1
|
Drzewicka K, Zasłona Z. Metabolism-driven glycosylation represents therapeutic opportunities in interstitial lung diseases. Front Immunol 2024; 15:1328781. [PMID: 38550597 PMCID: PMC10973144 DOI: 10.3389/fimmu.2024.1328781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Metabolic changes are coupled with alteration in protein glycosylation. In this review, we will focus on macrophages that are pivotal in the pathogenesis of pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are an attractive therapeutic target. Examples presented in this review demonstrate that protein glycosylation regulates metabolism-driven immune responses in macrophages, with implications for fibrotic processes and granuloma formation. Targeting proteins that regulate glycosylation, such as fucosyltransferases, neuraminidase 1 and chitinase 1 could effectively block immunometabolic changes driving inflammation and fibrosis, providing novel avenues for therapeutic interventions.
Collapse
|
2
|
Desai S, Lång P, Näreoja T, Windahl SH, Andersson G. RANKL-dependent osteoclast differentiation and gene expression in bone marrow-derived cells from adult mice is sexually dimorphic. Bone Rep 2023; 19:101697. [PMID: 37485233 PMCID: PMC10359713 DOI: 10.1016/j.bonr.2023.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Sex-specific differences in bone integrity and properties are associated with age as well as the number and activity of cells involved in bone remodeling. The aim of this study was to investigate sex-specific differences in adhesion, proliferation, and differentiation of mouse bone marrow derived cells into osteoclasts. The adherent fraction of bone marrow- derived cells from 12-week-old male and female C57BL/6J mice were assessed for their adhesion, proliferation, and receptor activator of nuclear factor κB (RANKL)-induced differentiation into osteoclasts. Female bone marrow derived macrophages (BMDMs) displayed higher adhesion and proliferation ratio upon macrophage colony stimulating factor (M-CSF) (day 0) and M-CSF + RANKL (day 4) treatment, respectively. On the contrary, male BMDMs differentiated more efficiently into osteoclasts upon RANKL-treatment compared to females (day 5). To further understand these sex-specific differences at the gene expression level, BMDMs treated with M-CSF (day 0) and M-CSF + RANKL (day 4), were assessed for their differential expression of genes through RNA sequencing. M-CSF treatment resulted in 1106 differentially expressed genes, while RANKL-treatment gave 473 differentially expressed genes. Integrin, adhesion, and proliferation-associated genes were elevated in the M-CSF-treated female BMDMs. RANKL-treatment further enhanced the expression of the proliferation- associated genes, and of genes associated with inhibition of osteoclast differentiation in the females, while RANK-signaling-associated genes were upregulated in males. In conclusion, BMDM adhesion, proliferation and differentiation into osteoclasts are sex-specific and may be directed by the PI3K-Akt signaling pathway for proliferation, and the colony stimulating factor 1-receptor and the RANKLsignaling pathway for the differentiation.
Collapse
Affiliation(s)
- Suchita Desai
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Pernilla Lång
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Tuomas Näreoja
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
- Department of Life Technologies, University of Turku, Finland
| | - Sara H. Windahl
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| | - Göran Andersson
- Karolinska Institutet, Department of Laboratory Medicine - Division of Pathology, Huddinge, Sweden
| |
Collapse
|
3
|
Melanoma-conditioned medium promotes cytotoxic immune responses by murine bone marrow-derived monocytes despite their expression of 'M2' markers. Cancer Immunol Immunother 2019; 68:1455-1465. [PMID: 31444606 DOI: 10.1007/s00262-019-02381-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
Abstract
Macrophages have been shown to infiltrate a wide range of malignancies and are often considered to promote tumour survival, growth and spread. However, the source and behaviour of discrete tumour-associated macrophage populations are still poorly understood. Here we show a novel method for the rational development of bone marrow-derived monocytes appropriate for the study of processes which involve the contribution of circulating inflammatory monocytes. We have shown that in response to tumour-conditioned medium, these cells upregulate CD206 and CD115, markers traditionally associated with M2-type macrophages. Treated cells show reduced capacity for cytokine secretion but significantly impact CD4+ and CD8+ T-cell proliferation and polarization. Coculture with conditioned bone marrow-derived monocytes significantly reduced CD4+ T-cell proliferation but increased CD8+ T-cell proliferation and granzyme B expression with significant induction of IFNγ secretion by both CD4+ and CD8+ T cells, indicating that these cells may have a role in promoting anti-cancer immunity.
