1
|
Carelli FN, Cerrato C, Dong Y, Appert A, Dernburg A, Ahringer J. Widespread transposon co-option in the Caenorhabditis germline regulatory network. SCIENCE ADVANCES 2022; 8:eabo4082. [PMID: 36525485 PMCID: PMC9757741 DOI: 10.1126/sciadv.abo4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The movement of selfish DNA elements can lead to widespread genomic alterations with potential to create novel functions. We show that transposon expansions in Caenorhabditis nematodes led to extensive rewiring of germline transcriptional regulation. We find that about one-third of Caenorhabditis elegans germline-specific promoters have been co-opted from two related miniature inverted repeat transposable elements (TEs), CERP2 and CELE2. These promoters are regulated by HIM-17, a THAP domain-containing transcription factor related to a transposase. Expansion of CERP2 occurred before radiation of the Caenorhabditis genus, as did fixation of mutations in HIM-17 through positive selection, whereas CELE2 expanded only in C. elegans. Through comparative analyses in Caenorhabditis briggsae, we find not only evolutionary conservation of most CERP2 co-opted promoters but also a substantial fraction that are species-specific. Our work reveals the emergence and evolutionary conservation of a novel transcriptional network driven by TE co-option with a major impact on regulatory evolution.
Collapse
Affiliation(s)
- Francesco Nicola Carelli
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Chiara Cerrato
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yan Dong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alex Appert
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Abby Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
- Biological Sciences and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, Berkeley, CA 94720, USA
| | - Julie Ahringer
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Mehra M, Gangwar I, Shankar R. A Deluge of Complex Repeats: The Solanum Genome. PLoS One 2015; 10:e0133962. [PMID: 26241045 PMCID: PMC4524691 DOI: 10.1371/journal.pone.0133962] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022] Open
Abstract
Repetitive elements have lately emerged as key components of genome, performing varieties of roles. It has now become necessary to have an account of repeats for every genome to understand its dynamics and state. Recently, genomes of two major Solanaceae species, Solanum tuberosum and Solanum lycopersicum, were sequenced. These species are important crops having high commercial significance as well as value as model species. However, there is a reasonable gap in information about repetitive elements and their possible roles in genome regulation for these species. The present study was aimed at detailed identification and characterization of complex repetitive elements in these genomes, along with study of their possible functional associations as well as to assess possible transcriptionally active repetitive elements. In this study, it was found that ~50-60% of genomes of S. tuberosum and S. lycopersicum were composed of repetitive elements. It was also found that complex repetitive elements were associated with >95% of genes in both species. These two genomes are mostly composed of LTR retrotransposons. Two novel repeat families very similar to LTR/ERV1 and LINE/RTE-BovB have been reported for the first time. Active existence of complex repeats was estimated by measuring their transcriptional abundance using Next Generation Sequencing read data and Microarray platforms. A reasonable amount of regulatory components like transcription factor binding sites and miRNAs appear to be under the influence of these complex repetitive elements in these species, while several genes appeared to possess exonized repeats.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromosomes, Plant/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Exons/genetics
- Gene Expression Regulation, Plant/genetics
- Genome, Plant
- Humans
- INDEL Mutation
- Solanum lycopersicum/genetics
- MicroRNAs/genetics
- Molecular Sequence Data
- Phylogeny
- Plant Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements/genetics
- Sequence Alignment
- Solanum tuberosum/genetics
- Species Specificity
- Terminal Repeat Sequences
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Mrigaya Mehra
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Indu Gangwar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, HP, India
- Academy of Scientific & Innovative Research, Chennai, India
| |
Collapse
|
3
|
Yang G, Fattash I, Lee CN, Liu K, Cavinder B. Birth of three stowaway-like MITE families via microhomology-mediated miniaturization of a Tc1/Mariner element in the yellow fever mosquito. Genome Biol Evol 2014; 5:1937-48. [PMID: 24068652 PMCID: PMC3814204 DOI: 10.1093/gbe/evt146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Eukaryotic genomes contain numerous DNA transposons that move by a cut-and-paste mechanism. The majority of these elements are self-insufficient and dependent on their autonomous relatives to transpose. Miniature inverted repeat transposable elements (MITEs) are often the most numerous nonautonomous DNA elements in a higher eukaryotic genome. Little is known about the origin of these MITE families as few of them are accompanied by their direct ancestral elements in a genome. Analyses of MITEs in the yellow fever mosquito identified its youngest MITE family, designated as Gnome, that contains at least 116 identical copies. Genome-wide search for direct ancestral autonomous elements of Gnome revealed an elusive single copy Tc1/Mariner-like element, named as Ozma, that encodes a transposase with a DD37E triad motif. Strikingly, Ozma also gave rise to two additional MITE families, designated as Elf and Goblin. These three MITE families were derived at different times during evolution and bear internal sequences originated from different regions of Ozma. Upon close inspection of the sequence junctions, the internal deletions during the formation of these three MITE families always occurred between two microhomologous sites (6–8 bp). These results suggest that multiple MITE families may originate from a single ancestral autonomous element, and formation of MITEs can be mediated by sequence microhomology. Ozma and its related MITEs are exceptional candidates for the long sought-after endogenous active transposon tool in genetic control of mosquitoes.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
