1
|
Yamaguchi N, Horio E, Sonoda J, Yamagishi M, Miyakawa S, Murakami F, Hasegawa H, Katahira Y, Mizoguchi I, Fujii Y, Chikazu D, Yoshimoto T. Immortalization of Mesenchymal Stem Cells for Application in Regenerative Medicine and Their Potential Risks of Tumorigenesis. Int J Mol Sci 2024; 25:13562. [PMID: 39769322 PMCID: PMC11676347 DOI: 10.3390/ijms252413562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Regenerative medicine utilizes stem cells to repair damaged tissues by replacing them with their differentiated cells and activating the body's inherent regenerative abilities. Mesenchymal stem cells (MSCs) are adult stem cells that possess tissue repair and regenerative capabilities and immunomodulatory properties with a much lower risk of tumorigenicity, making them a focus of numerous clinical trials worldwide. MSCs primarily exert their therapeutic effects through paracrine effects via secreted factors, such as cytokines and exosomes. This has led to increasing interest in cell-free therapy, where only the conditioned medium (also called secretome) from MSC cultures is used for regenerative applications. However, MSCs face certain limitations, including cellular senescence, scarcity, donor heterogeneity, complexity, short survival post-implantation, and regulatory and ethics hurdles. To address these challenges, various types of immortalized MSCs (ImMSCs) capable of indefinite expansion have been developed. These cells offer significant promise and essential tools as a reliable source for both cell-based and cell-free therapies with the aim of translating them into practical medicine. However, the process of immortalization, often involving the transduction of immortalizing genes, poses potential risks of genetic instability and resultant malignant transformation. Cell-free therapy is particularly attractive, as it circumvents the risks of tumorigenicity and ethical concerns associated with live cell therapies. Rigorous safety tests, such as monitoring chromosomal abnormalities, are critical to ensure safety. Technologies like inducible or suicide genes may allow for the controlled proliferation of MSCs and induce apoptosis after their therapeutic task is completed. This review highlights recent advancements in the immortalization of MSCs and the associated risks of tumorigenesis.
Collapse
Affiliation(s)
- Natsuki Yamaguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Eri Horio
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Jukito Sonoda
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Miu Yamagishi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yasuyuki Fujii
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
2
|
Chandrababu A, Puthumana J. CRISPR-edited, cell-based future-proof meat and seafood to enhance global food security and nutrition. Cytotechnology 2024; 76:619-652. [PMID: 39435422 PMCID: PMC11490478 DOI: 10.1007/s10616-024-00645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/15/2024] [Indexed: 10/23/2024] Open
Abstract
Food security is a major concern due to the growing population and climate change. A method for increasing food production is the use of modern biotechnology, such as cell culture, marker-assisted selection, and genetic engineering. Cellular agriculture has enabled the production of cell-cultivated meat in bioreactors that mimic the properties of conventional meat. Furthermore, 3D food printing technology has improved food production by adding new nutritional and organoleptic properties. Marker-assisted selection and genetic engineering could play an important role in producing animals and crops with desirable traits. Therefore, integrating cellular agriculture with genetic engineering technology could be a potential strategy for the production of cell-based meat and seafood with high health benefits in the future. This review highlights the production of cell-cultivated meat derived from a variety of species, including livestock, birds, fish, and marine crustaceans. It also investigates the application of genetic engineering methods, such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein), in the context of cellular agriculture. Moreover, it examines aspects such as food safety, regulatory considerations, and consumer acceptance of genetically engineered cell-cultivated meat and seafood.
Collapse
Affiliation(s)
- Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 16 India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, Kerala 16 India
| |
Collapse
|
3
|
Bowman RL, Dunbar AJ, Mishra T, Xiao W, Waarts MR, Maestre IF, Eisman SE, Cai L, Mowla S, Shah N, Youn A, Bennett L, Fontenard S, Gounder S, Gandhi A, Bowman M, O'Connor K, Zaroogian Z, Sánchez-Vela P, Martinez Benitez AR, Werewski M, Park Y, Csete IS, Krishnan A, Lee D, Boorady N, Potts CR, Jenkins MT, Cai SF, Carroll MP, Meyer SE, Miles LA, Ferrell PB, Trowbridge JJ, Levine RL. In vivo models of subclonal oncogenesis and dependency in hematopoietic malignancy. Cancer Cell 2024; 42:1955-1969.e7. [PMID: 39532065 PMCID: PMC11561369 DOI: 10.1016/j.ccell.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Cancer evolution is a multifaceted process leading to dysregulation of cellular expansion and differentiation through somatic mutations and epigenetic dysfunction. Clonal expansion and evolution is driven by cell-intrinsic and -extrinsic selective pressures, which can be captured with increasing resolution by single-cell and bulk DNA sequencing. Despite the extensive genomic alterations revealed in profiling studies, there remain limited experimental systems to model and perturb evolutionary processes. Here, we integrate multi-recombinase tools for reversible, sequential mutagenesis from premalignancy to leukemia. We demonstrate that inducible Flt3 mutations differentially cooperate with Dnmt3a, Idh2, and Npm1 mutant alleles, and that changing the order of mutations influences cellular and transcriptional landscapes. We next use a generalizable, reversible approach to demonstrate that mutation reversion results in rapid leukemic regression with distinct differentiation patterns depending upon co-occurring mutations. These studies provide a path to experimentally model sequential mutagenesis, investigate mechanisms of transformation and probe oncogenic dependency in disease evolution.
Collapse
Affiliation(s)
- Robert L Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrew J Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanmay Mishra
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael R Waarts
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Inés Fernández Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shira E Eisman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Louise Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nisargbhai Shah
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela Youn
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Bennett
- Department of Cell and Developmental Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suean Fontenard
- Department of Cell and Developmental Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shreeya Gounder
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anushka Gandhi
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Bowman
- Department of Cancer Biology, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kavi O'Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Zaroogian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pablo Sánchez-Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony R Martinez Benitez
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Werewski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Young Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle S Csete
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Darren Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nayla Boorady
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad R Potts
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Matthew T Jenkins
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Sheng F Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Martin P Carroll
- Department of Medicine, Perelman Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara E Meyer
- Department of Cancer Biology, Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Linde A Miles
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - P Brent Ferrell
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Xu LW, Sun YD, Fu QY, Wu D, Lin J, Wang C, Zhang L, Liu CY, Li QF. Unveiling senescence-associated secretory phenotype in epidermal aging: insights from reversibly immortalized keratinocytes. Aging (Albany NY) 2024; 16:12651-12666. [PMID: 39316420 PMCID: PMC11466489 DOI: 10.18632/aging.206117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Aging of epidermal keratinocytes profoundly impacts skin health, contributing to changes in appearance, barrier function, and susceptibility to diseases. Despite its significance, the molecular mechanisms underlying epidermal aging remain elusive. In this study, a reversible immortalized cell line was established by expressing SV40T in keratinocytes using the Tet-Off lentiviral system. Inducing a senescent phenotype by terminating SV40T expression revealed a significant reduction in mitotic ability, as well as characteristics of cellular aging. RNA sequencing analysis revealed alterations in gene expression and signaling pathways including DNA repair dysfunction, notably senescence-associated secretory phenotype (SASP)-related genes, such as MMP1, SERPINB2 and VEGFA. Our study provides insights into the molecular mechanisms of epidermal aging, offering potential therapeutic targets and highlighting the role of SASP in the aging process.
Collapse
Affiliation(s)
- Lu-Wen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200021, China
| | - Yi-Dan Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200021, China
| | - Qiao-Yu Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200021, China
| | - Dan Wu
- Department of Plastic and Reconstructive Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jian Lin
- Department of Center for Orthopedic Repair and Reconstruction, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 202150, China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200021, China
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031 China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Cai-Yue Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200021, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200021, China
| |
Collapse
|
5
|
Xing Y, Xiang F, Guo H, Gong H, Li Y. Reversibly immortalization establishes a hair follicle stem cell line with hair follicle reconstruction ability. Exp Dermatol 2024; 33:e14999. [PMID: 38284187 DOI: 10.1111/exd.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Hair follicle stem cells (HFSCs) play critical roles in the periodic regeneration of hair follicles. HFSCs are also a good model for stem cell biology research. However, no stable mouse HFSC cell line has been reported, which restricts the research and application of HFSCs. We isolated HFSCs from mouse hair follicles and immortalized them by inducing a reversible SV40 large T antigen. Through monoclonal screening, we identified a reversibly immortalized cell line, immortalized HFSC (iHFSC2). RNA sequencing, fluorescence-activated cell sorting, western blotting and immunofluorescence experiments revealed that the expression patterns of iHFSC2 and HFSC were similar at the protein and mRNA levels. After that, iHFSC2s were passaged and morphologically monitored for up to 40 times to detect their long-term culture potential. The long-term cultured iHFSC2 could regenerate hair follicles with complete hair follicle structure and HFSCs in the bulge area. This work successfully established an HFSC cell line with the ability of hair follicle reconstruction.
Collapse
Affiliation(s)
- Yizhan Xing
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Fei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, PR China
| | - Haiying Guo
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Hao Gong
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| |
Collapse
|
6
|
Cheng Q, Liu C, Chen Q, Luo W, He TC, Yang D. Establishing and characterizing human stem cells from the apical papilla immortalized by hTERT gene transfer. Front Cell Dev Biol 2023; 11:1158936. [PMID: 37283947 PMCID: PMC10239932 DOI: 10.3389/fcell.2023.1158936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Stem cells from the apical papilla (SCAPs) are promising candidates for regenerative endodontic treatment and tissue regeneration in general. However, harvesting enough cells from the limited apical papilla tissue is difficult, and the cells lose their primary phenotype over many passages. To get over these challenges, we immortalized human SCAPs with lentiviruses overexpressing human telomerase reverse transcriptase (hTERT). Human immortalized SCAPs (hiSCAPs) exhibited long-term proliferative activity without tumorigenic potential. Cells also expressed mesenchymal and progenitor biomarkers and exhibited multiple differentiation potentials. Interestingly, hiSCAPs gained a stronger potential for osteogenic differentiation than the primary cells. To further investigate whether hiSCAPs could become prospective seed cells in bone tissue engineering, in vitro and in vivo studies were performed, and the results indicated that hiSCAPs exhibited strong osteogenic differentiation ability after infection with recombinant adenoviruses expressing BMP9 (AdBMP9). In addition, we revealed that BMP9 could upregulate ALK1 and BMPRII, leading to an increase in phosphorylated Smad1 to induce the osteogenic differentiation of hiSCAPs. These results support the application of hiSCAPs in tissue engineering/regeneration schemes as a stable stem cell source for osteogenic differentiation and biomineralization, which could be further used in stem cell-based clinical therapies.
