1
|
Elmer BM, McAllister AK. Major histocompatibility complex class I proteins in brain development and plasticity. Trends Neurosci 2012; 35:660-70. [PMID: 22939644 DOI: 10.1016/j.tins.2012.08.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/27/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Proper development of the central nervous system (CNS) requires the establishment of appropriate connections between neurons. Recent work suggests that this process is controlled by a balance between synaptogenic molecules and proteins that negatively regulate synapse formation and plasticity. Surprisingly, many of these newly identified synapse-limiting molecules are classic 'immune' proteins. In particular, major histocompatibility complex class I (MHCI) molecules regulate neurite outgrowth, the establishment and function of cortical connections, activity-dependent refinement in the visual system, and long-term and homeostatic plasticity. This review summarizes our current understanding of MHCI expression and function in the CNS, as well as the potential mechanisms used by MHCI to regulate brain development and plasticity.
Collapse
Affiliation(s)
- Bradford M Elmer
- Center for Neuroscience, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
2
|
Major histocompatibility complex class I molecules modulate embryonic neuritogenesis and neuronal polarization. J Neuroimmunol 2012; 247:1-8. [PMID: 22503373 DOI: 10.1016/j.jneuroim.2012.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
Abstract
We studied cultured hippocampal neurons from embryonic wildtype, major histocompatibility complex class I (MHCI) heavy chain-deficient (K(b)D(b)-/-) and NSE-D(b) (which have elevated neuronal MHCI expression) C57BL/6 mice. K(b)D(b)-/- neurons displayed slower neuritogenesis and establishment of polarity, while NSE-D(b) neurons had faster neurite outgrowth, more primary neurites, and tended to have accelerated polarization. Additional studies with ß2M-/- neurons, exogenous ß2M, and a self-MHCI monomer suggest that free heavy chain cis interactions with other surface molecules can promote neuritogenesis while tripartite MHCI interactions with classical MHCI receptors can inhibit axon outgrowth. Together with the results of others, MHCI appears to differentially modulate neuritogenesis and synaptogenesis.
Collapse
|
3
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
MHCI negatively regulates synapse density during the establishment of cortical connections. Nat Neurosci 2011; 14:442-51. [PMID: 21358642 DOI: 10.1038/nn.2764] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/04/2011] [Indexed: 12/29/2022]
Abstract
Major histocompatibility complex class I (MHCI) molecules modulate activity-dependent refinement and plasticity. We found that MHCI also negatively regulates the density and function of cortical synapses during their initial establishment both in vitro and in vivo. MHCI molecules are expressed on cortical neurons before and during synaptogenesis. In vitro, decreasing surface MHCI (sMHCI) on neurons increased glutamatergic and GABAergic synapse density, whereas overexpression decreased it. In vivo, synapse density was higher throughout development in β2m(-/-) mice. MHCI also negatively regulated the strength of excitatory, but not inhibitory, synapses and controlled the balance of excitation and inhibition onto cortical neurons. sMHCI levels were modulated by activity and were necessary for activity to negatively regulate glutamatergic synapse density. Finally, acute changes in sMHCI and activity altered synapse density exclusively during early postnatal development. These results identify a previously unknown function for immune proteins in the negative regulation of the initial establishment and function of cortical connections.
Collapse
|
5
|
Santos SG, Antoniou AN, Sampaio P, Powis SJ, Arosa FA. Lack of tyrosine 320 impairs spontaneous endocytosis and enhances release of HLA-B27 molecules. THE JOURNAL OF IMMUNOLOGY 2006; 176:2942-9. [PMID: 16493052 DOI: 10.4049/jimmunol.176.5.2942] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several lines of evidence suggest that endocytosis of MHC class I molecules requires conserved motifs within the cytoplasmic domain. In this study, we show, in the C58 rat thymoma cell line transfected with HLA-B27 molecules, that replacement of the highly conserved tyrosine (Tyr320) in the cytoplasmic domain of HLA-B27 does not hamper cell surface expression of beta2-microglobulin H chain heterodimers or formation of misfolded molecules. However, Tyr320 replacement markedly impairs spontaneous endocytosis of HLA-B27. Although wild-type molecules are mostly internalized via endosomal compartments, Tyr320-mutated molecules remain at the plasma membrane in which partial colocalization with endogenous transferrin receptors can be observed, also impairing their endocytosis. Finally, we show that Tyr320 substitution enhances release of cleaved forms of HLA-B27 from the cell surface. These studies show for the first time that Tyr320 is most likely part of a cytoplasmic sorting motif involved in spontaneous endocytosis and shedding of MHC class I molecules.
