1
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
2
|
Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. Conduction through a narrow inward-rectifier K + channel pore. J Gen Physiol 2019; 151:1231-1246. [PMID: 31511304 PMCID: PMC6785732 DOI: 10.1085/jgp.201912359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
G-protein–gated inwardly rectifying potassium channels are important mediators of inhibitory neurotransmission. Based on microsecond-scale molecular dynamics simulations, Bernsteiner et al. propose novel gating details that may enable K+ flux via a direct knock-on mechanism. Inwardly rectifying potassium (Kir) channels play a key role in controlling membrane potentials in excitable and unexcitable cells, thereby regulating a plethora of physiological processes. G-protein–gated Kir channels control heart rate and neuronal excitability via small hyperpolarizing outward K+ currents near the resting membrane potential. Despite recent breakthroughs in x-ray crystallography and cryo-EM, the gating and conduction mechanisms of these channels are poorly understood. MD simulations have provided unprecedented details concerning the gating and conduction mechanisms of voltage-gated K+ and Na+ channels. Here, we use multi-microsecond–timescale MD simulations based on the crystal structures of GIRK2 (Kir3.2) bound to phosphatidylinositol-4,5-bisphosphate to provide detailed insights into the channel’s gating dynamics, including insights into the behavior of the G-loop gate. The simulations also elucidate the elementary steps that underlie the movement of K+ ions through an inward-rectifier K+ channel under an applied electric field. Our simulations suggest that K+ permeation might occur via direct knock-on, similar to the mechanism recently shown for Kv channels.
Collapse
Affiliation(s)
- Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
3
|
Palygin O, Pochynyuk O, Staruschenko A. Distal tubule basolateral potassium channels: cellular and molecular mechanisms of regulation. Curr Opin Nephrol Hypertens 2018; 27:373-378. [PMID: 29894319 PMCID: PMC6217967 DOI: 10.1097/mnh.0000000000000437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Multiple clinical and translational evidence support benefits of high potassium diet; however, there many uncertainties underlying the molecular and cellular mechanisms determining effects of dietary potassium. Kir4.1 and Kir5.1 proteins form a functional heteromer (Kir4.1/Kir5.1), which is the primary inwardly rectifying potassium channel on the basolateral membrane of both distal convoluted tubule (DCT) and the collecting duct principal cells. The purpose of this mini-review is to summarize latest advances in our understanding of the evolution, physiological relevance and mechanisms controlling these channels. RECENT FINDINGS Kir4.1 and Kir5.1 channels play a critical role in determining electrolyte homeostasis in the kidney and blood pressure, respectively. It was reported that Kir4.1/Kir5.1 serves as potassium sensors in the distal nephron responding to variations in dietary intake and hormonal stimuli. Global and kidney specific knockouts of either channel resulted in hypokalemia and severe cardiorenal phenotypes. Furthermore, knock out of Kir5.1 in Dahl salt-sensitive rat background revealed the crucial role of the Kir4.1/Kir5.1 channel in salt-induced hypertension. SUMMARY Here, we focus on reviewing novel experimental evidence of the physiological function, expression and hormonal regulation of renal basolateral inwardly rectifying potassium channels. Further investigation of molecular and cellular mechanisms controlling Kir4.1 and Kir4.1/Kir5.1-mediating pathways and development of specific compounds targeting these channels function is essential for proper control of electrolyte homeostasis and blood pressure.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Oleh Pochynyuk
- Department of Integrative Biology, University of Texas Health Science Center, Houston, TX 77030
| | | |
Collapse
|
4
|
Nanazashvili M, Sánchez-Rodríguez JE, Fosque B, Bezanilla F, Sackin H. LRET Determination of Molecular Distances during pH Gating of the Mammalian Inward Rectifier Kir1.1b. Biophys J 2018; 114:88-97. [PMID: 29320699 PMCID: PMC5773755 DOI: 10.1016/j.bpj.2017.10.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/23/2017] [Accepted: 10/19/2017] [Indexed: 01/31/2023] Open
Abstract
Gating of the mammalian inward rectifier Kir1.1 at the helix bundle crossing (HBC) by intracellular pH is believed to be mediated by conformational changes in the C-terminal domain (CTD). However, the exact motion of the CTD during Kir gating remains controversial. Crystal structures and single-molecule fluorescence resonance energy transfer of KirBac channels have implied a rigid body rotation and/or a contraction of the CTD as possible triggers for opening of the HBC gate. In our study, we used lanthanide-based resonance energy transfer on single-Cys dimeric constructs of the mammalian renal inward rectifier, Kir1.1b, incorporated into anionic liposomes plus PIP2, to determine unambiguous, state-dependent distances between paired Cys residues on diagonally opposite subunits. Functionality and pH dependence of our proteoliposome channels were verified in separate electrophysiological experiments. The lanthanide-based resonance energy transfer distances measured in closed (pH 6) and open (pH 8) conditions indicated neither expansion nor contraction of the CTD during gating, whereas the HBC gate widened by 8.8 ± 4 Å, from 6.3 ± 2 to 15.1 ± 6 Å, during opening. These results are consistent with a Kir gating model in which rigid body rotation of the large CTD around the permeation axis is correlated with opening of the HBC hydrophobic gate, allowing permeation of a 7 Å hydrated K ion.
Collapse
Affiliation(s)
- Mikheil Nanazashvili
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois
| | - Jorge E Sánchez-Rodríguez
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois; Departamento de Física, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ben Fosque
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Henry Sackin
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois.
| |
Collapse
|
5
|
O'Donnell BM, Mackie TD, Subramanya AR, Brodsky JL. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome. J Biol Chem 2017. [PMID: 28630040 DOI: 10.1074/jbc.m117.786376] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type II Bartter syndrome is caused by mutations in the renal outer medullary potassium (ROMK) channel, but the molecular mechanisms underlying this disease are poorly defined. To rapidly screen for ROMK function, we developed a yeast expression system and discovered that yeast cells lacking endogenous potassium channels could be rescued by WT ROMK but not by ROMK proteins containing any one of four Bartter mutations. We also found that the mutant proteins were significantly less stable than WT ROMK. However, their degradation was slowed in the presence of a proteasome inhibitor or when yeast cells contained mutations in the CDC48 or SSA1 gene, which is required for endoplasmic reticulum (ER)-associated degradation (ERAD). Consistent with these data, sucrose gradient centrifugation and indirect immunofluorescence microscopy indicated that most ROMK protein was ER-localized. To translate these findings to a more relevant cell type, we measured the stabilities of WT ROMK and the ROMK Bartter mutants in HEK293 cells. As in yeast, the Bartter mutant proteins were less stable than the WT protein, and their degradation was slowed in the presence of a proteasome inhibitor. Finally, we discovered that low-temperature incubation increased the steady-state levels of a Bartter mutant, suggesting that the disease-causing mutation traps the protein in a folding-deficient conformation. These findings indicate that the underlying pathology for at least a subset of patients with type II Bartter syndrome is linked to the ERAD pathway and that future therapeutic strategies should focus on correcting deficiencies in ROMK folding.
Collapse
Affiliation(s)
- Brighid M O'Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
| |
Collapse
|
6
|
Shen C, Xue M, Qiu H, Guo W. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on Membrane Stability: A Molecular Dynamics Study. Chemphyschem 2017; 18:626-633. [PMID: 28054433 DOI: 10.1002/cphc.201601184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/13/2016] [Indexed: 12/29/2022]
Abstract
The signaling molecules in neurons, called neurotransmitters, play an essential role in the transportation of neural signals, during which the neurotransmitters interact with not only specific receptors, but also cytomembranes, such as synaptic vesicle membranes and postsynaptic membranes. Through extensive molecular dynamics simulations, the atomic-scale insertion dynamics of typical neurotransmitters, including methionine enkephalin (ME), leucine enkephalin (LE), dopamine (DA), acetylcholine (ACh), and aspartic acid (ASP), into lipid bilayers is investigated. The results show that the first three neurotransmitters (ME, LE, and DA) are able to diffuse freely into both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membranes, and are guided by the aromatic residues Tyr and Phe. Only a limited number of these neurotransmitters are allowed to penetrate into the membrane, which suggests an intrinsic mechanism by which the membrane is protected from being destroyed by excessive inserted neurotransmitters. After spontaneous insertion, the neurotransmitters disturb the surrounding phospholipids in the membrane, as indicated by the altered distribution of components in lipid leaflets and the disordered lipid tails. In contrast, the last two neurotransmitters (ACh and ASP) cannot enter the membrane, but instead always diffuse freely in solution. These findings provide an understanding at the atomic level of how neurotransmitters interact with the surrounding cytomembrane, as well as their impact on membrane behavior.