Collapse
Affiliation(s)
- Qianyu Cheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuman Chen
- Department of Stomatology, Hainan Women and Children’s Medical Center, Haikou, China
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, China
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, United States
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Sutyagina OI, Beilin AK, Vorotelyak EA, Vasiliev AV. Immortalization Reversibility in the Context of Cell Therapy Biosafety. Int J Mol Sci 2023; 24:7738. [PMID: 37175444 PMCID: PMC10178325 DOI: 10.3390/ijms24097738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.
Collapse
Affiliation(s)
- Oksana I. Sutyagina
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Laboratory of Cell Biology, Vavilov Str. 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
8
|
Bae J, Liu L, Moore C, Hsu E, Zhang A, Ren Z, Sun Z, Wang X, Zhu J, Shen J, Qiao J, Fu YX. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8 + T cells to overcome immunotherapy resistance in cancer. Nat Cell Biol 2022; 24:1754-1765. [PMID: 36474070 DOI: 10.1038/s41556-022-01024-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
Immune checkpoint blockade (ICB)-based immunotherapy depends on functional tumour-infiltrating lymphocytes (TILs), but essential cytokines are less understood. Here we uncover an essential role of endogenous IL-2 for ICB responsiveness and the correlation between insufficient IL-2 signalling and T-cell exhaustion as tumours progress. To determine if exogenous IL-2 in the tumour microenvironment can overcome ICB resistance, we engineered mesenchymal stem cells (MSCs) to successfully deliver IL-2 mutein dimer (SIL2-EMSC) to TILs. While MSCs have been used to suppress inflammation, SIL2-EMSCs elicit anti-tumour immunity and overcome ICB resistance without toxicity. Mechanistically, SIL2-EMSCs activate and expand pre-existing CD8+ TILs, sufficient for tumour control and induction of systemic anti-tumour effects. Furthermore, engineered MSCs create synergy of innate and adaptive immunity. The therapeutic benefits of SIL2-EMSCs were also observed in humanized mouse models. Overall, engineered MSCs rejuvenate CD8+ TILs and thus potentiate ICB and chemotherapy.
Collapse
Affiliation(s)
- Joonbeom Bae
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Casey Moore
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anli Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhenhua Ren
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhichen Sun
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiankun Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiao Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Irving M, Ortiz-Miranda Y, Coukos G. IL-2 engineered MSCs rescue T cells in tumours. Nat Cell Biol 2022; 24:1689-1691. [PMID: 36474071 DOI: 10.1038/s41556-022-01029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yaquelin Ortiz-Miranda
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Zhang L, Luo W, Liu J, Xu M, Peng Q, Zou W, You J, Shu Y, Zhao P, Wagstaff W, Zhao G, Qin K, Haydon RC, Luu HH, Reid RR, Bi Y, Zhao T, He TC, Fu Z. Modeling lung diseases using reversibly immortalized mouse pulmonary alveolar type 2 cells (imPAC2). Cell Biosci 2022; 12:159. [PMID: 36138472 PMCID: PMC9502644 DOI: 10.1186/s13578-022-00894-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND A healthy alveolar epithelium is critical to the gas exchange function of the lungs. As the major cell type of alveolar epithelium, alveolar type 2 (AT2) cells play a critical role in maintaining pulmonary homeostasis by serving as alveolar progenitors during lung injury, inflammation, and repair. Dysregulation of AT2 cells may lead to the development of acute and chronic lung diseases and cancer. The lack of clinically relevant AT2 cell models hampers our ability to understand pulmonary diseases. Here, we sought to establish reversibly immortalized mouse pulmonary alveolar type 2 cells (imPAC2) and investigate their potential in forming alveolar organoids to model pulmonary diseases. METHODS Primary mouse pulmonary alveolar cells (mPACs) were isolated and immortalized with a retroviral expression of SV40 Large T antigen (LTA). Cell proliferation and survival was assessed by crystal violet staining and WST-1 assays. Marker gene expression was assessed by qPCR, Western blotting, and/or immunostaining. Alveolar organoids were generated by using matrigel. Ad-TGF-β1 was used to transiently express TGF-β1. Stable silencing β-catenin or overexpression of mutant KRAS and TP53 was accomplished by using retroviral vectors. Subcutaneous cell implantations were carried out in athymic nude mice. The retrieved tissue masses were subjected to H & E histologic evaluation. RESULTS We immortalized primary mPACs with SV40 LTA to yield the imPACs that were non-tumorigenic and maintained long-term proliferative activity that was reversible by FLP-mediated removal of SV40 LTA. The EpCAM+ AT2-enriched subpopulation (i.e., imPAC2) was sorted out from the imPACs, and was shown to express AT2 markers and form alveolar organoids. Functionally, silencing β-catenin decreased the expression of AT2 markers in imPAC2 cells, while TGF-β1 induced fibrosis-like response by regulating the expression of epithelial-mesenchymal transition markers in the imPAC2 cells. Lastly, concurrent expression of oncogenic KRAS and mutant TP53 rendered the imPAC2 cells a tumor-like phenotype and activated lung cancer-associated pathways. Collectively, our results suggest that the imPAC2 cells may faithfully represent AT2 populations that can be further explored to model pulmonary diseases.
Collapse
Affiliation(s)
- Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Jiang Liu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Maozhu Xu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qi Peng
- University-Town Hospital, Chongqing Medical University, Chongqing, 401331, China
| | - Wenjing Zou
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jingyi You
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Shu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400046, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400046, China
| | - Kevin Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Rosalind Franklin University of Medicine, North Chicago, IL, 60064, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, the Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA.
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA.
| | - Zhou Fu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
11
|
Zhong J, Wang H, Yang K, Wang H, Duan C, Ni N, An L, Luo Y, Zhao P, Gou Y, Sheng S, Shi D, Chen C, Wagstaff W, Hendren-Santiago B, Haydon RC, Luu HH, Reid RR, Ho SH, Ameer GA, Shen L, He TC, Fan J. Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioact Mater 2022; 9:523-540. [PMID: 34820586 PMCID: PMC8581279 DOI: 10.1016/j.bioactmat.2021.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Ke Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Pediatric Research Institute, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huifeng Wang
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Chongwen Duan
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Na Ni
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Liqin An
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yetao Luo
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shiyan Sheng
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60616, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Luo W, Zhang L, Huang B, Zhang H, Zhang Y, Zhang F, Liang P, Chen Q, Cheng Q, Tan D, Tan Y, Song J, Zhao T, Haydon RC, Reid RR, Luu HH, Lee MJ, El Dafrawy M, Ji P, He TC, Gou L. BMP9-initiated osteogenic/odontogenic differentiation of mouse tooth germ mesenchymal cells (TGMCS) requires Wnt/β-catenin signalling activity. J Cell Mol Med 2021; 25:2666-2678. [PMID: 33605035 PMCID: PMC7933933 DOI: 10.1111/jcmm.16293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Teeth arise from the tooth germ through sequential and reciprocal interactions between immature epithelium and mesenchyme during development. However, the detailed mechanism underlying tooth development from tooth germ mesenchymal cells (TGMCs) remains to be fully understood. Here, we investigate the role of Wnt/β‐catenin signalling in BMP9‐induced osteogenic/odontogenic differentiation of TGMCs. We first established the reversibly immortalized TGMCs (iTGMCs) derived from young mouse mandibular molar tooth germs using a retroviral vector expressing SV40 T antigen flanked with the FRT sites. We demonstrated that BMP9 effectively induced expression of osteogenic markers alkaline phosphatase, collagen A1 and osteocalcin in iTGMCs, as well as in vitro matrix mineralization, which could be remarkably blunted by knocking down β‐catenin expression. In vivo implantation assay revealed that while BMP9‐stimulated iTGMCs induced robust formation of ectopic bone, knocking down β‐catenin expression in iTGMCs remarkably diminished BMP9‐initiated osteogenic/odontogenic differentiation potential of these cells. Taken together, these discoveries strongly demonstrate that reversibly immortalized iTGMCs retained osteogenic/odontogenic ability upon BMP9 stimulation, but this process required the participation of canonical Wnt signalling both in vitro and in vivo. Therefore, BMP9 has a potential to be applied as an efficacious bio‐factor in osteo/odontogenic regeneration and tooth engineering. Furthermore, the iTGMCs may serve as an important resource for translational studies in tooth tissue engineering.
Collapse
Affiliation(s)
- Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Linghuan Zhang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Respiratory Diseases, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Huang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Yan Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Fugui Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuman Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Dongmei Tan
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Rex C Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R Reid
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Surgery, Section of Plastic and Reconstructive Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hue H Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Michael J Lee
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Mostafa El Dafrawy
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, IL, USA
| | - Liming Gou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Shen JM, Ma L, He K, Guo WQ, Ding C, Hoffman RD, He BQ, Zheng HB, Gao JL. Identification and functional study of immortalized mouse thymic epithelial cells. Biochem Biophys Res Commun 2020; 525:440-446. [PMID: 32107001 DOI: 10.1016/j.bbrc.2020.02.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 11/30/2022]
Abstract
As the key cells in a three-dimensional scaffold within the thymus, Thymic epithelial cells (TECs) play critical roles in the homing, migration and differentiation of T cell precursors through adhesive interactions and the release of various cytokines. In this study, primary cultures of mouse TECs were isolated and identified with TEC-specific antibodies CK5 and CK8. These TECs were immortalized by retroviral transduction of simian virus (SV) 40 large T antigen. We then compared the functions of TECs and immortalized TECs (iTECs). Cell morphology and the proliferative capacity of TECs and iTECs were observed by inverted microscope photography and crystal violet assay after passage. A soft agar assay was then performed to observe their clone formation ability. The expression levels of epithelial cell related factors, such as IL-7, Lptin, Pax-9, Sema3A and et al., were detected by IF and qPCR. TECs were co-cultured with human acute monocytic leukemia cells (THP-1), and the effect of TECs on promoting THP-1 proliferation was observed with flow cytometry and CFSE labeling. Senescence-associated β-galactosidase assay was measured to detect the anti-aging capabilities of the cells. Cell cycle distribution was analyzed by propidium iodide (PI) staining, and paclitaxel (PTX)-induced apoptosis was detected by Annexin V-PI staining to evaluate the anti-apoptotic ability of the cells. Throughout, we found that the immortalized TECs still retain the characteristics of primary TECs, such as the morphology, function and epithelial characteristics; however, iTECs have stronger capabilities in proliferation and anti-aging. Our research suggests that the iTECs were successfully immortalized by SV40 large T antigen, and that the biological characteristics and functions of iTECs were similar to the original TECs. This immortalized cell can be used as an efficient cell model in functional research of the thymus substituting primary TECs with iTECs.
