1
|
Keeling PJ, Mtawali M, Trznadel M, Livingston SJ, Wakeman KC. Parallel functional reduction in the mitochondria of apicomplexan parasites. Eur J Protistol 2024; 94:126065. [PMID: 38492251 DOI: 10.1016/j.ejop.2024.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Extreme functional reduction of mitochondria has taken place in parallel in many distantly related lineages of eukaryotes, leading to a number of recurring metabolic states with variously lost electron transport chain (ETC) complexes, loss of the tricarboxylic acid (TCA) cycle, and/or loss of the mitochondrial genome. The resulting mitochondria-related organelles (MROs) are generally structurally reduced and in the most extreme cases barely recognizable features of the cell with no role in energy metabolism whatsoever (e.g., mitosomes, which generally only make iron-sulfur clusters). Recently, a wide diversity of MROs were discovered to be hiding in plain sight: in gregarine apicomplexans. This diverse group of invertebrate parasites has been known and observed for centuries, but until recent applications of culture-free genomics, their mitochondria were unremarkable. The genomics, however, showed that mitochondrial function has reduced in parallel in multiple gregarine lineages to several different endpoints, including the most reduced mitosomes. Here we review this remarkable case of parallel evolution of MROs, and some of the interesting questions this work raises.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada.
| | - Mahara Mtawali
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Morelia Trznadel
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Samuel J Livingston
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
2
|
Chang CH, See Too WC, Lim BH, Few LL. Identification and Characterization of Entamoeba histolytica Choline Kinase. Acta Parasitol 2024; 69:426-438. [PMID: 38172465 DOI: 10.1007/s11686-023-00763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Entamoeba histolytica is one of the death-causing parasites in the world. Study on its lipid composition revealed that it is predominated by phosphatidylcholine and phosphatidylethanolamine. Further study revealed that its phosphorylated metabolites might be produced by the Kennedy pathway. Here, we would like to report on the characterizations of enzymes from this pathway that would provide information for the design of novel inhibitors against these enzymes in future. METHODOLOGY E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes. RESULTS EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35-48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner's phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting. CONCLUSIONS With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.
Collapse
Affiliation(s)
- Chiat Han Chang
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Boon Huat Lim
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
3
|
Langlois GA, Rueckert S. In memoriam: Thomas Cavalier-Smith (1942-2021). J Eukaryot Microbiol 2024; 71:e13013. [PMID: 38059499 DOI: 10.1111/jeu.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Thomas Cavalier-Smith, born in London, U.K., on October 21, 1942, was a Professor of Evolutionary Biology in the Department of Zoology at the University of Oxford at the time of his death on March 19, 2021. Credited with at least 235 research works and over 20,000 citations, Cavalier-Smith was a well-known and widely respected scientist who took a bold and detailed approach to understanding major transitions in evolution, including the role of endosymbiosis. He was noted for his willingness to question theories and constantly accumulate and evaluate data, motivated by science for the sake of science. This paper reviews Thomas Cavalier-Smith's major accomplishments, examines his theoretical approaches, and provides highlights from the "Tree of Life Symposium" sponsored by the International Society of Protistologists (ISOP) and the International Society of Evolutionary Protistology (ISEP) on June 21, 2021, to celebrate Tom's life and work.
Collapse
Affiliation(s)
- Gaytha A Langlois
- Marine Microbial Research Laboratory, Bryant University, Smithfield, Rhode Island, USA
| | - Sonja Rueckert
- Department of Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Xue ZP, Chindelevitch L, Guichard F. Supply-driven evolution: Mutation bias and trait-fitness distributions can drive macro-evolutionary dynamics. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1048752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Many well-documented macro-evolutionary phenomena still challenge current evolutionary theory. Examples include long-term evolutionary trends, major transitions in evolution, conservation of certain biological features such as hox genes, and the episodic creation of new taxa. Here, we present a framework that may explain these phenomena. We do so by introducing a probabilistic relationship between trait value and reproductive fitness. This integration allows mutation bias to become a robust driver of long-term evolutionary trends against environmental bias, in a way that is consistent with all current evolutionary theories. In cases where mutation bias is strong, such as when detrimental mutations are more common than beneficial mutations, a regime called “supply-driven” evolution can arise. This regime can explain the irreversible persistence of higher structural hierarchies, which happens in the major transitions in evolution. We further generalize this result in the long-term dynamics of phenotype spaces. We show how mutations that open new phenotype spaces can become frozen in time. At the same time, new possibilities may be observed as a burst in the creation of new taxa.
Collapse
|
5
|
Stucchi L, Galeano J, Pastor JM, Iriondo JM, Cuesta JA. Prevalence of mutualism in a simple model of microbial coevolution. Phys Rev E 2022; 106:054401. [PMID: 36559513 DOI: 10.1103/physreve.106.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
Evolutionary transitions among ecological interactions are widely known, although their detailed dynamics remain absent for most population models. Adaptive dynamics has been used to illustrate how the parameters of population models might shift through evolution, but within an ecological regime. Here we use adaptive dynamics combined with a generalized logistic model of population dynamics to show that transitions of ecological interactions might appear as a consequence of evolution. To this purpose, we introduce a two-microbial toy model in which population parameters are determined by a bookkeeping of resources taken from (and excreted to) the environment, as well as from the byproducts of the other species. Despite its simplicity, this model exhibits all kinds of potential ecological transitions, some of which resemble those found in nature. Overall, the model shows a clear trend toward the emergence of mutualism.
