of indels and copy number changes. Additional large-scale variations include balanced inversions (average of 18 Mb) and complex, difficult-to-resolve alterations. Collectively, ~1% of an individual’s genome will differ from the human reference sequence. When comparing across a generation, fewer than 100 new genetic variants are typically detected in the euchromatic portion of a child’s genome. Driven by increasingly higher-resolution and higher-throughput sequencing technologies, newer and more accurate databases of genetic variation (for instance, more comprehensive structural variation data and phasing of combinations of variants along chromosomes) of worldwide populations will emerge to underpin the next era of discovery in human molecular genetics.
Collapse
Affiliation(s)
- Brett Trost
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Livia O Loureiro
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
27
|
Song LF, Deng ZH, Gong ZY, Li LL, Li BZ. Large-Scale de novo Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities. Front Bioeng Biotechnol 2021; 9:689797. [PMID: 34239862 PMCID: PMC8258115 DOI: 10.3389/fbioe.2021.689797] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, remarkable progress on phosphoramidite chemistry-based large-scale de novo oligonucleotide synthesis has been achieved, enabling numerous novel and exciting applications. Among them, de novo genome synthesis and DNA data storage are striking. However, to make these two applications more practical, the synthesis length, speed, cost, and throughput require vast improvements, which is a challenge to be met by the phosphoramidite chemistry. Harnessing the power of enzymes, the recently emerged enzymatic methods provide a competitive route to overcome this challenge. In this review, we first summarize the status of large-scale oligonucleotide synthesis technologies including the basic methodology and large-scale synthesis approaches, with special focus on the emerging enzymatic methods. Afterward, we discuss the opportunities and challenges of large-scale oligonucleotide synthesis on de novo genome synthesis and DNA data storage respectively.
Collapse
Affiliation(s)
- Li-Fu Song
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zheng-Hua Deng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zi-Yi Gong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lu-Lu Li
- LC-BIO Technologies Co., Ltd., Hangzhou, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Yu T, Liu J, Zeng Q, Wu L. Dissipativity-Based Filtering for Switched Genetic Regulatory Networks with Stochastic Disturbances and Time-Varying Delays. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1082-1092. [PMID: 31443045 DOI: 10.1109/tcbb.2019.2936351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper deals with the problem of dissipativity-based filtering for switched genetic regulatory networks (GRNs) with stochastic perturbation and time-varying delays. By choosing an appropriate piecewise Lyapunov function and using the average dwell time method, we propose a new set of sufficient conditions in terms of Linear matrix inequalities (LMIs) for the existence of dissipative filter, which ensures that the resulting filtering error system is mean-square exponentially stable with dissipativity performance. The filter gains are provided by solving feasible solutions to a certain set of LMIs. A simulation example is given to demonstrate the effectiveness of the desired dissipativity-based filter design approach.
Collapse
|
29
|
Jia XX, Li S, Han DP, Chen RP, Yao ZY, Ning BA, Gao ZX, Fan ZC. Development and perspectives of rapid detection technology in food and environment. Crit Rev Food Sci Nutr 2021; 62:4706-4725. [PMID: 33523717 DOI: 10.1080/10408398.2021.1878101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.