Collapse
Affiliation(s)
- Chun Shen
- State Key Laboratory of Mechanics and Control of Mechanical Structure and Key Laboratory for Intelligent Nano Materials and Devices of the, Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, P.R. China
| | - Minmin Xue
- State Key Laboratory of Mechanics and Control of Mechanical Structure and Key Laboratory for Intelligent Nano Materials and Devices of the, Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, P.R. China
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structure and Key Laboratory for Intelligent Nano Materials and Devices of the, Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, P.R. China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structure and Key Laboratory for Intelligent Nano Materials and Devices of the, Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, P.R. China
| |
Collapse
|
7
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
8
|
Carmosino M, Gerbino A, Hendy GN, Torretta S, Rizzo F, Debellis L, Procino G, Svelto M. NKCC2 activity is inhibited by the Bartter's syndrome type 5 gain-of-function CaR-A843E mutant in renal cells. Biol Cell 2015; 107:98-110. [PMID: 25631355 DOI: 10.1111/boc.201400069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND INFORMATION The gain-of-function A843E mutation of the calcium sensing receptor (CaR) causes Bartter syndrome type 5. Patients carrying this CaR variant show a remarkably reduced renal NaCl reabsorption in the thick ascending limb (TAL) of Henle's loop resulting in renal loss of NaCl in the absence of mutations in renal Na(+) and Cl(-) ion transporters. The molecular mechanisms underlying this clinical phenotype are incompletely understood. We investigated, in human embryonic kidney 293 (HEK 293) cells and porcine kidney epithelial (LLC-PK1) cells, the functional cross-talk of CaR-A843E with the Na(+):K(+):2Cl(-) co-transporter, NKCC2, which provides NaCl reabsorption in the TAL. RESULTS The expression of the CaR mutant did not alter the apical localisation of NKCC2 in LLC-PK1 cells. However, the steady-state NKCC2 phosphorylation and activity were decreased in cells transfected with CaR-A843E compared with the control wild-type CaR (CaR WT)-transfected cells. Of note, low-Cl(-)-dependent NKCC2 activation was also strongly inhibited upon the expression of CaR-A843E mutant. The use of either P450 ω-hydroxylase (CYP4)- or phospholipase A2 (PLA2)-blockers suggests that this effect is likely mediated by arachidonic acid (AA) metabolites. CONCLUSIONS The data suggested that the activated CaR affects intracellular pathways modulating NKCC2 activity rather than NKCC2 intracellular trafficking in renal cells, and throw further light on the pathological role played by active CaR mutants in Bartter syndrome type 5.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy; Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wei Y, Liao Y, Zavilowitz B, Ren J, Liu W, Chan P, Rohatgi R, Estilo G, Jackson EK, Wang WH, Satlin LM. Angiotensin II type 2 receptor regulates ROMK-like K⁺ channel activity in the renal cortical collecting duct during high dietary K⁺ adaptation. Am J Physiol Renal Physiol 2014; 307:F833-43. [PMID: 25100281 DOI: 10.1152/ajprenal.00141.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney adjusts K⁺ excretion to match intake in part by regulation of the activity of apical K⁺ secretory channels, including renal outer medullary K⁺ (ROMK)-like K⁺ channels, in the cortical collecting duct (CCD). ANG II inhibits ROMK channels via the ANG II type 1 receptor (AT1R) during dietary K⁺ restriction. Because AT1Rs and ANG II type 2 receptors (AT2Rs) generally function in an antagonistic manner, we sought to characterize the regulation of ROMK channels by the AT2R. Patch-clamp experiments revealed that ANG II increased ROMK channel activity in CCDs isolated from high-K⁺ (HK)-fed but not normal K⁺ (NK)-fed rats. This response was blocked by PD-123319, an AT2R antagonist, but not by losartan, an AT1R antagonist, and was mimicked by the AT2R agonist CGP-42112. Nitric oxide (NO) synthase is present in CCD cells that express ROMK channels. Blockade of NO synthase with N-nitro-l-arginine methyl ester and free NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt completely abolished ANG II-stimulated ROMK channel activity. NO enhances the synthesis of cGMP, which inhibits phosphodiesterases (PDEs) that normally degrade cAMP; cAMP increases ROMK channel activity. Pretreatment of CCDs with IBMX, a broad-spectrum PDE inhibitor, or cilostamide, a PDE3 inhibitor, abolished the stimulatory effect of ANG II on ROMK channels. Furthermore, PKA inhibitor peptide, but not an activator of the exchange protein directly activated by cAMP (Epac), also prevented the stimulatory effect of ANG II. We conclude that ANG II acts at the AT2R to stimulate ROMK channel activity in CCDs from HK-fed rats, a response opposite to that mediated by the AT1R in dietary K⁺-restricted animals, via a NO/cGMP pathway linked to a cAMP-PKA pathway.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Pharmacology, New York Medical College, Valhalla, New York; Department of Cell Biology, New York University Medical Center, New York, New York
| | - Yi Liao
- Department of Cell Biology, New York University Medical Center, New York, New York
| | - Beth Zavilowitz
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jin Ren
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wen Liu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pokman Chan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York; and
| | - Genevieve Estilo
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edwin K Jackson
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Abstract
A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland Medical School, Baltimore, MD, USA.
| |
Collapse
|
11
|
|
12
|
Wang WH, Yue P, Sun P, Lin DH. Regulation and function of potassium channels in aldosterone-sensitive distal nephron. Curr Opin Nephrol Hypertens 2010; 19:463-70. [PMID: 20601877 PMCID: PMC4426959 DOI: 10.1097/mnh.0b013e32833c34ec] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW K channels in the aldosterone-sensitive distal nephron (ASDN) participate in generating cell membrane potential and in mediating K secretion. The aim of the review is to provide an overview of the recent development regarding physiological function of the K channels and the novel factors which modulate the K channels of the ASDN. RECENT FINDINGS Genetic studies and transgenic mouse models have revealed the physiological function of basolateral K channels including inwardly rectifying K channel (Kir) and Ca-activated big-conductance K channels in mediating salt transport in the ASDN. A recent study shows that intersectin is required for mediating with-no-lysine kinase (WNK)-induced endocytosis. Moreover, a clathrin adaptor, autosomal recessive hypercholesterolemia (ARH), and an aging-suppression protein, Klothe, have been shown to regulate the endocytosis of renal outer medullary potassium (ROMK) channel. Also, serum-glucocorticoids-induced kinase I (SGK1) reversed the inhibitory effect of WNK4 on ROMK through the phosphorylation of WNK4. However, Src-family protein tyrosine kinase (SFK) abolished the effect of SGK1 on WNK4 and restored the WNK4-induced inhibition of ROMK. SUMMARY Basolateral K channels including big-conductance K channel and Kir4.1/5.1 play an important role in regulating Na and Mg transport in the ASDN. Apical K channels are not only responsible for mediating K excretion but they are also involved in regulating transepithelial Mg absorption. New factors and mechanisms by which hormones and dietary K intake regulate apical K secretory channels expand the current knowledge regarding renal K handling.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | |
Collapse
|
13
|
Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct. Proc Natl Acad Sci U S A 2010; 107:6082-7. [PMID: 20231442 DOI: 10.1073/pnas.0902661107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in many segments of the mammalian nephron, where it may interact with and modulate the activity of a variety of apical membrane proteins, including the renal outer medullary potassium (ROMK) K(+) channel. However, the expression of CFTR in apical cell membranes or its function as a Cl(-) channel in native renal epithelia has not been demonstrated. Here, we establish that CFTR forms protein kinase A (PKA)-activated Cl(-) channels in the apical membrane of principal cells from the cortical collecting duct obtained from mice. These Cl(-) channels were observed in cell-attached apical patches of principal cells after stimulation by forskolin/3-isobutyl-1-methylxanthine. Quiescent Cl(-) channels were present in patches excised from untreated tubules because they could be activated after exposure to Mg-ATP and the catalytic subunit of PKA. The single-channel conductance, kinetics, and anion selectivity of these Cl(-) channels were the same as those of recombinant mouse CFTR channels expressed in Xenopus laevis oocytes. The CFTR-specific closed-channel blocker CFTR(inh)-172 abolished apical Cl(-) channel activity in excised patches. Moreover, apical Cl(-) channel activity was completely absent in principal cells from transgenic mice expressing the DeltaF508 CFTR mutation but was present and unaltered in ROMK-null mice. We discuss the physiologic implications of open CFTR Cl(-) channels on salt handling by the collecting duct and on the functional CFTR-ROMK interactions in modulating the metabolic ATP-sensing of ROMK.
Collapse
|
14
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1087] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Wu J, McNicholas CM, Bevensee MO. Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes. Proc Natl Acad Sci U S A 2009; 106:14150-5. [PMID: 19667194 PMCID: PMC2729035 DOI: 10.1073/pnas.0906303106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Indexed: 01/20/2023] Open
Abstract
Bicarbonate transporters are regulated by signaling molecules/ions such as protein kinases, ATP, and Ca(2+). While phospholipids such as PIP(2) can stimulate Na-H exchanger activity, little is known about phospholipid regulation of bicarbonate transporters. We used the patch-clamp technique to study the function and regulation of heterologously expressed rat NBCe1-A in excised macropatches from Xenopus laevis oocytes. Exposing the cytosolic side of inside-out macropatches to a 5% CO(2)/33 mM HCO(3)(-) solution elicited a mean inward current of 14 pA in 74% of macropatches attached to pipettes (-V(p) = -60 mV) containing a low-Na(+), nominally HCO(3)(-)-free solution. The current was 80-90% smaller in the absence of Na(+), approximately 75% smaller in the presence of 200 microM DIDS, and absent in macropatches from H(2)O-injected oocytes. NBCe1-A currents exhibited time-dependent rundown that was inhibited by removing Mg(2+) in the presence or absence of vanadate and F(-) to reduce general phosphatase activity. Applying 5 or 10 microM PIP(2) (diC8) in the presence of HCO(3)(-) induced an inward current in 54% of macropatches from NBC-expressing, but not H(2)O-injected oocytes. PIP(2)-induced currents were HCO(3)(-)-dependent and somewhat larger following more NBCe1-A rundown, 62% smaller in the absence of Na(+), and 90% smaller in the presence of 200 microM DIDS. The polycation neomycin (250-500 microM) reduced the PIP(2)-induced inward current by 69%; spermine (100 microM) reduced the current by 97%. Spermine, poly-D-lysine, and neomycin all reduced the baseline HCO(3)(-)-induced inward currents by as much as 85%. In summary, PIP(2) stimulates NBCe1-A activity, and phosphoinositides are regulators of bicarbonate transporters.