Collapse
Affiliation(s)
- Jia-Man Shen
- Collage of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Li Ma
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Kai He
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Wen-Qin Guo
- Collage of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chuan Ding
- Collage of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Robert D Hoffman
- International Education College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; DAOM Department, Five Branches University, San Jose, CA, 95131, USA
| | - Bing-Qian He
- International Education College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Hong-Bin Zheng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jian-Li Gao
- International Education College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
14
|
Cardona SM, Dunphy JM, Das AS, Lynch CR, Lynch WP. Astrocyte Infection Is Required for Retrovirus-Induced Spongiform Neurodegeneration Despite Suppressed Viral Protein Expression. Front Neurosci 2019; 13:1166. [PMID: 31736699 PMCID: PMC6828646 DOI: 10.3389/fnins.2019.01166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
The ability of retroviruses (RVs) to cause neurodegeneration is critically dependent upon two activities of the envelope protein (Env). First, Env facilitates viral genome delivery to CNS target cells through receptor binding and membrane fusion. Second, Env expression within one or more targets indirectly alters the physiology of certain neurons. Although the major Env expressing CNS cell types have been identified for many neurovirulent RVs, it remains unresolved, which targets play a causal role in neuropathogenesis. Moreover, this issue is complicated by the potential for post-infection virus suppression. To address these questions we explored herein, whether and how cryptic neurotropism differences between ecotropic and amphotropic murine leukemia viruses (MLVs) impacted neurovirulence. Neurotropism was first explored ex vivo using (1) acute primary glial cell cultures and (2) neural progenitor cell (NPC)- neural stem cell (NSC) neural sphere (NPH) chimeras. These experiments indicated that primary astrocytes and NPCs acutely restrict amphotropic but not ecotropic virus entry. CNS tropism was investigated using NSC transplant-based Cre-vector pseudotyping wherein mTmG transgenic fluorescent protein reporter mice revealed both productive and suppressed infection. Cre-pseudotyping with FrCasE, a prototypic neurovirulent ecotropic virus, identified glia and endothelia, but not neurons, as targets. Almost two-thirds (62%) of mGFP+ cells failed to show Env expression, suggesting widespread virus suppression. To circumvent RV superinfection interference confounds, targets were also identified using ecotropic packaging NSCs. These experiments identified known ecotropic targets: microglia, oligodendrocyte progenitor cells (OPCs) and endothelia. Additionally, one third of mGFP+ cells were identified as protoplasmic astrocytes, cells that rarely express virus in vivo. A CNS targeting comparison between isogenic ecotropic (FrCasE) and amphotropic (FrAmE) viruses showed a fourfold higher astrocyte targeting by FrCasE. Since ecotropic Env pseudotyping of amphotropic virus in the CNS dramatically exacerbates neurodegeneration, these results strongly suggest that astrocyte infection is a major disease requirement. Moreover, since viral Env protein expression is largely subdetectable in astrocytes, minimal viral protein expression appears sufficient for affecting neuronal physiology. More broadly, these findings raise the specter that subdetectable astrocyte expression of exogenous or endogenous RVs could play a major role in human and animal neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra M Cardona
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Program in Cellular and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jaclyn M Dunphy
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Program in Neuroscience, School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Alvin S Das
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Connor R Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - William P Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.,Program in Cellular and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, OH, United States.,Program in Neuroscience, School of Biomedical Sciences, Kent State University, Kent, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
15
|
Fenton OS, Andresen JL, Paolini M, Langer R. β‐Aminoacrylate Synthetic Hydrogels: Easily Accessible and Operationally Simple Biomaterials Networks. Angew Chem Int Ed Engl 2018; 57:16026-16029. [DOI: 10.1002/anie.201808452] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/04/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Owen S. Fenton
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Jason L. Andresen
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Marion Paolini
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
16
|
Fenton OS, Andresen JL, Paolini M, Langer R. β‐Aminoacrylate Synthetic Hydrogels: Easily Accessible and Operationally Simple Biomaterials Networks. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Owen S. Fenton
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Jason L. Andresen
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Marion Paolini
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
17
|
Fang SY, Hu CQ, Liu MN, Tao L, Wang Y, Gong MJ, He Y, He TC, Bi Y. Reversibly immortalized hepatic progenitor cell line containing double suicide genes. Int J Mol Med 2018; 42:1977-1986. [PMID: 30085335 PMCID: PMC6108856 DOI: 10.3892/ijmm.2018.3803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/01/2018] [Indexed: 01/14/2023] Open
Abstract
A large number of functional hepatocytes is required for bioartificial liver therapy. Simian virus 40 T-antigen (SV40T) has been previously reported to improve the immortalized proliferation of primary hepatocytes to generate a sufficient number of cells; however, these long-term immortalized hepatocytes may induce further malignant transformation in vivo. In the present study, the SV40T immortalization gene and two suicide genes, herpes simplex virus thymidine kinase (HSV-tk) and cytosine deaminase (CD), were transducted into primary hepatocytes to construct a novel type of Cre/LoxP-mediated reversible immortalized hepatocyte line. Polymerase chain reaction analysis and western blotting confirmed that the SV40T, HSV-tk and CD genes were successfully inserted into hepatic progenitor cells and their expression was controlled by Cre/LoxP recombination. Total removal of SV40T could be achieved via the ganciclovir (GCV)/HSV-tk suicide system. Cells maintained their biosafety in vivo with CD gene expression and 5-fluoro-cytosine (5-FC) induced cell death. Following transplantation into the carbon tetrachloride (CCl4) model group, the majority of cells had survived after 14 days post-implantation and a number of the cells had transported into the liver parenchyma. When compared with the CCl4 model group, the transplanted cells repaired the liver biochemical index and pathological structure markedly. Thus, the present study reports a novel reversible immortalized hepatocyte with double suicide genes, which exhibited the cellular phenotype and recovery function of normal liver cells. This method maximally guaranteed the biological safety of immortalized hepatocytes for in vivo application, providing a reliable, safe and ideal cell material for the artificial liver technique.
Collapse
Affiliation(s)
- Shu-Yu Fang
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Chao-Qun Hu
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Meng-Nan Liu
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Li Tao
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yi Wang
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Meng-Jia Gong
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yun He
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Tong-Chuan He
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yang Bi
- Department of Pediatric Surgery, Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Stem Cell Therapy Engineering Technical Center, The Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
18
|
Yu X, Chen L, Wu K, Yan S, Zhang R, Zhao C, Zeng Z, Shu Y, Huang S, Lei J, Ji X, Yuan C, Zhang L, Feng Y, Liu W, Huang B, Zhang B, Luo W, Wang X, Liu B, Haydon RC, Luu HH, He TC, Gan H. Establishment and functional characterization of the reversibly immortalized mouse glomerular podocytes (imPODs). Genes Dis 2018; 5:137-149. [PMID: 30258943 PMCID: PMC6147083 DOI: 10.1016/j.gendis.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023] Open
Abstract
Glomerular podocytes are highly specialized epithelial cells and play an essential role in establishing the selective permeability of the glomerular filtration barrier of kidney. Maintaining the viability and structural integrity of podocytes is critical to the clinical management of glomerular diseases, which requires a thorough understanding of podocyte cell biology. As mature podocytes lose proliferative capacity, a conditionally SV40 mutant tsA58-immortalized mouse podocyte line (designated as tsPC) was established from the Immortomouse over 20 years ago. However, the utility of the tsPC cells is hampered by the practical inconvenience of culturing these cells. In this study, we establish a user-friendly and reversibly-immortalized mouse podocyte line (designated as imPOD), on the basis of the tsPC cells by stably expressing the wildtype SV40 T-antigen, which is flanked with FRT sites. We show the imPOD cells exhibit long-term high proliferative activity, which can be effectively reversed by FLP recombinase. The imPOD cells express most podocyte-related markers, including WT-1, Nephrin, Tubulin and Vinculin, but not differentiation marker Synaptopodin. The imPOD cells do not form tumor-like masses in vivo. We further demonstrate that TGFβ1 induces a podocyte injury-like response in the FLP-reverted imPOD cells by suppressing the expression of slit diaphragm-associated proteins P-Cadherin and ZO-1 and upregulating the expression of mesenchymal markers, α-SMA, Vimentin and Nestin, as well as fibrogenic factors CTGF and Col1a1. Collectively, our results strongly demonstrate that the newly engineered imPOD cells should be a valuable tool to study podocyte biology both under normal and under pathological conditions.
Collapse
Affiliation(s)
- Xinyi Yu
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Liqun Chen
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Shifeng Huang
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiayan Lei
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiaojuan Ji
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, Yichang, 443002, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Yixiao Feng
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Wei Liu
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330031, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, 400016, China
| | - Bo Liu
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hua Gan
- Departments of Nephrology, Orthopaedic Surgery, Cardiology, General Surgery, Plastic Surgery, and Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
19
|
CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget 2017; 8:111847-111865. [PMID: 29340096 PMCID: PMC5762364 DOI: 10.18632/oncotarget.22915] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo. Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine.
Collapse
|
20
|
Kobayashi N, Noguchi H, Westerman KA, Watanabe T, Matsumura T, Totsugawa T, Fujiwara T, Leboulch P, Tanaka N. Cre/loxP-Based Reversible Immortalization of Human Hepatocytes 1. Cell Transplant 2017; 10:383-386. [PMID: 28886302 DOI: 10.3727/000000001783986558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An ideal alternative to the primary human hepatocytes for hepatocyte transplantation would be to use a clonal cell line that grows economically in culture and exhibits the characteristics of differentiated, nontransformed hepatocytes following transplantation. The purpose of the present studies was to establish a reversibly immortalized human hepatocyte cell line. Human hepatocytes were immortalized with a retroviral vector SSR#69 expressing simian virus 40 large T antigen (SV40Tag) gene flanked by a pair of loxP recombination targets. One of the resulting clones, NKNT-3, showed morphological characteristics of liver parenchymal cells and expressed the genes of differentiated liver functions. NKNT-3 cells offered unlimited availability. After an adenoviral delivery of Cre recombinase and subsequent differential selection, efficient removal of SV40Tag from NKNT-3 cells was performed. Here we represent that elimination of the retrovirally transferred SV40Tag gene can be excised by adenovirus-mediated site-specific recombination.