Collapse
Affiliation(s)
- Luciano Stucchi
- Universidad del Pacífico, 15072 Lima, Peru and Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Javier Galeano
- Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Manuel Pastor
- Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Jose María Iriondo
- Biodiversity and Conservation Area, ESCET, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Madrid, Spain; Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain; and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
6
|
Santos HJ, Nozaki T. The mitosome of the anaerobic parasitic protist Entamoeba histolytica: A peculiar and minimalist mitochondrion-related organelle. J Eukaryot Microbiol 2022; 69:e12923. [PMID: 35588086 PMCID: PMC9796589 DOI: 10.1111/jeu.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The simplest class of mitochondrion-related organelles (MROs) is the mitosome, an organelle present in a few anaerobic protozoan parasites such as Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium parvum. E. histolytica causes amoebiasis in humans, deemed as one of the important, yet neglected tropical infections in the world. Much of the enigma of the E. histolytica mitosome circles around the obvious lack of a majority of known mitochondrial components and functions exhibited in other organisms. The identification of enzymes responsible for sulfate activation (AS, IPP, and APSK) and a number of lineage-specific proteins such as the outer membrane beta-barrel protein (MBOMP30), and transmembrane domain-containing proteins that bind to various organellar proteins (ETMP1, ETMP30, EHI_170120, and EHI_099350) showcased the remarkable divergence of this organelle compared to the other MROs of anaerobic protozoa. Here, we summarize the findings regarding the biology of the mitosomes in E. histolytica, from their discovery up to the present understanding of its roles and interactions. We also include current advances and future perspectives on the biology, biochemistry, and evolution of the mitosomes of E. histolytica.
Collapse
Affiliation(s)
- Herbert J. Santos
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
7
|
Igloi GL. The Evolutionary Fate of Mitochondrial Aminoacyl-tRNA Synthetases in Amitochondrial Organisms. J Mol Evol 2021; 89:484-493. [PMID: 34254168 PMCID: PMC8318970 DOI: 10.1007/s00239-021-10019-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
During the endosymbiotic evolution of mitochondria, the genes for aminoacyl-tRNA synthetases were transferred to the ancestral nucleus. A further reduction of mitochondrial function resulted in mitochondrion-related organisms (MRO) with a loss of the organelle genome. The fate of the now redundant ancestral mitochondrial aminoacyl-tRNA synthetase genes is uncertain. The derived protein sequence for arginyl-tRNA synthetase from thirty mitosomal organisms have been classified as originating from the ancestral nuclear or mitochondrial gene and compared to the identity element at position 20 of the cognate tRNA that distinguishes the two enzyme forms. The evolutionary choice between loss and retention of the ancestral mitochondrial gene for arginyl-tRNA synthetase reflects the coevolution of arginyl-tRNA synthetase and tRNA identity elements.
Collapse
Affiliation(s)
- Gabor L Igloi
- Institute of Biology III, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
| |
Collapse
|
8
|
|
9
|
Kloehn J, Harding CR, Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J 2020; 288:382-404. [PMID: 32530125 DOI: 10.1111/febs.15445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
The Apicomplexa phylum groups important human and animal pathogens that cause severe diseases, encompassing malaria, toxoplasmosis, and cryptosporidiosis. In common with most organisms, apicomplexans rely on heme as cofactor for several enzymes, including cytochromes of the electron transport chain. This heme derives from de novo synthesis and/or the development of uptake mechanisms to scavenge heme from their host. Recent studies have revealed that heme synthesis is essential for Toxoplasma gondii tachyzoites, as well as for the mosquito and liver stages of Plasmodium spp. In contrast, the erythrocytic stages of the malaria parasites rely on scavenging heme from the host red blood cell. The unusual heme synthesis pathway in Apicomplexa spans three cellular compartments and comprises enzymes of distinct ancestral origin, providing promising drug targets. Remarkably given the requirement for heme, T. gondii can tolerate the loss of several heme synthesis enzymes at a high fitness cost, while the ferrochelatase is essential for survival. These findings indicate that T. gondii is capable of salvaging heme precursors from its host. Furthermore, heme is implicated in the activation of the key antimalarial drug artemisinin. Recent findings established that a reduction in heme availability corresponds to decreased sensitivity to artemisinin in T. gondii and Plasmodium falciparum, providing insights into the possible development of combination therapies to tackle apicomplexan parasites. This review describes the microeconomics of heme in Apicomplexa, from supply, either from de novo synthesis or scavenging, to demand by metabolic pathways, including the electron transport chain.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Switzerland
| | - Clare R Harding
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, UK
| | | |
Collapse
|
10
|
Ray AK, Naiyer S, Singh SS, Bhattacharya A, Bhattacharya S. Application of SHAPE reveals in vivo RNA folding under normal and growth-stressed conditions in the human parasite Entamoeba histolytica. Mol Biochem Parasitol 2017; 219:42-51. [PMID: 29175581 DOI: 10.1016/j.molbiopara.2017.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
Abstract
Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) is a versatile sequence independent method to probe RNA structure in vivo and in vitro. It has so far been tried mainly with model organisms. We show that cells of Entamoeba histolytica, a protozoan parasite of humans are hyper-sensitive to the in vivo SHAPE reagent, NAI, and show rapid loss of viability and RNA integrity. We optimized treatment conditions with 5.8S rRNA and Eh_U3 snoRNA to obtain NAI-modification while retaining RNA integrity. The modification patterns were highly reproducible. The in vivo folding was different from in vitro and correlated well with known interactions of 5.8S rRNA with proteins in vivo. The Eh_U3 snoRNA also showed many differences in its in vivo versus in vitro folding, which correlated with conserved interactions of this RNA with 18S rRNA and 5'-ETS. Further, Eh_U3 snoRNA obtained from serum-starved cells showed an open 3'-hinge structure, indicating disruption of 5'-ETS interaction. This could contribute to the observed slow processing of pre-rRNA in starved cells. Our work shows the applicability of SHAPE to study in vivo RNA folding in a parasite and will encourage the use of this reagent for RNA structure analysis in other such organisms.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sarah Naiyer
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
11
|
Morphological characterization and HSP70-, IGS-based phylogenetic analysis of two microsporidian parasites isolated from Antheraea pernyi. Parasitol Res 2017; 116:971-977. [PMID: 28111712 DOI: 10.1007/s00436-017-5373-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
Two microsporidian isolates were extracted from single infected egg-laying tussah silk moth (Antheraea pernyi) in Liaoning Province, China. The microsporidia were subsequently grown in silk moth larvae, isolated, and subjected to morphological characterization (by light and transmission electron microscopy) and phylogenetic analysis (based on conserved genes). One type of spore was long-axis-oval in shape, measuring 4.71 × 1.95 μm, and the other type was short-axis-oval, measuring 3.64 × 2.17 μm. These dimensions were markedly different from those reported in the spores of the common microsporidia infecting A. pernyi, namely, Nosema pernyi (4.36 × 1.49 μm). A neighbor-joining phylogenetic tree based on HSP70 indicated that these microsporidia belonged to Nosema species and were closely related with Nosema bombycis and Nosema ceranae. Furthermore, in the phylogenetic tree based on the intergenic spacer (IGS) region, the long-axis-oval isolates were closely related and tended to form a clade away from the short-axis-oval isolates and N. pernyi isolates. The microsporidia isolated from A. pernyi clustered in one group. Nosema bombycis, Nosema spodopterae, and Endoreticulatus spp. appeared to be genetically distant from N. pernyi. The two isolates from A. pernyi fell in the Nosema group, but their spores differed from those of the spores of the common A. pernyi parasite N. pernyi, both in morphological and genetic aspects. The two isolates were designated Nosema sp. Ap (L) and Nosema sp. Ap (S). IGS was found to be informative in ascertaining phylogenetic relationships among species, and even closely related strains, of microsporidia.
Collapse
|
12
|
Abstract
Due to their involvement in the energy metabolism, mitochondria are essential for most eukaryotic cells. Microbial eukaryotes living in low oxygen environments possess reduced forms of mitochondria, namely mitochondrion-related organelles (MROs). These do not produce ATP by oxidative phosphorylation on their membranes and some do not produce ATP at all. Still, they are indispensable because of other essential functions such as iron-sulphur (Fe-S) cluster assembly. Recently, the first microbial eukaryote with neither mitochondrion nor MRO was characterized - Monocercomonoides sp. Genome and transcriptome sequencing of Monocercomonoides revealed that it lacks all hallmark mitochondrial proteins. Crucially, the essential mitochondrial pathway for the Fe-S cluster assembly (ISC) was replaced by a bacterial sulphur mobilization (SUF) system. The discovery of such bona fide amitochondriate eukaryote broadens our knowledge about the diversity and plasticity of eukaryotic cells and provides a substantial contribution to our understanding of eukaryotic cell evolution.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Vladimír Hampl
- Department of Parasitology, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
14
|
Pánek T, Zadrobílková E, Walker G, Brown MW, Gentekaki E, Hroudová M, Kang S, Roger AJ, Tice AK, Vlček Č, Čepička I. First multigene analysis of Archamoebae (Amoebozoa: Conosa) robustly reveals its phylogeny and shows that Entamoebidae represents a deep lineage of the group. Mol Phylogenet Evol 2016; 98:41-51. [PMID: 26826602 DOI: 10.1016/j.ympev.2016.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Archamoebae is an understudied group of anaerobic free-living or endobiotic protists that constitutes the major anaerobic lineage of the supergroup Amoebozoa. Hitherto, the phylogeny of Archamoebae was based solely on SSU rRNA and actin genes, which did not resolve relationships among the main lineages of the group. Because of this uncertainty, several different scenarios had been proposed for the phylogeny of the Archamoebae. In this study, we present the first multigene phylogenetic analysis that includes members of Pelomyxidae, and Rhizomastixidae. The analysis clearly shows that Mastigamoebidae, Pelomyxidae and Rhizomastixidae form a clade of mostly free-living, amoeboid flagellates, here called Pelobiontida. The predominantly endobiotic and aflagellated Entamoebidae represents a separate, deep-branching lineage, Entamoebida. Therefore, two unique evolutionary events, horizontal transfer of the nitrogen fixation system from bacteria and transfer of the sulfate activation pathway to mitochondrial derivatives, predate the radiation of recent lineages of Archamoebae. The endobiotic lifestyle has arisen at least three times independently during the evolution of the group. We also present new ultrastructural data that clarifies the primary divergence among the family Mastigamoebidae which had previously been inferred from phylogenetic analyses based on SSU rDNA.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague, Czech Republic.