- *Corresponding author: E-mail:
| | - Isam Fattash
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Chia-Ni Lee
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Kun Liu
- Department of Botany and Plant Sciences, University of California Riverside
| | - Brad Cavinder
- Department of Plant Pathology and Microbiology, University of California Riverside
| |
Collapse
|
4
|
Timofeeva OA, Chasovskikh S, Lonskaya I, Tarasova NI, Khavrutskii L, Tarasov SG, Zhang X, Korostyshevskiy VR, Cheema A, Zhang L, Dakshanamurthy S, Brown ML, Dritschilo A. Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. J Biol Chem 2012; 287:14192-200. [PMID: 22378781 PMCID: PMC3340179 DOI: 10.1074/jbc.m111.323899] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Phosphorylation of signal transducer and activator of transcription 3 (STAT3) on a single tyrosine residue in response to growth factors, cytokines, interferons, and oncogenes activates its dimerization, translocation to the nucleus, binding to the interferon γ (gamma)-activated sequence (GAS) DNA-binding site and activation of transcription of target genes. STAT3 is constitutively phosphorylated in various cancers and drives gene expression from GAS-containing promoters to promote tumorigenesis. Recently, roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in maintenance of heterochromatin stability. However, the mechanisms underlying U-STAT3 binding to DNA has not been fully investigated. Here, we explore STAT3-DNA interactions by atomic force microscopy (AFM) imaging. We observed that U-STAT3 molecules bind to the GAS DNA-binding site as dimers and monomers. In addition, we observed that U-STAT3 binds to AT-rich DNA sequence sites and recognizes specific DNA structures, such as 4-way junctions and DNA nodes, within negatively supercoiled plasmid DNA. These structures are important for chromatin organization and our data suggest a role for U-STAT3 as a chromatin/genome organizer. Unexpectedly, we found that a C-terminal truncated 67.5-kDa STAT3 isoform recognizes single-stranded spacers within cruciform structures that also have a role in chromatin organization and gene expression. This isoform appears to be abundant in the nuclei of cancer cells and, therefore, may have a role in regulation of gene expression. Taken together, our data highlight novel mechanisms by which U-STAT3 binds to DNA and supports U-STAT3 function as a transcriptional activator and a chromatin/genomic organizer.
Collapse
Affiliation(s)
- Olga A Timofeeva
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genes Dev 2009; 19:42-56. [PMID: 19037014 PMCID: PMC2612961 DOI: 10.1101/gr.078196.108] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Accepted: 10/07/2008] [Indexed: 11/25/2022]
Abstract
Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the broader functional impact of these short TE insertions in genes is largely unknown. We identified 22 families of MITEs in the Solanaceae (MiS1-MiS22) and found abundant MiS insertions in Solanaceae genomic DNA and expressed sequence tags (EST). Several Solanaceae MITEs generate genome changes that potentially affect gene function and regulation, most notably, a MiS insertion that provides a functionally indispensable alternative exon in the tobacco mosaic virus N resistance gene. We show that MITEs generate small RNAs that are primarily 24 nt in length, as detected by Northern blot hybridization and by sequencing small RNAs of Solanum demissum, Nicotiana glutinosa, and Nicotiana benthamiana. Additionally, we show that stable RNAi lines silencing DICER-LIKE3 (DCL3) in tobacco and RNA-dependent RNA polymerase 2 (RDR2) in potato cause a reduction in 24-nt MITE siRNAs, suggesting that, as in Arabidopsis, TE-derived siRNA biogenesis is DCL3 and RDR2 dependent. We provide evidence that DICER-LIKE4 (DCL4) may also play a role in MITE siRNA generation in the Solanaceae.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA Transposable Elements/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Exons
- Gene Dosage
- Gene Expression Regulation, Plant
- Genome, Plant
- Inverted Repeat Sequences
- Models, Genetic
- Molecular Sequence Data
- RNA Interference
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- Sequence Homology, Nucleic Acid
- Solanaceae/genetics
- Solanaceae/metabolism
Collapse
Affiliation(s)
- Hanhui Kuang
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
- USDA–ARS, Albany, California 94710, USA
| | - Chellappan Padmanabhan
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
- USDA–ARS, Albany, California 94710, USA
| | - Feng Li
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
- USDA–ARS, Albany, California 94710, USA
| | - Ayako Kamei
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
- USDA–ARS, Albany, California 94710, USA
| | - Pudota B. Bhaskar
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Shu Ouyang
- The J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Barbara Baker
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
- USDA–ARS, Albany, California 94710, USA
| |
Collapse
|
6
|
Abstract
A series of d (AT)(n) oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation.
