1
|
Yuan Y, Lee H, Hu H, Scheben A, Edwards D. Single-Cell Genomic Analysis in Plants. Genes (Basel) 2018; 9:genes9010050. [PMID: 29361790 PMCID: PMC5793201 DOI: 10.3390/genes9010050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis.
Collapse
Affiliation(s)
- Yuxuan Yuan
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - HueyTyng Lee
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - Armin Scheben
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
2
|
Zechner U, Shi W, Hemberger M, Himmelbauer H, Otto S, Orth A, Kalscheuer V, Fischer U, Elango R, Reis A, Vogel W, Ropers H, Rüschendorf F, Fundele R. Divergent genetic and epigenetic post-zygotic isolation mechanisms in Mus and Peromyscus. J Evol Biol 2004; 17:453-60. [PMID: 15009278 DOI: 10.1046/j.1420-9101.2003.00656.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interspecific hybridization in the rodent genera Peromyscus and Mus results in abnormal placentation. In the Peromyscus interspecies hybrids, abnormal allelic interaction between an X-linked locus and the imprinted paternally expressed Peg3 locus was shown to cause the placental defects. In addition, loss-of-imprinting (LOI) of Peg3 was positively correlated with increased placental size. As in extreme cases this placental dysplasia constitutes a post-zygotic barrier against interspecies hybridization, this finding was the first direct proof that imprinted genes may be important in speciation and thus in evolution. In the Mus interspecies hybrids, a strong role of an X-linked locus in placental dysplasia has also been detected. However, here we show by backcross and allele specific expression analyses that neither LOI of Peg3 nor abnormal interactions between Peg3 and an X-linked locus are involved in generating placental dysplasia in Mus hybrids, although the placental phenotypes observed in the two genera seem to be identical. In contrast to this, another dysgenesis effect common to Peromyscus and Mus hybrids, altered foetal growth, is caused at least in part by the same X-chromosomal regions in both genera. These findings first underline the strong involvement of the X-chromosome in the genetics of speciation. Secondly, they indicate that disruption of epigenetic states, such as LOI, at specific loci may be involved in hybrid dysgenesis effects in one group, but not in another. Thus, we conclude that even in closely related groups divergent molecular mechanisms may be involved in the production of phenotypically similar post-zygotic barriers against hybridization.
Collapse
Affiliation(s)
- U Zechner
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Karacay B, O'Dorisio MS, Kasow K, Hollenback C, Krahe R. Expression and fine mapping of murine vasoactive intestinal peptide receptor 1. J Mol Neurosci 2002. [PMID: 11859927 DOI: 10.1385/jmn: 17: 3: 311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasoactive intestinal peptide (VIP) plays multiple roles in the nervous, endocrine, and immune systems as a neurotransmitter, a hormone, and a cytokine. VIP is widely distributed in neurons of the central and peripheral nervous systems (CNS/PNS), and recently has been found to be an important neuroprotective agent. VIP actions are mediated through specific G protein-coupled receptors. We have cloned the cDNA of VIP receptor subtype 1 (VIPR1 or VPAC1) and have demonstrated the quantitative expression profile in mice. Fluorometric real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that VPAC1 is expressed in all tissues examined. Expression was highest in the small intestine and colon followed by the liver and brain. The high level of VPAC1 expression in forebrain and cerebellum suggests that VPAC1 may mediate the neuroprotective effect of VIP. We have refined the chromosomal localization of the mouse, rat, and human VPAC1 genes. This fine mapping of the VPAC1 gene extends the respective regions of synteny between the distal region of mouse chromosome 9, rat chromosome 8q32, and human chromosome 3p21.33-p21.31. Thus, VPAC, constitutes a functional-positional candidate for the tumor-suppressor function mapped to human 3p22-p21 where loss-of-heterozygosity is observed in small-cell lung carcinoma (SCLC) cell lines and primary tumors. Availability of the cDNA sequences for mouse VPAC1 will facilitate the generation of VPAC1 null mutant animals. Such studies will ultimately enhance our understanding of the role of VIP in the nervous system.