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague, Czech Republic; Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 48, 100 42 Prague, Czech Republic
| | - Giselle Walker
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague, Czech Republic
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Miluše Hroudová
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Seungho Kang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Čestmír Vlček
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague, Czech Republic
| |
Collapse
|
15
|
Nowak P. Entamoeba histolytica - Pathogenic Protozoan of the Large Intestine in Humans. ACTA ACUST UNITED AC 2015. [DOI: 10.17352/jcmbt.000003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Leckenby A, Hall N. Genomic changes during evolution of animal parasitism in eukaryotes. Curr Opin Genet Dev 2015; 35:86-92. [PMID: 26637954 DOI: 10.1016/j.gde.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
Understanding how pathogens have evolved to survive in close association with their hosts is an important step in unraveling the biology of host-pathogen interactions. Comparative genomics is a powerful tool to approach this problem as an increasing number of genomes of multiple pathogen species and strains become available. The ever-growing catalog of genome sequences makes comparison of organisms easier, but it also allows us to reconstitute the evolutionary processes occurring at the genomic level that may have led to the acquisition of pathogenic or parasitic mechanisms.
Collapse
Affiliation(s)
- Amber Leckenby
- Department of Functional and Comparative Genomics, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Neil Hall
- Department of Functional and Comparative Genomics, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
17
|
|
18
|
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140326. [PMID: 26323757 PMCID: PMC4571565 DOI: 10.1098/rstb.2014.0326] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
19
|
Zadrobílková E, Smejkalová P, Walker G, Čepička I. Morphological and Molecular Diversity of the Neglected Genus Rhizomastix Alexeieff, 1911 (Amoebozoa: Archamoebae) with Description of Five New Species. J Eukaryot Microbiol 2015; 63:181-97. [DOI: 10.1111/jeu.12266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/17/2015] [Accepted: 08/26/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Eliška Zadrobílková
- Department of Zoology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
- Centre for Epidemiology and Microbiology; National Institute of Public Health; Srobarova 48 100 42 Prague Czech Republic
| | - Pavla Smejkalová
- Department of Zoology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
- Department of Parasitology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
| | - Giselle Walker
- Department of Zoology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
- Equipe Diversité et Évolution Microbiennes; Laboratoire Ecologie; Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech; Université de Paris-Sud; Bâtiment 360 91405 Orsay France
| | - Ivan Čepička
- Department of Zoology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
| |
Collapse
|
20
|
A multi-functional tubulovesicular network as the ancestral eukaryotic endomembrane system. BIOLOGY 2015; 4:264-81. [PMID: 25811639 PMCID: PMC4498299 DOI: 10.3390/biology4020264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Abstract
The origin of the eukaryotic endomembrane system is still the subject of much speculation. We argue that the combination of two recent hypotheses addressing the eukaryotic endomembrane's early evolution supports the possibility that the ancestral membranes were organised as a multi-functional tubulovesicular network. One of the potential selective advantages provided by this organisation was the capacity to perform endocytosis. This possibility is illustrated by membrane organisations observed in current organisms in the three domains of life. Based on this, we propose a coherent model of autogenous eukaryotic endomembrane system evolution in which mitochondria are involved at a late stage.
Collapse
|
21
|
Anwar S, Dikhit MR, Singh KP, Kar RK, Zaidi A, Sahoo GC, Roy AK, Nozaki T, Das P, Ali V. Interaction between Nbp35 and Cfd1 proteins of cytosolic Fe-S cluster assembly reveals a stable complex formation in Entamoeba histolytica. PLoS One 2014; 9:e108971. [PMID: 25271645 PMCID: PMC4182839 DOI: 10.1371/journal.pone.0108971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 08/29/2014] [Indexed: 02/01/2023] Open
Abstract
Iron-Sulfur (Fe-S) proteins are involved in many biological functions such as electron transport, photosynthesis, regulation of gene expression and enzymatic activities. Biosynthesis and transfer of Fe-S clusters depend on Fe-S clusters assembly processes such as ISC, SUF, NIF, and CIA systems. Unlike other eukaryotes which possess ISC and CIA systems, amitochondriate Entamoeba histolytica has retained NIF & CIA systems for Fe-S cluster assembly in the cytosol. In the present study, we have elucidated interaction between two proteins of E. histolytica CIA system, Cytosolic Fe-S cluster deficient 1 (Cfd1) protein and Nucleotide binding protein 35 (Nbp35). In-silico analysis showed that structural regions ranging from amino acid residues (P33-K35, G131-V135 and I147-E151) of Nbp35 and (G5-V6, M34-D39 and G46-A52) of Cfd1 are involved in the formation of protein-protein complex. Furthermore, Molecular dynamic (MD) simulations study suggested that hydrophobic forces surpass over hydrophilic forces between Nbp35 and Cfd1 and Van-der-Waal interaction plays crucial role in the formation of stable complex. Both proteins were separately cloned, expressed as recombinant fusion proteins in E. coli and purified to homogeneity by affinity column chromatography. Physical interaction between Nbp35 and Cfd1 proteins was confirmed in vitro by co-purification of recombinant Nbp35 with thrombin digested Cfd1 and in vivo by pull down assay and immunoprecipitation. The insilico, in vitro as well as in vivo results prove a stable interaction between these two proteins, supporting the possibility of its involvement in Fe-S cluster transfer to target apo-proteins through CIA machinery in E. histolytica. Our study indicates that initial synthesis of a Fe-S precursor in mitochondria is not necessary for the formation of Cfd1-Nbp35 complex. Thus, Cfd1 and Nbp35 with the help of cytosolic NifS and NifU proteins can participate in the maturation of non-mitosomal Fe-S proteins without any apparent assistance of mitosomes.