Collapse
Affiliation(s)
- Elena Cubero
- Molecular Modelling & Bioinformatic Unit, Institut de Recerca Biomèdica-Parc Científic de Barcelona, Barcelona 08028, Spain
| | | | | |
Collapse
|
7
|
Ray DA, Hedges DJ, Herke SW, Fowlkes JD, Barnes EW, LaVie DK, Goodwin LM, Densmore LD, Batzer MA. Chompy: an infestation of MITE-like repetitive elements in the crocodilian genome. Gene 2005; 362:1-10. [PMID: 16183215 DOI: 10.1016/j.gene.2005.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/01/2005] [Accepted: 07/07/2005] [Indexed: 01/06/2023]
Abstract
Interspersed repeats are a major component of most eukaryotic genomes and have an impact on genome size and stability, but the repetitive element landscape of crocodilian genomes has not yet been fully investigated. In this report, we provide the first detailed characterization of an interspersed repeat element in any crocodilian genome. Chompy is a putative miniature inverted-repeat transposable element (MITE) family initially recovered from the genome of Alligator mississippiensis (American alligator) but also present in the genomes of Crocodylus moreletii (Morelet's crocodile) and Gavialis gangeticus (Indian gharial). The element has all of the hallmarks of MITEs including terminal inverted repeats, possible target site duplications, and a tendency to form secondary structures. We estimate the copy number in the alligator genome to be approximately 46,000 copies. As a result of their size and unique properties, Chompy elements may provide a useful source of genomic variation for crocodilian comparative genomics.
Collapse
Affiliation(s)
- David A Ray
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for Bio-Modular Multiscale Systems, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guyot R, Cheng X, Su Y, Cheng Z, Schlagenhauf E, Keller B, Ling HQ. Complex organization and evolution of the tomato pericentromeric region at the FER gene locus. PLANT PHYSIOLOGY 2005; 138:1205-15. [PMID: 16009996 PMCID: PMC1176395 DOI: 10.1104/pp.104.058099] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tomato (Lycopersicon esculentum) is a model species for molecular biology research and a candidate for large-scale genome sequencing. Pericentromeric heterochromatin constitutes a large portion of the tomato chromosomes. However, the knowledge of the structure, organization, and evolution of such regions remains very limited. Here, we report the analysis of a 198-kb sequence near the FER gene, located in a distal part of pericentromeric heterochromatin on the long arm of tomato chromosome 6. Nine genes, one pseudogene, and 55 transposable elements (TEs) were identified, showing a low gene density (19.8 kb/gene) and a high content of transposable elements (>45% of the sequence). Six genes (56 B23_g3, g5, g7, g8, g9, and g10) have perfect matches (>98% identity) with tomato expressed sequence tags. Two genes (56 B23_g1 and g6), which share <98% sequence identity with expressed sequence tags, were confirmed for transcriptional activity by reverse transcription-PCR. The genes were not uniformly distributed along the sequence and grouped into gene islands separated by stretches of retrotransposons, forming a pattern similar to that found in the gene-rich regions of the large genomes of maize (Zea mays) and Triticeae. Long terminal repeat retrotransposons account for 60% of the TE sequence length. Sixteen of 55 TEs were completely new and remain unclassified. Surprisingly, five of the seven identified DNA transposons were closely associated with coding regions. The action of transposable elements and DNA rearrangements form the molecular basis of the dynamic genome evolution at the FER locus. Multiple rounds of genome duplication in Arabidopsis (Arabidopsis thaliana) and subsequent gene loss have generated a mosaic pattern of conservation between tomato and Arabidopsis orthologous sequences. Our data show that the distal parts of pericentromeric heterochromatin may contain many valuable genes and that these regions form an evolutionary active part of the tomato genome.
Collapse
Affiliation(s)
- Romain Guyot
- Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
MITEs (Miniature inverted-repeat transposable elements) are reminiscence of non-autonomous DNA (class II) elements, which are distinguished from other transposable elements by their small size, short terminal inverted repeats (TIRs), high copy numbers, genic preference, and DNA sequence identity among family members. Although MITEs were first discovered in plants and still actively reshaping genomes, they have been isolated from a wide range of eukaryotic organisms. MITEs can be divided into Tourist-like, Stowaway-like, and pogo-like groups, according to similarities of their TIRs and TSDs (target site duplications). In despite of several models to explain the origin and amplification of MITEs, their mechanisms of transposition and accumulation in eukaryotic genomes remain poorly understood owing to insufficient experimental data. The unique properties of MITEs have been exploited as useful genetic tools for plant genome analysis. Utilization of MITEs as effective and informative genomic markers and potential application of MITEs in plants systematic, phylogenetic, and genetic studies are discussed.
Collapse
Affiliation(s)
- Ying Feng
- Agriculture and Biotechnology College, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
10
|
Cubero E, Abrescia NGA, Subirana JA, Luque FJ, Orozco M. Theoretical study of a new DNA structure: the antiparallel Hoogsteen duplex. J Am Chem Soc 2004; 125:14603-12. [PMID: 14624611 DOI: 10.1021/ja035918f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of a new form of duplex DNA, the antiparallel Hoogsteen duplex, is studied in polyd(AT) sequences by means of state-of-the-art molecular dynamics simulations in aqueous solution. The structure, which was found to be stable in all of the simulations, has many similarities with the standard Watson-Crick duplex in terms of general structure, flexibility, and molecular recognition patterns. Accurate MM-PB/SA (and MM-GB/SA) analysis shows that the new structure has an effective energy similar to that of the B-type duplex, while it is slightly disfavored by intramolecular entropic considerations. Overall, MD simulations strongly suggest that the antiparallel Hoogsteen duplex is an accessible structure for a polyd(AT) sequence, which might compete under proper experimental conditions with normal B-DNA. MD simulations also suggest that chimeras containing Watson-Crick duplex and Hoogsteen antiparallel helices might coexist in a common structure, but with the differential characteristics of both type of structures preserved.