Collapse
Affiliation(s)
- Xue-Xia Jia
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China.,State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Dian-Peng Han
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Rui-Peng Chen
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Bao-An Ning
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| |
Collapse
|
30
|
Hongo S, Okada J, Hashimoto K, Tsuji K, Nikaido M, Gemma N. Development of an Automated DNA Detection System Using an Electrochemical DNA Chip Technology. ACTA ACUST UNITED AC 2021. [DOI: 10.9746/jcmsi.1.265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sadato Hongo
- Corporate Research & Development Center, Toshiba Corp
| | - Jun Okada
- Corporate Research & Development Center, Toshiba Corp
| | | | | | | | | |
Collapse
|
31
|
Padmanabhan S, Sposito A, Yeh M, Everitt M, White I, DeVoe DL. Reagent integration and controlled release for multiplexed nucleic acid testing in disposable thermoplastic 2D microwell arrays. BIOMICROFLUIDICS 2021; 15:014103. [PMID: 33520047 PMCID: PMC7816768 DOI: 10.1063/5.0039146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The seamless integration of reagents into microfluidic devices can serve to significantly reduce assay complexity and cost for disposable diagnostics. In this work, the integration of multiplexed reagents into thermoplastic 2D microwell arrays is demonstrated using a scalable pin spotting technique. Using a simple and low-cost narrow-bore capillary spotting pin, high resolution deposition of concentrated reagents within the arrays of enclosed nanoliter-scale wells is achieved. The pin spotting method is further employed to encapsulate the deposited reagents with a chemically modified wax layer that serves to prevent disruption of the dried assay components during sample introduction through a shared microchannel, while also enabling temperature-controlled release after sample filling is complete. This approach supports the arbitrary patterning and release of different reagents within individual wells without crosstalk for multiplexed analyses. The performance of the in-well spotting technique is characterized using on-chip rolling circle amplification to evaluate its potential for nucleic acid-based diagnostics.
Collapse
Affiliation(s)
- S. Padmanabhan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - A. Sposito
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - M. Yeh
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - M. Everitt
- Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - I. White
- Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - D. L. DeVoe
- Author to whom correspondence should be addressed:. Tel.: +1-301-405-8125
| |
Collapse
|
32
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
33
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
34
|
Li K, Fan J, Qin X, Wei Q. Novel therapeutic compounds for prostate adenocarcinoma treatment: An analysis using bioinformatic approaches and the CMap database. Medicine (Baltimore) 2020; 99:e23768. [PMID: 33371142 PMCID: PMC7748316 DOI: 10.1097/md.0000000000023768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Prostate adenocarcinoma is the most frequently diagnosed malignancy, particularly for people >70 years old. The main challenge in the treatment of advanced neoplasm is bone metastasis and therapeutic resistance for known oncology drugs. Novel treatment methods to prolong the survival time and improve the life quality of these specific patients are required. The present study attempted to screen potential therapeutic compounds for the tumor through bioinformatics approaches, in order to provide conceptual treatment for this malignant disease. METHODS Differentially expressed genes were obtained from the Gene Expression Omnibus database and submitted into the Connectivity Map database for the detection of potentially associated compounds. Target genes were extracted from the search results. Functional annotation and pathway enrichment were performed for the confirmation. Survival analysis was used to measure potential therapeutic effects. RESULTS It was revealed that 3 compounds (vanoxerine, tolnaftate, and gabexate) may help to prolong the disease-free survival time from tumor metastasis of patients with the tumor. A total of 6 genes [also-keto reductase family 1 member C3 (AKR1C3), collagen type III α 1 chain (COL3A1), lipoprotein lipase (LPL), glucuronidase, β pseudogene 11 (GUSBP11), apolipoprotein E (APOE), and collagen type I α 1 chain (COL1A1)] were identified to be the potential therapeutic targets for the aforementioned compounds. CONCLUSION In the present study, it was speculated that 3 compounds may function as the potential therapeutic drugs of bone metastatic prostate adenocarcinoma; however, further studies verifying vitro and in vivo are necessary.