Collapse
Affiliation(s)
- Naoya Kobayashi
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Karen A Westerman
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Takamasa Watanabe
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshihisa Matsumura
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshinori Totsugawa
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Philippe Leboulch
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Noriaki Tanaka
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
21
|
Kobayashi N, Noguchi H, Westerman KA, Watanabe T, Matsumura T, Totsugawa T, Fujiwara T, Leboulch P, Tanaka N. Successful Retroviral Gene Transfer of Simian Virus 40 T Antigen and Herpes Simplex Virus-Thymidine Kinase into Human Hepatocytes 1. Cell Transplant 2017; 10:377-381. [PMID: 28886299 DOI: 10.3727/000000001783986585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Current clinical reports have indicated that hepatocyte transplantation (HTX) could be used in patients with liver failure and in children with liver-based metabolic diseases. One of the major limiting factors of HTX is a serious shortage of donor livers for hepatocyte isolation. To address this issue, we immortalized adult human hepatocytes with a retroviral vector SSR#69 expressing the genes of simian virus 40 large T antigen and herpes simplex virus-thymidine kinase simultaneously. One of the resulting clones, NKNT-3, grew steadily in chemically defined serum-free medium without any obvious crisis and showed the gene expression of differentiated liver functions. Under the administration of 5 μM ganciclovir, NKNT-3 cells stopped proliferation and died in in vitro experiments. We have established a tightly regulated immortal human hepatocyte cell line. The cells could allow the need for immediate availability of consistent and functionally uniform cells in sufficient quantity and adequate quality.
Collapse
Affiliation(s)
- Naoya Kobayashi
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Karen A Westerman
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Takamasa Watanabe
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshihisa Matsumura
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshinori Totsugawa
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Philippe Leboulch
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Noriaki Tanaka
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
22
|
Kobayashi N, Noguchi H, Totsugawa T, Watanabe T, Matsumura T, Fujiwara T, Miyazaki M, Fukaya K, Namba M, Tanaka N. Insertion of a Suicide Gene into an Immortalized Human Hepatocyte Cell Line. Cell Transplant 2017. [DOI: 10.3727/000000001783986648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For developing a bioartificial liver (BAL) device, an attractive alternative to the primary human hepatocytes would be the use of highly differentiated immortalized human hepatocytes with a safeguard. To test the feasibility, the primary human hepatocytes were immortalized by a plasmid SV3neo encoding simian virus 40 large T antigen (SV40Tag) gene. A highly differentiated hepatocyte line OUMS-29 was established. A suicide gene of herpes simplex virus-thymidine kinase (HSV-TK) was retrovirally introduced into OUMS-29 cells as a safeguard for clinical application. One of the resulting HSV-TK-positive cell lines, OUMS-29/ tk, grew in chemically defined serum-free medium with the gene expression of differentiated liver functions. OUMS-29/tk cells were 100 times more sensitive to ganciclovir compared with unmodified OUMS-29 cells in in vitro experiments. We have established a tightly regulated immortalized human hepatocyte cell line. Essentially unlimited availability of OUMS-29/tk cells may be clinically useful for BAL therapy.
Collapse
Affiliation(s)
- Naoya Kobayashi
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshinori Totsugawa
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Takamasa Watanabe
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshihisa Matsumura
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masahiro Miyazaki
- Department of Cell Biology, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kenichi Fukaya
- Department of Cell Biology, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masayoshi Namba
- Department of Cell Biology, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Noriaki Tanaka
- First Department of Surgery, Okayama University Medical School, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
23
|
Kobayashi N, Tanaka N. Engineering of Human Hepatocyte Lines for Cell Therapies in Humans: Prospects and Remaining Hurdles. Cell Transplant 2017; 11:417-420. [PMID: 28866930 DOI: 10.3727/000000002783985693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte-based biological therapies are increasingly envisioned for temporary support in acute liver failure and provision of specific-liver functions in liver-based metabolic deficiency. One of the hurdles to develop such therapies is severe shortage of human livers for hepatocyte isolation. To address the issue, we have focused on reversible immortalization of human hepatocytes. Such technology can allow rapid preparation of functional and uniform human hepatocytes. Here we present our strategy to construct transplantable human hepatocyte cell lines.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.,Japan Health Sciences Foundation
| | - Noriaki Tanaka
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
24
|
Kaulek V, Saas P, Alexandre E, Grant H, Richert L, Jaeck D, Tiberghien P, Wolf P, Azimzadeh A. Comparative Phenotype and Immunogenicity of Freshly Isolated and Immortalized Rat Hepatocytes. Cell Transplant 2017. [DOI: 10.3727/000000001783986242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Vincent Kaulek
- Laboratoire de Chirurgie Expérimentale, Fondation Transplantation, 5 Avenue Molière, 67200 Strasbourg, France
- Laboratoire de Thérapeutique Immuno-moléculaire, EFS/EA 2284/Inserm E-0119, 1 Bd A Fleming, BP 1937, 25020 Besançon cedex, France
| | - Philippe Saas
- Laboratoire de Thérapeutique Immuno-moléculaire, EFS/EA 2284/Inserm E-0119, 1 Bd A Fleming, BP 1937, 25020 Besançon cedex, France
| | - Eliane Alexandre
- Laboratoire de Chirurgie Expérimentale, Fondation Transplantation, 5 Avenue Molière, 67200 Strasbourg, France
| | - Helen Grant
- University of Strathclyde, Bioengineering Unit, Wolfson Center, 106 Rottenrow, Glasgow 64 ONW, Scotland
| | - Lysiane Richert
- Laboratoire de Chirurgie Expérimentale, Fondation Transplantation, 5 Avenue Molière, 67200 Strasbourg, France
- Faculté de Médecine et Pharmacie, Laboratoire de Biologie Cellulaire, Place Saint Jacques, 25030 Besançon, France
| | - Daniel Jaeck
- Laboratoire de Chirurgie Expérimentale, Fondation Transplantation, 5 Avenue Molière, 67200 Strasbourg, France
| | - Pierre Tiberghien
- Laboratoire de Thérapeutique Immuno-moléculaire, EFS/EA 2284/Inserm E-0119, 1 Bd A Fleming, BP 1937, 25020 Besançon cedex, France
| | - Philippe Wolf
- Laboratoire de Chirurgie Expérimentale, Fondation Transplantation, 5 Avenue Molière, 67200 Strasbourg, France
| | - Agnès Azimzadeh
- Laboratoire de Chirurgie Expérimentale, Fondation Transplantation, 5 Avenue Molière, 67200 Strasbourg, France
| |
Collapse
|
25
|
Abstract
The number of diabetic patients in the world is increasing in recent years and the prevention of diabetes mellitus is therefore one of the urgent medical issues. Exogenous insulin is used for the control of blood glucose in diabetic patients; however, hypoglycemic episodes are unavoidable. Over the last several decades, islet transplantation has been developed as a promising method to achieve strict control of blood glucose and a potential cure for type 1 diabetes. However, due to the shortage of donor pancreata, alternative sources of islets have been sought through the generation of beta cells from stem cells, use of porcine islets, and beta cell expansion with growth factors. However, differentiation and expansion of embryonic and pancreatic stem cells and expansion of differentiated beta cells in vitro is limited. Expansion of primary beta cells by growth factors is also hampered by the senescence of the cells. Thus, we focused on establishing a human pancreatic beta cell line that is functionally equivalent to primary beta cells and can yield large amounts of cells for transplantation. Using Cre/loxP-based reversible immortalization, we constructed a reversibly immortalized pancreatic beta cell clone (NAKT-15). The cells may overcome the limitation of primary pancreatic beta cells for transplantation to control type 1 diabetes. In order to avoid the use of immunosuppressive agents, we are currently engaged in developing an implantable bag-type bioartificial pancreas. In this article, I discuss the hurdles of the current therapy for diabetes and introduce the possible future treatment of diabetes.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan.
| |
Collapse
|
26
|
Tada K, Roy-Chowdhury N, Prasad V, Kim BH, Manchikalapudi P, Fox IJ, van Duijvendijk P, Bosma PJ, Roy-Chowdhury J. Long-Term Amerlioration of Bilirubin Glucuronidation Defect in Gunn Rats by Transplanting Genetically Modified Immortalized Autologous Hepatocytes. Cell Transplant 2017; 7:607-16. [PMID: 9853589 DOI: 10.1177/096368979800700611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ex vivo gene therapy, in which hepatocytes are harvested from mutants, retrovirally transduced with a normal gene and transplanted back into the donor, has been used for correction of inherited metabolic defects of liver. Major drawbacks of this method include limited availability of autologous hepatocytes, inefficient retroviral transduction of primary hepatocytes, and the limited number of hepatocytes that can be transplanted safely. To obviate these problems, we transduced primary hepatocytes derived from inbred bilirubin–UDP–glucuronosyl–transferase (BUGT)-deficient Gunn rats by infection with a recombinant retrovirus expressing temperature-sensitive mutant SV40 large T antigen (tsT). The immortalized cells were then transduced with a second recombinant retrovirus expressing human B-UGT, and a clone expressing high levels of the enzyme was expanded by culturing at permissive temperature (33°C). At 37°C, tsT antigen was degraded and the cells expressed UGT activity toward bilirubin at a level approximately twice that present in normal rat liver homogenates. For seeding the cells into the liver bed, 1 × 107 cells were injected into the spleens of syngeneic Gunn rats five times at 10-day intervals. Excretion of bilirubin glucuronides in bile was demonstrated by HPLC analysis and serum bilirubin levels were reduced by 27 to 52% in 40 days after the first transplantation and remained so throughout the duration of the study (120 days). None of the transplanted Gunn rats or SCID mice transplanted with the immortalized cells developed tumors. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- K Tada
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10462, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miki A, Narushima M, Okitsu T, Takeno Y, Soto-Gutierrez A, Rivas-Carrillo JD, Navarro-Alvarez N, Chen Y, Tanaka K, Noguchi H, Matsumoto S, Kohara M, Lakey JRT, Kobayashi E, Tanaka N, Kobayashi N. Maintenance of Mouse, Rat, and Pig Pancreatic Islet Functions by Coculture with Human Islet-Derived Fibroblasts. Cell Transplant 2017; 15:325-334. [PMID: 16898226 DOI: 10.3727/000000006783981882] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Development of an efficient preculture system of islets is ideal. Toward that goal, we constructed a human pancreatic islet-derived fibroblast cell line MNNK-1 for a source as a coculture system for freshly isolated islets to maintain islet functions. Human pancreatic islet cells were nucleofected with a plasmid vector pYK-1 expressing simian virus 40 large T antigen gene (SV40T) and hygromycin resistance gene (HygroR). One of the transduced cell lines, MNNK-1, was established and served as a feeder cell in the coculture for freshly isolated mouse, rat, and pig islets. Morphology, viability, and glucose-responding insulin secretion were analyzed in the coculture system. MNNK-1 cells were morphologically spindle shaped and were negative for pancreatic endocrine markers. MNNK-1 cells were positive for α-smooth muscle actin and collagen type I and produced fibroblast growth factor. Coculture of the mouse, rat, and pig islets with MNNK-1 cells maintained their viability and insulin secretion with glucose responsiveness. A human pancreatic islet-derived fibroblast cell line MNNK-1 was established. MNNK-1 cells were a useful means for maintaining morphology and insulin secretion of islets in the coculture system.