Collapse
Affiliation(s)
- Elena Cubero
- Molecular Modeling & Bioinformatic Unit, Institut de Recerca Biomèdica, Parc Científic de Barcelona, Josep Samitier 1-5, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
11
|
Abstract
Miniature inverted repeat transposable elements (MITEs) are ubiquitous and numerous in higher eukaryotic genomes. Analysis of MITE families is laborious and time consuming, especially when multiple MITE families are involved in the study. Based on the structural characteristics of MITEs and genetic principles for transposable elements (TEs), we have developed a computational tool kit named MITE analysis kit (MAK) to automate the processes (http://perl.idmb.tamu.edu/mak.htm). In addition to its ability to routinely retrieve family member sequences and to report the positions of these elements relative to the closest neighboring genes, MAK is a powerful tool for revealing anchor elements that link MITE families to known transposable element families. Implementation of the MAK is described, as are genetic principles and algorithms used in its derivation. Test runs of the programs for several MITE families yielded anchor sequences that retain TIRs and coding regions reminiscent of transposases. These anchor sequences are consistent with previously reported putative autonomous elements for these MITE families. Furthermore, analysis of two MITE families with no known links to any transposon family revealed two novel transposon families, namely Math and Kid, belonging to the IS5/Harbinger/PIF superfamily.
Collapse
Affiliation(s)
- Guojun Yang
- Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University,College Station, TX 77843-3155, USA
| | | |
Collapse
|
12
|
Brindley PJ, Laha T, McManus DP, Loukas A. Mobile genetic elements colonizing the genomes of metazoan parasites. Trends Parasitol 2003; 19:79-87. [PMID: 12586476 DOI: 10.1016/s1471-4922(02)00061-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A substantial fraction of the genome of most eukaryotes, including those of metazoan parasites, is predicted to comprise repetitive sequences. Mobile genetic elements (MGEs) will make up much of these repetitive sequences, particularly the interspersed sequences. This article reviews information on MGEs that have colonized the genomes of metazoan parasites (i.e. parasites of parasites). Helminth and mosquito genomes, in particular, are compared with those of better-understood model organisms. MGEs from the genomes of metazoan parasites can be expected to have practical uses in transgenesis and epidemiological studies.
Collapse
Affiliation(s)
- Paul J Brindley
- Dept of Tropical Medicine, Tulane University, Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | |
Collapse
|
13
|
Coghlan A, Wolfe KH. Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res 2002; 12:857-67. [PMID: 12045140 PMCID: PMC1383740 DOI: 10.1101/gr.172702] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We compared the genome of the nematode Caenorhabditis elegans to 13% of that of Caenorhabditis briggsae, identifying 252 conserved segments along their chromosomes. We detected 517 chromosomal rearrangements, with the ratio of translocations to inversions to transpositions being approximately 1:1:2. We estimate that the species diverged 50-120 million years ago, and that since then there have been 4030 rearrangements between their whole genomes. Our estimate of the rearrangement rate, 0.4-1.0 chromosomal breakages/Mb per Myr, is at least four times that of Drosophila, which was previously reported to be the fastest rate among eukaryotes. The breakpoints of translocations are strongly associated with dispersed repeats and gene family members in the C. elegans genome.
Collapse
Affiliation(s)
- Avril Coghlan
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
14
|
Abrescia NGA, Thompson A, Huynh-Dinh T, Subirana JA. Crystal structure of an antiparallel DNA fragment with Hoogsteen base pairing. Proc Natl Acad Sci U S A 2002; 99:2806-11. [PMID: 11880632 PMCID: PMC122429 DOI: 10.1073/pnas.052675499] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Accepted: 12/17/2001] [Indexed: 01/07/2023] Open
Abstract
We report here an alternative double-helical structure of the DNA molecule. It has been found in the d(ATA(Br)UAT) and d(ATATAT) sequences by single-crystal x-ray crystallography. This sequence is found not only in TATA boxes, but also in other regulatory regions of DNA. Bases of the two antiparallel strands form Hoogsteen pairs, with adenines in the syn conformation. The structure is related neither to those found in triple helices nor to parallel DNA duplexes. Its conformational parameters are very similar to those of duplex DNA in the B form. Both forms may coexist under physiological conditions, although the Hoogsteen pairing greatly influences the recognition sites on DNA. Our results demonstrate that an alternative to the classical B-DNA double helix is possible.