Collapse
Affiliation(s)
- B Karacay
- Department of Pediatrics, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
4
|
Karacay B, O'Dorisio MS, Kasow K, Hollenback C, Krahe R. Expression and fine mapping of murine vasoactive intestinal peptide receptor 1. J Mol Neurosci 2001; 17:311-24. [PMID: 11859927 DOI: 10.1385/jmn:17:3:311] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vasoactive intestinal peptide (VIP) plays multiple roles in the nervous, endocrine, and immune systems as a neurotransmitter, a hormone, and a cytokine. VIP is widely distributed in neurons of the central and peripheral nervous systems (CNS/PNS), and recently has been found to be an important neuroprotective agent. VIP actions are mediated through specific G protein-coupled receptors. We have cloned the cDNA of VIP receptor subtype 1 (VIPR1 or VPAC1) and have demonstrated the quantitative expression profile in mice. Fluorometric real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that VPAC1 is expressed in all tissues examined. Expression was highest in the small intestine and colon followed by the liver and brain. The high level of VPAC1 expression in forebrain and cerebellum suggests that VPAC1 may mediate the neuroprotective effect of VIP. We have refined the chromosomal localization of the mouse, rat, and human VPAC1 genes. This fine mapping of the VPAC1 gene extends the respective regions of synteny between the distal region of mouse chromosome 9, rat chromosome 8q32, and human chromosome 3p21.33-p21.31. Thus, VPAC, constitutes a functional-positional candidate for the tumor-suppressor function mapped to human 3p22-p21 where loss-of-heterozygosity is observed in small-cell lung carcinoma (SCLC) cell lines and primary tumors. Availability of the cDNA sequences for mouse VPAC1 will facilitate the generation of VPAC1 null mutant animals. Such studies will ultimately enhance our understanding of the role of VIP in the nervous system.
Collapse
Affiliation(s)
- B Karacay
- Department of Pediatrics, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
5
|
Das M, Sakul H, Kong J, Acland GM, Pelletier J. A set of canine interrepeat sequence PCR markers for high-throughput genotyping. Physiol Genomics 2000; 4:13-24. [PMID: 11074009 DOI: 10.1152/physiolgenomics.2000.4.1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One hundred and sixteen interspersed repetitive DNA sequence (IRS)-PCR markers have been developed and characterized from Canis familiaris for high-throughput filter-based genotyping. We present a detailed analysis of markers produced by amplification using primers directed to the conserved regions of the C. familiaris short interspersed nuclear element (Can-SINE). The majority of IRS-PCR markers developed were moderately to highly polymorphic with mean heterozygosity (HET) and polymorphism information content (PIC) values of approximately 0.6. The HET value for 22.3% of the markers exceeded 0.7. We also demonstrate that sequence variation of Can-SINEs between breeds is significant and also represents a rich source of polymorphisms. Mapping of 73 of the markers to the existing integrated linkage-radiation hybrid map enriches the map as well as establishes the utility of the markers. The significance and utility of this new class of IRS-PCR Can-SINE-based markers for high-throughput genotyping is discussed. This method can also be extended to other species that are currently map-poor but have a sufficiently high density of SINEs to allow IRS-PCR.
Collapse
Affiliation(s)
- M Das
- Department of Biochemistry, Department of Oncology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
6
|
Gösele C, Hong L, Kreitler T, Rossmann M, Hieke B, Gross U, Kramer M, Himmelbauer H, Bihoreau MT, Kwitek-Black AE, Twigger S, Tonellato PJ, Jacob HJ, Schalkwyk LC, Lindpaintner K, Ganten D, Lehrach H, Knoblauch M. High-throughput scanning of the rat genome using interspersed repetitive sequence-PCR markers. Genomics 2000; 69:287-94. [PMID: 11056046 DOI: 10.1006/geno.2000.6352] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the establishment of a hybridization-based marker system for the rat genome based on the PCR amplification of interspersed repetitive sequences (IRS). Overall, 351 IRS markers were mapped within the rat genome. The IRS marker panel consists of 210 nonpolymorphic and 141 polymorphic markers that were screened for presence/absence polymorphism patterns in 38 different rat strains and substrains that are commonly used in biomedical research. The IRS marker panel was demonstrated to be useful for rapid genome screening in experimental rat crosses and high-throughput characterization of large-insert genomic library clones. Information on corresponding YAC clones is made available for this IRS marker set distributed over the whole rat genome. The two existing rat radiation hybrid maps were integrated by placing the IRS markers in both maps. The genetic and physical mapping data presented provide substantial information for ongoing positional cloning projects in the rat.