Collapse
Affiliation(s)
- Shadab Anwar
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agam-kuan, Patna, India
| | - Manas Ranjan Dikhit
- Department of Biomedical Informatics Centre, Rajendra Memorial Research Institute of Medical Sciences, Agam-kuan, Patna, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agam-kuan, Patna, India
| | - Rajiv Kumar Kar
- Department of Biomedical Informatics Centre, Rajendra Memorial Research Institute of Medical Sciences, Agam-kuan, Patna, India
| | - Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agam-kuan, Patna, India
| | - Ganesh Chandra Sahoo
- Department of Biomedical Informatics Centre, Rajendra Memorial Research Institute of Medical Sciences, Agam-kuan, Patna, India
| | | | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agam-kuan, Patna, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agam-kuan, Patna, India
- * E-mail:
| |
Collapse
|
22
|
El Zawily AM, Schwarzländer M, Finkemeier I, Johnston IG, Benamar A, Cao Y, Gissot C, Meyer AJ, Wilson K, Datla R, Macherel D, Jones NS, Logan DC. FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:808-28. [PMID: 25165398 PMCID: PMC4213110 DOI: 10.1104/pp.114.243824] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/27/2014] [Indexed: 05/19/2023]
Abstract
Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes.
Collapse
Affiliation(s)
- Amr M El Zawily
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Markus Schwarzländer
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Iris Finkemeier
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Iain G Johnston
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Abdelilah Benamar
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Yongguo Cao
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Clémence Gissot
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Andreas J Meyer
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Ken Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Raju Datla
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - David Macherel
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - Nick S Jones
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| | - David C Logan
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 (A.M.E.Z., K.W., D.C.L.);Faculty of Science, Damanhour University, Damanhour 22516, Egypt (A.M.E.Z.);Institute of Crop Science and Resource Conservation, University of Bonn, D-53113 Bonn, Germany (M.S., A.J.M.);Max-Planck-Institute for Plant Breeding Research, Plant Proteomics Group, 50829 Cologne, Germany (I.F.);Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (I.G.J., C.G., N.S.J.);Université d'Angers, Institut National de la Recherche Agronomique, and Agrocampus Ouest, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers F-49045, France (A.B., D.M., D.C.L.); andPlant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada (Y.C., R.D.)
| |
Collapse
|
23
|
Gilchrist CA. Entamoeba bangladeshi: An insight. Trop Parasitol 2014; 4:96-8. [PMID: 25250229 PMCID: PMC4166810 DOI: 10.4103/2229-5070.138536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 12/26/2022] Open
Abstract
Molecular tools have the potential to differentiate microscopically similar gut micro-eukaryotes that may have significantly different relationships with the human host. Using broad range Entamoeba primers to amplify a section of the eukaryotic 18S small subunit ribosomal RNA gene a novel member of the Entamoeba family (Entamoeba bangladeshi) has recently been identified. The goal of this review is to place this species in the context of what is already known about this genus and to discuss the tools and data needed to elucidate the host-microbe relationship.
Collapse
Affiliation(s)
- Carol A Gilchrist
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
24
|
Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100:3-17. [DOI: 10.1016/j.biochi.2013.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022]
|
25
|
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 2014; 6:a016147. [PMID: 24789819 DOI: 10.1101/cshperspect.a016147] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
26
|
Abstract
The persistence of mtDNA to encode a small subset of mitochondrial proteins reflects the selective advantage of co-location of key respiratory chain subunit genes with their gene products. The disadvantage of this co-location is exposure of mtDNA to mutagenic ROS (reactive oxygen species), which are by-products of aerobic respiration. The resulting 'vicious circle' of mitochondrial mutation has been proposed to underlie aging and its associated degenerative diseases. Recent evidence is consistent with the hypothesis that oocyte mitochondria escape the aging process by acting as quiescent genetic templates, transcriptionally and bioenergetically repressed. Transmission of unexpressed mtDNA in the female germline is considered as a reason for the existence of separate sexes, i.e. male and female. Maternal inheritance then circumvents incremental accumulation of age-related disease in each new generation.
Collapse
|
27
|
Ptáčková E, Kostygov AY, Chistyakova LV, Falteisek L, Frolov AO, Patterson DJ, Walker G, Cepicka I. Evolution of Archamoebae: Morphological and Molecular Evidence for Pelobionts Including Rhizomastix, Entamoeba, Iodamoeba, and Endolimax. Protist 2013; 164:380-410. [DOI: 10.1016/j.protis.2012.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
28
|
Zubáčová Z, Novák L, Bublíková J, Vacek V, Fousek J, Rídl J, Tachezy J, Doležal P, Vlček Č, Hampl V. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system. PLoS One 2013; 8:e55417. [PMID: 23516392 PMCID: PMC3596361 DOI: 10.1371/journal.pone.0055417] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS), which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.