Collapse
Affiliation(s)
- Kai Li
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| | - Jingyuan Fan
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| | - Xinyi Qin
- Graduate School of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Qingjun Wei
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| |
Collapse
|
35
|
Bickhart DM, McClure JC, Schnabel RD, Rosen BD, Medrano JF, Smith TPL. Symposium review: Advances in sequencing technology herald a new frontier in cattle genomics and genome-enabled selection. J Dairy Sci 2020; 103:5278-5290. [PMID: 32331872 DOI: 10.3168/jds.2019-17693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022]
Abstract
The cattle reference genome assembly has underpinned major innovations in beef and dairy genetics through genome-enabled selection, including removal of deleterious recessive variants and selection for favorable alleles affecting quantitative production traits. The initial reference assemblies, up to and including UMD3.1 and Btau4.1, were based on a combination of clone-by-clone sequencing of bacterial artificial chromosome clones generated from blood DNA of a Hereford bull and whole-genome shotgun sequencing of blood DNA from his inbred daughter/granddaughter named L1 Dominette 01449 (Dominette). The approach introduced assembly gaps, misassemblies, and errors, and it limited the ability to assemble regions that undergo rearrangement in blood cells, such as immune gene clusters. Nonetheless, the reference supported the creation of genotyping tools and provided a basis for many studies of gene expression. Recently, long-read sequencing technologies have emerged that facilitated a re-assembly of the reference genome, using lung tissue from Dominette to resolve many of the problems and providing a bridge to place historical studies in common context. The new reference, ARS-UCD1.2, successfully assembled germline immune gene clusters and improved overall continuity (i.e., reduction of gaps and inversions) by over 250-fold. This reference properly places nearly all of the legacy genetic markers used for over a decade in the industry. In this review, we discuss the improvements made to the cattle reference; remaining issues present in the assembly; tools developed to support genome-based studies in beef and dairy cattle; and the emergence of newer genome assembly methods that are producing even higher-quality assemblies for other breeds of cattle at a fraction of the cost. The new frontier for cattle genomics research will likely include a transition from the individual Hereford reference genome, to a "pan-genome" reference, representing all the DNA segments existing in commonly used cattle breeds, bringing the cattle reference into line with the current direction of human genome research.
Collapse
Affiliation(s)
- D M Bickhart
- US Dairy Forage Research Center, Agricultural Research Service, USDA, Madison, WI 53705.
| | - J C McClure
- US Dairy Forage Research Center, Agricultural Research Service, USDA, Madison, WI 53705
| | - R D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, 65211; MU Institute for Data Science and Informatics, University of Missouri, Columbia, 65211
| | - B D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - J F Medrano
- Department of Animal Science, University of California Davis, 95616
| | - T P L Smith
- Meat Animal Research Center, Agricultural Research Service, USDA, Clay Center, NE 68933
| |
Collapse
|
36
|
Abstract
In this work we show how DNA microarrays can be produced batch wise on standard microscope slides in a fast, easy, reliable and cost-efficient way. Contrary to classical microarray generation, the microarrays are generated via digital solid phase PCR. We have developed a cavity-chip system made of a PDMS/aluminum composite which allows such a solid phase PCR in a scalable and easy to handle manner. For the proof of concept, a DNA pool composed of two different DNA species was used to show that digital PCR is possible in our chips. In addition, we demonstrate that DNA microarray generation can be realized with different laboratory equipment (slide cycler, manually in water baths and with an automated cartridge system). We generated multiple microarrays and analyzed over 13,000 different monoclonal DNA spots to show that there is no significant difference between the used equipment. To show the scalability of our system we also varied the size and number of the cavities located in the array region up to more than 30,000 cavities with a volume of less than 60 pL per cavity. With this method, we present a revolutionary tool for novel DNA microarrays. Together with new established label-free measurement systems, our technology has the potential to give DNA microarray applications a new boost.
Collapse
|
37
|
Shen H, Huo S, Yan H, Park JH, Sreeram V. Distributed Dissipative State Estimation for Markov Jump Genetic Regulatory Networks Subject to Round-Robin Scheduling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:762-771. [PMID: 31056522 DOI: 10.1109/tnnls.2019.2909747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The distributed dissipative state estimation issue of Markov jump genetic regulatory networks subject to round-robin scheduling is investigated in this paper. The system parameters randomly change in the light of a Markov chain. Each node in sensor networks communicates with its neighboring nodes in view of the prescribed network topology graph. The round-robin scheduling is employed to arrange the transmission order to lessen the likelihood of the occurrence of data collisions. The main goal of the work is to design a compatible distributed estimator to assure that the distributed error system is strictly (Λ 1,Λ 2,Λ 3) - γ -stochastically dissipative. By applying the Lyapunov stability theory and a modified matrix decoupling way, sufficient conditions are derived by solving some convex optimization problems. An illustrative example is given to verify the validity of the provided method.