Collapse
Affiliation(s)
- Atsushi Miki
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Michiki Narushima
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Teru Okitsu
- Department of Transplant Surgery, Kyoto University Hospital, 54 Seigoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuichi Takeno
- Division of Organ Replacement Research, Center for Molecular Medicine, Jichi Medical School, Tochigi 329-0498, Japan
| | - Alejandro Soto-Gutierrez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Jorge David Rivas-Carrillo
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Nalú Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Yong Chen
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kimiaki Tanaka
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Transplant Surgery, Kyoto University Hospital, 54 Seigoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinichi Matsumoto
- Department of Transplant Surgery, Kyoto University Hospital, 54 Seigoin-Kawaracho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Honkomagome, Bunkyo-ku, Tokyo 113-8613 Japan
| | - Jonathan R. T. Lakey
- Human Pancreatic Islet Transplant Program, University of Alberta, Alberta T2N 4N1, Canada
| | - Eiji Kobayashi
- Division of Organ Replacement Research, Center for Molecular Medicine, Jichi Medical School, Tochigi 329-0498, Japan
| | - Noriaki Tanaka
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
28
|
Fantauzzo KA, Soriano P. Generation of an immortalized mouse embryonic palatal mesenchyme cell line. PLoS One 2017; 12:e0179078. [PMID: 28582446 PMCID: PMC5459506 DOI: 10.1371/journal.pone.0179078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
Palatogenesis is a complex morphogenetic process, disruptions in which result in highly prevalent birth defects in humans. In recent decades, the use of model systems such as genetically-modified mice, mouse palatal organ cultures and primary mouse embryonic palatal mesenchyme (MEPM) cultures has provided significant insight into the molecular and cellular defects underlying cleft palate. However, drawbacks in each of these systems have prevented high-throughput, large-scale studies of palatogenesis in vitro. Here, we report the generation of an immortalized MEPM cell line that maintains the morphology, migration ability, transcript expression and responsiveness to exogenous growth factors of primary MEPM cells, with increased proliferative potential over primary cultures. The immortalization method described in this study will facilitate the generation of palatal mesenchyme cells with an unlimited capacity for expansion from a single genetically-modified mouse embryo and enable mechanistic studies of palatogenesis that have not been possible using primary culture.
Collapse
Affiliation(s)
- Katherine A. Fantauzzo
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
29
|
Song D, Zhang F, Reid RR, Ye J, Wei Q, Liao J, Zou Y, Fan J, Ma C, Hu X, Qu X, Chen L, Li L, Yu Y, Yu X, Zhang Z, Zhao C, Zeng Z, Zhang R, Yan S, Wu T, Wu X, Shu Y, Lei J, Li Y, Zhang W, Wang J, Lee MJ, Wolf JM, Huang D, He TC. BMP9 induces osteogenesis and adipogenesis in the immortalized human cranial suture progenitors from the patent sutures of craniosynostosis patients. J Cell Mol Med 2017; 21:2782-2795. [PMID: 28470873 PMCID: PMC5661262 DOI: 10.1111/jcmm.13193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023] Open
Abstract
The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long-term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long-term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering.
Collapse
Affiliation(s)
- Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Fugui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Departments of Neurosurgery and Otolaryngology-Head & Neck Surgery, the Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xiangyang Qu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Liqun Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Yichun Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Emergency Medicine, Beijing Hospital, Beijing, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhicai Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Tingting Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Biomedical Engineering, School of Bioengineering, Chongqing University, Chongqing, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Department of Laboratory Medicine and Clinical Diagnostics, the Affiliated Yantai Hospital, Binzhou Medical University, Yantai, China
| | - Jia Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
30
|
Sweeney S, Adamcakova-Dodd A, Thorne PS, Assouline JG. Biocompatibility of Multi-Imaging Engineered Mesoporous Silica Nanoparticles: In Vitro and Adult and Fetal In Vivo Studies. J Biomed Nanotechnol 2017; 13:544-558. [PMID: 31118876 DOI: 10.1166/jbn.2017.2369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite potentially serious adverse effects of engineered nanoparticles on maternal health and fetal development, little is known about their transport across the placenta. Human and animal studies are primarily limited to ex vivo approaches; the lack of a real-time, minimally invasive tool to study transplacental transport is clear. We have developed functionalized mesoporous silica nanoparticles (MSN) for use in magnetic resonance, ultrasound, and fluorescent imaging. This material is designed as a model for, or a carrier of, environmental toxicants, allowing for in vivo evaluation. To establish a baseline of biocompatibility, we present data describing MSN tolerance using in vitro and in vivo models. In cultured cells, MSN were tolerated to a dose of 125 µg/mL with minimal effect on viability and doubling time. For the 42 day duration of the study, none of the mice exhibited behaviors usually indicative of distress (lethargy, anemia, loss of appetite, etc.). In gravid mice, the body and organ weights of MSN-exposed dams were equivalent to those of control dams. Embryos exposed to MSN during early gestation were underweight by a small degree, while embryos exposed during late gestation were of a slightly larger weight. The rate of spontaneous fetal resorptions were equivalent in exposed and control mice. Maternal livers and sera were screened for a complement of cytokines/chemokines and reactive oxygen/nitrogen species (ROS/RNS). Only granulocyte-colony stimulating factor was elevated in mice exposed to MSN during late gestation, while ROS/RNS levels were elevated in mice exposed during early/mid gestation. These findings may usher future experiments investigating environmental toxicants using real-time assessment of transport across the placenta.
Collapse
Affiliation(s)
- Sean Sweeney
- NanoMedTrix Post-Doctoral Research Associate, Department of Biomedical Engineering, University of Iowa, 229 Engineering Research Facility, Iowa City, IA 52242
| | - Andrea Adamcakova-Dodd
- Environmental Health Sciences Research Center Department of Occupational and Environmental Health, University of Iowa, 170 Institute for Rural and Environmental Health, Coralville, IA 52241
| | - Peter S Thorne
- Occupational and Environmental Health, University of Iowa, S341A College of Public Health Building, 145 N. Riverside Dr., Iowa City, IA 52242
| | - Jose G Assouline
- NanoMedTrix, Department of Biomedical Engineering, University of Iowa, 227 Engineering Research Facility, Iowa City, IA 52242
| |
Collapse
|
31
|
Lu S, Wang J, Ye J, Zou Y, Zhu Y, Wei Q, Wang X, Tang S, Liu H, Fan J, Zhang F, Farina EM, Mohammed MM, Song D, Liao J, Huang J, Guo D, Lu M, Liu F, Liu J, Li L, Ma C, Hu X, Lee MJ, Reid RR, Ameer GA, Zhou D, He T. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells. Am J Transl Res 2016; 8:3710-3730. [PMID: 27725853 PMCID: PMC5040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering.
Collapse
Affiliation(s)
- Shun Lu
- Shandong Provincial Orthopaedics Hospital, The Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing UniversityChongqing 400044, China
| | - Yulong Zou
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Yunxiao Zhu
- Department of Biomedical Engineering and Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern UniversityEvanston, IL 60208, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Xin Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Surgery, Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan UniversityChengdu 610041, China
| | - Shengli Tang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of General Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Hao Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Fugui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Evan M Farina
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Maryam M Mohammed
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Dongzhe Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Surgery, Conservative Dentistry and Endodontics, West China Hospital and West China School of Stomatology, Sichuan UniversityChengdu 610041, China
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jiayi Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Dan Guo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Minpeng Lu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Feng Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Jianxiang Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science & TechnologyWuhan 430022, China
| | - Li Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Biomedical Engineering, School of Bioengineering, Chongqing UniversityChongqing 400044, China
| | - Chao Ma
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of General Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430071, China
| | - Xue Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Russell R Reid
- Section of Plastic Surgery, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering and Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern UniversityEvanston, IL 60208, USA
- Department of Surgery, Feinberg School of MedicineChicago, IL 60616, USA
| | - Dongsheng Zhou
- Shandong Provincial Orthopaedics Hospital, The Provincial Hospital Affiliated to Shandong UniversityJinan 250021, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, The Affiliated Hospitals of Chongqing Medical UniversityChongqing 400016, China
| |
Collapse
|
32
|
Xie F, Gong K, Li K, Zhang M, Chang JC, Jiang S, Ye L, Wang J, Tan Y, Kan YW. Reversible Immortalization Enables Seamless Transdifferentiation of Primary Fibroblasts into Other Lineage Cells. Stem Cells Dev 2016; 25:1243-8. [PMID: 27328768 DOI: 10.1089/scd.2016.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibroblasts can be transdifferentiated directly into other somatic cells such as cardiomyocytes, hematopoietic cells, and neurons. An advantage of somatic cell differentiation without first generating induced pluripotent stem cells (iPSCs) is that it avoids contamination of the differentiated cells with residual iPSCs, which may cause teratoma. However, since primary fibroblasts from biopsy undergo senescence during repeated culture, it may be difficult to grow transdifferentiated cells in sufficient numbers for future therapeutic purposes. To circumvent this problem, we reversibly immortalized primary fibroblasts by using the piggyBac transposon to deliver the human telomerase reverse transcriptase (hTERT) gene hTERT plus SV40 Large T. Both approaches enabled fibroblasts to grow continuously without senescence, and neither caused teratoma formation in immunodeficient mice. However, fibroblasts immortalized with hTERT plus SV40 large T antigen accumulated chromosomal rearrangements, whereas fibroblasts immortalized with hTERT retained the normal karyotype. To transdifferentiate hTERT-immortalized fibroblasts into other somatic lineage cells, we transiently transfected them with episomal OCT4 and cultured them under neural cell growth condition with transposase to remove the transposon. Tripotent neural progenitor cells were seamlessly and efficiently generated. Thus, reversible immortalization of primary fibroblasts with hTERT will allow potential autologous cell-based therapeutics that bypass and simulate iPSC generation.