Collapse
Affiliation(s)
| | | | - Mark O. Bevensee
- Department of Physiology and Biophysics
- Nephrology Research and Training Center
- Center of Glial Biology in Medicine, and
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
16
|
Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am J Physiol Renal Physiol 2009; 297:F849-63. [PMID: 19458126 DOI: 10.1152/ajprenal.00181.2009] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of the renal outer medullary K+ channel (ROMK, K(ir)1.1), the founding member of the inward-rectifying K+ channel (K(ir)) family, by Ho and Hebert in 1993 revolutionized our understanding of potassium channel biology and renal potassium handling. Because of the central role that ROMK plays in the regulation of salt and potassium homeostasis, considerable efforts have been invested in understanding the underlying molecular mechanisms. Here we provide a comprehensive guide to ROMK, spanning from the physiology in the kidney to the organization and regulation by intracellular factors to the structural basis of its function at the atomic level.
Collapse
Affiliation(s)
- Paul A Welling
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA.
| | | |
Collapse
|
17
|
Wang WH, Giebisch G. Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 2009; 458:157-68. [PMID: 18839206 PMCID: PMC2730119 DOI: 10.1007/s00424-008-0593-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/20/2008] [Indexed: 12/13/2022]
Abstract
This review provides an overview of the molecular mechanisms of K transport in the mammalian connecting tubule (CNT) and cortical collecting duct (CCD), both nephron segments responsible for the regulation of renal K secretion. Aldosterone and dietary K intake are two of the most important factors regulating K secretion in the CNT and CCD. Recently, angiotensin II (AngII) has also been shown to play a role in the regulation of K secretion. In addition, genetic and molecular biological approaches have further identified new mechanisms by which aldosterone and dietary K intake regulate K transport. Thus, the interaction between serum-glucocorticoid-induced kinase 1 (SGK1) and with-no-lysine kinase 4 (WNK4) plays a significant role in mediating the effect of aldosterone on ROMK (Kir1.1), an important apical K channel modulating K secretion. Recent evidence suggests that WNK1, mitogen-activated protein kinases such as P38, ERK, and Src family protein tyrosine kinase are involved in mediating the effect of low K intake on apical K secretory channels.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA.
| | | |
Collapse
|
18
|
Derangeon M, Bourmeyster N, Plaisance I, Pinet-Charvet C, Chen Q, Duthe F, Popoff MR, Sarrouilhe D, Hervé JC. RhoA GTPase and F-actin dynamically regulate the permeability of Cx43-made channels in rat cardiac myocytes. J Biol Chem 2008; 283:30754-65. [PMID: 18667438 DOI: 10.1074/jbc.m801556200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are clusters of transmembrane channels allowing a passive diffusion of ions and small molecules between adjacent cells. Connexin43, the main channel-forming protein expressed in ventricular myocytes, can associate with zonula occludens-1, a scaffolding protein linked to the actin cytoskeleton and to signal transduction molecules. The possible influence of Rho GTPases, major regulators of cellular junctions and of the actin cytoskeleton, in the modulation of gap junctional intercellular communication (GJIC) was examined. The activation of RhoA by cytoxic necrotizing factor 1 markedly enhanced GJIC, whereas its specific inhibition by the Clostridium botulinum C3 exoenzyme significantly reduced it. RhoA activity affects GJIC without major cellular redistribution of junctional plaques or changes in the Cx43 phosphorylation pattern. As these GTPases frequently act via the cortical cytoskeleton, the importance of F-actin in the modulation of GJIC was investigated by means of agents interfering with actin polymerization. Cytoskeleton stabilization by phalloidin slowed down the kinetics of channel rundown in the absence of ATP, whereas its disruption by cytochalasin D rapidly and markedly reduced GJIC despite ATP presence. Cytoskeleton stabilization by phalloidin markedly reduced the consequences of RhoA activation or inactivation. This mechanism appears to be the first described capable to both up- or down-regulate GJIC through RhoA activation or, conversely, inhibition. The inhibition of Rho downstream kinase effectors had no effect on GJIC. The present results provide further insight into the gating and regulation of junctional channels and identify a new downstream target for the small G-protein RhoA.
Collapse
Affiliation(s)
- Mickaël Derangeon
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, F-86022 Poitiers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee CH, Tsai TS, Liou HH. Gabapentin activates ROMK1 channels by a protein kinase A (PKA)-dependent mechanism. Br J Pharmacol 2008; 154:216-25. [PMID: 18311184 DOI: 10.1038/bjp.2008.73] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Gabapentin is an effective anticonvulsant. The major physiological function of renal outer medullary potassium (ROMK1) channels is to maintain the resting membrane potential (RMP). We investigated the effect of gabapentin on ROMK1 channels and the mechanism involved. EXPERIMENTAL APPROACH Xenopus oocytes were injected with mRNA coding for wild-type or mutant ROMK1 channels and giant inside-out patch-clamp recordings were performed. KEY RESULTS Gabapentin increased the activity of ROMK1 channels, concentration-dependently and enhanced the activity of wild-type and an intracellular pH (pH(i))-gating residue mutant (K80M) channels over a range of pH(i). Gabapentin also increased activity of channels mutated at phosphatidylinositol 4,5-bisphosphate (PIP(2))-binding sites (R188Q, R217A and K218A). However, gabapentin failed to enhance channel activity in the presence of protein kinase A (PKA) inhibitors and did not activate phosphorylation site mutants (S44A, S219A or S313A), mutants that mimicked the negative charge carried by a phosphate group bound to a serine (S44D, S219D or S313D), or a mutated channel with a positive charge (S219R). These findings show that gabapentin activates ROMK1 channels independently of the pH(i) and not via a PIP(2)-dependent pathway. The effects of gabapentin on ROMK1 channels may be due to a PKA-mediated phosphorylation-induced conformational change, but not to charge-charge interactions. CONCLUSIONS AND IMPLICATIONS ROMK1 channels are the main channels responsible for maintaining the RMP during cellular excitation. Gabapentin increased the activity of ROMK1 channels by a PKA-dependent mechanism, reducing neuronal excitability, and this may play an important role in its antiepileptic effect.
Collapse
Affiliation(s)
- C-H Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
20
|
Jin Y, Wang Z, Zhang Y, Yang B, Wang WH. PGE2 inhibits apical K channels in the CCD through activation of the MAPK pathway. Am J Physiol Renal Physiol 2007; 293:F1299-307. [PMID: 17686952 DOI: 10.1152/ajprenal.00293.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used the patch-clamp technique and Western blot analysis to explore the effect of PGE(2) on ROMK-like small-conductance K (SK) channels and Ca(2+)-activated big-conductance K channels (BK) in the cortical collecting duct (CCD). Application of 10 microM PGE(2) inhibited SK and BK channels in the CCD. Moreover, either inhibition of PKC or blocking mitogen-activated protein kinase (MAPK), P38 and ERK, abolished the effect of PGE(2) on SK channels in the CCD. The effect of PGE(2) on SK channels was completely blocked in the presence of SC-51089, a specific EP1 receptor antagonist, and mimicked by application of sulprostone, an agonist for EP1 and EP3 receptors. To determine whether PGE(2) stimulates the phosphorylation of P38 and ERK, we treated mouse CCD cells (M-1) with PGE(2). Application of PGE(2) significantly stimulated the phosphorylation of P38 and ERK within 5 min. The dose-response curve of PGE(2) effect shows that 1, 5, and 10 microM PGE(2) increased the phosphorylation of P38 and ERK by 20-21, 50-80, and 80-100%, respectively. The stimulatory effect of PGE(2) on MAPK phosphorylation was not affected by indomethacin but abolished by inhibition of PKC. This suggests that the effect of PGE(2) on MAPK phosphorylation is PKC dependent. Also, the expression of cyclooxygenase II and PGE(2) concentration in renal cortex and outer medulla was significantly higher in rats fed a K-deficient diet than those on a normal-K diet. We conclude that PGE(2) inhibits SK and BK channels and that there is an effect of PGE(2) on SK channels in the CCD through activation of EP1 receptor and MAPK pathways. Also, high concentrations of PGE(2) induced by K restriction may be partially responsible for increasing MAPK activity during K restriction.
Collapse
Affiliation(s)
- Yan Jin
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
21
|
Gurkan S, Estilo GK, Wei Y, Satlin LM. Potassium transport in the maturing kidney. Pediatr Nephrol 2007; 22:915-25. [PMID: 17333000 DOI: 10.1007/s00467-007-0432-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 12/12/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
The distal nephron and colon are the primary sites of regulation of potassium (K(+)) homeostasis, responsible for maintaining a zero balance in adults and net positive balance in growing infants and children. Distal nephron segments can either secrete or reabsorb K(+) depending on the metabolic needs of the organism. In the healthy adult kidney, K(+) secretion predominates over K(+) absorption. Baseline K(+) secretion occurs via the apical low-conductance secretory K(+) (SK) channel, whereas the maxi-K channel mediates flow-stimulated net urinary K(+) secretion. The K(+) retention characteristic of the neonatal kidney appears to be due not only to the absence of apical secretory K(+) channels in the distal nephron but also to a predominance of apical H-K-adenosine triphosphatase (ATPase), which presumably mediates K(+) absorption. Both luminal and peritubular factors regulate the balance between K(+) secretion and absorption. Perturbation in any of these factors can lead to K(+) imbalance. In turn, these factors may serve as effective targets for the treatment of both hyper-and hypokalemia. The purpose of this review is to present an overview of recent advances in our understanding of mechanisms of K(+) transport in the maturing kidney.