Collapse
|
38
|
Hao M, Qiao J, Qi H. Current and Emerging Methods for the Synthesis of Single-Stranded DNA. Genes (Basel) 2020; 11:E116. [PMID: 31973021 PMCID: PMC7073533 DOI: 10.3390/genes11020116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022] Open
Abstract
Methods for synthesizing arbitrary single-strand DNA (ssDNA) fragments are rapidly becoming fundamental tools for gene editing, DNA origami, DNA storage, and other applications. To meet the rising application requirements, numerous methods have been developed to produce ssDNA. Some approaches allow the synthesis of freely chosen user-defined ssDNA sequences to overcome the restrictions and limitations of different length, purity, and yield. In this perspective, we provide an overview of the representative ssDNA production strategies and their most significant challenges to enable the readers to make informed choices of synthesis methods and enhance the availability of increasingly inexpensive synthetic ssDNA. We also aim to stimulate a broader interest in the continued development of efficient ssDNA synthesis techniques and improve their applications in future research.
Collapse
Affiliation(s)
- Min Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
39
|
Brittain WJ, Brandsetter T, Prucker O, Rühe J. The Surface Science of Microarray Generation-A Critical Inventory. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39397-39409. [PMID: 31322854 DOI: 10.1021/acsami.9b06838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microarrays are powerful tools in biomedical research and have become indispensable for high-throughput multiplex analysis, especially for DNA and protein analysis. The basis for all microarray processing and fabrication is surface modification of a chip substrate and many different strategies to couple probe molecules to such substrates have been developed. We present here a critical assessment of typical biochip generation processes from a surface science point of view. While great progress has been made from a molecular biology point of view on the development of qualitative assays and impressive results have been obtained on the detection of rather low concentrations of DNA or proteins, quantitative chip-based assays are still comparably rare. We argue that lack of stable and reliable deposition chemistries has led in many cases to suboptimal quantitative reproducibility, impeded further progress in microarray development and prevented a more significant penetration of microarray technology into the diagnostic market. We suggest that surface-attached hydrogel networks might be a promising strategy to achieve highly sensitive and quantitatively reproducible microarrays.
Collapse
Affiliation(s)
- William J Brittain
- Department of Chemistry & Biochemistry , Texas State University , 601 University Drive , San Marcos , Texas 78666 , United States
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Thomas Brandsetter
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Oswald Prucker
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| |
Collapse
|
40
|
Bir-Jmel A, Douiri SM, Elbernoussi S. Gene Selection via a New Hybrid Ant Colony Optimization Algorithm for Cancer Classification in High-Dimensional Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:7828590. [PMID: 31737086 PMCID: PMC6815598 DOI: 10.1155/2019/7828590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 11/18/2022]
Abstract
The recent advance in the microarray data analysis makes it easy to simultaneously measure the expression levels of several thousand genes. These levels can be used to distinguish cancerous tissues from normal ones. In this work, we are interested in gene expression data dimension reduction for cancer classification, which is a common task in most microarray data analysis studies. This reduction has an essential role in enhancing the accuracy of the classification task and helping biologists accurately predict cancer in the body; this is carried out by selecting a small subset of relevant genes and eliminating the redundant or noisy genes. In this context, we propose a hybrid approach (MWIS-ACO-LS) for the gene selection problem, based on the combination of a new graph-based approach for gene selection (MWIS), in which we seek to minimize the redundancy between genes by considering the correlation between the latter and maximize gene-ranking (Fisher) scores, and a modified ACO coupled with a local search (LS) algorithm using the classifier 1NN for measuring the quality of the candidate subsets. In order to evaluate the proposed method, we tested MWIS-ACO-LS on ten well-replicated microarray datasets of high dimensions varying from 2308 to 12600 genes. The experimental results based on ten high-dimensional microarray classification problems demonstrated the effectiveness of our proposed method.
