1
|
Wu Y, Guo J, Li W, Xiu X, Thirunavukarasu D, Wang Y, Wang K, Chen W, Yu Zhang D, Yang X, Fan C, Song P. Enhanced Detection of Novel Low-Frequency Gene Fusions via High-Yield Ligation and Multiplexed Enrichment Sequencing. Angew Chem Int Ed Engl 2024; 63:e202316484. [PMID: 38494435 DOI: 10.1002/anie.202316484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Panel-based methods are commonly employed for the analysis of novel gene fusions in precision diagnostics and new drug development in cancer. However, these methods are constrained by limitations in ligation yield and the enrichment of novel gene fusions with low variant allele frequencies. In this study, we conducted a pioneering investigation into the stability of double-stranded adapter DNA, resulting in improved ligation yield and enhanced conversion efficiency. Additionally, we implemented blocker displacement amplification, achieving a remarkable 7-fold enrichment of novel gene fusions. Leveraging the pre-enrichment achieved with this approach, we successfully applied it to Nanopore sequencing, enabling ultra-fast analysis of novel gene fusions within one hour with high sensitivity. This method offers a robust and remarkably sensitive mean of analyzing novel gene fusions, promising the discovery of pivotal biomarkers that can significantly improve cancer diagnostics and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yi Wu
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinxiao Guo
- Shanghai Sixth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenjun Li
- NuProbe USA, Inc., 2575 West Bellfort Avenue, Ste. 200 Houston, TX 77054, USA
| | - Xuehao Xiu
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 322000, China
| | - David Yu Zhang
- NuProbe USA, Inc., 2575 West Bellfort Avenue, Ste. 200 Houston, TX 77054, USA
| | - Xiurong Yang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Song
- School of Biomedical Engineering, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci 2015; 72:3425-39. [PMID: 26018601 DOI: 10.1007/s00018-015-1934-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/25/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Whole transcriptome analysis plays an essential role in deciphering genome structure and function, identifying genetic networks underlying cellular, physiological, biochemical and biological systems and establishing molecular biomarkers that respond to diseases, pathogens and environmental challenges. Here, we review transcriptome analysis methods and technologies that have been used to conduct whole transcriptome shotgun sequencing or whole transcriptome tag/target sequencing analyses. We focus on how adaptors/linkers are added to both 5' and 3' ends of mRNA molecules for cloning or PCR amplification before sequencing. Challenges and potential solutions are also discussed. In brief, next generation sequencing platforms have accelerated releases of the large amounts of gene expression data. It is now time for the genome research community to assemble whole transcriptomes of all species and collect signature targets for each gene/transcript, and thus use known genes/transcripts to determine known transcriptomes directly in the near future.
Collapse
|
3
|
Large-scale tag/PCR-based gene expression profiling. World J Microbiol Biotechnol 2015; 30:2125-39. [PMID: 24659336 DOI: 10.1007/s11274-014-1641-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
Abstract
An intriguing enigma in molecular biology is how genes within a single genome are differentially expressed in different cell types of a multicellular organism, or in response to different developmental or environmental queues in a single cell type. Quantification of transcript levels on a genome-wide scale, often termed transcript profiling, provides a powerful approach to identifying protein-coding and non-coding RNAs functionally relevant to a given biological process. Indeed, transcriptome analysis has been a key area of biological inquiry for decades and successfully produced discoveries in a multitude of processes and disease states, and in an increasingly large number of organisms. The evolution of technologies with increasing levels of informational content, ranging from hybridization-based technologies such as Northern blot analysis and microarrays to tag/polymerase chain reaction (PCR)- and sequence-based technologies including differential display and SAGE, along with the next-generation sequencing, has provided hope for revealing the molecular details of biological systems as they respond to change. This review is an overview of selected high throughput tag/PCR-based methods for genome-wide expression profiling amenable to high-throughput automated operation in any standard laboratory.
Collapse
|
4
|
Rallapalli G, Kemen EM, Robert-Seilaniantz A, Segonzac C, Etherington GJ, Sohn KH, MacLean D, Jones JDG. EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics. BMC Genomics 2014; 15:341. [PMID: 24884414 PMCID: PMC4035070 DOI: 10.1186/1471-2164-15-341] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/31/2014] [Indexed: 01/19/2023] Open
Abstract
Background Next Generation Sequencing technologies have facilitated differential gene expression analysis through RNA-seq and Tag-seq methods. RNA-seq has biases associated with transcript lengths, lacks uniform coverage of regions in mRNA and requires 10–20 times more reads than a typical Tag-seq. Most existing Tag-seq methods either have biases or not high throughput due to use of restriction enzymes or enzymatic manipulation of 5’ ends of mRNA or use of RNA ligations. Results We have developed EXpression Profiling through Randomly Sheared cDNA tag Sequencing (EXPRSS) that employs acoustic waves to randomly shear cDNA and generate sequence tags at a relatively defined position (~150-200 bp) from the 3′ end of each mRNA. Implementation of the method was verified through comparative analysis of expression data generated from EXPRSS, NlaIII-DGE and Affymetrix microarray and through qPCR quantification of selected genes. EXPRSS is a strand specific and restriction enzyme independent tag sequencing method that does not require cDNA length-based data transformations. EXPRSS is highly reproducible, is high-throughput and it also reveals alternative polyadenylation and polyadenylated antisense transcripts. It is cost-effective using barcoded multiplexing, avoids the biases of existing SAGE and derivative methods and can reveal polyadenylation position from paired-end sequencing. Conclusions EXPRSS Tag-seq provides sensitive and reliable gene expression data and enables high-throughput expression profiling with relatively simple downstream analysis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-341) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jonathan D G Jones
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, UK NR4 7UH.