Collapse
|
6
|
Abstract
After identification of the hereditary haemochromatosis gene HFE, and receipt of confirmation that most patients with the condition were homozygous for a single, founder mutation (C282Y), most assumed that C282Y would be a prevalent, highly penetrant mutation in a gene that plays a key part in the regulation of iron absorption and of whole-body iron homoeostasis. With carrier rates of between 10% and 15%, and a homozygote frequency of about one-in-150 in people of northern European descent, C282Y is certainly prevalent. However, it is not highly penetrant. The pronounced variation in phenotype in individuals with the same gene mutation has prompted the search for modifier genes at other loci, and for environmental factors that might affect expression of the condition. Progress in our understanding of how HFE regulates the absorption of dietary iron has been slow, but much can be learnt from the study of the rare instances of haemochromatosis that involve mutations in newly-identified iron-metabolism genes, such as TFR2--a transferrin receptor isoform--and ferroportin1/Ireg1/mtp1--an intestinal iron transporter. The availability of definitive information on penetrance and the identity of genetic modifiers will aid the debate on whether population screening for haemochromatosis should be undertaken or whether alternative strategies should be implemented to improve early detection.
Collapse
Affiliation(s)
- Adrian Bomford
- Institute of Liver Studies, king'sCollege hospital, London, UK
| |
Collapse
|
7
|
Malide D, Yewdell JW, Bennink JR, Cushman SW. The export of major histocompatibility complex class I molecules from the endoplasmic reticulum of rat brown adipose cells is acutely stimulated by insulin. Mol Biol Cell 2001; 12:101-14. [PMID: 11160826 PMCID: PMC30571 DOI: 10.1091/mbc.12.1.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2000] [Revised: 08/25/2000] [Accepted: 10/23/2000] [Indexed: 11/11/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules have been implicated in several nonimmunological functions including the regulation and intracellular trafficking of the insulin-responsive glucose transporter GLUT4. We have used confocal microscopy to compare the effects of insulin on the intracellular trafficking of MHC-I and GLUT4 in freshly isolated rat brown adipose cells. We also used a recombinant vaccinia virus (rVV) to express influenza virus hemagglutinin (HA) as a generic integral membrane glycoprotein to distinguish global versus specific enhancement of protein export from the endoplasmic reticulum (ER) in response to insulin. In the absence of insulin, MHC-I molecules largely colocalize with the ER-resident protein calnexin and remain distinct from intracellular pools of GLUT4. Surprisingly, insulin induces the rapid export of MHC-I molecules from the ER with a concomitant approximately three-fold increase in their level on the cell surface. This ER export is blocked by brefeldin A and wortmannin but is unaffected by cytochalasin D, indicating that insulin stimulates the rapid transport of MHC-I molecules from the ER to the plasma membrane via the Golgi complex in a phosphatidyl-inositol 3-kinase-dependent and actin-independent manner. We further show that the effect of insulin on MHC-I molecules is selective, because insulin does not affect the intracellular distribution or cell-surface localization of rVV-expressed HA. These results demonstrate that in rat brown adipose cells MHC-I molecule export from the ER is stimulated by insulin and provide the first evidence that the trafficking of MHC-I molecules is acutely regulated by a hormone.
Collapse
Affiliation(s)
- D Malide
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
8
|
Frumento G, Ottonello L, Bertolotto M, Franchello S, Melioli G, Dallegri F. Spontaneous apoptosis in neutrophils is associated with downregulation of HLA Class I and is prevented by ligation of Class I. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.6.873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Guido Frumento
- Immunogenetics Laboratory and Flow Cytometry Unit, National Institute for Cancer Research, Genoa, Italy; and
- Immunogenetics Laboratory and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luciano Ottonello
- Immunogenetics Laboratory and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Maria Bertolotto
- Immunogenetics Laboratory and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Silvia Franchello
- Immunogenetics Laboratory and Flow Cytometry Unit, National Institute for Cancer Research, Genoa, Italy; and
- Immunogenetics Laboratory and Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Giovanni Melioli
- Immunogenetics Laboratory and Flow Cytometry Unit, National Institute for Cancer Research, Genoa, Italy; and
| | - Franco Dallegri
- Immunogenetics Laboratory and Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
9
|
Affiliation(s)
- S I Taylor
- Diabetes Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Naranda T, Wong K, Kaufman RI, Goldstein A, Olsson L. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site. Proc Natl Acad Sci U S A 1999; 96:7569-74. [PMID: 10377456 PMCID: PMC22127 DOI: 10.1073/pnas.96.13.7569] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin.