Collapse
Affiliation(s)
- Ahmed Bir-Jmel
- Laboratory of Mathematics, Computer Science & Applications-Security of Information, Department of Mathematics, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Sidi Mohamed Douiri
- Laboratory of Mathematics, Computer Science & Applications-Security of Information, Department of Mathematics, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Souad Elbernoussi
- Laboratory of Mathematics, Computer Science & Applications-Security of Information, Department of Mathematics, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
41
|
Costa JA, Dentinger PM, McGall GH, Crnogorac F, Zhou W. Fabrication of Inverted High-Density DNA Microarrays in a Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30534-30541. [PMID: 31389236 DOI: 10.1021/acsami.9b07755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current techniques for making high-resolution, photolithographic DNA microarrays suffer from the limitation that the 3' end of each sequence is anchored to a hard substrate and hence is unavailable for many potential enzymatic reactions. Here, we demonstrate a technique that inverts the entire microarray into a hydrogel. This method preserves the spatial fidelity of the original pattern while simultaneously removing incorrectly synthesized oligomers that are inherent to all other microarray fabrication strategies. First, a standard 5'-up microarray on a donor wafer is synthesized, in which each oligo is anchored with a cleavable linker at the 3' end and an Acrydite phosphoramidite at the 5' end. Following the synthesis of the array, an acrylamide monomer solution is applied to the donor wafer, and an acrylamide-silanized acceptor wafer is placed on top. As the polyacrylamide hydrogel forms between the two wafers, it covalently incorporates the acrydite-terminated sequences into the matrix. Finally, the oligos are released from the donor wafer upon immersing in an ammonia solution that cleaves the 3'-linkers, thus freeing the oligos at the 3' end. The array is now presented 3'-up on the surface of the gel-coated acceptor wafer. Various types of on-gel enzymatic reactions demonstrate a versatile and robust platform that can easily be constructed with far more molecular complexity than traditional photolithographic arrays by endowing the system with multiple enzymatic substrates. We produce a new generation of microarrays where highly ordered, purified oligos are inverted 3'-up, in a biocompatible soft hydrogel, and functional with respect to a wide variety of programable enzymatic reactions.
Collapse
Affiliation(s)
- Justin A Costa
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Paul M Dentinger
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Glenn H McGall
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Filip Crnogorac
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Wei Zhou
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| |
Collapse
|
42
|
Abstract
More than a decade ago, the term "next-generation" sequencing was coined to describe what was, at the time, revolutionary new methods to sequence RNA and DNA at a faster pace and cheaper cost than could be performed by standard bench-top protocols. Since then, the field of DNA sequencing has evolved at a rapid pace, with new breakthroughs allowing capacity to exponentially increase and cost to dramatically decrease. As genome-scale sequencing has become routine, a paradigm shift is occurring in genomics, which uses the power of high-throughput, rapid sequencing power with large-scale studies. These new approaches to genetic discovery will provide direct impact to fields such as personalized medicine, evolution, and biodiversity. This work reviews recent technology advances and methods in next-generation sequencing and highlights current large-scale sequencing efforts driving the evolution of the genomics space.
Collapse
Affiliation(s)
- Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Braden E Boone
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806
| |
Collapse
|
43
|
Mattes DS, Jung N, Weber LK, Bräse S, Breitling F. Miniaturized and Automated Synthesis of Biomolecules-Overview and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806656. [PMID: 31033052 DOI: 10.1002/adma.201806656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Chemical synthesis is performed by reacting different chemical building blocks with defined stoichiometry, while meeting additional conditions, such as temperature and reaction time. Such a procedure is especially suited for automation and miniaturization. Life sciences lead the way to synthesizing millions of different oligonucleotides in extremely miniaturized reaction sites, e.g., pinpointing active genes in whole genomes, while chemistry advances different types of automation. Recent progress in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging could match miniaturized chemical synthesis with a powerful analytical tool to validate the outcome of many different synthesis pathways beyond applications in the life sciences. Thereby, due to the radical miniaturization of chemical synthesis, thousands of molecules can be synthesized. This in turn should allow ambitious research, e.g., finding novel synthesis routes or directly screening for photocatalysts. Herein, different technologies are discussed that might be involved in this endeavor. A special emphasis is given to the obstacles that need to be tackled when depositing tiny amounts of materials to many different extremely miniaturized reaction sites.