Collapse
Affiliation(s)
- C Gösele
- Max-Planck Institute of Molecular Genetics, Ihnestrasse 73, Berlin-Dahlem, D-14195, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Naruse K, Fukamachi S, Mitani H, Kondo M, Matsuoka T, Kondo S, Hanamura N, Morita Y, Hasegawa K, Nishigaki R, Shimada A, Wada H, Kusakabe T, Suzuki N, Kinoshita M, Kanamori A, Terado T, Kimura H, Nonaka M, Shima A. A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics 2000; 154:1773-84. [PMID: 10747068 PMCID: PMC1461045 DOI: 10.1093/genetics/154.4.1773] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We mapped 633 markers (488 AFLPs, 28 RAPDs, 34 IRSs, 75 ESTs, 4 STSs, and 4 phenotypic markers) for the Medaka Oryzias latipes, a teleost fish of the order Beloniformes. Linkage was determined using a reference typing DNA panel from 39 cell lines derived from backcross progeny. This panel provided unlimited DNA for the accumulation of mapping data. The total map length of Medaka was 1354.5 cM and 24 linkage groups were detected, corresponding to the haploid chromosome number of the organism. Thirteen to 49 markers for each linkage group were obtained. Conserved synteny between Medaka and zebrafish was observed for 2 independent linkage groups. Unlike zebrafish, however, the Medaka linkage map showed obvious restriction of recombination on the linkage group containing the male-determining region (Y) locus compared to the autosomal chromosomes.
Collapse
Affiliation(s)
- K Naruse
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Himmelbauer H, Schalkwyk LC, Lehrach H. Interspersed repetitive sequence (IRS)-PCR for typing of whole genome radiation hybrid panels. Nucleic Acids Res 2000; 28:e7. [PMID: 10606675 PMCID: PMC102539 DOI: 10.1093/nar/28.2.e7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The typing of a radiation hybrid (RH) panel is generally achieved using a unique primer pair for each marker. We here describe a complementing approach utilizing IRS-PCR. Advantages of this technology include the use of a single universal primer to specify any locus, the rapid typing of RH lines by hybridization, and the conservative use of hybrid DNA. The technology allows the mapping of a clone without the requirement for STS generation. To test the technique, we have mapped 48 BAC clones derived from mouse chromosome 12 which we mostly identified using complex probes. As mammalian genomes are repeat-rich, the technology can easily be adapted to species other than mouse.
Collapse
Affiliation(s)
- H Himmelbauer
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin-Dahlem, Germany.
| | | | | |
Collapse
|
9
|
Nock C, Gauss C, Schalkwyk LC, Klose J, Lehrach H, Himmelbauer H. Technology development at the interface of proteome research and genomics: mapping nonpolymorphic proteins on the physical map of mouse chromosomes. Electrophoresis 1999; 20:1027-32. [PMID: 10344281 DOI: 10.1002/(sici)1522-2683(19990101)20:4/5<1027::aid-elps1027>3.0.co;2-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Data obtained from protein spots by peptide mass fingerprinting are used to identify the corresponding genes in sequence databases. The relevant cDNAs are obtained as clones from the Integrated Molecular Analysis of Genome Expression (I.M.A.G.E.) consortium. Mapping of I.M.A.G.E. clones is performed in two steps: first, cDNA clones are hybridized against a 10-hit genomic mouse bacterial artificial chromosome (BAC) library. Second, interspersed repetitive sequence polymerase chain reaction (IRS-PCR) using a single primer directed against the mouse B1 repeat element is performed on BACs. As each cDNA detects several BACs, and each individual BAC has a 50% chance to recover an IRS-PCR fragment, the majority of cDNAs produce at least a single IRS-PCR fragment. Individual IRS fragments are hybridized against high-density spotted filter grids containing the three-dimensional permutated pools of yeast artificial chromosome (YAC) library resources that are currently being used to construct a physical map of the mouse genome. IRS fragments that hybridize to YAC clones already placed into contigs immediately provide highly precise map positions. This technology therefore is able to draw links between proteins detected by 2-D gel electrophoresis and the corresponding gene loci in the mouse genome.