| |
Collapse
|
5
|
|
6
|
ABC50 modulates sensitivity of HL60 leukemic cells to endoplasmic reticulum (ER) stress-induced cell death. Biochem Pharmacol 2010; 81:488-97. [PMID: 21087599 DOI: 10.1016/j.bcp.2010.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/08/2010] [Accepted: 11/08/2010] [Indexed: 01/02/2023]
Abstract
ABC50 (aka ABCF1) is a member of the ATP Binding Cassette protein family. ABC50 stimulates complex formation between eIF2, GTP and Met-tRNA implicating it in translation initiation. Econazole (Ec) is an imidazole anti-fungal that induces endoplasmic reticulum (ER) stress in mammalian cells by promoting ER Ca(2+) depletion and sustained protein synthesis inhibition. HL60 cells selected for Ec resistance were found to exhibit a multi-drug resistance phenotype associated specifically with ER stress. Differential Display was used to identify ABC50 as an overexpressed gene in resistant cells. ABC50 knockdown (KD) in Ec-resistant HL60 cells partially restored Ec sensitivity. In parental HL60 cells, ABC50 KD increased sensitivity to Ec, thapsigargin and tunicamycin but not to serum withdrawal or etoposide. ABC50 overexpression (OE) partially and specifically decreased sensitivity to ER stress agents. ABC50 KD or OE had no effect on ROS generation by Ec, ER Ca(2+) stores or thapsigargin-stimulated influx. Increased eIF2α phosphorylation in response to ER stress was observed in the KD cells while decreased phosphorylation was observed in the OE cells. Ribosomal content was reduced in ABC50 KD cells and increased in OE cells. Knockdown suppressed protein synthesis while OE increased it. Protein synthesis was sustained in ABC50 OE cells exposed to Ec. ABC50 OE promoted ER stress resistance and increased antibody production in the hybridoma GK1.5 suggesting it may be useful for the overproduction of specific proteins. Taken together, these results indicate that ABC50 modulates sensitivity to Ec and other ER stress agents primarily through its effects on protein synthesis.
Collapse
|
7
|
Lathe R, Harris A. Differential display detects host nucleic acid motifs altered in scrapie-infected brain. J Mol Biol 2009; 392:813-22. [PMID: 19631225 DOI: 10.1016/j.jmb.2009.07.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) including scrapie have been attributed to an infectious protein or prion. Infectivity is allied to conversion of the endogenous nucleic-acid-binding protein PrP to an infectious modified form known as PrP(sc). The protein-only theory does not easily explain the enigmatic properties of the agent including strain variation. It was previously suggested that a short nucleic acid, perhaps host-encoded, might contribute to the pathoetiology of the TSEs. No candidate host molecules that might explain transmission of strain differences have yet been put forward. Differential display is a robust technique for detecting nucleic acid differences between two populations. We applied this technique to total nucleic acid preparations from scrapie-infected and control brain. Independent RNA preparations from eight normal and eight scrapie-infected (strain 263K) hamster brains were randomly amplified and visualized in parallel. Though the nucleic acid patterns were generally identical in scrapie-infected versus control brain, some rare bands were differentially displayed. Molecular species consistently overrepresented (or underrepresented) in all eight infected brain samples versus all eight controls were excised from the display, sequenced, and assembled into contigs. Only seven ros contigs (RNAs over- or underrepresented in scrapie) emerged, representing <4 kb from the transcriptome. All contained highly stable regions of secondary structure. The most abundant scrapie-only ros sequence was homologous to a repetitive transposable element (LINE; long interspersed nuclear element). Other ros sequences identified cellular RNA 7SL, clathrin heavy chain, visinin-like protein-1, and three highly specific subregions of ribosomal RNA (ros1-3). The ribosomal ros sequences accurately corresponded to LINE; retrotransposon insertion sites in ribosomal DNA (p<0.01). These differential motifs implicate specific host RNAs in the pathoetiology of the TSEs.
Collapse
|
8
|
Kisielow P, Cebrat M. Identification of Genes Involved in Positive Selection of CD4+8+Thymocytes: Expanding the Inventory. Immunol Invest 2009; 36:353-69. [PMID: 17691019 DOI: 10.1080/08820130701199214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Positive selection of cortical CD4+8+ thymocytes represents crucial and mysterious process in T cell development whereby short-lived precursors are rescued from programmed cell death and induced to differentiate towards long-lived CD4 and CD8 T cells. One reason that this process is not fully understood is that the inventory of genes changing their expression in positively selected CD4+8+ thymocytes is not yet complete. In this work Affymetrics GeneChip cDNA microarrays and cDNA-Representational Difference Analysis were used to search for unknown and known genes that were not identified before as being involved in positive selection. Comparison of transcriptosome of nonstimulated with transcriptosome of PMA/ionomycin stimulated thymoma cell line resembling CD4+8+ thymocytes and subtraction of cDNA of extrathymic tissues from cDNA of purified CD4+8+ thymocytes resulted in identification of 36 genes, which have not been previously reported to change their expression during positive selection. One of them represents a novel, third evolutionarily conserved gene within RAG locus.