Collapse
Affiliation(s)
- Daniela S Mattes
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Laura K Weber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Frank Breitling
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
44
|
Expression Concordance of 325 Novel RNA Biomarkers between Data Generated by NanoString nCounter and Affymetrix GeneChip. DISEASE MARKERS 2019; 2019:1940347. [PMID: 31217830 PMCID: PMC6536986 DOI: 10.1155/2019/1940347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Background With the development of new drug combinations and targeted treatments for multiple types of cancer, the ability to stratify categories of patient populations and to develop companion diagnostics has become increasingly important. A panel of 325 RNA biomarkers was selected based on cancer-related biological processes of healthy cells and gene expression changes over time during nonmalignant epithelial cell organization. This "cancer in reverse" approach resulted in a panel of biomarkers relevant for at least 7 cancer types, providing gene expression profiles representing key cellular signaling pathways beyond mutations in "driver genes." Objective. To further investigate this biomarker panel, the objective of the current study is to (1) validate the assay reproducibility for the 325 RNA biomarkers and (2) compare gene expression profiles side by side using two technology platforms. Methods and Results We have mapped the 325 RNA transcripts and in a custom NanoString nCounter expression panel to be compared to all potential probe sets in the Affymetrix Human Genome U133 Plus 2.0. The experiments were conducted with 10 unique biological formalin-fixed paraffin-embedded (FFPE) breast tumor samples. Each site extracted RNA from four sections of 10-micron thick FFPE tissue over three different days by two different operators using an optimized standard operating procedure and quality control criteria. Samples were analyzed using mas5 in BioConductor and NanoStringNorm in R. Pearson correlation showed reproducibility between sites for all 60 samples with r = 0.995 for Affymetrix and r = 0.999 for NanoString. Correlation in multiple days and multiple users was for Affymetrix r = (0.962 - 0.999) and for NanoString r = (0.982 - 0.991). Conclusion The 325 RNA biomarkers showed reproducibility in two technology platforms with moderate to high concordance. Future directions include performing clinical validation studies and generating rationale for patient selection in clinical trials using the technically validated assay.
Collapse
|
45
|
Walder B, Berk C, Liao WC, Rossini AJ, Schwarzwälder M, Pradere U, Hall J, Lesage A, Copéret C, Emsley L. One- and Two-Dimensional High-Resolution NMR from Flat Surfaces. ACS CENTRAL SCIENCE 2019; 5:515-523. [PMID: 30937379 PMCID: PMC6439530 DOI: 10.1021/acscentsci.8b00916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Determining atomic-level characteristics of molecules on two-dimensional surfaces is one of the fundamental challenges in chemistry. High-resolution nuclear magnetic resonance (NMR) could deliver rich structural information, but its application to two-dimensional materials has been prevented by intrinsically low sensitivity. Here we obtain high-resolution one- and two-dimensional 31P NMR spectra from as little as 160 picomoles of oligonucleotide functionalities deposited onto silicate glass and sapphire wafers. This is enabled by a factor >105 improvement in sensitivity compared to typical NMR approaches from combining dynamic nuclear polarization methods, multiple-echo acquisition, and optimized sample formulation. We demonstrate that, with this ultrahigh NMR sensitivity, 31P NMR can be used to observe DNA bound to miRNA, to sense conformational changes due to ion binding, and to follow photochemical degradation reactions.