Collapse
Affiliation(s)
- Sevgi Gurkan
- Department of Pediatrics, Division of Nephrology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1664, New York, NY, 10029, USA
| | | | | | | |
Collapse
|
22
|
Li D, Wang Z, Sun P, Jin Y, Lin DH, Hebert SC, Giebisch G, Wang WH. Inhibition of MAPK stimulates the Ca2+ -dependent big-conductance K channels in cortical collecting duct. Proc Natl Acad Sci U S A 2006; 103:19569-74. [PMID: 17151195 PMCID: PMC1748266 DOI: 10.1073/pnas.0609555104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The kidney plays a key role in maintaining potassium (K) homeostasis. K excretion is determined by the balance between K secretion and absorption in distal tubule segments such as the connecting tubule and cortical collecting duct. K secretion takes place by K entering principal cells (PC) from blood side through Na+, K+ -ATPase and being secreted into the lumen via both ROMK-like small-conductance K (SK) channels and Ca2+ -activated big-conductance K (BK) channels. K reabsorption occurs by stimulation of apical K/H-ATPase and inhibition of K recycling across the apical membrane in intercalated cells (IC). The role of ROMK channels in K secretion is well documented. However, the importance of BK channels in mediating K secretion is incompletely understood. It has been shown that their activity increases with high tubule flow rate and augmented K intake. However, BK channels have a low open probability and are mainly located in IC, which lack appropriate transporters for effective K secretion. Here we demonstrate that inhibition of ERK and P38 MAPKs stimulates BK channels in both PC and IC in the cortical collecting duct and that changes in K intake modulate their activity. Under control conditions, BK channel activity in PC was low but increased significantly by inhibition of both ERK and P38. Blocking MAPKs also increased channel open probability of BK in IC and thereby it may affect K backflux and net K absorption Thus, modulation of ERK and P38 MAPK activity is involved in controlling net K secretion in the distal nephron.
Collapse
Affiliation(s)
- Dimin Li
- *Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Zhijian Wang
- *Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Peng Sun
- *Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Yan Jin
- *Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Dao-Hong Lin
- *Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
| | - Steven C. Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Gerhard Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence may be addressed. E-mail:
or
| | - Wen-Hui Wang
- *Department of Pharmacology, New York Medical College, Valhalla, NY 10595; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
23
|
McAlear SD, Liu X, Williams JB, McNicholas-Bevensee CM, Bevensee MO. Electrogenic Na/HCO3 cotransporter (NBCe1) variants expressed in Xenopus oocytes: functional comparison and roles of the amino and carboxy termini. ACTA ACUST UNITED AC 2006; 127:639-58. [PMID: 16735752 PMCID: PMC2151535 DOI: 10.1085/jgp.200609520] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using pH- and voltage-sensitive microelectrodes, as well as the two-electrode voltage-clamp and macropatch techniques, we compared the functional properties of the three NBCe1 variants (NBCe1-A, -B, and -C) with different amino and/or carboxy termini expressed in Xenopus laevis oocytes. Oocytes expressing rat brain NBCe1-B and exposed to a CO(2)/HCO(3)(-) solution displayed all the hallmarks of an electrogenic Na(+)/HCO(3)(-) cotransporter: (a) a DIDS-sensitive pH(i) recovery following the initial CO(2)-induced acidification, (b) an instantaneous hyperpolarization, and (c) an instantaneous Na(+)-dependent outward current under voltage-clamp conditions (-60 mV). All three variants had similar external HCO(3)(-) dependencies (apparent K(M) of 4-6 mM) and external Na(+) dependencies (apparent K(M) of 21-36 mM), as well as similar voltage dependencies. However, voltage-clamped oocytes (-60 mV) expressing NBCe1-A exhibited peak HCO(3)(-)-stimulated NBC currents that were 4.3-fold larger than the currents seen in oocytes expressing the most dissimilar C variant. Larger NBCe1-A currents were also observed in current-voltage relationships. Plasma membrane expression levels as assessed by single oocyte chemiluminescence with hemagglutinin-tagged NBCs were similar for the three variants. In whole-cell experiments (V(m) = -60 mV), removing the unique amino terminus of NBCe1-A reduced the mean HCO(3)(-)-induced NBC current 55%, whereas removing the different amino terminus of NBCe1-C increased the mean NBC current 2.7-fold. A similar pattern was observed in macropatch experiments. Thus, the unique amino terminus of NBCe1-A stimulates transporter activity, whereas the different amino terminus of the B and C variants inhibits activity. One or more cytosolic factors may also contribute to NBCe1 activity based on discrepancies between macropatch and whole-cell currents. While the amino termini influence transporter function, the carboxy termini influence plasma membrane expression. Removing the entire cytosolic carboxy terminus of NBCe1-C, or the different carboxy terminus of the A/B variants, causes a loss of NBC activity due to low expression at the plasma membrane.
Collapse
Affiliation(s)
- Suzanne D McAlear
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
24
|
Robson L, Hunter M. Phosphorylation regulates an inwardly rectifying ATP-sensitive K(+)- conductance in proximal tubule cells of frog kidney. J Membr Biol 2006; 207:161-7. [PMID: 16550487 DOI: 10.1007/s00232-005-0811-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/21/2005] [Indexed: 10/24/2022]
Abstract
K(+) channels in the renal proximal tubule play an important role in salt reabsorption. Cells of the frog proximal tubule demonstrate an inwardly rectifying, ATP-sensitive K(+) conductance that is inhibited by Ba(2+), G(Ba). In this paper we have investigated the importance of phosphorylation state on the activity of G(Ba) in whole-cell patches. In the absence of ATP, G(Ba) decreased over time; this fall in G(Ba) involved phosphorylation, as rundown was inhibited by alkaline phosphatase and was accelerated by the phosphatase inhibitor F(-)(10 mM: ). Activation of PKC using the phorbol ester PMA accelerated rundown via a mechanism that was dependent on phosphorylation. In contrast, the inactive phorbol ester PDC slowed rundown. Inclusion of the PKC inhibitor PKC-ps in the pipette inhibited rundown. These data indicate that PKC-mediated phosphorylation promotes channel rundown. Rundown was prevented by the inclusion of PIP-2 in the pipette. PIP-2 also abrogated the PMA-mediated increase in rundown, suggesting that regulation of G(Ba) by PIP-2 occurred downstream of PKC-mediated phosphorylation. G-protein activation inhibited G(Ba), with initial currents markedly reduced in the presence of GTPgammas. These properties are consistent with G(Ba) being a member of the ATP-sensitive K(+) channel family.
Collapse
Affiliation(s)
- L Robson
- Department of Biomedical Science, University of Sheffield, Alfred Denny Building, Sheffield, UK S10 2TN.
| | | |
Collapse
|
25
|
Wang R, Su J, Wang X, Piao H, Zhang X, Adams CY, Cui N, Jiang C. Subunit stoichiometry of the Kir1.1 channel in proton-dependent gating. J Biol Chem 2005; 280:13433-41. [PMID: 15691840 DOI: 10.1074/jbc.m411895200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kir1.1 channel regulates membrane potential and K+ secretion in renal tubular cells. This channel is gated by intracellular protons, in which a lysine residue (Lys80) plays a critical role. Mutation of the Lys80 to a methionine (K80M) disrupts pH-dependent channel gating. To understand how an individual subunit in a tetrameric channel is involved in pH-dependent channel gating, we performed these studies by introducing K80M-disrupted subunits to tandem tetrameric channels. The pH sensitivity was studied in whole-cell voltage clamp and inside-out patches. Homomeric tetramers of the wild-type (wt) and K80M-disrupted channels showed a pH sensitivity almost identical to that of their monomeric counterparts. In heteromeric tetramers and dimers, pH sensitivity was a function of the number of wt subunits. Recruitment of the first single wt subunit shifts the pK(a) greatly, whereas additions of any extra wt subunit had smaller effects. Single-channel analysis revealed that the tetrameric channel with two or more wt subunits showed one substate conductance at approximately 40% of the full conductance, suggesting that four subunits act as two pairs. However, three and four substates of conductance were seen in the tetrameric wt-3K80M and 4K80M channels. Acidic pH increased long-time closures when there were two or more wt subunits. Disruption of more than two subunits led to flicking activity with appearance of a new opening event and loss of the long period of closures. Interestingly, the channel with two wt subunits at diagonal and adjacent configurations showed the same pH sensitivity, substate conductance, and long-time closure. These results thus suggest that one functional subunit is sufficient to act in the pH-dependent gating of the Kir1.1 channel, the channel sensitivity to pH increases with additional subunits, the full pH sensitivity requires contributions of all four subunits, and two subunits may be coordinated in functional dimers of either trans or cis configuration.