Collapse
Affiliation(s)
- T Naranda
- Receptron, Inc., 835 Maude Avenue, Mountain View, CA 94043, USA.
| | | | | | | | | |
Collapse
|
11
|
Arosa FA, de Jesus O, Porto G, Carmo AM, de Sousa M. Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J Biol Chem 1999; 274:16917-22. [PMID: 10358038 DOI: 10.1074/jbc.274.24.16917] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calreticulin is an endoplasmic reticulum resident molecule known to be involved in the folding and assembly of major histocompatibility complex (MHC) class I molecules. In the present study, expression of calreticulin was analyzed in human peripheral blood T lymphocytes. Pulse-chase experiments in [35S]methionine-labeled T cell blasts showed that calreticulin was associated with several proteins in the endoplasmic reticulum and suggested that it was expressed at the cell surface. Indeed, the 60-kDa calreticulin was labeled by cell surface biotinylation and precipitated from the surface of activated T cells together with a protein with an apparent molecular mass of 46 kDa. Cell surface expression of calreticulin by activated T lymphocytes was further confirmed by immunofluorescence and flow cytometry, studies that showed that both CD8+ and CD4+ T cells expressed calreticulin in the plasma membrane. Low amounts of cell surface calreticulin were detected in resting T lymphocytes. By sequential immunoprecipitation using the conformation independent monoclonal antibody HC-10, we provided evidence that the cell surface 46-kDa protein co-precipitated with calreticulin is unfolded MHC I. These results show for the first time that after T cell activation, significant amounts of calreticulin are expressed on the T cell surface, where they are found in physical association with a pool of beta2-free MHC class I molecules.
Collapse
Affiliation(s)
- F A Arosa
- Laboratory of Molecular Immunology, Institute for Molecular and Cell Biology, University of Porto, 4150 Porto, Portugal.
| | | | | | | | | |
Collapse
|
12
|
Ramalingam TS, Chakrabarti A, Edidin M. Interaction of class I human leukocyte antigen (HLA-I) molecules with insulin receptors and its effect on the insulin-signaling cascade. Mol Biol Cell 1997; 8:2463-74. [PMID: 9398668 PMCID: PMC25720 DOI: 10.1091/mbc.8.12.2463] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1997] [Accepted: 09/22/1997] [Indexed: 02/05/2023] Open
Abstract
Insulin receptor (IR) and class I major histocompatibility complex molecules associate with one another in cell membranes, but the functional consequences of this association are not defined. We found that IR and human class I molecules (HLA-I) associate in liposome membranes and that the affinity of IR for insulin and its tyrosine kinase activity increase as the HLA:IR ratio increases over the range 1:1 to 20:1. The same relationship between HLA:IR and IR function was found in a series of B-LCL cell lines. The association of HLA-I and IR depends upon the presence of free HLA heavy chains. All of the effects noted were reduced or abrogated if liposomes or cells were incubated with excess HLA-I light chain, beta2-microglobulin. Increasing HLA:IR also enhanced phosphorylation of insulin receptor substrate-1 and the activation of phosphoinositide 3-kinase. HLA-I molecules themselves were phosphorylated on tyrosine and associated with phosphoinositide 3-kinase when B-LCL were stimulated with insulin.
Collapse
Affiliation(s)
- T S Ramalingam
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
13
|
Naranda T, Goldstein A, Olsson L. A peptide derived from an extracellular domain selectively inhibits receptor internalization: target sequences on insulin and insulin-like growth factor 1 receptors. Proc Natl Acad Sci U S A 1997; 94:11692-7. [PMID: 9326672 PMCID: PMC23593 DOI: 10.1073/pnas.94.21.11692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Certain peptides derived from the alpha1 domain of the major histocompatibility class I antigen complex (MHC-I) inhibit receptor internalization, increasing the steady-state number of active receptors on the cell surface and thereby enhancing the sensitivity to hormones and other agonists. These peptides self-assemble, and they also bind to MHC-I at the same site from which they are derived, suggesting that they could bind to receptor sites with significant sequence similarity. Receptors affected by MHC-I peptides do, indeed, have such sequence similarity, as illustrated here by insulin receptor (IR) and insulin-like growth factor-1 receptor. A synthetic peptide with sequence identical to a certain extracellular receptor domain binds to that receptor in a ligand-dependent manner and inhibits receptor internalization. Moreover, each such peptide is selective for its cognate receptor. An antibody to the IR peptide not only binds to IR and competes with the peptide but also inhibits insulin-dependent internalization of IR. These observations, and binding studies with deletion mutants of IR, indicate that the sequence QILKELEESSF encoded by exon 10 plays a key role in IR internalization. Our results illustrate a principle for identifying receptor-specific sites of importance for receptor internalization, and for enhancing sensitivity to hormones and other agonists.