Collapse
Affiliation(s)
- Brennan
J. Walder
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Berk
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Wei-Chih Liao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Aaron J. Rossini
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Martin Schwarzwälder
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Ugo Pradere
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Jonathan Hall
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Anne Lesage
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS
Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- E-mail:
| |
Collapse
|
46
|
Yan S, Li X, Zhang P, Wang Y, Chen HY, Huang S, Yu H. Direct sequencing of 2'-deoxy-2'-fluoroarabinonucleic acid (FANA) using nanopore-induced phase-shift sequencing (NIPSS). Chem Sci 2019; 10:3110-3117. [PMID: 30996894 PMCID: PMC6429604 DOI: 10.1039/c8sc05228j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
2'-deoxy-2'-fluoroarabinonucleic acid (FANA), which is one type of xeno-nucleic acid (XNA), has been intensively studied in molecular medicine and synthetic biology because of its superior gene-silencing and catalytic activities. Although urgently required, FANA cannot be directly sequenced by any existing platform. Nanopore sequencing, which identifies a single molecule analyte directly from its physical and chemical properties, shows promise for direct XNA sequencing. As a proof of concept, different FANA homopolymers show well-distinguished pore blockage signals in a Mycobacterium smegmatis porin A (MspA) nanopore. By ligating FANA with a DNA drive-strand, direct FANA sequencing has been demonstrated using phi29 DNA polymerase by Nanopore-Induced Phase Shift Sequencing (NIPSS). When bound with an FANA template, the phi29 DNA polymerase shows unexpected reverse transcriptase activity when monitored in a single molecule assay. Following further investigations into the ensemble, phi29 DNA polymerase is shown to be a previously unknown reverse transcriptase for FANA that operates at room temperature, and is potentially ideal for nanopore sequencing. These results represent the first direct sequencing of a sugar-modified XNA and suggest that phi29 DNA polymerase could act as a promising enzyme for sustained sequencing of a wide variety of XNAs.
Collapse
Affiliation(s)
- Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences
, Nanjing University
,
210023
, Nanjing
, China
- School of Chemistry and Chemical Engineering
, Nanjing University
,
210023
, Nanjing
, China
.
| | - Xintong Li
- Department of Biomedical Engineering
, College of Engineering and Applied Sciences
, Nanjing University
,
210023
, Nanjing
, China
.
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences
, Nanjing University
,
210023
, Nanjing
, China
- Collaborative Innovation Centre of Chemistry for Life Sciences
, Nanjing University
,
210023
, Nanjing
, China
- School of Chemistry and Chemical Engineering
, Nanjing University
,
210023
, Nanjing
, China
.
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences
, Nanjing University
,
210023
, Nanjing
, China
- School of Chemistry and Chemical Engineering
, Nanjing University
,
210023
, Nanjing
, China
.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences
, Nanjing University
,
210023
, Nanjing
, China
- Collaborative Innovation Centre of Chemistry for Life Sciences
, Nanjing University
,
210023
, Nanjing
, China
- School of Chemistry and Chemical Engineering
, Nanjing University
,
210023
, Nanjing
, China
.
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences
, Nanjing University
,
210023
, Nanjing
, China
- Collaborative Innovation Centre of Chemistry for Life Sciences
, Nanjing University
,
210023
, Nanjing
, China
- School of Chemistry and Chemical Engineering
, Nanjing University
,
210023
, Nanjing
, China
.
| | - Hanyang Yu
- Department of Biomedical Engineering
, College of Engineering and Applied Sciences
, Nanjing University
,
210023
, Nanjing
, China
.