Collapse
Affiliation(s)
- C Nock
- Max-Planck-Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Yoshida Y, Ushijima T, Yamashita S, Imai K, Sugimura T, Nagao M. Development of the arbitrarily primed-representational difference analysis method and chromosomal mapping of isolated high throughput rat genetic markers. Proc Natl Acad Sci U S A 1999; 96:610-5. [PMID: 9892681 PMCID: PMC15184 DOI: 10.1073/pnas.96.2.610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Linkage mapping of quantitative trait loci requires analysis of a large number of animals. Although genetic markers isolated by representational difference analysis (RDA) and its modifications meet the needs, the number of these markers has been limited. In the present study, we established the arbitrarily primed (AP)-RDA method to isolate virtually an unlimited number of the high throughput genetic markers. A representation of the genome, an AP-amplicon, was prepared by AP-PCR with a single primer or with a combination of primers using genomic DNA of the ACI/N (ACI) or BUF/Nac (BUF) rat as a template. By subtracting the AP-amplicon of ACI from that of BUF, a total of 40 polymorphic and independent markers were isolated in seven series of AP-RDA using a single primer. Two series of AP-RDA with primer combination yielded seven additional independent markers. All of the markers gave clear positive/negative signals by hybridization of a filter where AP-amplicons from F2 rats of ACI and BUF were dot-blotted at a high density without any concentration or purification. All of the 47 independent markers were mapped to unique chromosomal positions by linkage analysis, even though some arbitrary primers had very similar sequences. The markers were also informative between other strains of rats. Simultaneous hybridization of multiple filters made it possible to genotype a large number of rats simultaneously for multiple genetic loci. The AP-RDA method promises isolation of a large number of high throughput genetic markers in any species and is expected to facilitate linkage mapping of subtle quantitative trait loci.
Collapse
Affiliation(s)
- Y Yoshida
- Carcinogenesis Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Detter JC, Nguyen QA, Kingsmore SF. Identification of novel simple sequence length polymorphisms (SSLPs) in mouse by interspersed repetitive element (IRE)-PCR. Nucleic Acids Res 1998; 26:4091-2. [PMID: 9705524 PMCID: PMC147784 DOI: 10.1093/nar/26.17.4091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interspersed repetitive element (IRE)-PCR is a useful method for identification of novel human or mouse sequence tagged sites (STSs) from contigs of genomic clones. We describe the use of IRE-PCR with mouse B1 repetitive element primers to generate novel, PCR amplifiable, simple sequence length polymorphisms (SSLPs) from yeast artificial chromosome (YAC) clones containing regions of mouse chromosomes 13 and 14. Forty-two IRE-PCR products were cloned and sequenced from eight YACs. Of these, 29 clones contained multiple simple sequence repeat units. PCR analysis with primers derived from unique sequences flanking the simple sequence repeat units in seven clones showed all to be polymorphic between various mouse strains. This novel approach to SSLP identification represents an efficient method for saturating a genomic interval with polymorphic genetic markers that may expedite the positional cloning of genes for traits and diseases.