Collapse
Affiliation(s)
- Nicola G A Abrescia
- Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya, Avga Diagonal 647, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Jiang N, Wessler SR. Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. THE PLANT CELL 2001. [PMID: 11701888 DOI: 10.1105/tpc.13.11.2553] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A 128-bp insertion into the maize waxy-B2 allele led to the discovery of Tourist, a family of miniature inverted repeat transposable elements (MITEs). As a special category of nonautonomous elements, MITEs are distinguished by their high copy number, small size, and close association with plant genes. In maize, some Tourist elements (named Tourist-Zm) are present as adjacent or nested insertions. To determine whether the formation of multimers is a common feature of MITEs, we performed a more thorough survey, including an estimation of the proportion of multimers, with 30.2 Mb of publicly available rice genome sequence. Among the 6600 MITEs identified, >10% were present as multimers. The proportion of multimers differs for different MITE families. For some MITE families, a high frequency of self-insertions was found. The fact that all 340 multimers are unique indicates that the multimers are not capable of further amplification.
Collapse
Affiliation(s)
- N Jiang
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
16
|
Jiang N, Wessler SR. Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. THE PLANT CELL 2001; 13:2553-64. [PMID: 11701888 PMCID: PMC139471 DOI: 10.1105/tpc.010235] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Accepted: 08/22/2001] [Indexed: 05/18/2023]
Abstract
A 128-bp insertion into the maize waxy-B2 allele led to the discovery of Tourist, a family of miniature inverted repeat transposable elements (MITEs). As a special category of nonautonomous elements, MITEs are distinguished by their high copy number, small size, and close association with plant genes. In maize, some Tourist elements (named Tourist-Zm) are present as adjacent or nested insertions. To determine whether the formation of multimers is a common feature of MITEs, we performed a more thorough survey, including an estimation of the proportion of multimers, with 30.2 Mb of publicly available rice genome sequence. Among the 6600 MITEs identified, >10% were present as multimers. The proportion of multimers differs for different MITE families. For some MITE families, a high frequency of self-insertions was found. The fact that all 340 multimers are unique indicates that the multimers are not capable of further amplification.
Collapse
Affiliation(s)
- N Jiang
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
17
|
Zhang L, Dawson A, Finnegan DJ. DNA-binding activity and subunit interaction of the mariner transposase. Nucleic Acids Res 2001; 29:3566-75. [PMID: 11522826 PMCID: PMC55874 DOI: 10.1093/nar/29.17.3566] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mos1 is a member of the mariner/Tc1 family of transposable elements originally identified in Drosophila mauritiana. It has 28 bp terminal inverted repeats and like other elements of this type it transposes by a cut and paste mechanism, inserts at TA dinucleotides and codes for a transposase. This is the only protein required for transposition in vitro. We have investigated the DNA binding properties of Mos1 transposase and the role of transposase-transposase interactions in transposition. Purified transposase recognises the terminal inverted repeats of Mos1 due to a DNA-binding domain in the N-terminal 120 amino acids. This requires a putative helix-turn-helix motif between residues 88 and 108. Binding is preferentially to the right hand end, which differs at four positions from the repeat at the left end. Cleavage of Mos1 by transposase is also preferentially at the right hand end. Wild-type transposase monomers interact with each other in a yeast two-hybrid assay and we have used this to isolate mutations resulting in reduced interaction. These mutations lie along the length of the protein, indicating that transposase-transposase interactions are not due to a single interaction domain. One such mutation which retains both DNA-binding and catalytic activity has greatly reduced ability to excise Mos1 from plasmid DNA through coordinate cleavage of the two ends and transposition in vitro is lowered to a level 20-fold below that of the wild-type. This suggests that transposase-transposase interaction is required to form a synaptic complex necessary for coordinate cleavage at the ends of Mos1 during transposition. This mutant enzyme allows insertion at dinucleotides other than TA, including sequences with GC base pairs. This is the first example of a mariner/Tc1 transposase with altered target specificity.
Collapse
Affiliation(s)
- L Zhang
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
18
|
Abstract
Members of the Tourist family of miniature inverted-repeat transposable elements (MITEs) are very abundant among a wide variety of plants, are frequently found associated with normal plant genes, and thus are thought to be important players in the organization and evolution of plant genomes. In Arabidopsis, the recent discovery of a Tourist member harboring a putative transposase has shed new light on the mobility and evolution of MITEs. Here, we analyze a family of Tourist transposons endogenous to the genome of the nematode Caenorhabditis elegans (Bristol N2). One member of this large family is 7568 bp in length, harbors an ORF similar to the putative Tourist transposase from Arabidopsis, and is related to the IS5 family of bacterial insertion sequences (IS). Using database searches, we found expressed sequence tags (ESTs) similar to the putative Tourist transposases in plants, insects, and vertebrates. Taken together, our data suggest that Tourist-like and IS5-like transposons form a superfamily of potentially active elements ubiquitous to prokaryotic and eukaryotic genomes.