| |
Collapse
|
47
|
Rastogi M, Singh SK. Advances in Molecular Diagnostic Approaches for Biothreat Agents. DEFENSE AGAINST BIOLOGICAL ATTACKS 2019. [PMCID: PMC7123646 DOI: 10.1007/978-3-030-03071-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The advancement in Molecular techniques has been implicated in the development of sophisticated, high-end diagnostic platform and point-of-care (POC) devices for the detection of biothreat agents. Different molecular and immunological approaches such as Immunochromatographic and lateral flow assays, Enzyme-linked Immunosorbent assays (ELISA), Biosensors, Isothermal amplification assays, Nucleic acid amplification tests (NAATs), Next Generation Sequencers (NGS), Microarrays and Microfluidics have been used for a long time as detection strategies of the biothreat agents. In addition, several point of care (POC) devices have been approved by FDA and commercialized in markets. The high-end molecular platforms like NGS and Microarray are time-consuming, costly, and produce huge amount of data. Therefore, the future prospects of molecular based technique should focus on developing quick, user-friendly, cost-effective and portable devices against biological attacks and surveillance programs.
Collapse
|
48
|
Singh MR. Application of Metallic Nanomaterials in Nanomedicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1052:83-102. [PMID: 29785483 DOI: 10.1007/978-981-10-7572-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In this chapter, we explain why metallic nanomaterials are used in nanomedicine. We have shown that the electron density in metallic nanomaterials oscillates and creates electron density waves. When laser light falls on metallic nanoparticles, light interacts with electron density waves. According to Einstein, light, which is electromagnetic waves, consists of particles called photons. Similarly, electron density waves are also made of particles called surface plasmons. Therefore, photons from laser light and surface plasmons from metallic nanostructures interact with each other and create new particles called surface plasmon polaritons. These new particles produce an intense light near the surface of metallic nanomaterials. We showed that this intense light is important in the application of metallic nanomaterials in nanomedicine. Further, we have applied metallic nanoparticles, single metallic nanoshells and double metallic nanoshells for treatment of cancer and detection of smaller tumors.
Collapse
Affiliation(s)
- Mahi R Singh
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6G3K7, Canada.
| |
Collapse
|
49
|
Mavila S, Worrell BT, Culver HR, Goldman TM, Wang C, Lim CH, Domaille DW, Pattanayak S, McBride MK, Musgrave CB, Bowman CN. Dynamic and Responsive DNA-like Polymers. J Am Chem Soc 2018; 140:13594-13598. [DOI: 10.1021/jacs.8b09105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Brady T. Worrell
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Heidi R. Culver
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Trevor M. Goldman
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Chen Wang
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Chern-Hooi Lim
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Dylan W. Domaille
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Sankha Pattanayak
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Matthew K. McBride
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Charles B. Musgrave
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado−Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
50
|
Hölz K, Hoi JK, Schaudy E, Somoza V, Lietard J, Somoza MM. High-Efficiency Reverse (5'→3') Synthesis of Complex DNA Microarrays. Sci Rep 2018; 8:15099. [PMID: 30305718 PMCID: PMC6180089 DOI: 10.1038/s41598-018-33311-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
DNA microarrays are important analytical tools in genetics and have recently found multiple new biotechnological roles in applications requiring free 3' terminal hydroxyl groups, particularly as a starting point for enzymatic extension via DNA or RNA polymerases. Here we demonstrate the highly efficient reverse synthesis of complex DNA arrays using a photolithographic approach. The method is analogous to conventional solid phase synthesis but makes use of phosphoramidites with the benzoyl-2-(2-nitrophenyl)-propoxycarbonyl (BzNPPOC) photolabile protecting group on the 3'-hydroxyl group. The use of BzNPPOC, with more than twice the photolytic efficiency of the 2-(2-nitrophenyl)-propoxycarbonyl (NPPOC) previously used for 5'→3' synthesis, combined with additional optimizations to the coupling and oxidation reactions results in an approximately 3-fold improvement in the reverse synthesis efficiency of complex arrays of DNA oligonucleotides. The coupling efficiencies of the reverse phosphoramidites are as good as those of regular phosphoramidites, resulting in comparable yields. Microarrays of DNA surface tethered on the 5' end and with free 3' hydroxyl termini can be synthesized quickly and with similarly high stepwise coupling efficiency as microarrays using conventional 3'→5' synthesis.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Julia K Hoi
- Department of Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|