Collapse
Affiliation(s)
- Runping Wang
- Department of Biology, Georgia State University, Atlanta, Georgia 30302-4010, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sackin H, Nanazashvili M, Palmer LG, Krambis M, Walters DE. Structural locus of the pH gate in the Kir1.1 inward rectifier channel. Biophys J 2005; 88:2597-606. [PMID: 15653740 PMCID: PMC1305356 DOI: 10.1529/biophysj.104.051474] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The closed-state crystal structure of prokaryotic inward rectifier, KirBac1.1, has implicated four inner helical phenylalanines near the cytoplasmic side as a possible locus of the channel gate. In the present study, we investigate whether this structural feature corresponds to the physiological pH gate of the renal inward rectifier, Kir1.1 (ROMK, KCNJ1). Kir1.1 is endogenous to the mammalian renal collecting duct and the thick ascending limb of Henle and is strongly gated by internal pH in the physiological range. It has four leucines (L160-Kir1.1b), homologous to the phenylalanines of KirBac1.1, which could function as steric gates near the convergence of the inner (M2) helices. Replacing these Leu-160 residues of Kir1.1b by smaller glycines abolished pH gating; however, replacement with alanines, whose side chains are intermediate in size between leucine and glycine, did not eliminate normal pH gating. Furthermore, a double mutant, constructed by adding the I163M-Kir1.1b mutation to the L160G mutation, also lacked normal pH gating, although the I163M mutation by itself enhanced the pH sensitivity of the channel. In addition to size, side-chain hydrophobicity at 160-Kir1.1b was also important for normal pH gating. Mutants with polar side chains (L160S, L160T) did not gate normally and were as insensitive to internal pH as the L160G mutant. Hence, either small or highly polar side chains at 160-Kir1.1b stabilize the open state of the channel. A homology model of the Kir1.1 closed state, based on the crystal structure of KirBac1.1, was consistent with our electrophysiological data and implies that closure of the Kir1.1 pH gate results from steric occlusion of the permeation path by the convergence of four leucines at the cytoplasmic apex of the inner transmembrane helices. In the open state, K crosses the pH gate together with its hydration shell.
Collapse
Affiliation(s)
- Henry Sackin
- Department of Physiology and Biophysics, The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | | | | | | | |
Collapse
|
27
|
Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005; 85:319-71. [PMID: 15618483 PMCID: PMC2838721 DOI: 10.1152/physrev.00051.2003] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
K(+) channels are widely distributed in both plant and animal cells where they serve many distinct functions. K(+) channels set the membrane potential, generate electrical signals in excitable cells, and regulate cell volume and cell movement. In renal tubule epithelial cells, K(+) channels are not only involved in basic functions such as the generation of the cell-negative potential and the control of cell volume, but also play a uniquely important role in K(+) secretion. Moreover, K(+) channels participate in the regulation of vascular tone in the glomerular circulation, and they are involved in the mechanisms mediating tubuloglomerular feedback. Significant progress has been made in defining the properties of renal K(+) channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure. Such progress has been made possible by the application of single-channel analysis and the successful cloning of K(+) channels of renal origin.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Extracellular K must be kept within a narrow concentration range for the normal function of neurons, skeletal muscle, and cardiac myocytes. Maintenance of normal plasma K is achieved by a dual mechanism that includes extrarenal factors such as insulin and beta-adrenergic agonists, which stimulate the movement of K from extracellular to intracellular fluid and modulate renal K excretion. Dietary K intake is an important factor for the regulation of K secretion: An increase in K intake stimulates secretion, whereas a decrease inhibits K secretion and enhances absorption. This effect of changes in dietary K intake on tubule K transport is mediated by aldosterone-dependent and -independent mechanisms. Recently, it has been demonstrated that the protein tyrosine kinase (PTK)-dependent signal transduction pathway is an important aldosterone-independent regulatory mechanism that mediates the effect of altered K intake on K secretion. A low-K intake stimulates PTK activity, which leads to increase in phosphorylation of cloned inwardly rectifying renal K (ROMK) channels, whereas a high-K intake has the opposite effect. Stimulation of tyrosine phosphorylation also suppresses K secretion in principal cell by facilitating the internalization of apical K channels in the collecting duct.
Collapse
Affiliation(s)
- WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| |
Collapse
|
29
|
Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA. Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. J Biol Chem 2003; 278:23066-75. [PMID: 12684516 DOI: 10.1074/jbc.m212301200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Kir1.1 (ROMK) subtypes of inward rectifier K+ channels mediate potassium secretion and regulate sodium chloride reabsorption in the kidney. The density of ROMK channels on the cortical collecting duct apical membrane is exquisitely regulated in concert with physiological demands. Although protein kinase A-dependent phosphorylation of one of the three phospho-acceptors in Kir1.1, Ser-44, also a canonical serum-glucocorticoid-regulated kinase (SGK-1) phosphorylation site, controls the number of active channels, it is unknown whether this involves activating dormant channels already residing on the plasma membrane or recruiting new channels to the cell surface. Here we explore the mechanism and test whether SGK-1 phosphorylation of ROMK regulates cell surface expression. Removal of the phosphorylation site by point mutation (Kir1.1, S44A) dramatically attenuated the macroscopic current density in Xenopus oocytes. As measured by antibody binding of external epitope-tagged forms of Kir1.1, surface expression of Kir1.1 S44A was inhibited, paralleling the reduction in macroscopic current. In contrast, surface expression and macroscopic current density was augmented by a phosphorylation mimic mutation, Kir1.1 S44D. In vitro phosphorylation assays revealed that Ser-44 is a substrate of SGK-1 phosphorylation, and expression of SGK-1 with the wild type channel increased channel density to the same level as the phosphorylation mimic mutation. Moreover, the stimulatory effect of SGK-1 was completely abrogated by mutation of the phosphorylation site. In conclusion, SGK-1 phosphorylation of Kir1.1 drives expression on the plasmalemma. Because SGK-1 is an early aldosterone-induced gene, our results suggest a possible molecular mechanism for aldosterone-dependent regulation of the secretory potassium channel in the kidney.
Collapse
Affiliation(s)
- Dana Yoo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gallazzini M, Attmane-Elakeb A, Mount DB, Hebert SC, Bichara M. Regulation by glucocorticoids and osmolality of expression of ROMK (Kir 1.1), the apical K channel of thick ascending limb. Am J Physiol Renal Physiol 2003; 284:F977-86. [PMID: 12540364 DOI: 10.1152/ajprenal.00255.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms of regulation of ROMK channel mRNA and protein expression in medullary thick ascending limb (MTAL) were assessed in rat MTAL fragments incubated for 7 h. ROMK mRNA was quantified by quantitative RT-PCR and ROMK protein by immunoblotting analysis of crude membranes. Medium hyperosmolality (450 mosmol/kgH(2)O; NaCl plus urea added to isoosmotic medium) increased ROMK mRNA (P < 0.04) and protein (P < 0.006), and 10 nM dexamethasone also increased ROMK mRNA (P < 0.02). Hyperosmolality and dexamethasone had no additive effects on ROMK mRNA. NaCl alone, but not urea or mannitol, reproduced the hyperosmolality effect on ROMK mRNA. 1-Deamino-(8-d-arginine) vasopressin (1 nM) or 0.5 mM 8-bromo-cAMP had no effect per se on ROMK mRNA and protein. However, 8-bromo-cAMP abolished the stimulatory effect of dexamethasone on ROMK mRNA in the isoosmotic but not in the hyperosmotic medium (P < 0.004). In in vivo studies, the abundance of ROMK protein and mRNA increased in adrenalectomized (ADX) rats infused with dexamethasone compared with ADX rats (P < 0.02). These results establish glucocorticoids and medium NaCl concentration as direct regulators of MTAL ROMK mRNA and protein expression, which may be modulated by cAMP-dependent factors.
Collapse
Affiliation(s)
- Morgan Gallazzini
- Institut National de la Santé et de la Recherche Médicale U.426, Institut Fédératif Régional Claude Bernard, Faculté de Médecine Xavier Bichat, Université Paris 7, 75018 Paris, France
| | | | | | | | | |
Collapse
|
31
|
Sackin H, Vasilyev A, Palmer LG, Krambis M. Permeant cations and blockers modulate pH gating of ROMK channels. Biophys J 2003; 84:910-21. [PMID: 12547773 PMCID: PMC1302669 DOI: 10.1016/s0006-3495(03)74908-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
External potassium (K) activates the inward rectifier ROMK (K(ir)1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open Xenopus oocyte preparation. Elevating extracellular K from 1 mM to 10 mM to 100 mM activated ROMK channels by shifting their apparent pK(a) from 7.2 +/- 0.1 (n = 6) in 1 mM K, to 6.9 +/- 0.02 (n = 5) in 10 mM K, and to 6.6 +/- 0.03 (n = 5) in 100 mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1 mM external K) by shifting the apparent pK(a) of ROMK from 7.2 +/- 0.1 (n = 6) in 1 mM K to 6.8 +/- 0.01 (n = 4) in 1 mM K + 104 mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1 mM K and caused a comparable shift in apparent pK(a). These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.
Collapse
Affiliation(s)
- H Sackin
- Department of Physiology and Biophysics, The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | | | | | |
Collapse
|
32
|
Flagg TP, Yoo D, Sciortino CM, Tate M, Romero MF, Welling PA. Molecular mechanism of a COOH-terminal gating determinant in the ROMK channel revealed by a Bartter's disease mutation. J Physiol 2002; 544:351-62. [PMID: 12381810 PMCID: PMC2290610 DOI: 10.1113/jphysiol.2002.027581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ROMK subtypes of inward-rectifier K(+) channels mediate potassium secretion and regulate NaCl reabsorption in the kidney. Loss-of-function mutations in this pH-sensitive K(+) channel cause Bartter's disease, a familial salt wasting nephropathy. One disease-causing mutation truncates the extreme COOH-terminus and induces a closed gating conformation. Here we identify a region within the deleted domain that plays an important role in pH-dependent gating. The domain contains a structural element that functionally interacts with the pH sensor in the cytoplasmic NH(2)-terminus to set a physiological range of pH sensitivity. Removal of the domain shifts the pK(a) towards alkaline pH values, causing channel inactivation under physiological conditions. Suppressor mutations within the pH sensor rescued channel gating and trans addition of the cognate peptide restored pH sensitivity. A specific interdomain interaction was revealed in an in vitro protein-protein binding assay between the NH(2)- and COOH-terminal cytoplasmic domains expressed as bacterial fusion proteins. These results provide new insights into the molecular mechanisms underlying Kir channel regulation and channel gating defects that are associated with Bartter's disease.