Collapse
|
4
|
Probst K, Stermann J, von Bomhard I, Etich J, Pitzler L, Niehoff A, Bluhm B, Xu HC, Lang PA, Chmielewski M, Abken H, Blissenbach B, Machova A, Papadopoulou N, Brachvogel B. Depletion of Collagen IX Alpha1 Impairs Myeloid Cell Function. Stem Cells 2018; 36:1752-1763. [DOI: 10.1002/stem.2892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/06/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Jacek Stermann
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Inga von Bomhard
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Lena Pitzler
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics; German Sport University Cologne; Cologne Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB); University of Cologne; Cologne Germany
| | - Björn Bluhm
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| | - Haifeng C. Xu
- Department of Molecular Medicine II, Medical Faculty; Heinrich Heine University; Düsseldorf Germany
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty; Heinrich Heine University; Düsseldorf Germany
| | - Markus Chmielewski
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
- Department I Internal Medicine, Medical Faculty; Cologne Germany
- RCI, Chair Gene-Immunotherapy; University Hospital Regensburg; Regensburg Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Cologne Germany
- Department I Internal Medicine, Medical Faculty; Cologne Germany
- RCI, Chair Gene-Immunotherapy; University Hospital Regensburg; Regensburg Germany
| | - Birgit Blissenbach
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty; University of Cologne; Cologne Germany
| | - Alzbeta Machova
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty; University of Cologne; Cologne Germany
| | - Nikoletta Papadopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty; University of Cologne; Cologne Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty; University of Cologne; Cologne Germany
- Center for Biochemistry, Medical Faculty; University of Cologne; Cologne Germany
| |
Collapse
|
5
|
Choo HJ, Canner JP, Vest KE, Thompson Z, Pavlath GK. A tale of two niches: differential functions for VCAM-1 in satellite cells under basal and injured conditions. Am J Physiol Cell Physiol 2017; 313:C392-C404. [PMID: 28701357 DOI: 10.1152/ajpcell.00119.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022]
Abstract
Cell-cell adhesion molecules play key roles in maintaining quiescence or promoting activation of various stem cells in their niche. Muscle stem cells called satellite cells (SC) are critical for skeletal muscle regeneration after injury, but little is known about the role of adhesion molecules in regulating the behavior of these stem cells. Vascular cell adhesion molecule-1 (VCAM-1) is a cell-cell adhesion protein expressed on quiescent and activated SC whose function is unknown in this context. We deleted Vcam1 from SC using an inducible Cre recombinase in young mice. In the injured niche, Vcam1-/- SC underwent premature lineage progression to a more differentiated state as well as apoptosis leading to a transient delay in myofiber growth during regeneration. Apoptosis was also increased in Vcam1-/- SC in vitro concomitant with decreased levels of phosphorylated Akt, a prosurvival signal activated by VCAM-1 signaling in other cell types. During muscle regeneration, we observed an influx of immune cells expressing α4 integrin, a component of the major, high-affinity VCAM-1 ligand, α4β1 integrin. Furthermore, α4 integrin mRNA and protein were induced in SC 2 days after injury. These results suggest that SC interact with other SC as well as immune cells through α4β1 integrin in the injured niche to promote expansion of SC. In the uninjured niche, multiple cell types also expressed α4 integrin. However, only basal fusion of Vcam1-/- SC with myofibers was decreased, contributing to decreased myofiber growth. These studies define differential roles for VCAM-1 in SC depending on the state of their niche.
Collapse
Affiliation(s)
- Hyo-Jung Choo
- Department of Pharmacology, Emory University, Atlanta, Georgia; and.,Department of Cell Biology, Emory University, Atlanta, Georgia
| | - James P Canner
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Katherine E Vest
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Zachary Thompson
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| |
Collapse
|
6
|
Guha P, Cunetta M, Somasundar P, Espat NJ, Junghans RP, Katz SC. Frontline Science: Functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression. J Leukoc Biol 2017; 102:201-208. [PMID: 28546503 DOI: 10.1189/jlb.5hi0716-322rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor expressing T cells (CAR-T) are a promising form of immunotherapy, but the influence of age-related immune changes on CAR-T production remains poorly understood. We showed that CAR-T cells from geriatric donors (gCAR-T) are functionally impaired relative to CAR-T from younger donors (yCAR-T). Higher transduction efficiencies and improved cell expansion were observed in yCAR-T cells compared with gCAR-T. yCAR-T demonstrated significantly increased levels of proliferation and signaling activation of phosphorylated (p)Erk, pAkt, pStat3, and pStat5. Furthermore, yCAR-T contained higher proportions of CD4 and CD8 effector memory (EM) cells, which are known to have enhanced cytolytic capabilities. Accordingly, yCAR-T demonstrated higher levels of tumor antigen-specific cytotoxicity compared with gCAR-T. Enhanced tumor killing by yCAR-T correlated with increased levels of perforin and granzyme B. yCAR-T had increased α5β1 integrin expression, a known mediator of retroviral transduction. We found that treatment with M-CSF or TGF-β1 rescued the impaired transduction efficiency of the gCAR-T by increasing the α5β1 integrin expression. Neutralization of α5β1 confirmed that this integrin was indispensable for CAR expression. Our study suggests that the increase of α5β1 integrin expression levels enhances CAR expression and thereby improves tumor killing by gCAR-T.