Collapse
Affiliation(s)
- Zuzana Zubáčová
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Lukáš Novák
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Jitka Bublíková
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Vojtěch Vacek
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Jan Fousek
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jakub Rídl
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Tachezy
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Pavel Doležal
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Department of Parasitology, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
29
|
Vaithilingam A, Teixeira JE, Huston CD. Endoplasmic reticulum continuity in the protozoan parasite Entamoeba histolytica: Evolutionary implications and a cautionary note. Commun Integr Biol 2012; 1:172-4. [PMID: 19704884 DOI: 10.4161/cib.1.2.7143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica has been described as an early branching eukaryotic parasite based on the lack of organelles such as mitochondria and peroxisomes, and on morphologic studies that concluded it possesses a vesicular endoplasmic reticulum (ER) and Golgi complex. However, a recent study from our laboratory showed that the E. histolytica ER is continuous by using an ER-targeted green fluorescent protein fusion protein and photobleaching experiments. We proposed that the vesicular ER seen earlier was likely an artifact of fixation. We now report data using an alternative fixation protocol that preserves the continuous ER morphology. These data confirm that the vesicular ER reported earlier was indeed a fixation artifact; furthermore, since we observed the same ER structure when staining for the native antigen HSP-70 in wild-type amebae, the data provide direct evidence that the continuous ER morphology we reported is correct. This work has important implications for cell biologists studying E. histolytica virulence, emphasizes the frequent need to reassess assumptions based on published data, and provides additional evidence that E. histolytica actually diverged relatively late in evolution and that many of its unusual features are likely due to loss of features during adaptation to its ecological niche.
Collapse
|
30
|
Abstract
Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis--the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell--has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it.
Collapse
|
31
|
Yue J, Huang J. Algal genes in aplastidic eukaryotes are not necessarily derived from historical plastids. Mob Genet Elements 2012; 2:193-196. [PMID: 23087844 PMCID: PMC3469431 DOI: 10.4161/mge.21745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In photosynthetic eukaryotes, many genes were transferred from plastids or algal endosymbionts to nuclear genomes of host cells. These transferred genes are often considered genetic footprints of plastids. However, genes of algal origin have also been detected in some plastid-lacking eukaryotes, and these genes are often cited as evidence of historical plastids. In this paper, we discuss two recent publications about algal genes in plastid-lacking eukaryotes. Both studies highlight the point that algal genes are not exclusively derived from historical plastids. Instead, the findings show that gene acquisition through feeding activities is a plausible explanation.
Collapse
Affiliation(s)
- Jipei Yue
- Department of Biology; East Carolina University; Greenville, NC USA ; Key Laboratory of Biodiversity and Biogeography; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming, China
| | | |
Collapse
|
32
|
Heinz E, Lithgow T. Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:295-303. [PMID: 22366436 DOI: 10.1016/j.bbamcr.2012.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 12/31/2022]
Abstract
Mitochondria are present in all eukaryotes, but remodeling of their metabolic contribution has in some cases left them almost unrecognizable and they are referred to as mitochondria-like organelles, hydrogenosomes or, in the case where evolution has led to a great deal of simplification, as mitosomes. Mitochondria rely on the import of proteins encoded in the nucleus and the protein import machinery has been investigated in detail in yeast: several sophisticated molecular machines act in concert to import substrate proteins across the outer mitochondrial membrane and deliver them to a precise sub-mitochondrial compartment. Because these machines are so sophisticated, it has been a major challenge to conceptualize the first phase of their evolution. Here we review recent studies on the protein import pathway in parasitic species that have mitosomes: in the course of their evolution for highly specialized niches these parasites, particularly Cryptosporidia and Microsporidia, have secondarily lost numerous protein functions, in accordance with the evolution of their genomes towards a minimal size. Microsporidia are related to fungi, Cryptosporidia are apicomplexans and kin to the malaria parasite Plasmodium; and this great phylogenetic distance makes it remarkable that Microsporidia and Cryptosporidia have independently evolved skeletal protein import pathways that are almost identical. We suggest that the skeletal pathway reflects the protein import machinery of the first eukaryotes, and defines the essential roles of the core elements of the mitochondrial protein import machinery. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne 3800, Australia.
| | | |
Collapse
|
33
|
|
34
|
Mitosomes in trophozoites and cysts of the reptilian parasite Entamoeba invadens. EUKARYOTIC CELL 2011; 10:1582-5. [PMID: 21965513 DOI: 10.1128/ec.05172-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heat shock protein genes led to the discovery of mitosomes in Entamoeba histolytica, but mitosomes have not been described for any other Entamoeba species, nor have they been identified in the cyst stage. Here, we show that the distantly related reptilian pathogen Entamoeba invadens contains mitosomes, in both trophozoites and cysts, suggesting all Entamoeba species contain these organelles.
Collapse
|
35
|
|
36
|
|
37
|
Abstract
SUMMARYSingle-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.
Collapse
|
38
|
Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 2011; 162:53-70. [DOI: 10.1016/j.resmic.2010.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/04/2010] [Indexed: 12/31/2022]
|
39
|
Abstract
The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.