Collapse
Affiliation(s)
- T Naranda
- Receptron, Inc., 835 Maude Avenue, Mountain View, CA 94043, USA.
| | | | | |
Collapse
|
14
|
Abstract
PROBLEM The conditions that permit the genetically dissimilar (haplo-non-identical) human fetus to evade rejection by its mothers immune system have been the subject of intense interest for several years. As the placental cells, which are in contact with maternal blood or tissue, are devoid of HLA class II antigens, the interest has focused on the expression of HLA class I molecules. METHOD OF STUDY Recent findings on the constitutive, transcriptional, and translational expression of HLA class I molecules on anatomically and morphologically different subpopulations of trophoblast cells will form the basis of this article. RESULTS The expression of HLA class I molecules in the trophoblast cells, forming the materno-fetal junctional zone is inhomogeneous. It differs depending on the differentiation and location of trophoblast cells within the placenta and furthermore on the stage of gestation. On the transcriptional level HLA-A, -B, -C, -E, and -G could be detected on individual trophoblast populations, whereas only HLA-C and HLA-G seem to be translated to protein. CONCLUSIONS The expression of HLA class I antigens by trophoblast cells is not simply suppressed. Instead, less polymorphic HLA-G and HLA-C antigens are carefully selected from the class I multigene family. This gives rise to the assumption that these two HLA class I molecules play an important role in the maintenance of pregnancy.
Collapse
Affiliation(s)
- A Hammer
- Department of Histology and Embryology, Karl-Franzens-University, Graz, Austria
| | | | | |
Collapse
|
15
|
de Santis C, Robbioni P, Longhi R, Carrow E, Siccardi AG, Beretta A. Role of HLA class I in HIV type 1-induced syncytium formation. AIDS Res Hum Retroviruses 1996; 12:1031-40. [PMID: 8827219 DOI: 10.1089/aid.1996.12.1031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neutralization of HIV-1 in vitro by anti-HLA class I antibodies suggests that class I molecules are involved in HIV-1 infection. HIV-infected cells can fuse with uninfected cells in a process that leads to the formation of multinucleated syncytia, involving an interaction between host and viral antigens expressed at the cell surfaces. We used a syncytium assay between the 8E5 cell line chronically infected with a pol-defective variant of LAV IIIb, and the CD4-positive cell line MOLT3, to study the role of HLA class I in HIV-1-induced cell fusion. By probing cells with a panel of anti-HLA monoclonal antibodies (MABs) we demonstrated that the fusion process is modulated specifically by C alleles of HLA class I expressed on uninfected cells but not by that on already infected cells. Addition of beta 2-microglobulin to the cocultures resulted in a dose-dependent enhancement in both the number and size of syncytia, whereas exogenous HLA-C-restricted peptides inhibited syncytium formation, implying that only certain conformational states of HLA class I are permissive for syncytium formation. Treatment of cocultures with HLA-Cw4-restricted peptides containing amino acid substitutions in the anchor residues showed that syncytium inhibition was dependent on conventional binding of the peptide inside the groove. The data indicate that HLA class I, in a conformation free of peptide but associated with beta 2-microglobulin, can directly influence virus-induced cell fusion.
Collapse
Affiliation(s)
- C de Santis
- DIBIT, S. Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Membrane transporter proteins are encoded by numerous genes that can be classified into several superfamilies, on the basis of sequence identity and biological function. Prominent examples include facilitative transporters, the secondary active symporters and antiporters driven by ion gradients, and active ABC (ATP binding cassette) transporters involved in multiple-drug resistance and targeting of antigenic peptides to MHC Class I molecules. Transported substrates range from nutrients and ions to a broad variety of drugs, peptides and proteins. Deleterious mutations of transporter genes may lead to genetic diseases or loss of cell viability. Transporter structure, function and regulation, genetic factors, and pharmaceutical implications are summarized in this review.
Collapse
Affiliation(s)
- W Sadée
- School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|