Collapse
Affiliation(s)
- Q H Le
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | |
Collapse
|
19
|
Tu Z, Orphanidis SP. Microuli, a family of miniature subterminal inverted-repeat transposable elements (MSITEs): transposition without terminal inverted repeats. Mol Biol Evol 2001; 18:893-5. [PMID: 11319273 DOI: 10.1093/oxfordjournals.molbev.a003871] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Tu Z. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 2001; 98:1699-704. [PMID: 11172014 PMCID: PMC29320 DOI: 10.1073/pnas.98.4.1699] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight novel families of miniature inverted repeat transposable elements (MITEs) were discovered in the African malaria mosquito, Anopheles gambiae, by using new software designed to rapidly identify MITE-like sequences based on their structural characteristics. Divergent subfamilies have been found in two families. Past mobility was demonstrated by evidence of MITE insertions that resulted in the duplication of specific TA, TAA, or 8-bp targets. Some of these MITEs share the same target duplications and similar terminal sequences with MITEs and other DNA transposons in human and other organisms. MITEs in A. gambiae range from 40 to 1340 copies per genome, much less abundant than MITEs in the yellow fever mosquito, Aedes aegypti. Statistical analyses suggest that most A. gambiae MITEs are in highly AT-rich regions, many of which are closely associated with each other. The analyses of these novel MITEs underscored interesting questions regarding their diversity, origin, evolution, and relationships to the host genomes. The discovery of diverse families of MITEs in A. gambiae has important practical implications in light of current efforts to control malaria by replacing vector mosquitoes with genetically modified refractory mosquitoes. Finally, the systematic approach to rapidly identify novel MITEs should have broad applications for the analysis of the ever-growing sequence databases of a wide range of organisms.
Collapse
Affiliation(s)
- Z Tu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
21
|
Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 2001. [PMID: 11172014 PMCID: PMC29320 DOI: 10.1073/pnas.041593198] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eight novel families of miniature inverted repeat transposable elements (MITEs) were discovered in the African malaria mosquito, Anopheles gambiae, by using new software designed to rapidly identify MITE-like sequences based on their structural characteristics. Divergent subfamilies have been found in two families. Past mobility was demonstrated by evidence of MITE insertions that resulted in the duplication of specific TA, TAA, or 8-bp targets. Some of these MITEs share the same target duplications and similar terminal sequences with MITEs and other DNA transposons in human and other organisms. MITEs in A. gambiae range from 40 to 1340 copies per genome, much less abundant than MITEs in the yellow fever mosquito, Aedes aegypti. Statistical analyses suggest that most A. gambiae MITEs are in highly AT-rich regions, many of which are closely associated with each other. The analyses of these novel MITEs underscored interesting questions regarding their diversity, origin, evolution, and relationships to the host genomes. The discovery of diverse families of MITEs in A. gambiae has important practical implications in light of current efforts to control malaria by replacing vector mosquitoes with genetically modified refractory mosquitoes. Finally, the systematic approach to rapidly identify novel MITEs should have broad applications for the analysis of the ever-growing sequence databases of a wide range of organisms.
Collapse
|
22
|
Tu Z. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 2000; 17:1313-25. [PMID: 10958848 DOI: 10.1093/oxfordjournals.molbev.a026415] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel family of miniature inverted repeat transposable elements (MITEs) named Pony was discovered in the yellow fever mosquito, Aedes aegypti. It has all the characteristics of MITEs, including terminal inverted repeats, no coding potential, A+T richness, small size, and the potential to form stable secondary structures. Past mobility of PONY: was indicated by the identification of two Pony insertions which resulted in the duplication of the TA dinucleotide targets. Two highly divergent subfamilies, A and B, were identified in A. aegypti based on sequence comparison and phylogenetic analysis of 38 elements. These subfamilies showed less than 62% sequence similarity. However, within each subfamily, most elements were highly conserved, and multiple subgroups could be identified, indicating recent amplifications from different source genes. Different scenarios are presented to explain the evolutionary history of these subfamilies. Both subfamilies share conserved terminal inverted repeats similar to those of the Tc2 DNA transposons in Caenorhabditis elegans, indicating that Pony may have been borrowing the transposition machinery from a Tc2-like transposon in mosquitoes. In addition to the terminal inverted repeats, full-length and partial subterminal repeats of a sequence motif TTGATTCAWATTCCGRACA represent the majority of the conservation between the two subfamilies, indicating that they may be important structural and/or functional components of the Pony elements. In contrast to known autonomous DNA transposons, both subfamilies of PONY: are highly reiterated in the A. aegypti genome (8,400 and 9, 900 copies, respectively). Together, they constitute approximately 1. 1% of the entire genome. Pony elements were frequently found near other transposable elements or in the noncoding regions of genes. The relative abundance of MITEs varies in eukaryotic genomes, which may have in part contributed to the different organizations of the genomes and reflect different types of interactions between the hosts and these widespread transposable elements.
Collapse
Affiliation(s)
- Z Tu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
23
|
Zhang Q, Arbuckle J, Wessler SR. Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci U S A 2000; 97:1160-5. [PMID: 10655501 PMCID: PMC15555 DOI: 10.1073/pnas.97.3.1160] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 314-bp DNA element called Heartbreaker-hm1 (Hbr-hm1) was previously identified in the 3' untranslated region of a mutant allele of the maize disease resistance gene HM1. This element has structural features of miniature inverted-repeat transposable elements (MITEs) and is a member of a large family of approximately 4,000 copies in the maize genome. Unlike previously described MITEs, most members of the Hbr family display over 90% sequence identity. This, coupled with the insertion of an Hbr element into an allele of the HM1 gene, suggested that this family might have spread recently throughout the genome. Consistent with this view is the finding that Hbr insertion sites are remarkably polymorphic. Ten of ten loci containing Hbr elements were found to be polymorphic for the presence or absence of Hbr among a collection of maize inbred lines and teosinte strains. Despite the fact that over 80% of the maize genome contain moderate to highly repetitive DNA, we find that randomly chosen Hbr elements are predominantly in single or low copy regions. Furthermore, when used to query both the public and private databases of plant genes, over 50% of the sequences flanking these Hbr elements resulted in significant "hits." Taken together, these data indicate that the presence or absence of Hbr elements is a significant contributory factor to the high level of polymorphism associated with maize genic regions.