Collapse
Affiliation(s)
- Prajna Guha
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island, USA; and
| | - Marissa Cunetta
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island, USA; and
| | - Ponnandai Somasundar
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island, USA; and
| | - N Joseph Espat
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island, USA; and
| | - Richard P Junghans
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island, USA; and
| | - Steven C Katz
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, Providence, Rhode Island, USA; and .,Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Abstract
The secreted phosphorylated protein osteopontin (OPN) is expressed in a variety of tissues and bodily fluids, and is associated with pathologies including tissue injury, infection, autoimmune disease and cancer. Macrophages are ubiquitous, heterogeneous cells that mediate aspects of cell and tissue damage in all these pathologies. Here, the role of OPN in macrophage function is reviewed. OPN is expressed in macrophage cells in multiple pathologies, and the regulation of its expression in these cells has been described in vitro. The protein has been implicated in multiple functions of macrophages, including cytokine expression, expression of inducible nitric oxide synthase, phagocytosis and migration. Indeed, the role of OPN in cells of the macrophage lineage might underlie its physiological role in many pathologies. However, there are numerous instances where the published literature is inconsistent, especially in terms of OPN function in vitro. Although the heterogeneity of OPN and its receptors, or of macrophages themselves, might underlie some of these inconsistencies, it is important to understand the role of OPN in macrophage biology in order to exploit its function therapeutically.
Collapse
|
8
|
Cesar B, Abud APR, de Oliveira CC, Cardoso F, Bernardi RPD, Guimarães FSF, Gabardo J, de Freitas Buchi D. Treatment with at homeopathic complex medication modulates mononuclear bone marrow cell differentiation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:212459. [PMID: 19736221 PMCID: PMC3095418 DOI: 10.1093/ecam/nep119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 07/21/2009] [Indexed: 01/21/2023]
Abstract
A homeopathic complex medication (HCM), with immunomodulatory properties, is recommended for patients with depressed immune systems. Previous studies demonstrated that the medication induces an increase in leukocyte number. The bone marrow microenvironment is composed of growth factors, stromal cells, an extracellular matrix and progenitor cells that differentiate into mature blood cells. Mice were our biological model used in this research. We now report in vivo immunophenotyping of total bone marrow cells and ex vivo effects of the medication on mononuclear cell differentiation at different times. Cells were examined by light microscopy and cytokine levels were measured in vitro. After in vivo treatment with HCM, a pool of cells from the new marrow microenvironment was analyzed by flow cytometry to detect any trend in cell alteration. The results showed decreases, mainly, in CD11b and TER-119 markers compared with controls. Mononuclear cells were used to analyze the effects of ex vivo HCM treatment and the number of cells showing ring nuclei, niche cells and activated macrophages increased in culture, even in the absence of macrophage colony-stimulating factor. Cytokines favoring stromal cell survival and differentiation in culture were induced in vitro. Thus, we observe that HCM is immunomodulatory, either alone or in association with other products.
Collapse
Affiliation(s)
- Beatriz Cesar
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Ana Paula R. Abud
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Carolina C. de Oliveira
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Raffaello Popa Di Bernardi
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Fernando S. F. Guimarães
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Juarez Gabardo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Dorly de Freitas Buchi
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
9
|
Abshire MY, Thomas KS, Owen KA, Bouton AH. Macrophage motility requires distinct α5β1/FAK and α4β1/paxillin signaling events. J Leukoc Biol 2010; 89:251-7. [PMID: 21084629 DOI: 10.1189/jlb.0710395] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Macrophages function as key inflammatory mediators at sites of infection and tissue damage. Integrin and growth factor receptors facilitate recruitment of monocytes/macrophages to sites of inflammation in response to numerous extracellular stimuli. We have shown recently that FAK plays a role in regulating macrophage chemotaxis and invasion. As FAK is an established downstream mediator of integrin signaling, we sought to define the molecular circuitry involving FAK and the predominant β1 integrin heterodimers expressed in these cells-α4β1 and α5β1. We show that α4β1 and α5β1 integrins are required for efficient haptotactic and chemotactic invasion and that stimulation of these integrin receptors leads to the adoption of distinct morphologies associated with motility. FAK is required downstream of α5β1 for haptotaxis toward FN and chemotaxis toward M-CSF-1 and downstream of α4β1 for the adoption of a polarized phenotype. The scaffolding molecule paxillin functions independently of FAK to promote chemotaxis downstream of α4β1. These studies expand our understanding of β1 integrin signaling networks that regulate motility and invasion in macrophages and thus, provide important new insights into mechanisms by which macrophages perform their diverse functions.
Collapse
Affiliation(s)
- Michelle Y Abshire
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
10
|
Chao H, Hirschi KK. Hemato-vascular origins of endothelial progenitor cells? Microvasc Res 2010; 79:169-73. [PMID: 20149806 DOI: 10.1016/j.mvr.2010.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 01/07/2023]
Abstract
Numerous studies have suggested the presence of precursor cells in various tissues and organs with potential to differentiate into endothelial and mural cells, and contribute to blood vessel formation in different physiological and pathological circumstances. Although there is still a lack of consensus in the field regarding the origin, and phenotypic and functional characteristics of putative vascular progenitor cell populations, all agree that further studies are needed to fully explore and exploit their great potential as cell therapy for vascular diseases, as modulators of postnatal blood vessel formation, and as disease biomarkers. Herein, we will review the phenotypic and functional characteristics of endothelial progenitor/precursor cell types thought to be derived from the hematopoietic and vascular systems and contribute to postnatal blood vessel formation, and discuss their potential lineage relationships.