Collapse
Affiliation(s)
- April M Shiflett
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1489, USA
| | | |
Collapse
|
40
|
Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist 2010; 161:642-71. [PMID: 21036663 PMCID: PMC3021972 DOI: 10.1016/j.protis.2010.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | |
Collapse
|
41
|
Entamoeba histolytica calreticulin: an endoplasmic reticulum protein expressed by trophozoites into experimentally induced amoebic liver abscesses. Parasitol Res 2010; 108:439-49. [PMID: 20922421 DOI: 10.1007/s00436-010-2085-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/08/2010] [Indexed: 12/16/2022]
Abstract
Entamoeba histolytica calreticulin (EhCRT) is remarkably immunogenic in humans (90-100% of invasive amoebiasis patients). Nevertheless, the study of calreticulin in this protozoan is still in its early stages. The exact location, biological functions, and its role in pathogenesis are yet to be fully understood. The aim of the present work is to determine the location of EhCRT in virulent trophozoites in vivo and the expression of the Ehcrt gene during the development of experimentally induced amoebic liver abscesses (ALA) in hamsters. Antibodies against recombinant EhCRT were used for the immunolocalization of EhCRT in trophozoites through confocal microscopy; immunohistochemical assays were also performed on tissue sections of ALAs at different times after intrahepatic inoculation. The expression of the Ehcrt gene during the development of ALA was estimated through both in situ RT-PCR and real-time RT-PCR. Confocal assays of virulent trophozoites showed a distribution of EhCRT in the cytoplasmic vesicles of different sizes. Apparently, EhCRT is not exported into the hepatic tissue. Real-time RT-PCR demonstrated an over-expression of the Ehcrt gene at 30 min after trophozoite inoculation, reaching a peak at 1-2 h; thereafter, the expression fell sharply to its original levels. These results demonstrate for the first time in an in vivo model of ALA, the expression of Ehcrt gene in E. histolytica trophozoites and add evidence that support CRT as a resident protein of the ER in E. histolytica species. The in vivo experiments suggest that CRT may play an important role during the early stages of the host-parasite relationship, when the parasite is adapting to a new environment, although the protein seems to be constitutively synthesized. Moreover, trophozoites apparently do not export EhCRT into the hepatic tissue in ALA.
Collapse
|
42
|
O'Malley MA. The first eukaryote cell: an unfinished history of contestation. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2010; 41:212-224. [PMID: 20934642 DOI: 10.1016/j.shpsc.2010.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The eukaryote cell is one of the most radical innovations in the history of life, and the circumstances of its emergence are still deeply contested. This paper will outline the recent history of attempts to reveal these origins, with special attention to the argumentative strategies used to support claims about the first eukaryote cell. I will focus on two general models of eukaryogenesis: the phagotrophy model and the syntrophy model. As their labels indicate, they are based on claims about metabolic relationships. The first foregrounds the ability to consume other organisms; the second the ability to enter into symbiotic metabolic arrangements. More importantly, however, the first model argues for the autogenous or self-generated origins of the eukaryote cell, and the second for its exogenous or externally generated origins. Framing cell evolution this way leads each model to assert different priorities in regard to cell-biological versus molecular evidence, cellular versus environmental influences, plausibility versus evolutionary probability, and irreducibility versus the continuity of cell types. My examination of these issues will conclude with broader reflections on the implications of eukaryogenesis studies for a philosophical understanding of scientific contestation.
Collapse
Affiliation(s)
- Maureen A O'Malley
- ESRC Research Centre for Genomics in Society (Egenis), University of Exeter, Byrne House, St. Germans Road, Exeter EX4 4PJ, UK. M.A.O’
| |
Collapse
|
43
|
Lorenzi HA, Puiu D, Miller JR, Brinkac LM, Amedeo P, Hall N, Caler EV. New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis 2010; 4:e716. [PMID: 20559563 PMCID: PMC2886108 DOI: 10.1371/journal.pntd.0000716] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background In order to maintain genome information accurately and relevantly, original genome annotations need to be updated and evaluated regularly. Manual reannotation of genomes is important as it can significantly reduce the propagation of errors and consequently diminishes the time spent on mistaken research. For this reason, after five years from the initial submission of the Entamoeba histolytica draft genome publication, we have re-examined the original 23 Mb assembly and the annotation of the predicted genes. Principal Findings The evaluation of the genomic sequence led to the identification of more than one hundred artifactual tandem duplications that were eliminated by re-assembling the genome. The reannotation was done using a combination of manual and automated genome analysis. The new 20 Mb assembly contains 1,496 scaffolds and 8,201 predicted genes, of which 60% are identical to the initial annotation and the remaining 40% underwent structural changes. Functional classification of 60% of the genes was modified based on recent sequence comparisons and new experimental data. We have assigned putative function to 3,788 proteins (46% of the predicted proteome) based on the annotation of predicted gene families, and have identified 58 protein families of five or more members that share no homology with known proteins and thus could be entamoeba specific. Genome analysis also revealed new features such as the presence of segmental duplications of up to 16 kb flanked by inverted repeats, and the tight association of some gene families with transposable elements. Significance This new genome annotation and analysis represents a more refined and accurate blueprint of the pathogen genome, and provides an upgraded tool as reference for the study of many important aspects of E. histolytica biology, such as genome evolution and pathogenesis. Entamoeba histolytica is an anaerobic parasitic protozoan that causes amoebic dysentery. The parasites colonize the large intestine, but under some circumstances may invade the intestinal mucosa, enter the bloodstream and lead to the formation of abscesses such amoebic liver abscesses. The draft genome of E. histolytica, published in 2005, provided the scientific community with the first comprehensive view of the gene set for this parasite and important tools for elucidating the genetic basis of Entamoeba pathogenicity. Because complete genetic knowledge is critical for drug discovery and potential vaccine development for amoebiases, we have re-examined the original draft genome for E. histolytica. We have corrected the sequence assembly, improved the gene predictions and refreshed the functional gene assignments. As a result, this effort has led to a more accurate gene annotation, and the discovery of novel features, such as the presence of genome segmental duplications and the close association of some gene families with transposable elements. We believe that continuing efforts to improve genomic data will undoubtedly help to identify and characterize potential targets for amoebiasis control, as well as to contribute to a better understanding of genome evolution and pathogenesis for this parasite.