Collapse
Affiliation(s)
- Q Zhang
- Departments of Botany and Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
24
|
Surzycki SA, Belknap WR. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc Natl Acad Sci U S A 2000; 97:245-9. [PMID: 10618403 PMCID: PMC26648 DOI: 10.1073/pnas.97.1.245] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The positions of approximately 4,800 individual miniature inverted-repeat transposable element (MITE)-like repeats from four families were mapped on the Caenorhabditis elegans chromosomes. These families represent 1-2% of the total sequence of the organism. The four MITE families (Cele1, Cele2, Cele14, and Cele42) displayed distinct chromosomal distribution profiles. For example, the Cele14 MITEs were observed clustering near the ends of the autosomes. In contrast, the Cele2 MITEs displayed an even distribution through the central autosome domains, with no evidence for clustering at the ends. Both the number of elements and the distribution patterns of each family were conserved on all five C. elegans autosomes. The distribution profiles indicate chromosomal polarity and suggest that the current genetic and physical maps of chromosomes II, III, and X are inverted with respect to the other chromosomes. The degree of conservation of both the number and distribution of these elements on the five autosomes suggests a role in defining specific chromosomal domains.
Collapse
Affiliation(s)
- S A Surzycki
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | |
Collapse
|
25
|
Conner AJ, Jacobs JM. Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutat Res 1999; 443:223-34. [PMID: 10415441 DOI: 10.1016/s1383-5742(99)00020-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The benefits of genetic engineering of crop plants to improve the reliability and quality of the world food supply have been contrasted with public concerns raised about the food safety of the resulting products. Debates have concentrated on the possible unforeseen risks associated with the accumulation of new metabolites in crop plants that may contribute to toxins, allergens and genetic hazards in the human diet. This review examines the various molecular and biochemical mechanisms by which new hazards may appear in foods as a direct consequence of genetic engineering in crop plants. Such hazards may arise from the expression products of the inserted genes, secondary or pleiotropic effects of transgene expression, and random insertional mutagenic effects resulting from transgene integration into plant genomes. However, when traditional plant breeding is evaluated in the same context, these mechanisms are no different from those that have been widely accepted from the past use of new cultivars in agriculture. The risks associated with the introduction of new genes via genetic engineering must be considered alongside the common breeding practice of introgressing large fragments of chromatin from related wild species into crop cultivars. The large proportion of such introgressed DNA involves genes of unknown function linked to the trait of interest such as pest or disease resistance. In this context, the potential risks of introducing new food hazards from the applications of genetic engineering are no different from the risks that might be anticipated from genetic manipulation of crops via traditional breeding. In many respects, the precise manner in which genetic engineering can control the nature and expression of the transferred DNA offers greater confidence for producing the desired outcome compared with traditional breeding.
Collapse
Affiliation(s)
- A J Conner
- New Zealand Institute for Crop and Food Research, Private Bag 4704, Christchurch, New Zealand
| | | |
Collapse
|
26
|
Shiu OY, Oetiker JH, Yip WK, Yang SF. The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci U S A 1998; 95:10334-9. [PMID: 9707648 PMCID: PMC21509 DOI: 10.1073/pnas.95.17.10334] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many terrestrial plants respond to flooding with enhanced ethylene production. The roots of flooded plants produce 1-aminocyclopropane-1-carboxylic acid (ACC), which is transported from the root to the shoot, where it is converted to ethylene. In the roots, ACC is synthesized by ACC synthase, which is encoded by a multigene family. Previously, we identified two ACC synthase genes of tomato that are involved in flooding-induced ethylene production. Here, we report the cloning of LE-ACS7, a new tomato ACC synthase with a role early during flooding but also in the early wound response of leaves. The promoter of LE-ACS7 is tagged by a Sol3 transposon. A Sol3 transposon is also present in the tomato polygalacturonase promoter to which it conferred regulatory elements. Thus, Sol3 transposons may affect the regulation of LE-ACS7 and may be involved in the communication between the root and the shoot of waterlogged tomato plants.