Collapse
Affiliation(s)
- Fei Xie
- 1 Department of Medicine, University of California , San Francisco, California
| | - Kerui Gong
- 2 Departments of Oral and Maxillofacial Surgery, University of California San Francisco , San Francisco, California
| | - Ke Li
- 3 Gladstone Institute of Cardiovascular Disease , San Francisco, California
| | - Mingliang Zhang
- 3 Gladstone Institute of Cardiovascular Disease , San Francisco, California
| | - Judy C Chang
- 1 Department of Medicine, University of California , San Francisco, California
| | - Shizhong Jiang
- 4 The Department of Cardiology, the Eighth People's Hospital of Shanghai , Shanghai, China
| | - Lin Ye
- 1 Department of Medicine, University of California , San Francisco, California
| | - Jiaming Wang
- 1 Department of Medicine, University of California , San Francisco, California.,5 Department of Laboratory Medicine, University of California , San Francisco, California
| | - Yuting Tan
- 1 Department of Medicine, University of California , San Francisco, California.,6 State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Yuet Wai Kan
- 1 Department of Medicine, University of California , San Francisco, California.,5 Department of Laboratory Medicine, University of California , San Francisco, California.,7 Institute for Human Genetics, University of California , San Francisco, California
| |
Collapse
|
33
|
Characterization of Reversibly Immortalized Calvarial Mesenchymal Progenitor Cells. J Craniofac Surg 2016; 26:1207-13. [PMID: 26080159 DOI: 10.1097/scs.0000000000001717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) play a sentinel role in osteoblastic differentiation, and their implementation into clinical practice can revolutionize cranial reconstruction. Preliminary data suggest a therapeutic role of adenoviral gene delivery of BMPs in murine calvarial defect healing. Poor transgene expression inherent in direct adenoviral therapy prompted investigation of cell-based strategies. OBJECTIVE To isolate and immortalize calvarial cells as a potential progenitor source for osseous tissue engineering. MATERIALS AND METHODS Cells were isolated from murine skulls, cultured, and transduced with a retroviral vector bearing the loxP-flanked SV40 large T antigen. Immortalized calvarial cells (iCALs) were evaluated via light microscopy, immunohistochemistry, and flow cytometry to determine whether the immortalization process altered cell morphology or progenitor cell profile. Immortalized calvarial cells were then infected with adenoviral vectors encoding BMP-2 or GFP and assessed for early and late stages of osteogenic differentiation. RESULTS Immortalization of calvarial cells did not alter cell morphology as demonstrated by phase contrast microscopy. Mesenchymal progenitor cell markers CD166, CD73, CD44, and CD105 were detected at varying levels in both primary cells and iCALs. Significant elevations in alkaline phosphatase activity, osteocalcin mRNA transcription, and matrix mineralization were detected in BMP-2 treated iCALs compared with GFP-treated cells. Gross and histological analyses revealed ectopic bone production from treated cells compared with controls in an in vivo stem cell implantation assay. CONCLUSION We have established an immortalized osteoprogenitor cell line from juvenile calvarial cells that retain a progenitor cell phenotype and can successfully undergo osteogenic differentiation upon BMP-2 stimulation. These cells provide a valuable platform to investigate the molecular mechanisms underlying intramembranous bone formation and to screen for factors/small molecules that can facilitate the healing of osseous defects in the craniofacial skeleton.
Collapse
|
34
|
Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, Zheng L, Deng F. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS One 2015; 10:e0130937. [PMID: 26172849 PMCID: PMC4501788 DOI: 10.1371/journal.pone.0130937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Dental follicle cells (DFCs) are the precursor cells of periodontium. Under certain differentiation conditions, DFCs can be induced to differentiate into chondrogenic, osteogenic and adipogenic cells. However, DFCs has limited lifespan in vitro, so it's difficult to harvest enough cells for basic research and translational application. pMPH86 is a piggyBac transposon-mediated vector which contains SV40 T-Ag cassette that can be removed by flippase recognition target (FRT) recombinase. Here we demonstrated the pMPH86 can effectively amplify human DFCs through reversible immortalization. The immortalized DFCs (iDFCs) exhibit higher proliferate activity, which can be reversed to its original level before immortalization when deimmortalized by FLP recombinase. The iDFCs and deimmortalized DFCs (dDFCs) express most DFC markers and maintain multiple differentiation potential in vitro as they can be induced by BMP9 to differentiate into chondrogenic, osteogenic and adipogenic cells evidenced by gene expression and protein marker. We also proved telomerase activity of iDFCs are significantly increased and maintained at a high level, while the telomerase activity of primary DFCs was relatively low and decreased with every passage. After SV40 T-Ag was removed to deimmortalize the cells, telomerase activity was reduced to its original level before immortalization and decreased with passages just the same as primary DFCs. These results suggest that piggyBac immortalization system could be a potential strategy to amplify primary cells, which is critical for regenerative research and further clinical application.
Collapse
Affiliation(s)
- Yan Wu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Ge Feng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Jinlin Song
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Yong Yu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Leilei Zheng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Feng Deng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
- * E-mail:
| |
Collapse
|
35
|
Teven CM, Rossi MT, Shenaq DS, Ameer GA, Reid RR. Bone morphogenetic protein-9 effectively induces osteogenic differentiation of reversibly immortalized calvarial mesenchymal progenitor cells. Genes Dis 2015; 2:268-275. [PMID: 30258869 PMCID: PMC6147177 DOI: 10.1016/j.gendis.2015.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/09/2015] [Indexed: 12/23/2022] Open
Abstract
Critical-sized craniofacial defect repair represents a significant challenge to reconstructive surgeons. Many strategies have been employed in an effort to achieve both a functionally and cosmetically acceptable outcome. Bone morphogenetic proteins (BMPs) provide a robust osteoinductive cue to stimulate bony growth and remodeling. Previous studies have suggested that the BMP-9 isoform is particularly effective in promoting osteogenic differentiation of mesenchymal progenitor cells. The aim of this study is to characterize the osteogenic capacity of BMP-9 on calvarial mesenchymal progenitor cell differentiation. Reversibly immortalized murine calvarial progenitor cells (iCALs) were infected with adenoviral vectors encoding BMP-9 or GFP and assessed for early and late stages of osteogenic differentiation in vitro and for osteogenic differentiation via in vivo stem cell implantation studies. Significant elevations in alkaline phosphatase (ALP) activity, osteocalcin (OCN) mRNA transcription, osteopontin (OPN) protein expression, and matrix mineralization were detected in BMP-treated cells compared to control. Specifically, ALP activity was elevated on days 3, 7, 9, 11, and 13 post-infection and OCN mRNA expression was elevated on days 8, 10, and 14 in treated cells. Additionally, treatment groups demonstrated increased OPN protein expression on day 10 and matrix mineralization on day 14 post-infection relative to control groups. BMP-9 also facilitated the formation of new bone in vivo as detailed by gross, microcomputed tomography, and histological analyses. Therefore, we concluded that BMP-9 significantly stimulates osteogenic differentiation in iCALs, and should be considered an effective agent for calvarial tissue regeneration.
Collapse
Affiliation(s)
- Chad M Teven
- The Laboratory of Craniofacial Development and Biology, Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Michael T Rossi
- The Laboratory of Craniofacial Development and Biology, Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Deana S Shenaq
- The Laboratory of Craniofacial Development and Biology, Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.,Department of Surgery, Northwestern University, Chicago, IL, USA
| | - Russell R Reid
- The Laboratory of Craniofacial Development and Biology, Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Zhong L, Gou J, Deng N, Shen H, He T, Zhang BQ. Three-dimensional co-culture of hepatic progenitor cells and mesenchymal stem cells in vitro and in vivo. Microsc Res Tech 2015; 78:688-96. [PMID: 26031767 DOI: 10.1002/jemt.22526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/24/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Here we co-cultured hepatic progenitor cells (HPCs) and mesenchymal stem cells (MSCs) to investigate whether the co-culture environments could increase hepatocytes form. METHODS Three-dimensional (3D) co-culture model of HPCs and MSCs was developed and morphological features of cells were continuously observed. Hepatocyte specific markers Pou5f1/Oct4, AFP, CK-18 and Alb were analyzed to confirm the differentiation of HPCs. The mRNA expression of CK-18 and Alb was analyzed by RT-PCR to investigate the influence of co-culture model to the terminal differentiation process of mature hepatocytes. The functional properties of hepatocyte-like cells were detected by continuously monitoring the albumin secretion using Gaussia luciferase assays. Scaffolds with HPCs and MSCs were implanted into nude mouse subcutaneously to set up the in vivo co-culture model. RESULTS Although two groups formed smooth spheroids and high expressed of CK-18 and Alb, hybrid spheroids had more regular structures and higher cell density. CK-18 and Alb mRNA were at a relatively higher expression level in co-culture system during the whole cultivation time (P < 0.05). Albumin secretion rates in the hybrid spheroids had been consistently higher than that in the mono-culture spheroids (P < 0.05). In vivo, the hepatocyte-like cells were consistent with the morphological features of mature hepatocytes and more well-differentiated hepatocyte-like cells were observed in the co-culture group. CONCLUSIONS HPCs and MSCs co-culture system is an efficient way to form well-differentiated hepatocyte-like cells, hence, may be helpful to the cell therapy of hepatic tissues and alleviate the problem of hepatocytes shortage.