Collapse
Affiliation(s)
- P Kisielow
- Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| | | |
Collapse
|
9
|
Miura F, Kawaguchi N, Yoshida M, Uematsu C, Kito K, Sakaki Y, Ito T. Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs. BMC Genomics 2008; 9:574. [PMID: 19040753 PMCID: PMC2612024 DOI: 10.1186/1471-2164-9-574] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background An ideal format to describe transcriptome would be its composition measured on the scale of absolute numbers of individual mRNAs per cell. It would help not only to precisely grasp the structure of the transcriptome but also to accelerate data exchange and integration. Results We conceived an idea of competitive PCR between genomic DNA and cDNA. Since the former contains every gene exactly at the same copy number, it can serve as an ideal normalization standard for the latter to obtain stoichiometric composition data of the transcriptome. This data can then be easily converted to absolute quantification data provided with an appropriate calibration. To implement this idea, we improved adaptor-tagged competitive PCR, originally developed for relative quantification of the 3'-end restriction fragment of each cDNA, such that it can be applied to any restriction fragment. We demonstrated that this "generalized" adaptor-tagged competitive PCR (GATC-PCR) can be performed between genomic DNA and cDNA to accurately measure absolute expression level of each mRNA in the budding yeast Saccharomyces cerevisiae. Furthermore, we constructed a large-scale GATC-PCR system to measure absolute expression levels of 5,038 genes to show that the yeast contains more than 30,000 copies of mRNA molecules per cell. Conclusion We developed a GATC-PCR method to accurately measure absolute expression levels of mRNAs by means of competitive amplification of genomic and cDNA copies of each gene. A large-scale application of GATC-PCR to the budding yeast transcriptome revealed that it is twice or more as large as previously estimated. This method is flexibly applicable to both targeted and genome-wide analyses of absolute expression levels of mRNAs.
Collapse
Affiliation(s)
- Fumihito Miura
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8561, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Lian Z, Karpikov A, Lian J, Mahajan MC, Hartman S, Gerstein M, Snyder M, Weissman SM. A genomic analysis of RNA polymerase II modification and chromatin architecture related to 3' end RNA polyadenylation. Genome Res 2008; 18:1224-37. [PMID: 18487515 DOI: 10.1101/gr.075804.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genomic analyses have been applied extensively to analyze the process of transcription initiation in mammalian cells, but less to transcript 3' end formation and transcription termination. We used a novel approach to prepare 3' end fragments from polyadenylated RNA, and mapped the position of the poly(A) addition site using oligonucleotide arrays tiling 1% of the human genome. This approach revealed more 3' ends than had been annotated. The distribution of these ends relative to RNA polymerase II (PolII) and di- and trimethylated lysine 4 and lysine 36 of histone H3 was compared. A substantial fraction of unannotated 3' ends of RNA are intronic and antisense to the embedding gene. Poly(A) ends of annotated messages lie on average 2 kb upstream of the end of PolII binding (termination). Near the termination sites, and in some internal sites, unphosphorylated and C-terminal domain (CTD) serine 2 phosphorylated PolII (POLR2A) accumulate, suggesting pausing of the polymerase and perhaps dephosphorylation prior to release. Lysine 36 trimethylation occurs across transcribed genes, sometimes alternating with stretches of DNA in which lysine 36 dimethylation is more prominent. Lysine 36 methylation decreases at or near the site of polyadenylation, sometimes disappearing before disappearance of phosphorylated RNA PolII or release of PolII from DNA. Our results suggest that transcription termination loss of histone 3 lysine 36 methylation and later release of RNA polymerase. The latter is often associated with polymerase pausing. Overall, our study reveals extensive sites of poly(A) addition and provides insights into the events that occur during 3' end formation.
Collapse
Affiliation(s)
- Zheng Lian
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liang P, Pardee AB. Differential display of mRNA by PCR. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2008; Chapter 25:Unit 25B.3. [PMID: 18265216 DOI: 10.1002/0471142727.mb25b03s56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Formerly UNIT , this unit describes how differential display techniques allow the identification and subsequent isolation of differentially expressed genes that requires no knowledge of sequences, but rather PCR amplification using arbitrary oligonucleotides and high resolution polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- P Liang
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | | |
Collapse
|
12
|
Yang S, Zhao L, Yang J, Chai D, Zhang M, Zhang J, Ji X, Zhu T. deltaEF1 represses BMP-2-induced differentiation of C2C12 myoblasts into the osteoblast lineage. J Biomed Sci 2007; 14:663-79. [PMID: 17479358 DOI: 10.1007/s11373-007-9155-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/21/2007] [Indexed: 10/23/2022] Open
Abstract
Osteoblasts, derived from pluripotent mesenchymal precursor cells, acquire their differentiated phenotypes under the control of a series of regulatory factors, the best known of which is BMP-2. Our recent preliminary studies suggest that expression of deltaEF1, a member of the zinc finger-homeodomain transcription factor family, is significantly down-regulated as human mesenchymal stem cells (MSCs) are subjected to osteoblastic differentiation in the presence of BMP-2. Here we demonstrate that overexpression of deltaEF1 in murine pre-myoblast C2C12 cells resulted in a decrease in the mRNA levels of early osteoblast marker genes induced by BMP-2 including osterix and collagen type I. This inhibitory effect was further confirmed by decreased alkaline phosphatase (ALP) activities. Neither of the zinc finger clusters of deltaEF1 is necessary for its repressive effect on BMP-2-induced osteoblastic differentiation of C2C12 cells. Immunoprecipitation results indicated that deltaEF1 did not physically associate with Smads proteins, suggesting that the inhibitory effect of deltaEF1 may be Smad-independent. deltaEF1 overexpression in C2C12 cells resulted in down-regulation of activating protein-1 (AP-1) activities promoted by BMP-2. Moreover, deltaEF1 exhibited transrepression on murine osteocalcin gene which effect is partially mediated through diminishing of AP-1 signaling. These results suggest that deltaEF1 acts as a potent inhibitor of BMP-2-induced osteogenesis in vitro, in part, by differentially regulating the AP-1 signaling pathway.