Collapse
Affiliation(s)
- J C Detter
- Department of Medicine and Center for Mammalian Genetics, University of Florida, 1600 SW Archer Road,PO Box 100221, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
12
|
Abstract
This review is intended to provide an overview of techniques and a source of reagents for physical mapping of the mouse genome. It focuses on those applications, methods, or resources unique to the mouse and on the generation of comparative physical maps. The reference list is not comprehensive; rather, recent reviews on each topic and selected representative examples are given.
Collapse
Affiliation(s)
- G E Herman
- Department of Pediatrics, Ohio State University, Columbus, USA
| |
Collapse
|
13
|
Das M, Chu LL, Ghahremani M, Abrams-Ogg T, Roy MS, Housman D, Pelletier J. Characterization of an abundant short interspersed nuclear element (SINE) present in Canis familiaris. Mamm Genome 1998; 9:64-9. [PMID: 9434948 DOI: 10.1007/s003359900681] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A short interspersed nuclear element (Can SINE) of approximately 130-150 bp was cloned and characterized from Canis familiaris. We demonstrate that this element is interspersed, present approximately every 5-8.3 kbp, and many are sufficiently close to allow IRS (interspersed repetitive DNA sequences) PCR. Sequence analysis of > 20 Can SINEs from the dog has identified a conserved region that was used to design oligonucleotides for IRS PCR. Since Can SINEs are not present in human or rodent genomes, IRS PCR using oligonucleotides directed to the conserved region of Can SINEs can be used to simplify analysis of canid DNA in somatic cell hybrids, as well as in large insert cloning vectors. We demonstrate that the canid IRS products are polymorphic and could be developed as genetic markers for filter-based genotyping in this organism.
Collapse
Affiliation(s)
- M Das
- Dept. of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- D R Beier
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
15
|
Himmelbauer H, Wedemeyer N, Haaf T, Wanker EE, Schalkwyk LC, Lehrach H. IRS-PCR-based genetic mapping of the huntingtin interacting protein gene (HIP1) on mouse chromosome 5. Mamm Genome 1998; 9:26-31. [PMID: 9434941 DOI: 10.1007/s003359900674] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Huntington's disease (HD) is a devastating central nervous system disorder. Even though the gene responsible has been positionally cloned recently, its etiology has remained largely unclear. To investigate potential disease mechanisms, we conducted a search for binding partners of the HD-protein huntingtin. With the yeast two-hybrid system, one such interacting factor, the huntingtin interacting protein-1 (HIP-1), was identified (Wanker et al. 1997; Kalchman et al. 1997) and the human gene mapped to 7q11.2. In this paper we demonstrate the localization of the HIP1 mouse homologue (Hip1) into a previously identified region of human-mouse synteny on distal mouse Chromosome (Chr) 5, both employing an IRS-PCR-based mapping strategy and traditional fluorescent in situ hybridization (FISH) mapping.
Collapse
Affiliation(s)
- H Himmelbauer
- Max-Planck-Institute for Molecular Genetics, Berlin-Dahlem, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Hunter K. Application of interspersed repetitive sequence polymerase chain reaction for construction of yeast artificial chromosome contigs. Methods 1997; 13:327-35. [PMID: 9480779 DOI: 10.1006/meth.1997.0541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Construction of physical maps across candidate regions is one of the rate-limiting steps of positional cloning projects. To date, most physical maps have been constructed by polymerase chain reaction (PCR)-based sequence-tagged site (STS) content mapping. While effective, this technique has a number of disadvantages including problems with yeast artificial chromosome (YAC) chimerism, the time and effort required to generate new STSs from YAC ends, the cost of primer synthesis for large contiging projects, and the time, effort, and expense necessary for screening each STS in the two-tiered hierarchical YAC library screening format. An alternative strategy, interspersed repetitive sequence (IRS) PCR genomics, alleviates many of these constraints. Clonal overlap is detected by hybridization of individual IRS-PCR products to IRS-PCR product pools of the three-dimensional coordinate pools of YAC libraries in dot-blot format. Entire libraries can be screened in a single step, and multiple libraries can be screened simultaneously. Cloning YAC fragments, sequencing, and primer generation are eliminated, increasing the efficiency of contig construction and reducing the expense. In addition, the genomic location of the individual IRS-PCR products can also be simultaneously determined by screening either interspecific backcrosses or radiation hybrid panels, in dot-blot format, confirming contig extension in the region of interest.