Collapse
Affiliation(s)
- Hsu Chao
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
11
|
Cesar B, Abud APR, de Oliveira CC, Cardoso F, Gremski W, Gabardo J, Buchi DDF. Activation of mononuclear bone marrow cells treated in vitro with a complex homeopathic medication. Micron 2007; 39:461-70. [PMID: 17379529 DOI: 10.1016/j.micron.2007.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Canova is a Brazilian homeopathic medication with immunomodulatory properties, recommended for patients where the immune system is depressed. Previous studies demonstrated that Canova induces up-regulation in numbers of leukocytes. The bone marrow microenvironment is composed of growth factors, stromal cells, extracellular matrix and progenitor cells that differentiate into mature blood cells. We now report the effect of in vitro administration of the medication on the mononuclear differentiation of the bone marrow cell. Swiss mice femurs were dissected cleaned and the cells of the marrow were flushed. The cells were plated, treated or not, incubated for different times and processed for light, transmission and scanning electron, and confocal microscopy analysis. Bone marrow cells showed an enhanced proliferation in vitro in response to Canova medication and Canova plus M-CSF and an increase was also observed in the numbers of the cell niches and ring-shaped nuclei cells. Confocal and transmission and scanning electron microscopy showed the stages of monocyte maturation, with resting and activated cells. With Canova treatment there was a marked increase in cell size, which is mainly attributable to the augmented cytoplasm, an increase in the number of mitochondria, expansion of the RER and an enlarged Golgi. The response to Canova treatment indicates that it influences mononuclear differentiation and activation of bone marrow progenitor and stromal cells.
Collapse
Affiliation(s)
- Beatriz Cesar
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Wimmer A, Khaldoyanidi SK, Judex M, Serobyan N, Discipio RG, Schraufstatter IU. CCL18/PARC stimulates hematopoiesis in long-term bone marrow cultures indirectly through its effect on monocytes. Blood 2006; 108:3722-9. [PMID: 16888095 PMCID: PMC1895459 DOI: 10.1182/blood-2006-04-014399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/13/2006] [Indexed: 12/28/2022] Open
Abstract
Chemokines play a role in regulating hematopoietic stem cell function, including migration, proliferation, and retention. We investigated the involvement of CCL18 in the regulation of bone marrow hematopoiesis. Treatment of human long-term bone marrow cultures (LTBMCs) with CCL18 resulted in significant stimulation of hematopoiesis, as measured by the total number of hematopoietic cells and their committed progenitors produced in culture. Monocytes/macrophages, whose survival was almost doubled in the presence of CCL18 compared with controls, were the primary cells mediating this effect. Conditioned media from CCL18-treated mature monocytes fostered colony-promoting activity that increased the number of colonies formed by hematopoietic progenitor cells. Gene expression profiling of CCL18-stimulated monocytes demonstrated more than 200 differentially expressed genes, including those regulating apoptosis (caspase-8) and proliferation (IL-6, IL-15, stem cell factor [SCF]). Up-regulation of these cytokines was confirmed on the protein expression level. The contribution of SCF and IL-6 in CCL18-mediated stimulatory activity for hematopoiesis was confirmed by SCF- and IL-6-blocking antibodies that significantly inhibited the colony-promoting activity of CCL18-stimulated conditioned medium. In addition to the effect on monocytes, CCL18 facilitated the formation of the adherent layer in LTBMCs and increased the proliferation of stromal fibroblast-like cells.
Collapse
Affiliation(s)
- Antonia Wimmer
- Division of Cancer Biology, Ste 100, La Jolla Institute for Molecular Medicine, 4570 Executive Dr, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
13
|
Geutskens SB, Nikolic T, Dardenne M, Leenen PJM, Savino W. Defective up-regulation of CD49d in final maturation of NOD mouse macrophages. Eur J Immunol 2004; 34:3465-76. [PMID: 15517611 DOI: 10.1002/eji.200425259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages are potent regulators of both innate and adaptive immunity. They play a central role in the development of autoimmune diabetes and are among the first cells to appear in peri-islet infiltrates of NOD mice that spontaneously develop diabetes. Since efficient adhesion and migration are crucial for proper macrophage trafficking, we examined the migration and fibronectin (FN) adhesion capacity of NOD macrophages, as well as the regulation and expression of the FN receptors alpha4beta1 and alpha5beta1. When compared to macrophages from control strains, resident NOD macrophages showed a reduced ability to adhere to and migrate on FN, a delayed clearance following peritoneal inflammation, and substantially lower expression levels of the alpha4beta1 integrin alpha chain, CD49d. NOD bone marrow-derived macrophages were specifically defective in the LPS-induced increase in CD49d expression. Moreover, the mitogen-activated protein kinase extracellular signal-regulated kinase-1/2 negatively regulated macrophage CD49d expression and strongly suppressed its expression in NOD macrophages. The data presented herein indicate that the LPS-activated signaling cascade plays a critical role in CD49d expression of macrophages. Mature NOD macrophages are characterized by decreased CD49d expression and show defective CD49d-mediated adhesion to FN.