Collapse
Affiliation(s)
- Shuang Yang
- Medical College of Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jeung JU, Cho SK, Shin JS. A partial-complementary adapter for an improved and simplified ligation-mediated suppression PCR technique. ACTA ACUST UNITED AC 2005; 64:110-20. [PMID: 16005075 DOI: 10.1016/j.jbbm.2005.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/18/2005] [Accepted: 06/06/2005] [Indexed: 11/20/2022]
Abstract
Ligation-mediated suppression PCR (LMS-PCR) is a powerful tool for walking in unknown genomic DNA regions from known adjacent sequences. This approach has made it feasible to obtain promoter sequences and to enable researchers to identify full-length gene sequences or isoforms of multigene families. However, the advantages of LMS-PCR can be obviated by the presence of incomplete base modifications on the suppression adapters. We propose here that a 'partial-complementary adapter' is a more reliable suppression adapter, demanding only 5'-end phosphorylation. We also describe a simplified procedure for the easier preparation of PCR templates with very small quantities of DNA and a fast and direct characterization of the suppression-PCR products. A set of practical guidelines is proposed for pre-checking the efficiency of the adapter modification using two model systems: bacteriophage lambda (lambda) and Arabidopsis.
Collapse
Affiliation(s)
- Ji-Ung Jeung
- IRRI-Korea Office, NICS, RDA, Suwon 441-854, Korea
| | | | | |
Collapse
|
14
|
Kim S, Park S, Choung S, Park HO, Choi YC. DARFA: a novel technique for studying differential gene expression and bacterial comparative genomics. Biochem Biophys Res Commun 2005; 336:168-74. [PMID: 16125676 DOI: 10.1016/j.bbrc.2005.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
We have developed a powerful method, named differential analysis of restriction fragments amplification (DARFA), which enables researchers to perform comprehensive transcriptome analysis as well as bacterial DNA fingerprinting. The key feature of this novel technique lies within the usage of a type IIS enzyme, Hpy188III, which cleaves cDNA or genomic DNA at a TC/NNGA recognition sequence. Cleavage at this particular site results in the production of a pool of restriction fragments which can be divided into 120 subsets based on the 2-nt 5'-overhang sequence. Each subset of restriction fragments is then selectively amplified by PCR after ligation with a pair of hairpin adaptors containing 2-nt overhangs which are complementary to those in the subset of fragments that are to be analyzed. The results obtained from the analysis of strain-specific and tissue-specific differences using DARFA and further confirmation by DNA sequencing and Northern analysis have demonstrated that the DARFA technique provides a novel tool for expression profiling, as well as bacterial DNA fingerprinting.
Collapse
Affiliation(s)
- Seonhoe Kim
- Gene2Drug Research Center, Bioneer Corporation, 49-3, Munpyeong-dong, Daedeok-gu, Daejeon 306-220, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Liang M, Cowley AW, Hessner MJ, Lazar J, Basile DP, Pietrusz JL. Transcriptome analysis and kidney research: Toward systems biology. Kidney Int 2005; 67:2114-22. [PMID: 15882254 DOI: 10.1111/j.1523-1755.2005.00315.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An enormous amount of data has been generated in kidney research using transcriptome analysis techniques. In this review article, we first describe briefly the principles and major characteristics of several of these techniques. We then summarize the progress in kidney research that has been made by using transcriptome analysis, emphasizing the experience gained and the lessons learned. Several technical issues regarding DNA microarray are highlighted because of the rapidly increased use of this technology. It appears clear from this brief survey that transcriptome analysis is an effective and important tool for question-driven exploratory science. To further enhance the power of this and other high throughput, as well as conventional approaches, in future studies of the kidney, we propose a multidimensional systems biology paradigm that integrates investigation at multiple levels of biologic regulation toward the goal of achieving a global understanding of physiology and pathophysiology.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Lorkowski S, Cullen P. High-throughput analysis of mRNA expression: microarrays are not the whole story. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.3.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Coyne KJ, Burkholder JM, Feldman RA, Hutchins DA, Cary SC. Modified serial analysis of gene expression method for construction of gene expression profiles of microbial eukaryotic species. Appl Environ Microbiol 2004; 70:5298-304. [PMID: 15345413 PMCID: PMC520878 DOI: 10.1128/aem.70.9.5298-5304.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 05/13/2004] [Indexed: 11/20/2022] Open
Abstract
Serial analysis of gene expression (SAGE) is a powerful approach for the identification of differentially expressed genes, providing comprehensive and quantitative gene expression profiles in the form of short tag sequences. Each tag represents a unique transcript, and the relative frequencies of tags in the SAGE library are equal to the relative proportions of the transcripts they represent. One of the major obstacles in the preparation of SAGE libraries from microorganisms is the requirement for large amounts of starting material (i.e., mRNA). Here, we present a novel approach for the construction of SAGE libraries from small quantities of total RNA by using Y linkers to selectively amplify 3' cDNA fragments. To validate this method, we constructed comprehensive gene expression profiles of the toxic dinoflagellate Pfiesteria shumwayae. SAGE libraries were constructed from an actively toxic fish-fed culture of P. shumwayae and from a recently toxic alga-fed culture. P. shumwayae-specific gene transcripts were identified by comparison of tag sequences in the two libraries. Representative tags with frequencies ranging from 0.026 to 3.3% of the total number of tags in the libraries were chosen for further analysis. Expression of each transcript was confirmed in separate control cultures of toxic P. shumwayae. The modified SAGE method described here produces gene expression profiles that appear to be both comprehensive and quantitative, and it is directly applicable to the study of gene expression in other environmentally relevant microbial species.