Collapse
Affiliation(s)
- Thomas P Flagg
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
33
|
Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter's) knockout mice. J Biol Chem 2002; 277:37881-7. [PMID: 12130653 PMCID: PMC4426997 DOI: 10.1074/jbc.m206644200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ROMK (Kir1.1; Kcnj1) gene is believed to encode the apical small conductance K(+) channels (SK) of the thick ascending limb (TAL) and cortical collecting duct (CCD). Loss-of-function mutations in the human ROMK gene cause Bartter's syndrome with renal Na(+) wasting, consistent with the role of this channel in apical K(+) recycling in the TAL that is crucial for NaCl reabsorption. However, the mechanism of renal K(+) wasting and hypokalemia that develop in individuals with ROMK Bartter's syndrome is not apparent given the proposed loss of the collecting duct SK channel. Thus, we generated a colony of ROMK null mice with approximately 25% survival to adulthood that provides a good model for ROMK Bartter's syndrome. The remaining 75% of null mice die in less than 14 days after birth. The surviving ROMK null mice have normal gross renal morphology with no evidence of significant hydronephrosis, whereas non-surviving null mice exhibit marked hydronephrosis. ROMK protein expression was absent in TAL and CCD from null mice but exhibited normal abundance and localization in wild-type littermates. ROMK null mice were polyuric and natriuretic with an elevated hematocrit consistent with mild extracellular volume depletion. SK channel activity in TAL and CCD was assessed by patch clamp analysis in ROMK wild-type ROMK(+/+), heterozygous ROMK(+/-), and null ROMK(-/-) mice. In 313 patches with successful seals from the three ROMK genotypes, SK channel activity in ROMK (+/+ and +/-) exhibited normal single channel kinetics. The expression frequencies are as follows: 67 (TAL) and 58% (CCD) in ROMK(+/+); about half that of the wild-type in ROMK(+/-), being 38 (TAL) and 25% (CCD); absent in both TAL or CCD in ROMK(-/-) between 2 and 5 weeks in 15 mice (61 and 66 patches, respectively). The absence of SK channel activity in ROMK null mice demonstrates that ROMK is essential for functional expression of SK channels in both TAL and CCD. Despite loss of ROMK expression, the normokalemic null mice exhibited significantly increased kaliuresis, indicating alternative mechanisms for K(+) absorption/secretion in the nephron.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark A. Knepper
- Laboratory of Kidney and Electrolyte Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | | | - Gary E. Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524
| | | |
Collapse
|
34
|
Nakamura K, Hirano J, Itazawa SI, Kubokawa M. Protein kinase G activates inwardly rectifying K(+) channel in cultured human proximal tubule cells. Am J Physiol Renal Physiol 2002; 283:F784-91. [PMID: 12217870 DOI: 10.1152/ajprenal.00023.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An ATP-regulated inwardly rectifying K(+) channel, whose activity is enhanced by PKA, is present in the plasma membrane of cultured human proximal tubule cells. In this study, we investigated the effects of PKG on this K(+) channel, using the patch-clamp technique. In cell-attached patches, bath application of a membrane-permeant cGMP analog, 8-bromoguanosine 3',5'-monophosphate (8-BrcGMP; 100 microM), stimulated channel activity, whereas application of a PKG-specific inhibitor, KT-5823 (1 microM), reduced the activity. Channel activation induced by 8-BrcGMP was observed even in the presence of a PKA-specific inhibitor, KT-5720 (500 nM), which was abolished by KT-5823. Direct effects of cGMP and PKG were examined with inside-out patches in the presence of 1 mM MgATP. Although cytoplasmic cGMP (100 microM) alone had little effect on channel activity, subsequent addition of PKG (500 U/ml) enhanced it. Furthermore, bath application of atrial natriuretic peptide (ANP; 20 nM) in cell-attached patches stimulated channel activity, which was blocked by KT-5823. In conclusion, cGMP/PKG-dependent processes participate in activating the ATP-regulated K(+) channel and producing the stimulatory effect of ANP on channel activity.
Collapse
Affiliation(s)
- Kazuyoshi Nakamura
- Department of Physiology II, Iwate Medical University School of Medicine, Morioka 020-8505, Japan
| | | | | | | |
Collapse
|
35
|
Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB. Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. THE PLANT CELL 2002; 14:1133-46. [PMID: 12034902 PMCID: PMC150612 DOI: 10.1105/tpc.000943] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Accepted: 02/18/2002] [Indexed: 05/17/2023]
Abstract
The AKT2 K(+) channel is endowed with unique functional properties, being the only weak inward rectifier characterized to date in Arabidopsis. The gene is expressed widely, mainly in the phloem but also at lower levels in leaf epiderm, mesophyll, and guard cells. The AKT2 mRNA level is upregulated by abscisic acid. By screening a two-hybrid cDNA library, we isolated a protein phosphatase 2C (AtPP2CA) involved in abscisic acid signaling as a putative partner of AKT2. We further confirmed the interaction by in vitro binding studies. The expression of AtPP2CA (beta-glucuronidase reporter gene) displayed a pattern largely overlapping that of AKT2 and was upregulated by abscisic acid. Coexpression of AtPP2CA with AKT2 in COS cells and Xenopus laevis oocytes was found to induce both an inhibition of the AKT2 current and an increase of the channel inward rectification. Site-directed mutagenesis and pharmacological analysis revealed that this functional interaction involves AtPP2CA phosphatase activity. Regulation of AKT2 activity by AtPP2CA in planta could allow the control of K(+) transport and membrane polarization during stress situations.
Collapse
Affiliation(s)
- Isabelle Chérel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004 Agro-M/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Montpellier II, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wei Y, Wang WH. Role of the cytoskeleton in mediating effect of vasopressin and herbimycin A on secretory K channels in CCD. Am J Physiol Renal Physiol 2002; 282:F680-6. [PMID: 11880329 DOI: 10.1152/ajprenal.00229.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that inhibiting protein tyrosine kinase (PTK) and stimulating protein kinase A (PKA) increase the activity of the small-conductance K (SK) channel in the cortical collecting duct (CCD) of rat kidneys (Cassola AC, Giebisch G, and Wang WH. Am J Physiol Renal Fluid Electrolyte Physiol 264: F502-F509, 1993; Wang WH, Lerea KM, Chan M, and Giebisch G. Am J Physiol Renal Physiol 278: F165-F171, 2000). In the present study, we used the patch-clamp technique to study the role of the cytoskeleton in mediating the effect of herbimycin A, an inhibitor of PTK, and vasopressin on the SK channels in the CCD. The addition of colchicine, an inhibitor of microtubule assembly, or taxol, an agent that blocks microtubule reconstruction, had no significant effect on channel activity. However, colchicine and taxol treatment completely abolished the stimulatory effect of herbimycin A on the SK channels in the CCD. Removal of the microtubule inhibitors restored the stimulatory effect of herbimycin A. In contrast, treatment of the tubules with either taxol or colchicine did not block the stimulatory effect of vasopressin on the SK channels. Moreover, the effect of herbimycin A on the SK channels was also absent in the CCDs treated with either cytochalasin D or phalloidin. In contrast, the stimulatory effect of vasopressin was still observed in the tubules treated with phalloidin. However, cytochalasin D treatment abolished the effect of vasopressin on the SK channels. Finally, the effects of vasopressin and herbimycin A are additive because inhibiting PTK can still increase the channel activity in CCD that has been challenged by vasopressin. We conclude that an intact cytoskeleton is required for the effect on the SK channels of inhibiting PTK and that the SK channels that are activated by inhibiting PTK were differently regulated from those stimulated by vasopressin.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
37
|
Abstract
Renal outer medulla K (ROMK) channels play an important role in K recycling in the thick ascending limb and in K secretion in the cortical collecting duct. ROMK1, a member of the ROMK family, has been shown to be a substrate for protein tyrosine kinase (PTK). The tyrosine phosphorylation of ROMK channels increases with low dietary K intake and decreases with high dietary K intake. Moreover, the stimulation of tyrosine phosphorylation of ROMK1 channels decreases the number of K channels by facilitating endocytosis. In contrast, the stimulation of tyrosine dephosphorylation increases the number of ROMK1 channels in the cell membrane by enhancing membrane insertion. PTK and tyrosine phosphatase-induced regulation of ROMK1 channels play a key role in mediating the effect of the dietary K intake on renal K secretion.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
38
|
Abstract
Many transport functions in renal tubules depend on potassium (K) channels. Not only does K secretion and the maintenance of external K balance depend on K channel activity in principal tubule cells, but K channels also regulate cell volume; they are an integral party of cell function in all tubule cells because of their key role in the generation of the cell-negative electrical potential that affects the transmembrane movement of many charged solutes. Moreover, the recycling of K across the apical membrane of the thick ascending limb (TAL) plays an important role in the control of NaCl reabsorption in this tubule segment. Significant progress in our understanding of the structure and function of renal K channels has become possible by combining several strategies. These include transport studies in single tubules, application of the patch-clamp technique for exploring the properties of single K channels in native tubules and the cloning, and expression of diverse K channels of renal origin. Insights from these investigations promise to provide a deeper understanding of the mechanism by which K channels participate in many diverse tubule functions.