Collapse
Affiliation(s)
- O Y Shiu
- Department of Vegetable Crops, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
27
|
Rezsohazy R, van Luenen HG, Durbin RM, Plasterk RH. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res 1997; 25:4048-54. [PMID: 9321656 PMCID: PMC147001 DOI: 10.1093/nar/25.20.4048] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have found a novel transposon in the genome of Caenorhabditis elegans. Tc7 is a 921 bp element, made up of two 345 bp inverted repeats separated by a unique, internal sequence. Tc7 does not contain an open reading frame. The outer 38 bp of the inverted repeat show 36 matches with the outer 38 bp of Tc1. This region of Tc1 contains the Tc1-transposase binding site. Furthermore, Tc7 is flanked by TA dinucleotides, just like Tc1, which presumably correspond to the target duplication generated upon integration. Since Tc7 does not encode its own transposase but contains the Tc1-transposase binding site at its extremities, we tested the ability of Tc7 to jump upon forced expression of Tc1 transposase in somatic cells. Under these conditions Tc7 jumps at a frequency similar to Tc1. The target site choice of Tc7 is identical to that of Tc1. These data suggest that Tc7 shares with Tc1 all the sequences minimally required to parasitize upon the Tc1 transposition machinery. The genomic distribution of Tc7 shows a striking clustering on the X chromosome where two thirds of the elements (20 out of 33) are located. Related transposons in C. elegans do not show this asymmetric distribution.
Collapse
Affiliation(s)
- R Rezsohazy
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Oosumi T, Belknap WR. Characterization of the Sol3 family of nonautonomous transposable elements in tomato and potato. J Mol Evol 1997; 45:137-44. [PMID: 9236273 DOI: 10.1007/pl00006213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sol3 transposons are mobile elements defined by long terminal inverted repeats which are found in tomato and potato. Members of the Sol3 family have been isolated from a variety of solanaceous species including Solanum tuberosum (potato), S. demissum, S. chacoense, Lycopersicon esculentum (tomato), and L. hirsutum. While highly conserved elements are found within different species, Sol3 terminal inverted repeats can also flank unrelated sequences. Southern blot analysis indicates that Sol3 elements are less prevalent in the potato (approximately 50 copies) than in the tomato (>100 copies) genome. No Sol3-hybridizing sequences were observed in tobacco. While a number of Sol3 elements ranging in size from 500 bp to 2 kbp were sequenced, no transposase coding domains could be identified within the internal regions of the elements. The data suggest that the Sol3 represent a heterogeneous family of nonautonomous transposable elements associated with an as-yet-unidentified autonomous transposon.
Collapse
Affiliation(s)
- T Oosumi
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | |
Collapse
|
29
|
Abstract
A novel transposon family was discovered in plants. This family, designated SoFT (Solanaceae Foldback Transposon), exhibit striking structural similarity to the 'foldback' class of animal transposons. SoFT elements consist of a middle segment surrounded by long terminal inverted repeats. Two of the identified SoFT elements have 'classical' foldback structure: their inverted repeats are divided into two domains. The outer domain consists of tandemly arranged subrepeats, whereas the inner domain is non-repetitive and AT-rich. The existence of foldback elements in plants as well as in animals suggests that long inverted repeat (foldback) transposons are ubiquitous among eukaryotes.
Collapse
Affiliation(s)
- D Rebatchouk
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
30
|
Tremousaygue D, Bardet C, Dabos P, Regad F, Pelese F, Nazer R, Gander E, Lescure B. Genome DNA sequencing around the EF-1 alpha multigene locus of Arabidopsis thaliana indicates a high gene density and a shuffling of noncoding regions. Genome Res 1997; 7:198-209. [PMID: 9074924 DOI: 10.1101/gr.7.3.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Arabidopsis thaliana, EF-1 alpha proteins are encoded by a multigene family of four members. Three of them are clustered at the same locus, which was positioned 24 cM from the top of chromosome 1. A region of DNA spanning 63 kb around these locus was sequenced and analyzed. One main characteristic of the locus is the mosaic organization of both genes and intergenic regions. Fourteen genes were identified, among which only four were already described, and other unidentified are most likely present. Functionally diverse genes are found at close intervals. Exon and intron distribution is highly variable at this locus, one gene being split into at least 20 introns. Several duplications were found within the sequenced segment both in coding and noncoding regions, including two gene families. Moreover, a sequence corresponding to the 5' noncoding region of the EF-1 alpha genes and harboring a 5' intervening sequence is duplicated and found upstream of several genes, suggesting that noncoding regions can be shuffled during evolution.
Collapse
Affiliation(s)
- D Tremousaygue
- Laboratoire de Biologie Moleculaire des relations Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Oosumi T, Garlick B, Belknap WR. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. J Mol Evol 1996; 43:11-8. [PMID: 8660424 DOI: 10.1007/bf02352294] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Putative nonautonomous transposable elements related to the autonomous transposons Tc1, Tc2, Tc5, and mariner were identified in the C. elegans database by computational analysis. These elements are found throughout the C. elegans genome and are defined by terminal inverted repeats with regions of sequence similarity, or identity, to the autonomous transposons. Similarity between loci containing related nonautonomous elements ends at, or near, the boundaries of the terminal inverted repeats. In most cases the terminal inverted repeats of the putative nonautonomous transposable elements are flanked by potential target-site duplications consistent with the associated autonomous elements. The nonautonomous elements identified vary considerably in size (from 100 bp to 1.5 kb in length) and copy number in the available database and are localized to introns and flanking regions of a wide variety of C. elegans genes.
Collapse
Affiliation(s)
- T Oosumi
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| | | | | |
Collapse
|
32
|
|