Collapse
Affiliation(s)
- Kathryn J Coyne
- Graduate College of Marine Studies, University of Delaware, 700 Pilottown Rd., Lewes, DE 19958, USA
| | | | | | | | | |
Collapse
|
18
|
Di Bartolo V, Acuto O. Large-scale screening for genes involved in T-cell signaling: do we know all the players now? Trends Immunol 2004; 25:399-402. [PMID: 15275636 DOI: 10.1016/j.it.2004.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Vincenzo Di Bartolo
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, 25 Rue du Docteur Roux, F-75724 Paris Cedex 15, France.
| | | |
Collapse
|
19
|
Schneider A, Fischer A, Weber D, von Ahsen O, Scheek S, Krüger C, Rossner M, Klaussner B, Faucheron N, Kammandel B, Goetz B, Herrmann O, Bach A, Schwaninger M. Restriction-mediated differential display (RMDD) identifies pip92 as a pro-apoptotic gene product induced during focal cerebral ischemia. J Cereb Blood Flow Metab 2004; 24:224-36. [PMID: 14747749 DOI: 10.1097/01.wcb.0000104960.26014.7a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies of gene expression changes after cerebral ischemia can provide novel insight into ischemic pathophysiology. Here we describe application of restriction-mediated differential display to screening for differentially expressed genes after focal cerebral ischemia. This method combines the nonredundant generation of biotin-labeled fragment sets with the excellent resolution of direct blotting electrophoresis, reliable fragment recovery, and a novel clone selection strategy. Using the filament model in mouse with 90 minutes MCA occlusion followed by 2, 6, and 20 hours reperfusion, we have compared gene expression in sham-operated animals to both the ipsi- and contralateral forebrain hemisphere of ischemic mice. Our screening method has resulted in the identification of 70 genes differentially regulated after transient middle cerebral artery occlusion (MCAO), several of which represent unknown clones. We have identified many of the previously published regulated genes, lending high credibility to our method. Surprisingly, we detected a high degree of correspondent regulation of genes in the nonischemic hemisphere. A high percentage of genes coding for proteins in the respiratory chain was found to be up-regulated after ischemia, potentially representing a new mechanism involved in counteracting energy failure or radical generation in cerebral ischemia. One particularly interesting gene, whose upregulation by ischemia has not been described before, is pip92; this gene shows a rapid and long-lasting induction after cerebral ischemia. Here we demonstrate that pip92 induces cell death in primary neurons and displays several hallmarks of pro-apoptotic activity upon overexpression, supporting the notion that we have identified a novel pathophysiological player in cerebral ischemia. In summary, restriction-mediated differential display has proven its suitability for screening complex samples such as brain to reliably identify regulated genes, which can uncover novel pathophysiological mechanisms.
Collapse
Affiliation(s)
- Armin Schneider
- Department of Molecular Neurology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lambert JF, Liu M, Colvin GA, Dooner M, McAuliffe CI, Becker PS, Forget BG, Weissman SM, Quesenberry PJ. Marrow stem cells shift gene expression and engraftment phenotype with cell cycle transit. J Exp Med 2003; 197:1563-72. [PMID: 12782718 PMCID: PMC2193900 DOI: 10.1084/jem.20030031] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We studied the genetic and engraftment phenotype of highly purified murine hematopoietic stem cells (lineage negative, rhodamine-low, Hoechst-low) through cytokine-stimulated cell cycle. Cells were cultured in interleukin (IL)-3, IL-6, IL-11, and steel factor for 0 to 48 h and tested for engraftment capacity in a lethally irradiated murine competitive transplant model. Engraftment showed major fluctuations with nadirs at 36 and 48 h of culture and recovery during the next G1. Gene expression of quiescent (0 h) or cycling (48 h) stem cells was compared with lineage positive cells by 3' end PCR differential display analysis. Individual PCR bands were quantified using a 0 to 9 scale and results were visually compared using color-coded matrices. We defined a set of 637 transcripts expressed in stem cells and not expressed in lineage positive cells. Gene expression analyzed at 0 and 48 h showed a major shift from "stem cell genes" being highly expressed at 0 h and turned off at 48 h, while "cell division" genes were turned on at 48 h. These observations suggest stem cell gene expression shifts through cell cycle in relation to cell cycle related alterations of stem cell phenotype. The engraftment defect is related to a major phenotypic change of the stem cell.
Collapse
Affiliation(s)
- Jean-Francois Lambert
- Department of Research, Roger Williams Medical Center, 825 Chalkstone Ave., Providence, RI 02908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wong LY, Hafeman A, Boyd VL, Bodeau J, Lazaruk KD, Liew SN, Casey P, Belonogoff V, Bit S, Sumner C, Bredo A, Ho N, Chu E, Olson S, Rabkin S, Maltchenko S, Spier G, Gilbert D, Baumhueter S. Assessing gene expression variation in normal human tissues using GeneTag, a novel, global, sensitive profiling method. J Biotechnol 2003; 101:199-217. [PMID: 12615390 DOI: 10.1016/s0168-1656(02)00301-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GeneTag is a novel expression profiling method that allows the visualization, quantification and identification of expressed genes-whether known or novel-in any species, tissue or cell type, independent of knowledge of the underlying sequence. Here we describe the application of this method to determine variation of gene expression in individual human liver samples and the identification of tissue-specific genes by comparing expression patterns across several human organs. Expression data are stored in a database for future reference and data analysis relies on proprietary software, which allows complex comparisons to be performed. Differentially expressed genes are quickly identified through a link to a sequence database. The results from our study underscore the importance of knowledge of individual variation of gene expression for the design and interpretation of transcript profiling experiments in the context of any biological question.