Collapse
Affiliation(s)
- G Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA
| |
Collapse
|
39
|
Nakamura K, Hirano J, Kubokawa M. An ATP-regulated and pH-sensitive inwardly rectifying K(+) channel in cultured human proximal tubule cells. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:523-30. [PMID: 11564289 DOI: 10.2170/jjphysiol.51.523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although renal K(+) channels along the nephron have been explored in various animal species, little is known about the K(+) channels in human proximal tubule cells. Using the patch-clamp technique, we investigated the properties of an inwardly rectifying K(+) channel present in the surface membrane of cultured human proximal tubule cells of normal kidney origin. This channel was the most frequently observed K(+) channel in cell-attached patches, and cytoplasmic ATP was required to maintain channel activity in inside-out patches. Its single channel conductance was about 42 pS for inward currents and 7 pS for outward currents under the symmetrical K(+) condition. The ATP effect on channel activity was dose-dependently stimulatory within a range of 0.1 to 10 mM, and a nonhydrolyzable ATP analog, AMP-PNP (3 mM), had no effect on channel activity in either the presence or absence of ATP (1 mM). The channel activity observed in cell-attached patches was reduced to 30 to 50% of controls by a membrane-permeable nonspecific protein kinase inhibitor, K252a (1 microM), or a potent protein kinase A inhibitor, KT5720 (500 nM). In contrast, a membrane-permeable cAMP analog, 8Br-cAMP (100 microM), induced a twofold increase in channel activity. The addition of a catalytic subunit of protein kinase A (PKA-CS, 100 U/ml) to the bath in inside-out patches stimulated channel activity in the presence of 1 mM ATP. Furthermore, the channel activity maintained with 1 mM ATP in inside-out patches was suppressed by internal acidification and enhanced by alkalization. These results suggest that the activity of the inwardly rectifying K(+) channel in cultured human proximal tubule cells was ATP-dependent and regulated at least in part by cAMP/PKA-mediated phosphorylation processes and intracellular pH.
Collapse
Affiliation(s)
- K Nakamura
- Department of Physiology II, School of Medicine, Iwate Medical University, Morioka, 020-8505, Japan.
| | | | | |
Collapse
|
40
|
Kaheinen P, Pollesello P, Levijoki J, Haikala H. Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 2001; 37:367-74. [PMID: 11300649 DOI: 10.1097/00005344-200104000-00003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Levosimendan, a novel calcium sensitizer developed for the treatment of acute heart failure, is an inodilator that increases coronary flow. Because it was recently shown that levosimendan stimulates potassium current through K(ATP) channels in isolated rat arterial cells, our aim was to assess whether the levosimendan-induced increase in coronary flow is due to the opening of the K(ATP) channels in coronary smooth muscle. The effect of levosimendan on the diastolic coronary flow velocity (DCFV) was measured in the Langendorff perfused spontaneously beating guinea-pig heart in the absence and presence of glibenclamide. Pinacidil was used as a reference compound, and the protein kinase C inhibitor bisindolylmaleimide was used to study the dilatory effect of levosimendan when the K(ATP) channels in smooth muscle are not inhibited by PKC-dependent phosphorylation. Levosimendan (0.01-1 microM) increased DCFV concentration-dependently and was noncompetitively antagonized by 0.1 microM glibenclamide, whereas pinacidil was inhibited competitively by glibenclamide. In the presence of glibenclamide the positive inotropic and chronotropic effects of levosimendan were unaltered. The effect of bisindolylmaleimide and levosimendan on DCFV was additive. The results indicate that levosimendan induced coronary vasodilation through the opening of the K(ATP) channels. Levosimendan and pinacidil probably have different binding sites on the K(ATP) channels. The additive effect of bisindolylmaleimide and levosimendan on the increase of DCFV suggests that the latter binds to the unphosphorylated form of the channel.
Collapse
Affiliation(s)
- P Kaheinen
- Orion Pharma, Drug Discovery and Pharmacology, Cardiovascular Research, Espoo, Finland.
| | | | | | | |
Collapse
|
41
|
Moral Z, Dong K, Wei Y, Sterling H, Deng H, Ali S, Gu R, Huang XY, Hebert SC, Giebisch G, Wang WH. Regulation of ROMK1 channels by protein-tyrosine kinase and -tyrosine phosphatase. J Biol Chem 2001; 276:7156-63. [PMID: 11114300 PMCID: PMC2822675 DOI: 10.1074/jbc.m008671200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used the two-electrode voltage clamp technique and the patch clamp technique to investigate the regulation of ROMK1 channels by protein-tyrosine phosphatase (PTP) and protein-tyrosine kinase (PTK) in oocytes coexpressing ROMK1 and cSrc. Western blot analysis detected the presence of the endogenous PTP-1D isoform in the oocytes. Addition of phenylarsine oxide (PAO), an inhibitor of PTP, reversibly reduced K(+) current by 55% in oocytes coinjected with ROMK1 and cSrc. In contrast, PAO had no significant effect on K(+) current in oocytes injected with ROMK1 alone. Moreover, application of herbimycin A, an inhibitor of PTK, increased K(+) current by 120% and completely abolished the effect of PAO in oocytes coexpressing ROMK1 and cSrc. The effects of herbimycin A and PAO were absent in oocytes expressing the ROMK1 mutant R1Y337A in which the tyrosine residue at position 337 was mutated to alanine. However, addition of exogenous cSrc had no significant effect on the activity of ROMK1 channels in inside-out patches. Moreover, the effect of PAO was completely abolished by treatment of oocytes with 20% sucrose and 250 microg/ml concanavalin A, agents that inhibit the endocytosis of ROMK1 channels. Furthermore, the effect of herbimycin A is absent in the oocytes pretreated with either colchicine, an inhibitor of microtubules, or taxol, an agent that freezes microtubules. We conclude that PTP and PTK play an important role in regulating ROMK1 channels. Inhibiting PTP increases the internalization of ROMK1 channels, whereas blocking PTK stimulates the insertion of ROMK1 channels.
Collapse
Affiliation(s)
- Zebunnessa Moral
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Ke Dong
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Yuan Wei
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Hyacinth Sterling
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Huan Deng
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Shariq Ali
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - RuiMin Gu
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Xin-Yun Huang
- Department of Physiology, Cornell University Medical College, New York, New York 10021
| | - Steven C. Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Gerhard Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| |
Collapse
|
42
|
Abstract
The effect of external potassium (K) and cesium (Cs) on the inwardly rectifying K channel ROMK2 (K(ir)1.1b) was studied in Xenopus oocytes. Elevating external K from 1 to 10 mM increased whole-cell outward conductance by a factor of 3.4 +/- 0.4 in 15 min and by a factor of 5.7 +/- 0.9 in 30 min (n = 22). Replacing external Na by Cs blocked inward conductance but increased whole-cell conductance by a factor of 4.5 +/- 0.5 over a period of 40 min (n = 15). In addition to this slow increase in conductance, there was also a small, rapid increase in conductance that occurred as soon as ROMK was exposed to external cesium or 10 mM K. This rapid increase could be explained by the observed increase in ROMK single-channel conductance from 6.4 +/- 0.8 pS to 11.1 +/- 0.8 pS (10 mM K, n = 8) or 11.7 +/- 1.2 pS (Cs, n = 8). There was no effect of either 10 mM K or cesium on the high open probability (P(o) = 0.97 +/- 0.01; n = 12) of ROMK outward currents. In patch-clamp recordings, the number of active channels increased when the K concentration at the outside surface was raised from 1 to 50 mM K. In cell-attached patches, exposure to 50 mM external K produced one or more additional channels in 9/16 patches. No change in channel number was observed in patches continuously exposed to 50 mM external K. Hence, the slow increase in whole-cell conductance is interpreted as activation of pre-existing ROMK channels that had been inactivated by low external K. This type of time-dependent channel activation was not seen with IRK1 (K(ir)2.1) or in ROMK2 mutants in which any one of 6 residues, F129, Q133, E132, V121, L117, or K61, were replaced by their respective IRK1 homologs. These results are consistent with a model in which ROMK can exist in either an activated mode or an inactivated mode. Within the activated mode, individual channels undergo rapid transitions between open and closed states. High (10 mM) external K or Cs stabilizes the activated mode, and low external K stabilizes the inactivated mode. Mutation of a pH-sensing site (ROMK2-K61) prevents transitions from activated to inactivated modes. This is consistent with a direct effect of external K or Cs on the gating of ROMK by internal pH.
Collapse
Affiliation(s)
- H Sackin
- Department of Physiology and Biophysics, The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
The mammalian collecting duct plays a dominant role in regulating K(+) excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K(+), whereas under K(+) depletion, the intercalated cell reabsorbs K(+). Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K(+) channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K(+) secretion and reabsorption. This review summarizes K(+) transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K(+) transport is regulated in the collecting duct.
Collapse
Affiliation(s)
- S Muto
- Department of Nephrology, Jichi Medical School, Minamikawachi, Tochigi, Japan.
| |
Collapse
|
44
|
Knepper MA, Valtin H, Sands JM. Renal Actions of Vasopressin. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Kamsteeg EJ, Heijnen I, van Os CH, Deen PM. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 2000; 151:919-30. [PMID: 11076974 PMCID: PMC2169442 DOI: 10.1083/jcb.151.4.919] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In renal principal cells, vasopressin regulates the shuttling of the aquaporin (AQP)2 water channel between intracellular vesicles and the apical plasma membrane. Vasopressin-induced phosphorylation of AQP2 at serine 256 (S256) by protein kinase A (PKA) is essential for its localization in the membrane. However, phosphorylated AQP2 (p-AQP2) has also been detected in intracellular vesicles of noninduced principal cells. As AQP2 is expressed as homotetramers, we hypothesized that the number of p-AQP2 monomers in a tetramer might be critical for the its steady state distribution. Expressed in oocytes, AQP2-S256D and AQP2-S256A mimicked p-AQP2 and non-p-AQP2, respectively, as routing and function of AQP2-S256D and wild-type AQP2 (wt-AQP2) were identical, whereas AQP2-S256A was retained intracellularly. In coinjection experiments, AQP2-S256A and AQP2-S256D formed heterotetramers. Coinjection of different ratios of AQP2-S256A and AQP2-S256D cRNAs revealed that minimally three AQP2-S256D monomers in an AQP2 tetramer were essential for its plasma membrane localization. Therefore, our results suggest that in principal cells, minimally three monomers per AQP2 tetramer have to be phosphorylated for its steady state localization in the apical membrane. As other multisubunit channels are also regulated by phosphorylation, it is anticipated that the stoichiometry of their phosphorylated and nonphosphorylated subunits may fine-tune the activity or subcellular localization of these complexes.