Collapse
Affiliation(s)
- Li Zhong
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Chongqing, 400016, China
| | - Juhua Gou
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Chongqing, 400016, China
| | - Nian Deng
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Chongqing, 400016, China
| | - Hao Shen
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Chongqing, 400016, China
| | - Tongchuan He
- Department of Surgery, Molecular Oncology Laboratory, the University of Chicago Medical Center, Chicago, Illinois, 60637
| | - Bing-Qiang Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Chongqing, 400016, China
| |
Collapse
|
37
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 2015; 1250:53-76. [PMID: 26272134 PMCID: PMC4579543 DOI: 10.1007/978-1-4939-2074-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium,
| | | | | | | |
Collapse
|
38
|
Joshi M, Oltean M, Patil PB, Hallberg D, Kleman M, Holgersson J, Olausson M, Sumitran-Holgersson S. Chemokine-mediated robust augmentation of liver engraftment: a novel approach. Stem Cells Transl Med 2014; 4:21-30. [PMID: 25473087 DOI: 10.5966/sctm.2014-0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Effective repopulation of the liver is essential for successful clinical hepatocyte transplantation. The objective was to improve repopulation of the liver with human hepatocytes using chemokines. We used flow cytometry and immunohistochemistry assays to identify commonly expressed chemokine receptors on human fetal and adult hepatocytes. The migratory capacity of the cells to various chemokines was tested. For in vivo studies, we used a nude mouse model of partial hepatectomy followed by intraparenchymal injections of chemokine ligands at various concentrations. Human fetal liver cells transformed with human telomerase reverse transcriptase were used for intrasplenic cell transplantation. Repopulation and functionality were assessed 4 weeks after transplantation. The receptor CXCR3 was commonly expressed on both fetal and adult hepatocytes. Both cell types migrated efficiently toward corresponding CXC chemokine ligands 9, 10, and 11. In vivo, animals injected with recombinant chemokines showed the highest cell engraftment compared with controls (p<.05). The engrafted cells expressed several human hepatic markers such as cytokeratin 8 and 18 and albumin as well as transferrin, UGT1A1, hepatocyte nuclear factor (1α, 1β, and 4α), cytochrome CYP3A1, CCAAT/enhancer binding protein (α and β), and human albumin compared with controls. No inflammatory cells were detected in the livers at 4 weeks after transplantation. The improved repopulation of transplanted cells is likely a function of the chemokines to mediate cell homing and retention in the injured liver and might be an attractive strategy to augment repopulation of transplanted hepatocytes in vivo.
Collapse
Affiliation(s)
- Meghnad Joshi
- Laboratory for Transplantation Biology and Regenerative Medicine, Department of Surgery, and Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; NovaHep AB, Stockholm, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation Biology and Regenerative Medicine, Department of Surgery, and Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; NovaHep AB, Stockholm, Sweden
| | - Pradeep B Patil
- Laboratory for Transplantation Biology and Regenerative Medicine, Department of Surgery, and Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; NovaHep AB, Stockholm, Sweden
| | - David Hallberg
- Laboratory for Transplantation Biology and Regenerative Medicine, Department of Surgery, and Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; NovaHep AB, Stockholm, Sweden
| | - Marika Kleman
- Laboratory for Transplantation Biology and Regenerative Medicine, Department of Surgery, and Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; NovaHep AB, Stockholm, Sweden
| | - Jan Holgersson
- Laboratory for Transplantation Biology and Regenerative Medicine, Department of Surgery, and Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; NovaHep AB, Stockholm, Sweden
| | - Michael Olausson
- Laboratory for Transplantation Biology and Regenerative Medicine, Department of Surgery, and Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; NovaHep AB, Stockholm, Sweden
| | - Suchitra Sumitran-Holgersson
- Laboratory for Transplantation Biology and Regenerative Medicine, Department of Surgery, and Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden; NovaHep AB, Stockholm, Sweden
| |
Collapse
|
39
|
Eva R, Bram DC, Joery DK, Tamara V, Geert B, Vera R, Mathieu V. Strategies for immortalization of primary hepatocytes. J Hepatol 2014; 61:925-43. [PMID: 24911463 PMCID: PMC4169710 DOI: 10.1016/j.jhep.2014.05.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications.
Collapse
Affiliation(s)
- Ramboer Eva
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - De Craene Bram
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - De Kock Joery
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vanhaecke Tamara
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Berx Geert
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rogiers Vera
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vinken Mathieu
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
40
|
Dickman CTD, Towle R, Saini R, Garnis C. Molecular characterization of immortalized normal and dysplastic oral cell lines. J Oral Pathol Med 2014; 44:329-36. [PMID: 25169794 DOI: 10.1111/jop.12236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cell lines have been developed for modeling cancer and cancer progression. The molecular background of these cell lines is often unknown to those using them to model disease behaviors. As molecular alterations are the ultimate drivers of cell phenotypes, having an understanding of the molecular make-up of these systems is critical for understanding the disease biology modeled. METHODS Six immortalized normal, one immortalized dysplasia, one self-immortalized dysplasia, and two primary normal cell lines derived from oral tissues were analyzed for DNA copy number changes and changes in both mRNA and miRNA expression using SMRT-v.2 genome-wide tiling comparative genomic hybridization arrays, Agilent Whole Genome 4x44k expression arrays, and Exiqon V2.M-RT-PCR microRNA Human panels. RESULTS DNA copy number alterations were detected in both normal and dysplastic immortalized cell lines-as well as in the single non-immortalized dysplastic cell line. These lines were found to have changes in expression of genes related to cell cycle control as well as alterations in miRNAs that are deregulated in clinical oral squamous cell carcinoma tissues. Immortal lines-whether normal or dysplastic-had increased disruption in expression relative to primary lines. All data are available as a public resource. CONCLUSIONS Molecular profiling experiments have identified DNA, mRNA, and miRNA alterations for a panel of normal and dysplastic oral tissue cell lines. These data are a valuable resource to those modeling diseases of the oral mucosa, and give insight into the selection of model cell lines and the interpretation of data from those lines.
Collapse
Affiliation(s)
- Christopher T D Dickman
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
41
|
Wang N, Zhang W, Cui J, Zhang H, Chen X, Li R, Wu N, Chen X, Wen S, Zhang J, Yin L, Deng F, Liao Z, Zhang Z, Zhang Q, Yan Z, Liu W, Ye J, Deng Y, Wang Z, Qiao M, Luu HH, Haydon RC, Shi LL, Liang H, He TC. The piggyBac transposon-mediated expression of SV40 T antigen efficiently immortalizes mouse embryonic fibroblasts (MEFs). PLoS One 2014; 9:e97316. [PMID: 24845466 PMCID: PMC4028212 DOI: 10.1371/journal.pone.0097316] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 04/19/2014] [Indexed: 12/29/2022] Open
Abstract
Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies.
Collapse
Affiliation(s)
- Ning Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, the Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Cui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hongmei Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Ningning Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Xian Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Sheng Wen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Junhui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Liangjun Yin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Orthopaedic Surgery, Xiang-Ya Hospital of Central South University, Changsha, China
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Department of Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (HL); (TCH)
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing, China
- * E-mail: (HL); (TCH)
| |
Collapse
|
42
|
Lamplot JD, Liu B, Yin L, Zhang W, Wang Z, Luther G, Wagner E, Li R, Nan G, Shui W, Yan Z, Rames R, Deng F, Zhang H, Liao Z, Liu W, Zhang J, Zhang Z, Zhang Q, Ye J, Deng Y, Qiao M, Haydon RC, Luu HH, Angeles J, Shi LL, He TC, Ho SH. Reversibly Immortalized Mouse Articular Chondrocytes Acquire Long-Term Proliferative Capability While Retaining Chondrogenic Phenotype. Cell Transplant 2014; 24:1053-66. [PMID: 24800751 DOI: 10.3727/096368914x681054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cartilage tissue engineering holds great promise for treating cartilaginous pathologies including degenerative disorders and traumatic injuries. Effective cartilage regeneration requires an optimal combination of biomaterial scaffolds, chondrogenic seed cells, and biofactors. Obtaining sufficient chondrocytes remains a major challenge due to the limited proliferative capability of primary chondrocytes. Here we investigate if reversibly immortalized mouse articular chondrocytes (iMACs) acquire long-term proliferative capability while retaining the chondrogenic phenotype. Primary mouse articular chondrocytes (MACs) can be efficiently immortalized with a retroviral vector-expressing SV40 large T antigen flanked with Cre/loxP sites. iMACs exhibit long-term proliferation in culture, although the immortalization phenotype can be reversed by Cre recombinase. iMACs express the chondrocyte markers Col2a1 and aggrecan and produce chondroid matrix in micromass culture. iMACs form subcutaneous cartilaginous masses in athymic mice. Histologic analysis and chondroid matrix staining demonstrate that iMACs can survive, proliferate, and produce chondroid matrix. The chondrogenic growth factor BMP2 promotes iMACs to produce more mature chondroid matrix resembling mature articular cartilage. Taken together, our results demonstrate that iMACs acquire long-term proliferative capability without losing the intrinsic chondrogenic features of MACs. Thus, iMACs provide a valuable cellular platform to optimize biomaterial scaffolds for cartilage regeneration, to identify biofactors that promote the proliferation and differentiation of chondrogenic progenitors, and to elucidate the molecular mechanisms underlying chondrogenesis.
Collapse
Affiliation(s)
- Joseph D Lamplot
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout-Neveu E, Grenier-Godard M, Guez F, Rachdi L, Lohmann M, Czernichow P, Ravassard P. Development of a conditionally immortalized human pancreatic β cell line. J Clin Invest 2014; 124:2087-98. [PMID: 24667639 DOI: 10.1172/jci72674] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/22/2014] [Indexed: 12/25/2022] Open
Abstract
Diabetic patients exhibit a reduction in β cells, which secrete insulin to help regulate glucose homeostasis; however, little is known about the factors that regulate proliferation of these cells in human pancreas. Access to primary human β cells is limited and a challenge for both functional studies and drug discovery progress. We previously reported the generation of a human β cell line (EndoC-βH1) that was generated from human fetal pancreas by targeted oncogenesis followed by in vivo cell differentiation in mice. EndoC-βH1 cells display many functional properties of adult β cells, including expression of β cell markers and insulin secretion following glucose stimulation; however, unlike primary β cells, EndoC-βH1 cells continuously proliferate. Here, we devised a strategy to generate conditionally immortalized human β cell lines based on Cre-mediated excision of the immortalizing transgenes. The resulting cell line (EndoC-βH2) could be massively amplified in vitro. After expansion, transgenes were efficiently excised upon Cre expression, leading to an arrest of cell proliferation and pronounced enhancement of β cell-specific features such as insulin expression, content, and secretion. Our data indicate that excised EndoC-βH2 cells are highly representative of human β cells and should be a valuable tool for further analysis of human β cells.