Collapse
Affiliation(s)
- Lily Y Wong
- Applied Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Hematopoiesis has been considered hierarchical in nature, but recent data suggest that the system is not hierarchical and is, in fact, quite functionally plastic. Existing data indicate that engraftment and progenitor phenotypes vary inversely with cell cycle transit and that gene expression also varies widely. These observations suggest that there is no progenitor/stem cell hierarchy, but rather a reversible continuum. This may, in turn, be dependent on shifting chromatin and gene expression with cell cycle transit. If the phenotype of these primitive marrow cells changes from engraftable stem cell to progenitor and back to engraftable stem cell with cycle transit, then this suggests that the identity of the engraftable stem cell may be partially masked in nonsynchronized marrow cell populations. A general model indicates a marrow cell that can continually change its surface receptor expression and thus responds to external stimuli differently at different points in the cell cycle.
Collapse
Affiliation(s)
- Peter J Quesenberry
- Center for Stem Cell Biology, Roger Williams Medical Center, Providence, RI 02908-4735, USA.
| | | | | |
Collapse
|
23
|
Scheel J, Von Brevern MC, Hörlein A, Fischer A, Schneider A, Bach A. Yellow pages to the transcriptome. Pharmacogenomics 2002; 3:791-807. [PMID: 12437481 DOI: 10.1517/14622416.3.6.791] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Transcriptomics has become an important tool for the large-scale analysis of biological processes. This review aims to provide sufficient criteria to make an appropriate choice among the variety of 'closed' systems, represented by DNA microarrays, and 'open' systems like fragment display, tag sequencing and subtractive hybridization, depending on the biological system under investigation. The most important technologies currently available are presented, their strengths and weaknesses are discussed and companies active in the field are listed. The potential of transcriptomics in the pharmaceutical research and development process is highlighted by applications in oncology, research on neurological diseases, and predictive toxicology. Finally, a prognosis for future developments of the technologies is given.
Collapse
Affiliation(s)
- Julia Scheel
- Axaron Bioscience AG, Im Neuenheimer Feld 515, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Ahmed FE. Molecular techniques for studying gene expression in carcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2002; 20:77-116. [PMID: 12515671 DOI: 10.1081/gnc-120016201] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many genes and signaling pathways controlling cell proliferation, death, differentiation, and genomic integrity are involved in cancer development. Various methods are available for detection and quantification of messenger RNA. Older methods such as Northern blots, nuclease protection, plaque hybridization, and slot blots suffer from being inherently serial, measure a single mRNA at a time, or being difficult to automate. New techniques for analysis of gene expression include: (a) comprehensive open systems such as serial analysis of gene expression (SAGE), differential display (DD) analysis, RNA arbitrarily primer (RAP)-PCR, restriction endonucleolytic analysis of differentially expressed sequences (READS), amplified restriction fragment-length polymorphism (AFLP), total gene expression analysis (TOGA), and use of internal standard competitive template primers (CTs) in a quantitative multiplex RT-PCR method [StaRT-(PCR)], and (b) focused closed systems such as: high density cDNA filter hybridization (HDFCA) analysis, suppression subtractive hybridization (SSH), differential screening (DS), several forms of high-density cDNA arrays, or oligonucleotide chips, and tissue microarrays. Sometimes, a combination of these systems is used to enhance the sensitivity and specificity of the assays. While closed systems are excellent for the initial screening of large number of sequences, the value of the information generated is generally limited to an often arbitrarily chosen known sequence. On the other hand, only the open system platform has the potential to evaluate the expression patterns of tens of thousands of genes that have not yet been cloned or partially sequenced in a quantitative manner. A cost analysis of the most commonly used expression technologies is provided. A method for purifying tumors from surrounding stroma and normal tissue employing laser microdissection, and subsequent RNA isolation/amplification from few cells employing sensitive kits are also discussed.
Collapse
Affiliation(s)
- Farid E Ahmed
- Department of Radiation Oncology, Leo W Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC 27858.
| |
Collapse
|
25
|
Lappin TR, Mullan RN, Stewart JP, Morgan NA, Thompson A, Maxwell AP. AINT/ERIC/TACC: an expanding family of proteins with C-terminal coiled coil domains. Leuk Lymphoma 2002; 43:1455-9. [PMID: 12389629 DOI: 10.1080/1042819022386644] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.
Collapse
Affiliation(s)
- Terence R Lappin
- Haematology Group, Cancer Research Centre, Queen's University Belfast, Belfast City Hospital, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
New drugs are screened for adverse reactions using a laborious, costly process and still some promising therapeutics are withdrawn from the marketplace because of unforeseen human toxicity. Novel higher throughput methods in toxicology need to be developed. These new approaches should provide more insight into potential human toxicity than current methods. Toxicogenomics, the examination of changes in gene expression following exposure to a toxicant, offers the potential to identify a human toxicant earlier in drug development and to detect human-specific toxicants that cause no adverse reaction in rats.