Collapse
Affiliation(s)
- E J Kamsteeg
- Department of Cell Physiology, University Medical Center, St. Radboud, 6500HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
46
|
Leipziger J, MacGregor GG, Cooper GJ, Xu J, Hebert SC, Giebisch G. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values. Am J Physiol Renal Physiol 2000; 279:F919-26. [PMID: 11053053 DOI: 10.1152/ajprenal.2000.279.5.f919] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Close similarity between the rat native low-conductance K(+) channel in the apical membrane of renal cortical collecting duct principal cells and the cloned rat ROMK channel strongly suggest that the two are identical. Prominent features of ROMK regulation are a steep pH dependence and activation by protein kinase A (PKA)-dependent phosphorylation. In this study, we investigated the pH dependence of cloned renal K(+) channel (ROMK2), wild-type (R2-WT), and PKA site mutant channels (R2-S25A, R2-S200A, and R2-S294A). Ba(2+)-sensitive outward whole cell currents (holding voltage -50 mV) were measured in two-electrode voltage-clamp experiments in Xenopus laevis oocytes expressing either R2-WT or mutant channels. Intracellular pH (pH(i)) was measured with pH-sensitive microelectrodes in a different group of oocytes from the same batch on the same day. Resting pH(i) of R2-WT and PKA site mutants was the same: 7.32 +/- 0.02 (n = 22). The oocytes were acidified by adding 3 mM Na butyrate with external pH (pH(o)) adjusted to 7.4, 6.9, 6.4, or 5.4. At pH(o) 7.4, butyrate led to a rapid (tau: 163 +/- 14 s, where tau means time constant, n = 4) and stable acidification of the oocytes (DeltapH(i) 0.13 +/- 0. 02 pH units, where Delta means change, n = 12). Intracellular acidification reversibly inhibited ROMK2-dependent whole cell current. The effective acidic dissociation constant (pK(a)) value of R2-WT was 6.92 +/- 0.03 (n = 8). Similarly, the effective pK(a) value of the N-terminal PKA site mutant R2-S25A was 6.99 +/- 0.02 (n = 6). The effective pK(a) values of the two COOH-terminal PKA site mutant channels, however, were significantly shifted to alkaline values; i.e., 7.15 +/- 0.06 (n = 5) for R2-S200A and 7.16 +/- 0.03 (n = 8) for R2-S294A. The apparent DeltapH shift between the R2-WT and the R2-S294A mutant was 0.24 pH units. In excised inside-out patches, alkaline pH 8.5 activated R2-S294A channel current by 32 +/- 6.7%, whereas in R2-WT channel patches alkalinzation only marginally increased current by 6.5 +/- 1% (n = 5). These results suggest that channel phosphorylation may substantially influence the pH sensitivity of ROMK2 channel. Our data are consistent with the hypothesis that in the native channel PKA activation involves a shift of the pK(a) value of ROMK channels to more acidic values, thus relieving a H(+)-mediated inhibition of ROMK channels.
Collapse
Affiliation(s)
- J Leipziger
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Giebisch G, Wang W. Renal tubule potassium channels: function, regulation and structure. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 170:153-73. [PMID: 11114953 DOI: 10.1046/j.1365-201x.2000.00770.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- G Giebisch
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
48
|
Schulte U, Fakler B. Gating of inward-rectifier K+ channels by intracellular pH. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5837-41. [PMID: 10998042 DOI: 10.1046/j.1432-1327.2000.01671.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inward rectifier K+ channels of the Kir1.1 (ROMK) and Kir4.1 subtype are predominantly expressed in epithelial cells where they are responsible for K+ transport across the plasma membrane. Uniquely among the members of the Kir family, these channels are gated by intracellular pH in the physiological range. pH-gating involves structural rearrangements in cytoplasmic domains and the P-loop of the Kir protein. The energy for the gating transition is delivered by protonation of a lysine residue that is located prior to the first transmembrane segment and serves as a 'pH sensor'. The anomalous titration required for lysine operating in the neutral pH range results from its close interaction with two positively charged arginines from the distant N- and C-termini termed the R/K/R triad. Disturbance of this triad as results from a number of point mutations found in patients with hyperprostaglandin E syndrome (HPS) increases the pKa of the pH sensor and results in channels being permanently inactivated under physiological conditions. This article will focus on the mechanism of pH-gating, its implications for the tertiary structure of Kir proteins and on its significance for the pathogenesis of HPS.
Collapse
Affiliation(s)
- U Schulte
- Department of Physiology II, University of Tübingen, Germany
| | | |
Collapse
|
49
|
Ortega B, Millar ID, Beesley AH, Robson L, White SJ. Stable, polarised, functional expression of Kir1.1b channel protein in Madin-Darby canine kidney cell line. J Physiol 2000; 528 Pt 1:5-13. [PMID: 11018101 PMCID: PMC2270111 DOI: 10.1111/j.1469-7793.2000.00005.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1. The family of Kir1.1 (ROMK) channel proteins constitute a secretory pathway for potassium in principal cells of cortical collecting duct and thick ascending limb of Henle's loop. Mutations in Kir1.1 account for some types of Bartter's syndrome. 2. Here we report that stable transfection of Kir1.1b (ROMK2) in Madin-Darby canine kidney (MDCK) cell line results in expression of inwardly rectifying K+ currents and transmonolayer electrical and transport properties appropriate to Kir1.1 function. When grown on permeable supports, transfected monolayers secreted K+ into the apical solution. This secretion was inhibited by application of barium to the apical membrane, or by reduction in expression temperature from 37 to 26 C. However, whole-cell voltage clamp electrophysiology showed that K+ conductance was higher in cells expressing Kir1.1b at 26C. 3. To investigate this further, Kir1.1b was tagged with (EGFP), a modification that did not affect channel activity. Protein synthesis was inhibited with cycloheximide. Spectrofluorimetry was used to compare protein degradation at 37 and 26 C. The increased level of Kir1.1b at the plasma membrane at 26 C was due to an increase in protein stability. 4. Confocal microscopic investigation of EGFP-Kir1. 1b fluorescence in transfected cells showed that the channel protein was targeted to the apical domain of the cell. 5. These results demonstrate that Kir1.1b is capable of appropriate trafficking and function in MDCK cell lines at physiological temperatures. In addition, expression of Kir1.1b in MDCK cell lines provides a useful and convenient tool for the study of functional activity and targeting of secretory K+ channels.
Collapse
Affiliation(s)
- B Ortega
- Laboratory for Membrane Protein Function, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
50
|
Lu M, MacGregor GG, Wang W, Giebisch G. Extracellular ATP inhibits the small-conductance K channel on the apical membrane of the cortical collecting duct from mouse kidney. J Gen Physiol 2000; 116:299-310. [PMID: 10919872 PMCID: PMC2229488 DOI: 10.1085/jgp.116.2.299] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used the patch-clamp technique to study the effects of changing extracellular ATP concentration on the activity of the small-conductance potassium channel (SK) on the apical membrane of the mouse cortical collecting duct. In cell-attached patches, the channel conductance and kinetics were similar to its rat homologue. Addition of ATP to the bathing solution of split-open single cortical collecting ducts inhibited SK activity. The inhibition of the channel by ATP was reversible, concentration dependent (K(i) = 64 microM), and could be completely prevented by pretreatment with suramin, a specific purinergic receptor (P(2)) blocker. Ranking of the inhibitory potency of several nucleotides showed strong inhibition by ATP, UTP, and ATP-gamma-S, whereas alpha, beta-Me ATP, and 2-Mes ATP failed to affect channel activity. This nucleotide sensitivity is consistent with P(2)Y(2) purinergic receptors mediating the inhibition of SK by ATP. Single channel analysis further demonstrated that the inhibitory effects of ATP could be elicited through activation of apical receptors. Moreover, the observation that fluoride mimicked the inhibitory action of ATP suggests the activation of G proteins during purinergic receptor stimulation. Channel inhibition by ATP was not affected by blocking phospholipase C and protein kinase C. However, whereas cAMP prevented channel blocking by ATP, blocking protein kinase A failed to abolish the inhibitory effects of ATP. The reduction of K channel activity by ATP could be prevented by okadaic acid, an inhibitor of protein phosphatases, and KT5823, an agent that blocks protein kinase G. Moreover, the effect of ATP was mimicked by cGMP and blocked by L-NAME (N(G)-nitro-l-arginine methyl ester). We conclude that the inhibitory effect of ATP on the apical K channel is mediated by stimulation of P(2)Y(2) receptors and results from increasing dephosphorylation by enhancing PKG-sensitive phosphatase activity.
Collapse
Affiliation(s)
- Ming Lu
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Gordon G. MacGregor
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Gerhard Giebisch
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|