Collapse
Affiliation(s)
- Hernan A Lorenzi
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | | | | | | | | | | |
Collapse
|
44
|
Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2010; 365:713-27. [PMID: 20124340 DOI: 10.1098/rstb.2009.0224] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.
Collapse
Affiliation(s)
- Karin Hjort
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
45
|
Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. EUKARYOTIC CELL 2010; 9:926-33. [PMID: 20382757 DOI: 10.1128/ec.00011-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pyridine nucleotide transhydrogenase (PNT) catalyzes the direct transfer of a hydride-ion equivalent between NAD(H) and NADP(H) in bacteria and the mitochondria of eukaryotes. PNT was previously postulated to be localized to the highly divergent mitochondrion-related organelle, the mitosome, in the anaerobic/microaerophilic protozoan parasite Entamoeba histolytica based on the potential mitochondrion-targeting signal. However, our previous proteomic study of isolated phagosomes suggested that PNT is localized to organelles other than mitosomes. An immunofluorescence assay using anti-E. histolytica PNT (EhPNT) antibody raised against the NADH-binding domain showed a distribution to the membrane of numerous vesicles/vacuoles, including lysosomes and phagosomes. The domain(s) required for the trafficking of PNT to vesicles/vacuoles was examined by using amoeba transformants expressing a series of carboxyl-terminally truncated PNTs fused with green fluorescent protein or a hemagglutinin tag. All truncated PNTs failed to reach vesicles/vacuoles and were retained in the endoplasmic reticulum. These data indicate that the putative targeting signal is not sufficient for the trafficking of PNT to the vesicular/vacuolar compartments and that full-length PNT is necessary for correct transport. PNT displayed a smear of >120 kDa on SDS-PAGE gels. PNGase F and tunicamycin treatment, chemical degradation of carbohydrates, and heat treatment of PNT suggested that the apparent aberrant mobility of PNT is likely attributable to its hydrophobic nature. PNT that is compartmentalized to the acidic compartments is unprecedented in eukaryotes and may possess a unique physiological role in E. histolytica.
Collapse
|
46
|
Identification of four Entamoeba histolytica organellar DNA polymerases of the family B and cellular localization of the Ehodp1 gene and EhODP1 protein. J Biomed Biotechnol 2010; 2010:734898. [PMID: 20300437 PMCID: PMC2840583 DOI: 10.1155/2010/734898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/15/2009] [Indexed: 11/20/2022] Open
Abstract
We report the identification of a family of four active genes (Ehodp1, Ehodp2, Ehodp3, and Ehodp4) encoding putative DNA polymerases in Entamoeba histolytica, the protozoan parasite responsible of human amoebiasis. The four Ehodp genes show similarity to DNA polymerases encoded in fungi and plant mitochondrial plasmids. EhODP polypeptides conserve the 3′-5′ exonuclease II and 5′-3′ polymerization domains, and they have the I, II, and III conserved boxes that characterize them as DNA polymerases of family B. Furthermore, we found in EhODP polymerases two novel A and B boxes, present also in DNA polymerases encoded in fungi mitochondrial plasmids. By in situ PCR, Ehodp1 gene was located in nuclei and in DNA-containing cytoplasmic structures. Additionally, using polyclonal antibodies against a recombinant rEhODP1-168 polypeptide, and confocal microscopy, EhODP1 was located in cytoplasmic DNA-containing structures.
Collapse
|
47
|
Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 2009; 106:21731-6. [PMID: 19995967 DOI: 10.1073/pnas.0907106106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hydrogenosomes and mitosomes are mitochondrion-related organelles in anaerobic/microaerophilic eukaryotes with highly reduced and divergent functions. The full diversity of their content and function, however, has not been fully determined. To understand the central role of mitosomes in Entamoeba histolytica, a parasitic protozoon that causes amoebic dysentery and liver abscesses, we examined the proteomic profile of purified mitosomes. Using 2 discontinuous Percoll gradient centrifugation and MS analysis, we identified 95 putative mitosomal proteins. Immunofluorescence assay showed that 3 proteins involved in sulfate activation, ATP sulfurylase, APS kinase, and inorganic pyrophosphatase, as well as sodium/sulfate symporter, involved in sulfate uptake, were compartmentalized to mitosomes. We have also provided biochemical evidence that activated sulfate derivatives, adenosine-5'-phosphosulfate and 3'-phosphoadenosine-5'-phosphosulfate, were produced in mitosomes. Phylogenetic analysis showed that the aforementioned proteins and chaperones have distinct origins, suggesting the mosaic character of mitosomes in E. histolytica consisting of proteins derived from alpha-proteobacterial, delta-proteobacterial, and ancestral eukaryotic origins. These results suggest that sulfate activation is the major function of mitosomes in E. histolytica and that E. histolytica mitosomes represent a unique mitochondrion-related organelle with remarkable diversity.
Collapse
|
48
|
Hug LA, Stechmann A, Roger AJ. Phylogenetic Distributions and Histories of Proteins Involved in Anaerobic Pyruvate Metabolism in Eukaryotes. Mol Biol Evol 2009; 27:311-24. [DOI: 10.1093/molbev/msp237] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
VAN DER GIEZEN MARK. Hydrogenosomes and Mitosomes: Conservation and Evolution of Functions. J Eukaryot Microbiol 2009; 56:221-31. [DOI: 10.1111/j.1550-7408.2009.00407.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
|