Collapse
|
27
|
Khabar KSA, Dhalla M, Bakheet T, Sy C, al-Haj L. An integrated computational and laboratory approach for selective amplification of mRNAs containing the adenylate uridylate-rich element consensus sequence. Genome Res 2002; 12:985-95. [PMID: 12045152 PMCID: PMC1383736 DOI: 10.1101/gr.204902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Messenger RNAs that have the stability determinants, adenylate uridylate-rich elements (AREs), in their 3' untranslated region (UTR) code for key products that regulate early and transient biological responses. We used a computational laboratory approach for amplification of large, including full-length, protein-coding regions for ARE genes. Statistical analysis of the initiation regions in the 5' UTR of ARE-mRNAs was performed. Accordingly, several 5' primers and a single universal 3' primer that targeted the initiation consensuses and ARE regions, respectively, were designed. Using optimized conditions, the primers were able to enrich and amplify large protein-coding regions for the ARE gene family. The selective amplification of ARE cDNAs was verified using specific polymerase chain reactions (PCRs) to known ARE mRNA molecules and monitoring the abundance of the non-ARE beta-actin signal. A mini-library from the amplified ARE products was constructed for further confirmation of ARE selection. Distinct ARE amplified cDNA pools were selectively generated by distinct 5' primers. The biological utility of the method was shown with differential display. The up-regulation of several ARE-mRNAs, including the full-length coding region of the small inducible cytokine A4 (SCYA4) gene, was shown in endotoxin-stimulated monocytic cells. The integrated computational and laboratory approach should lead to enhanced capability for discovery and expression analysis of early and transient response genes.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Department of Biological and Medical Research, Epidemiology, and Scientific Computing (Bioinformatics Section), King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia.
| | | | | | | | | |
Collapse
|
28
|
Orr MS, Scherf U. Large-scale gene expression analysis in molecular target discovery. Leukemia 2002; 16:473-7. [PMID: 11960324 DOI: 10.1038/sj.leu.2402413] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Accepted: 11/30/2001] [Indexed: 01/21/2023]
Abstract
The evolution of simple arrays consisting of a few genes to ones composed of thousands of genes and/or ESTs has allowed investigators unprecedented views of the molecular mechanisms within cells. Due to the enormous quantities of information derived from microarray analysis, new types of problems have surfaced, such as where to store all of the data. The ability to solve database or statistical problems has required the bench biologist to collaborate with database developers, software designers and statisticians to determine solutions for storage, analysis and interpretation of microarray data. The collaborative effort between these extremely diverse disciplines has led to the development of creative database query and gene expression analysis tools, producing significant reductions in the time required by researchers to filter through the datasets and discover the key processes perturbed by the diseases of interest. Both unsupervised and supervised analysis methods have been applied to gene expression data leading to the discovery of novel therapeutic targets and diagnostic markers. Furthermore, tumor classification based on their respective molecular fingerprints has led to the classification of cancer subtypes and the discovery of novel molecular taxonomies that may eventually lead to improved patient stratification and superior therapeutic strategies.
Collapse
Affiliation(s)
- M S Orr
- Gene Logic Inc., Gaithersburg, MD 20878, USA
| | | |
Collapse
|
29
|
Hof P, Ortmeier C, Pape K, Reitmaier B, Regenbogen J, Goppelt A, Halle JP. Digital analysis of cDNA abundance; expression profiling by means of restriction fragment fingerprinting. BMC Genomics 2002; 3:7. [PMID: 11882253 PMCID: PMC99051 DOI: 10.1186/1471-2164-3-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Accepted: 03/06/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene expression profiling among different tissues is of paramount interest in various areas of biomedical research. We have developed a novel method (DADA, Digital Analysis of cDNA Abundance), that calculates the relative abundance of genes in cDNA libraries. RESULTS DADA is based upon multiple restriction fragment length analysis of pools of clones from cDNA libraries and the identification of gene-specific restriction fingerprints in the resulting complex fragment mixtures. A specific cDNA cloning vector had to be constructed that governed missing or incomplete cDNA inserts which would generate misleading fingerprints in standard cloning vectors. Double stranded cDNA was synthesized using an anchored oligo dT primer, uni-directionally inserted into the DADA vector and cDNA libraries were constructed in E. coli. The cDNA fingerprints were generated in a PCR-free procedure that allows for parallel plasmid preparation, labeling, restriction digest and fragment separation of pools of 96 colonies each. This multiplexing significantly enhanced the throughput in comparison to sequence-based methods (e.g. EST approach). The data of the fragment mixtures were integrated into a relational database system and queried with fingerprints experimentally produced by analyzing single colonies. Due to limited predictability of the position of DNA fragments on the polyacrylamid gels of a given size, fingerprints derived solely from cDNA sequences were not accurate enough to be used for the analysis. We applied DADA to the analysis of gene expression profiles in a model for impaired wound healing (treatment of mice with dexamethasone). CONCLUSIONS The method proved to be capable of identifying pharmacologically relevant target genes that had not been identified by other standard methods routinely used to find differentially expressed genes. Due to the above mentioned limited predictability of the fingerprints, the method was yet tested only with a limited number of experimentally determined fingerprints and was able to detect differences in gene expression of transcripts representing 0.05% of the total mRNA population (e.g. medium abundant gene transcripts).