Collapse
Affiliation(s)
- K Hunter
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
17
|
Bancroft DR, O'Brien JK, Guerasimova A, Lehrach H. Simplified handling of high-density genetic filters using rigid plastic laminates. Nucleic Acids Res 1997; 25:4160-1. [PMID: 9321673 PMCID: PMC146994 DOI: 10.1093/nar/25.20.4160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wet membranes in DNA hybridisation procedures can be very difficult to handle. This adds considerable time to the length of experiments and is a serious obstacle to the performance of large-scale investigations. A method is described to give rigidity to membranes, thereby making them easier to handle and in turn improving both the speed and efficiency of experimental work.
Collapse
Affiliation(s)
- D R Bancroft
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin (Dahlem), Germany
| | | | | | | |
Collapse
|
18
|
Rowe LB, Janaswami PM, Barter ME, Birkenmeier EH. Genetic mapping of 18S ribosomal RNA-related loci to mouse chromosomes 5, 6, 9, 12, 17, 18, 19, and X. Mamm Genome 1996; 7:886-9. [PMID: 8995758 DOI: 10.1007/s003359900262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The organization of ribosomal RNA genes (rDNA) in the genome of the mouse varies significantly from one strain to another, but has been shown to follow the pattern of clusters of tandem repeats located at chromosome ends, often associated with cytological nucleolus organizer regions. The number of copies of the repeat unit at each locus also varies. A probe for the 18S ribosomal RNA sequence on Southern blots reveals both high copy number bands and fainter bands indicative of low repeat number. We have mapped a number of newly identified low-copy-number rDNA loci in C57BL/6J, in addition to placing some of the NOR-associated rDNA repeats on the Jackson interspecific backcross (BSS) map. We suggest that additional low-copy-number loci may remain to be mapped, and that the evolution of rDNA loci in the genome may include the proliferation of single copies by retroinsertion or other mechanisms.
Collapse
Affiliation(s)
- L B Rowe
- Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | |
Collapse
|
19
|
Abstract
The mouse Ulnaless locus is a semidominant mutation which displays defects in patterning along the proximal-distal and anterior-posterior axes of all four limbs. The first Ulnaless homozygotes have been generated, and they display a similar, though slightly more severe, limb phenotype than the heterozygotes. To create a refined genetic map of the Ulnaless region using molecular markers, four backcrosses segregating Ulnaless were established. A 0.4-cM interval containing the Ulnaless locus has been defined on mouse chromosome 2, which has identified Ulnaless as a possible allele of a Hoxd cluster gene(s). With this genetic map as a framework, a physical map of the Ulnaless region has been completed. Yeast artificial chromosomes covering this region have been isolated and ordered into a 2 Mb contig. Therefore, the region that must contain the Ulnaless locus has been defined and cloned, which will be invaluable for the identification of the molecular nature of the Ulnaless mutation.
Collapse
Affiliation(s)
- C L Peichel
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | | | |
Collapse
|
20
|
Elango R, Riba L, Housman D, Hunter K. Generation and mapping of Mus spretus strain-specific markers for rapid genomic scanning. Mamm Genome 1996; 7:340-3. [PMID: 8661719 DOI: 10.1007/s003359900099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We describe here a set of genetic markers, based on IRS-PCR amplification difference, that are specifically designed for efficient, high throughput genetic mapping in [(M. domesticus x wild-derived) F1 x M. domesticus] interspecific backcrosses. 146 new genetic loci have been mapped, and strain distribution for these markers has been determined in 96 mouse strains. 103 (81%) of 127 tested markers are present only in one or more wild-derived strains, but absent in 76 other commonly used strains, demonstrating their utility in a variety of mouse pair combinations. Because of the ease of genotyping with this marker set, rapid genome scans for complex genetic trait loci involving crosses between wild-derived strains and other commonly used strains can now be carried out efficiently with large numbers of animals.