Collapse
|
44
|
Wang J, Zhang H, Zhang W, Huang E, Wang N, Wu N, Wen S, Chen X, Liao Z, Deng F, Yin L, Zhang J, Zhang Q, Yan Z, Liu W, Zhang Z, Ye J, Deng Y, Luu HH, Haydon RC, He TC, Deng F. Bone morphogenetic protein-9 effectively induces osteo/odontoblastic differentiation of the reversibly immortalized stem cells of dental apical papilla. Stem Cells Dev 2014; 23:1405-16. [PMID: 24517722 DOI: 10.1089/scd.2013.0580] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPARγ2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration.
Collapse
Affiliation(s)
- Jinhua Wang
- 1 Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, and The Affiliated Hospital of Stomatology of Chongqing Medical University , Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lipps C, May T, Hauser H, Wirth D. Eternity and functionality – rational access to physiologically relevant cell lines. Biol Chem 2013; 394:1637-48. [DOI: 10.1515/hsz-2013-0158] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023]
Abstract
Abstract
In the first 50 years of cell culture, the development of new cell lines was mainly based on trial and error. Due to the understanding of the molecular networks of aging, senescence, proliferation, and adaption by mutation, the generation of new cell lines with physiologic properties has become more systematic. This endeavor has been supported by the availability of new technological achievements and increasing knowledge about the biology of cell differentiation and cell-cell communication. Here, we review some promising developments that are contributing toward this goal. These include molecular tools frequently used for the immortalization process. In addition to these broadly acting immortalization regimens, we focus on the developments of cell type-specific immortalization and on the methodologies of how to control the growth of newly established cell lines.
Collapse
|
46
|
Tone Y, Kawahara M, Hayashi J, Nagamune T. Cell fate conversion by conditionally switching the signal-transducing domain of signalobodies. Biotechnol Bioeng 2013; 110:3219-26. [PMID: 23794462 DOI: 10.1002/bit.24985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/25/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023]
Abstract
Conditionally and strictly controlling cell fates is important for biomedical applications including cell therapies. Although previous studies have been based on regulating the expression or activation of signaling molecules, the techniques therein require improvement in terms of reducing leakiness and complexity. In this study, we propose a novel cell fate converting system using our previously developed antibody/receptor chimeras named "signalobodies" in combination with a Cre/loxP recombination system. We designed a "switch vector" where a growth signalobody gene was flanked by two loxP sites and a death signalobody gene was placed downstream of the floxed cassette. Cells transduced with the switch vector showed superior growth activity in the presence of a specific antigen. Subsequent expression of Cre induced the death signalobody, leading to conditional cell death. This technology could be applicable for other cell fate conversion systems including differentiation and migration, by using appropriate signal-transducing domains.
Collapse
Affiliation(s)
- Yuichiro Tone
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | | | | |
Collapse
|
47
|
Wang X, Cui J, Zhang BQ, Zhang H, Bi Y, Kang Q, Wang N, Bie P, Yang Z, Wang H, Liu X, Haydon RC, Luu HH, Tang N, Dong J, He TC. Decellularized liver scaffolds effectively support the proliferation and differentiation of mouse fetal hepatic progenitors. J Biomed Mater Res A 2013; 102:1017-25. [PMID: 23625886 DOI: 10.1002/jbm.a.34764] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/03/2013] [Accepted: 04/18/2013] [Indexed: 12/25/2022]
Abstract
Decellularized whole organs represent ideal scaffolds for engineering new organs and/or cell transplantation. Here, we investigate whether decellularized liver scaffolds provide cell-friendly biocompatible three-dimensional (3-D) environment to support the proliferation and differentiation of hepatic progenitor cells. Mouse liver tissues are efficiently decellularized through portal vein perfusion. Using the reversibly immortalized mouse fetal hepatic progenitor cells (iHPCs), we are able to effectively recellularize the decellularized liver scaffolds. The perfused iHPCs survive and proliferate in the 3-D scaffolds in vitro for 2 weeks. When the recellularized scaffolds are implanted into the kidney capsule of athymic nude mice, cell survival and proliferation of the implanted scaffolds are readily detected by whole body imaging for 10 days. Furthermore, epidermal growth factor (EGF) is shown to significantly promote the proliferation and differentiation of the implanted iHPCs. Histologic and immunochemical analyzes indicate that iHPCs are able to proliferate and differentiate to mature hepatocytes upon EGF stimulation in the scaffolds. The recellularization of the biomaterial scaffolds is accompanied with vascularization. Taken together, these results indicate that decullarized liver scaffolds effectively support the proliferation and differentiation of iHPCs, suggesting that decellularized liver matrix may be used as ideal biocompatible scaffolds for hepatocyte transplantation.
Collapse
Affiliation(s)
- Xiaojun Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China; Department of Surgery, Molecular Oncology Laboratory, The University of Chicago Medical Center, Chicago, Illinois, 60637
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lin H, Liu H, Sun Q, Yuan G, Zhang L, Chen Z. Establishment and characterization of a tamoxifen-mediated reversible immortalized mouse dental papilla cell line. In Vitro Cell Dev Biol Anim 2013; 49:114-21. [DOI: 10.1007/s11626-012-9576-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/14/2012] [Indexed: 11/28/2022]
|
49
|
Li M, Chen Y, Bi Y, Jiang W, Luo Q, He Y, Su Y, Liu X, Cui J, Zhang W, Li R, Kong Y, Zhang J, Wang J, Zhang H, Shui W, Wu N, Zhu J, Tian J, Yi QJ, Luu HH, Haydon RC, He TC, Zhu GH. Establishment and characterization of the reversibly immortalized mouse fetal heart progenitors. Int J Med Sci 2013; 10:1035-46. [PMID: 23801891 PMCID: PMC3691803 DOI: 10.7150/ijms.6639] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/09/2013] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Progenitor cell-based cardiomyocyte regeneration holds great promise of repairing an injured heart. Although cardiomyogenic differentiation has been reported for a variety of progenitor cell types, the biological factors that regulate effective cardiomyogenesis remain largely undefined. Primary cardiomyogenic progenitors (CPs) have a limited life span in culture, hampering the CPs' in vitro and in vivo studies. The objective of this study is to investigate if primary CPs isolated from fetal mouse heart can be reversibly immortalized with SV40 large T and maintain long-term cell proliferation without compromising cardiomyogenic differentiation potential. METHODS Primary cardiomyocytes were isolated from mouse E15.5 fetal heart, and immortalized retrovirally with the expression of SV40 large T antigen flanked with loxP sites. Expression of cardiomyogenic markers were determined by quantitative RT-PCR and immunofluorescence staining. The immortalization phenotype was reversed by using an adenovirus-mediated expression of the Cre reconbinase. Cardiomyogenic differentiation induced by retinoids or dexamethasone was assessed by an α-myosin heavy chain (MyHC) promoter-driven reporter. RESULTS We demonstrate that the CPs derived from mouse E15.5 fetal heart can be efficiently immortalized by SV40 T antigen. The conditionally immortalized CPs (iCP15 clones) exhibit an increased proliferative activity and are able to maintain long-term proliferation, which can be reversed by Cre recombinase. The iCP15 cells express cardiomyogenic markers and retain differentiation potential as they can undergo terminal differentiate into cardiomyctes under appropriate differentiation conditions although the iCP15 clones represent a large repertoire of CPs at various differentiation stages. The removal of SV40 large T increases the iCPs' differentiation potential. Thus, the iCPs not only maintain long-term cell proliferative activity but also retain cardiomyogenic differentiation potential. CONCLUSIONS Our results suggest that the reported reversible SV40 T antigen-mediated immortalization represents an efficient approach for establishing long-term culture of primary cardiomyogenic progenitors for basic and translational research.
Collapse
Affiliation(s)
- Mi Li
- Stem Cell Biology and Therapy Laboratory, the Key Laboratory of Pediatrics Designated by Chinese Ministry of Education and Chongqing Bureau of Education, and the Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Differentiation of osteoprogenitor cells is induced by high-frequency pulsed electromagnetic fields. J Craniofac Surg 2012; 23:586-93. [PMID: 22446422 DOI: 10.1097/scs.0b013e31824cd6de] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Craniofacial defect repair is often limited by a finite supply of available autologous tissue (ie, bone) and less than ideal alternatives. Therefore, other methods to produce bony healing must be explored. Several studies have demonstrated that low-frequency pulsed electromagnetic field (PEMF) stimulation (ie, 5-30 Hz) of osteoblasts enhances bone formation. The current study was designed to investigate whether a Food and Drug Administration-approved, high-frequency PEMF-emitting device is capable of inducing osteogenic differentiation of osteoprogenitor cells. Osteoprogenitor cells (commercially available C3H10T1/2 and mouse calvarial) in complete Dulbecco modified Eagle medium were continuously exposed to PEMF stimulation delivered by the ActiPatch at a frequency of 27.1 MHz. Markers of cellular proliferation and early, intermediate, and terminal osteogenic differentiation were measured and compared with unstimulated controls. All experiments were performed in triplicate. High-frequency PEMF stimulation increases alkaline phosphatase activity in both cell lines. In addition, high-frequency PEMF stimulation augments osteopontin and osteocalcin expression as well as mineral nodule formation in C3H10T1/2 cells, indicating late and terminal osteogenic differentiation, respectively. Cellular proliferation, however, was unaffected by high-frequency PEMF stimulation. Mechanistically, high-frequency PEMF-stimulated osteogenic differentiation is associated with elevated mRNA expression levels of osteogenic bone morphogenetic proteins in C3H10T1/2 cells. Our findings suggest that high-frequency PEMF stimulation of osteoprogenitor cells may be explored as an effective tissue engineering strategy to treat critical-size osseous defects of the craniofacial and axial skeleton. ABBREVIATIONS ALP, alkaline phosphatase; BMP, bone morphogenetic protein; ERK-1, extracellular signal-regulated kinase 1; iCALs, immortalized calvarial cells; IHC, immunohistochemical; MAP, mitogen-activated protein; MSC, mesenchymal stem cell; OCN, osteocalcin; OPN, osteopontin; p38α, p38-reactivating kinase; PBS, phosphate-buffered saline; PEMF, pulsed electromagnetic field.
Collapse
|