Collapse
|
14
|
Geutskens SB, Homo-Delarche F, Pleau JM, Durant S, Drexhage HA, Savino W. Extracellular matrix distribution and islet morphology in the early postnatal pancreas: anomalies in the non-obese diabetic mouse. Cell Tissue Res 2004; 318:579-89. [PMID: 15480796 DOI: 10.1007/s00441-004-0989-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
Previously, we reported elevated numbers of macrophages in the pancreas of NOD mice, a spontaneous animal model for T1D, during the early postnatal period. Extracellular matrix plays an important role in the tissue trafficking and retention of macrophages as well as in postnatal pancreas development. Therefore, we have examined the expression and distribution of laminin and fibronectin, two major extracellular matrix proteins and their corresponding integrin receptors, in the pre-weaning pancreases of NOD mice and control mouse strains. In addition, we have characterized the pancreas morphology during this period, since the morphology of the pre-weaning pancreas before the onset of lymphocytic peri-insulitis, when the pancreas is still subject to developmental changes, has been poorly documented. We show that laminin labeling is mainly associated with exocrine tissue, whereas fibronectin labeling was mostly localized at the islet-ductal pole, islet periphery and in intralobular septa. Moreover, the protein expression level of fibronectin was increased in NOD pancreases at the early stage of postnatal development, as compared to pancreases of C57BL/6 and BALB/c mouse strains. Interestingly, pancreatic macrophages were essentially found at sites of intense fibronectin labeling. The increased fibronectin content in NOD neonatal pancreas coincided with altered islet morphology, histologically reflected by enlarged and irregular shaped islets and increased percentages of total endocrine area as compared to that of control strains. In conclusion, increased levels of the extracellular matrix protein fibronectin were found in the early postnatal NOD pancreas, and this is associated with an enhanced accumulation of macrophages and altered islet morphology.
Collapse
Affiliation(s)
- Sacha Brigitte Geutskens
- Department of Immunology, Erasmus MC, Dr Molewaterplein 50, PO Box 1738, 3015 GE, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
15
|
Geutskens SB, Mendes-da-Cruz DA, Dardenne M, Savino W. Fibronectin receptor defects in NOD mouse leucocytes: possible consequences for type 1 diabetes. Scand J Immunol 2004; 60:30-8. [PMID: 15238071 DOI: 10.1111/j.0300-9475.2004.01465.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integrins of the very late antigen (VLA) family mediate leucocyte traffic to lymphoid organs under physiological conditions and in chronic inflammatory situations such as autoimmunity. Accordingly, the current thinking is of a positive correlation between VLA expression and capability of the generation of autoimmunity. Herein we discuss recent findings on the defective expression of integrin-type fibronectin receptors alpha4beta1 (VLA-4) and alpha5beta1 (VLA-5) in the non-obese diabetic (NOD) mouse, a murine model of autoimmune insulin-dependent diabetes mellitus. As compared with normal animals, NOD thymocytes (including the CD4+CD25+ regulatory T cells) exhibit a decrease in the membrane expression of alpha5beta1, resulting in a functional impairment of fibronectin-mediated interactions, including cell migration. Interestingly, thymocytes that are trapped within the giant perivascular spaces seen in NOD thymus are consistently alpha5beta1 negative, suggesting that the progressive arrest of mature cells can be related to the alpha5beta1 defect. Peripheral T cells also exhibit decreased alpha5beta1 membrane expression and impaired fibronectin-driven migration. Additionally, we observed a defect in alpha4beta1 fibronectin receptor expression in NOD macrophages. Peritoneal, bone marrow-derived-precursor, as well as thymic macrophages of NOD mice showed an impaired upregulation of alpha4-integrin chain expression, dependent on the level of macrophage maturation. Overall these data lead to the notion that NOD leucocytes bear distinct fibronectin receptor-mediated cell migration defects, which may be involved in the pathogenesis and/or pathophysiology of the autoimmune events seen in NOD mice. Further studies will be helpful to define whether or not this concept can be applied for other autoimmune diseases.
Collapse
Affiliation(s)
- S B Geutskens
- Hôpital Necker CNRS UMR-8147, Université Paris V, 161 rue de Sevres, 75743 Paris Cedex 15, France
| | | | | | | |
Collapse
|
16
|
Schmeisser A, Graffy C, Daniel WG, Strasser RH. Phenotypic overlap between monocytes and vascular endothelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 522:59-74. [PMID: 12674211 DOI: 10.1007/978-1-4615-0169-5_7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During embryonic development, endothelial cells (ECs) develop organ specific properties. ECs express specific markers, which are helpful in identifying these cells in vivo and in culture. Interestingly, most of the supposed specific endothelial markers are present on both ECs and hematopoietic precursors or mature blood cells, which correspond to the idea of a common embryonic precursor. Monocytes/makrophages and monocyte-derived dendritic cells, as more differentiated hematopoietic cell populations, show a wide phenotypic overlap with particularly hepatic sinusoidal, and microvascular endothelial cells within inflamed tissue, such as neovascularizised complicated atherosclerotic plaques. Furthermore, under local angiogenic growth conditions monocytes or monocyte precursors or immature dendritic cells may differentiate into endothelial like cells. First evidence suggests an endothelium-independent revascularization potential carried by monocyte-derived macrophages. These macrophages have been shown to form tunnel-like structures in ischemic regions. Future studies have to address the question, whether monocyte-/dendritic cell-derived endothelial like cells can develop a similar functional behaviour in vasoregulation, coagulation and fibrinolysis, as described for vascular endothelial cells, and thus may contribute to neoangiogenesis by a direct vessel-forming role.