Collapse
Affiliation(s)
- R Elango
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
21
|
Toyota M, Canzian F, Ushijima T, Hosoya Y, Kuramoto T, Serikawa T, Imai K, Sugimura T, Nagao M. A rat genetic map constructed by representational difference analysis markers with suitability for large-scale typing. Proc Natl Acad Sci U S A 1996; 93:3914-9. [PMID: 8632989 PMCID: PMC39459 DOI: 10.1073/pnas.93.9.3914] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Representational difference analysis (RDA) was applied to isolate chromosomal markers in the rat. Four series of RDA [restriction enzymes, BamHI and HindIII; subtraction of ACI/N (ACI) amplicon from BUF/Nac (BUF) amplicon and vice versa] yielded 131 polymorphic markers; 125 of these markers were mapped to all chromosomes except for chromosome X. This was done by using a mapping panel of 105 ACI x BUF F2 rats. To complement the relative paucity of chromosomal markers in the rat, genetically directed RDA, which allows isolation of polymorphic markers in the specific chromosomal region, was performed. By changing the F2 driver-DNA allele frequency around the region, four markers were isolated from the D1Ncc1 locus. Twenty-five of 27 RDA markers were informative regarding the dot blot analysis of amplicons, hybridizing only with tester amplicons. Dot blot analysis at a high density per unit of area made it possible to process a large number of samples. Quantitative trait loci can now be mapped in the rat genome by processing a large number of samples with RDA markers and then by isolating markers close to the loci of interest by genetically directed RDA.
Collapse
Affiliation(s)
- M Toyota
- Carcinogenesis Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hunter KW, Riba L, Schalkwyk L, Clark M, Resenchuk S, Beeghly A, Su J, Tinkov F, Lee P, Ramu E, Lehrach H, Housman D. Toward the construction of integrated physical and genetic maps of the mouse genome using interspersed repetitive sequence PCR (IRS-PCR) genomics. Genome Res 1996; 6:290-9. [PMID: 8723722 DOI: 10.1101/gr.6.4.290] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using two recently developed techniques, IRS-PCR YAC walking and IRS-PCR genotyping, a framework-integrated physical and genetic map of the mouse genome was constructed. The map consists of 821 contigs, containing 7746 YAC clones originating from three different YAC libraries. Three hundred eighty of the contigs have been anchored to the genetic map. Approximately 16% of the physical length of the mouse genome is estimated to be represented.
Collapse
Affiliation(s)
- K W Hunter
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Manenti G, Gariboldi M, Elango R, Fiorino A, De Gregorio L, Falvella FS, Hunter K, Housman D, Pierotti MA, Dragani TA. Genetic mapping of a pulmonary adenoma resistance (Par1) in mouse. Nat Genet 1996; 12:455-7. [PMID: 8630506 DOI: 10.1038/ng0496-455] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lung cancer, a major cause of death in the Western world, has a poor prognosis. So far, therapeutic strategies have had only a limited effect. Lung cancer risk is strongly associated with cigarette smoking and lung cancer pedigrees are rare. However, a possible polygenic nature of inherited predisposition to this cancer has been envisaged. Mouse inbred strains with inherited predisposition and resistance to lung cancer provide an important tool for the dissection of the genetics of this complex disease. The A/J strain carries the pulmonary adenoma susceptibility 1 (Pas1) locus and develops many lung tumours. We have mapped the M. spretus-derived locus that strongly resists the lung tumorigenesis in Pas1/+ mice. This locus, pulmonary adenoma resistance 1 (Par1) maps to mouse chromosome 11, near the Rara locus, with a lod score of 5.3. In Pas1/+ mice Par1 accounts for 23% of the phenotypic variance and 10 fold reduction in total tumour volume. These results provide evidence for a major resistance locus affecting the expression of an inherited predisposition to lung cancer.
Collapse
Affiliation(s)
- G Manenti
- Division of Experimental Oncology A, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|