Collapse
Affiliation(s)
- Alexander Schmeisser
- Department of Cardiology, Medical Clinic II, University of Technology Dresden, Fetscherstr. 76, D-01307 Dresden, Germany
| | | | | | | |
Collapse
|
17
|
Sanders JE. Chronic graft-versus-host disease and late effects after hematopoietic stem cell transplantation. Int J Hematol 2002; 76 Suppl 2:15-28. [PMID: 12430895 DOI: 10.1007/bf03165081] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Late effects following HSCT are related to either the transplant process or to the transplant preparative regimen. Problems related to the transplant process include delayed recovery of the immune system and chronic GVHD. Chronic GVHD presents between 3-14 months post-HSCT in approximately 20% of matched sibling transplants and 40% of matched unrelated donor recipients. Most commonly involved sites are skin, mouth, liver, gastrointestinal tract, and eye. Patients with platelet count < 100,000/ml and receiving cortocosteroid therapy at day 80 with any clinical manifestations of chronic GVHD require prolonged immune suppressive therapy with prednisone, cyclosporine +/- other agents. Treatment should be administered until all clinical and pathological signs and symptoms of chronic GVHD have resolved which may take one to several years. Problems related to the transplant preparative regimen include those involving the endocrine system, eyes, lungs, bone, and development of secondary malignancies. Endocrine deficiencies include growth failure with growth hormone (GH) deficiency, overt hypothyroidism, primary gonadal failure, Type 1 or Type 2 diabetes, and exocrine pancreatic insufficiency. These problems develop at any time post-HSCT, but usually occur within the first few years and should be treated with appropriate hormone supplementation. Eye problems are primarily related to development of cateracts secondary to total body irradiation (TBI) or prolonged corticosteroid use. Cateracts developing after fractionated frequently do not require removal. Pulmonary problems may be due to bronchiolitis obliterans (BO) or to restrictive lung disease. BO may be associated with chronic GVHD and may respond to chronic GVHD therapy. Restrictive lung disease does not occur for many years after HSCT. There is not therapy for this problem. Development of decreased bone mineral density (BMD) is related to GH deficiency and/or corticosteroid therapy. Treatment includes withdrawal of corticosteroids, administration of GH and calcium, Vitamin D and antiresorptive agents. All malignant disease survivors are at risk for development of secondary malignancies, including survivors of HSCT. Recipients of TBI are at highest risk as are children. All pediatric and adult survivors of HSCT should be followed for their life-time for development of delayed effects of transplantation.
Collapse
Affiliation(s)
- Jean E Sanders
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
18
|
Schmeisser A, Strasser RH. Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:69-79. [PMID: 11847004 DOI: 10.1089/152581602753448540] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The existence of angioblast-like circulating endothelial progenitor cells (EPC) in adult humans has been suggested recently. Their role in postnatal angiogenesis is under intensive investigation. Discrimination between the supposed angioblasts (AC133(+)/FLK-1(+)/CD34(+)) and mature endothelial cells (ECs) is complicated by the fact that subsets of hematopoietic cells express markers similar to those of ECs. Among these, monocytes/macrophages and monocyte-derived dendritic cells (DCs) are more differentiated hematopoietic cell populations. They show a wide phenotypic overlap with particularly sinusoidal and microvascular ECs. Furthermore, under local angiogenic growth conditions, monocytes or monocyte precursors or immature DCs may differentiate into endothelial-like cells (ELC). Initial evidence suggests an endothelium-independent revascularization potential carried by macrophages. These macrophages have been shown to form "tunnel-like structures" in ischemic regions. Future studies will need to address the question of whether monocyte-/dendritic cell-derived ELC can develop a similar functional behavior in vasoregulation, coagulation, and fibrinolysis, as described for vascular ECs, and thus may contribute to neoangiogenesis by a direct vessel-forming role.
Collapse
Affiliation(s)
- Alexander Schmeisser
- Department of Cardiology, Medical Clinic II, Technical University Dresden, Fetscherstrasse 76, D-01307 Dresden, Germany.
| | | |
Collapse
|
19
|
Ganassin RC, Bols NC. A stromal cell line from rainbow trout spleen, RTS34ST, that supports the growth of rainbow trout macrophages and produces conditioned medium with mitogenic effects on leukocytes. In Vitro Cell Dev Biol Anim 1999; 35:80-6. [PMID: 10475261 DOI: 10.1007/s11626-999-0005-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A rainbow trout spleen cell line, RTS34, was developed from a long-term hemopoietic culture. This cell line consisted of a mixed stromal cell layer with an associated cell population of macrophage-like cells that formed proliferative foci and released nonadherent progeny cells into the culture medium. A stromal cell line, RTS34st, was isolated from the RTS34 cell line. RTS34st cultures contained cells with fibroblast-like and epithelial-like morphologies and showed enhanced [3H]thymidine incorporation in response to either FBS or rainbow trout serum. The combination of FBS and trout serum was synergistic. Conditioned medium from RTS34st stimulated thymidine incorporation by peripheral blood and head kidney leukocytes, but not by leukocytes from the spleen. In addition, RTS34st provided a hemopoietic inductive microenvironment for immature precursor cells, selectively supporting the growth of macrophage-like cells. Therefore, RTS34st appears useful for studying the different roles of the stroma in regulating hemopoiesis in fish.
Collapse
Affiliation(s)
- R C Ganassin
- Department of Biology, University of Waterloo, Ontario, Canada
| | | |
Collapse
|
20
|
The Related Adhesion Focal Tyrosine Kinase (RAFTK) Is Tyrosine Phosphorylated and Participates in Colony-Stimulating Factor-1/Macrophage Colony-Stimulating Factor Signaling in Monocyte-Macrophages. Blood 1998. [DOI: 10.1182/blood.v91.10.3967.3967_3967_3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RAFTK, a novel nonreceptor protein kinase, has been shown to be involved in focal adhesion signal transduction pathways in neuronal PC12 cells, megakaryocytes, platelets, and T cells. Because focal adhesions may modulate cytoskeletal functions and thereby alter phagocytosis, cell migration, and adhesion in monocyte-macrophages, we investigated the role of RAFTK signaling in these cells. RAFTK was abundantly expressed in THP1 monocytic cells as well as in primary alveolar and peripheral blood-derived macrophages. Colony-stimulating factor-1 (CSF-1)/macrophage colony-stimulating factor (M-CSF) stimulation of THP1 cells increased the tyrosine phosphorylation of RAFTK; similar increases in phosphorylation were also detected after lipopolysaccharide stimulation. RAFTK was phosphorylated with similar kinetics in THP1 cells and peripheral blood-derived macrophages. Immunoprecipitation analysis showed associations between RAFTK and the signaling molecule phosphatidylinositol-3 (PI-3) kinase. PI-3 kinase enzyme activity also coprecipitated with the RAFTK antibody, further confirming this association. The CSF-1/M-CSF receptor c-fms and RAFTK appeared to associate in response to CSF-1/M-CSF treatment of THP1 cells. Inhibition of RAFTK by a dominant-negative kinase mutant reduced CSF-1/M-CSF–induced MAPK activity. These data indicate that RAFTK participates in signal transduction pathways mediated by CSF-1/M-CSF, a cytokine that regulates monocyte-macrophage growth and function.
Collapse
|
21
|
The Related Adhesion Focal Tyrosine Kinase (RAFTK) Is Tyrosine Phosphorylated and Participates in Colony-Stimulating Factor-1/Macrophage Colony-Stimulating Factor Signaling in Monocyte-Macrophages. Blood 1998. [DOI: 10.1182/blood.v91.10.3967] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractRAFTK, a novel nonreceptor protein kinase, has been shown to be involved in focal adhesion signal transduction pathways in neuronal PC12 cells, megakaryocytes, platelets, and T cells. Because focal adhesions may modulate cytoskeletal functions and thereby alter phagocytosis, cell migration, and adhesion in monocyte-macrophages, we investigated the role of RAFTK signaling in these cells. RAFTK was abundantly expressed in THP1 monocytic cells as well as in primary alveolar and peripheral blood-derived macrophages. Colony-stimulating factor-1 (CSF-1)/macrophage colony-stimulating factor (M-CSF) stimulation of THP1 cells increased the tyrosine phosphorylation of RAFTK; similar increases in phosphorylation were also detected after lipopolysaccharide stimulation. RAFTK was phosphorylated with similar kinetics in THP1 cells and peripheral blood-derived macrophages. Immunoprecipitation analysis showed associations between RAFTK and the signaling molecule phosphatidylinositol-3 (PI-3) kinase. PI-3 kinase enzyme activity also coprecipitated with the RAFTK antibody, further confirming this association. The CSF-1/M-CSF receptor c-fms and RAFTK appeared to associate in response to CSF-1/M-CSF treatment of THP1 cells. Inhibition of RAFTK by a dominant-negative kinase mutant reduced CSF-1/M-CSF–induced MAPK activity. These data indicate that RAFTK participates in signal transduction pathways mediated by CSF-1/M-CSF, a cytokine that regulates monocyte-macrophage growth and function.
Collapse
|
22
|
Xie B, Laouar A, Huberman E. Fibronectin-mediated cell adhesion is required for induction of 92-kDa type IV collagenase/gelatinase (MMP-9) gene expression during macrophage differentiation. The signaling role of protein kinase C-beta. J Biol Chem 1998; 273:11576-82. [PMID: 9565574 DOI: 10.1074/jbc.273.19.11576] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-beta-deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor alpha5 beta1 integrin. HL-525 cells, which constitutively display high levels of surface alpha5 beta1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that alpha5 beta1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.
Collapse
Affiliation(s)
- B Xie
- Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, Illinois 60439-4833, USA
| | | | | |
Collapse
|
23
|
Xie B, Laouar A, Huberman E. Autocrine regulation of macrophage differentiation and 92-kDa gelatinase production by tumor necrosis factor-alpha via alpha5 beta1 integrin in HL-60 cells. J Biol Chem 1998; 273:11583-8. [PMID: 9565575 DOI: 10.1074/jbc.273.19.11583] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) gene is one of the early response genes induced by phorbol 12-myristate 13-acetate (PMA) in human HL-60 myeloid leukemia cells. In the present study, we examined the role of the TNF-alpha autocrine loop in PMA-induced macrophage differentiation and gene expression of 92- and 72-kDa gelatinases (MMP-9 and MMP-2). In HL-60 cells, PMA inhibited cell proliferation and induced cell adhesion and spreading, expression of surface maturation marker OKM1 and phagocytic activity, as well as the expression of both gelatinases, which all characterize the macrophage phenotype. In contrast, TNF-alpha alone was only effective in inhibiting cell proliferation. Blocking the endogenous TNF-alpha activity with neutralizing anti-TNF-alpha antibodies abolished all these PMA-induced events with the exception of MMP-2 gene expression. Since fibronectin (FN)-mediated cell adhesion and spreading are prerequisite for both macrophage differentiation and MMP-9 gene expression in HL-60 cells, we hypothesized that TNF-alpha might be involved in modulating the expression of either the FN or its integrin receptor genes. Whereas PMA substantially enhanced the steady state mRNA and protein levels of both FN and alpha5 beta1 integrins, TNF-alpha alone had little effect on the expression of these genes. However, anti-TNF-alpha antibodies blocked PMA-induced augmentation of both alpha5 and beta1 integrin gene expression without affecting the expression of the FN gene. Our results suggest that TNF-alpha may regulate macrophage differentiation and critical matrix-degrading activities of myeloid progenitor cells in an autocrine manner by augmenting surface levels of the alpha5 beta1 integrin, thus promoting interactions with the extracellular matrix, a key event for maturation and migration of these cells during inflammation.
Collapse
Affiliation(s)
- B Xie
- Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, Illinois 60439-4833, USA
| | | | | |
Collapse
|
24
|
Kremlev SG, Chapoval AI, Evans R. Cytokine release by macrophages after interacting with CSF-1 and extracellular matrix proteins: characteristics of a mouse model of inflammatory responses in vitro. Cell Immunol 1998; 185:59-64. [PMID: 9636683 DOI: 10.1006/cimm.1998.1276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular matrix (ECM) proteins play a key role at sites of inflammation where they regulate the inflammatory properties of infiltrating leukocytes. Previous data indicated that the macrophage colony-stimulating factor (CSF-1 or M-CSF) primed subpopulations of mononuclear phagocytes (MNP) for differential inflammatory responses and rendered defined populations extremely sensitive to secondary stimulation as measured by cytokine gene expression. In this report, we focus on the question whether CSF-1 modified the inflammatory responsiveness of elicited peritoneal macrophages (PM phi), as a defined subpopulation of MNP, to secondary stimulation by ECM proteins as a component of inflammatory lesions. It was seen that CSF-1-primed PM phi responded to fibronectin (FN) and collagen type IV (COL IV) in vitro by releasing large amounts of IL-6 but released only minimal quantities when exposed to vitronectin (VN) or to untreated plastic surfaces. TNF-alpha and GM-CSF proteins were not released. Preincubation of the PM phi with CSF-1 or 10% FBS for up to 12 h prior to exposure to ECM proteins was shown to further enhance the release of IL-6 when the cells were cultured with FN but to result in a loss of secretory activity when placed on COL IV. In addition, preincubated PM phi in contact with FN were shown to release TNF-alpha but not GM-CSF. CSF-1 did not enhance VLA 4 (alpha 4 beta 1 or CD49d) but enhanced VLA 5 (alpha 5 beta 1 or CD49e) expression. However, blocking with either anti-VLA 4 or VLA 5 monoclonal antibodies inhibited the IL-6 response. These data suggest that CSF-1 primes elicited PM phi for differential expression of adhesion molecules that are required for binding to individual ECM proteins and for modulating inflammatory responses of MNP.
Collapse
Affiliation(s)
- S G Kremlev
- Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | |
Collapse
|
25
|
Abstract
Lung injury triggers an acute inflammatory response characterized by increased expression and deposition of extracellular matrix (ECM) components such as fibronectin and collagen. Although the function of newly deposited matrices in injured lungs is unknown, their ability to affect the migration, proliferation, differentiation, and activation state of cells in vitro suggests an important role in the initiation and maintenance of the inflammatory response in vivo. Interactions between immune and nonimmune cells with the lung ECM are mediated via cell surface receptors of the integrin family which link the ECM with intracellular molecules involved in signal transduction. Activation of integrin-mediated intracellular signals may promote inflammation by facilitating leukocyte recruitment and cytokine expression.
Collapse
Affiliation(s)
- J Roman
- Department of Medicine, Atlanta Veterans Affairs Medical Center, GA 30033, USA
| |
Collapse
|