Collapse
Affiliation(s)
- Peter Hof
- Switch Biotech AG, Fraunhoferstr. 10, 82152 Martinsried, Germany
| | - Claudia Ortmeier
- Switch Biotech AG, Fraunhoferstr. 10, 82152 Martinsried, Germany
| | - Kirstin Pape
- Switch Biotech AG, Fraunhoferstr. 10, 82152 Martinsried, Germany
| | - Birgit Reitmaier
- Switch Biotech AG, Fraunhoferstr. 10, 82152 Martinsried, Germany
| | | | - Andreas Goppelt
- Switch Biotech AG, Fraunhoferstr. 10, 82152 Martinsried, Germany
| | | |
Collapse
|
30
|
Maelicke A, Lübbert H. DEPD, a high resolution gene expression profiling technique capable of identifying new drug targets in the central nervous system. J Recept Signal Transduct Res 2002; 22:283-95. [PMID: 12503622 DOI: 10.1081/rrs-120014602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Digital expression pattern display (DEPD) is an open, automated, PCR-based system of gene expression profiling that is capable of resolving as many as 100,000 transcripts from a single brain tissue cDNA sample. It has a detection sensitivity of better than 1 in 750,000 and it can reliably detect differences in RNA expression levels of less than two-fold. Digital expression pattern display presently is the most sensitive and therefore the only expression profiling method available that is capable of monitoring, in a semi-quantitative fashion, the expression of even the rarest of transcripts found in human brain tissue. Biofrontera applies this proprietary technique, together with state-of-the-art bioinformatics, for the purposes of elucidating pathology pathways of major brain diseases, of analysing the target profiles of drugs presently applied or in development, and of identifying novel targets for drug action.
Collapse
Affiliation(s)
- Alfred Maelicke
- Biofrontera Pharmaceuticals AG, Hemmelrather Weg 201, D-51377 Leverkusen, Germany.
| | | |
Collapse
|
31
|
Vos P, Stanssens P. AFLP-based transcript profiling. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2002; Chapter 25:Unit 25B.5. [PMID: 18265312 DOI: 10.1002/0471142727.mb25b05s57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This unit presents an alternative to differential display that allows the quantification of transcripts, based on AFLP-fingerprinting of double-stranded cDNA. The protocol described includes the following steps: the isolation of poly(A)+ RNA from total RNA, the synthesis of double-stranded cDNA, the preparation of template fragments by digestion of the cDNA library with a combination of two restriction enzymes and the ligation of adaptors to the fragment ends, the selective amplification of specific subsets of fragments, and the electrophoretic analysis of these amplification products on standard denaturing polyacrylamide gels. The transcript profiles obtained by this technique are a reliable and efficient tool to identify differentially expressed mRNAs. This unit presents an alternative to differential display that allows the quantification of transcripts, based on AFLP-finger his unit presents an alternative to differential display that allows the quantification of transcripts, based on AFLP-finger.
Collapse
|
32
|
Boorman GA, Anderson SP, Casey WM, Brown RH, Crosby LM, Gottschalk K, Easton M, Ni H, Morgan KT. Toxicogenomics, drug discovery, and the pathologist. Toxicol Pathol 2002; 30:15-27. [PMID: 11890469 DOI: 10.1080/01926230252824671] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The field of toxicogenomics, which currently focuses on the application of large-scale differential gene expression (DGE) data to toxicology, is starting to influence drug discovery and development in the pharmaceutical industry. Toxicological pathologists, who play key roles in the development of therapeutic agents, have much to contribute to DGE studies, especially in the experimental design and interpretation phases. The intelligent application of DGE to drug discovery can reveal the potential for both desired (therapeutic) and undesired (toxic) responses. The pathologist's understanding of anatomic, physiologic, biochemical, immune, and other underlying factors that drive mechanisms of tissue responses to noxious agents turns a bewildering array of gene expression data into focused research programs. The latter process is critical for the successful application of DGE to toxicology. Pattern recognition is a useful first step, but mechanistically based DGE interpretation is where the long-term future of these new technologies lies. Pathologists trained to carry out such interpretations will become important members of the research teams needed to successfully apply these technologies to drug discovery and safety assessment. As a pathologist using DGE, you will need to learn to read DGE data in the same way you learned to read glass slides, patiently and with a desire to learn and, later, to teach. In return, you will gain a greater depth of understanding of cell and tissue function, both in health and disease.
Collapse
Affiliation(s)
- Gary A Boorman
- Laboratory for Experimental Pathology, Environmental Toxicology Program, NIEHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Donson J, Fang Y, Espiritu-Santo G, Xing W, Salazar A, Miyamoto S, Armendarez V, Volkmuth W. Comprehensive gene expression analysis by transcript profiling. PLANT MOLECULAR BIOLOGY 2002; 48:75-97. [PMID: 11860215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
After the completion of the genomic sequence of Arabidopsis thaliana, it is now a priority to identify all the genes, their patterns of expression and functions. Transcript profiling is playing a substantial role in annotating and determining gene functions, having advanced from one-gene-at-a-time methods to technologies that provide a holistic view of the genome. In this review, comprehensive transcript profiling methodologies are described, including two that are used extensively by the authors, cDNA-AFLP and cDNA microarraying. Both these technologies illustrate the requirement to integrate molecular biology, automation, LIMS and data analysis. With so much uncharted territory in the Arabidopsis genome, and the desire to tackle complex biological traits, such integrated systems will provide a rich source of data for the correlative, functional annotation of genes.
Collapse
|
34
|
Zvara A, Hackler L, Nagy ZB, Micsik T, Puskás LG. New molecular methods for classification, diagnosis and therapy prediction of hematological malignancies. Pathol Oncol Res 2002; 8:231-40. [PMID: 12579208 DOI: 10.1007/bf03036737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Accepted: 12/15/2002] [Indexed: 10/20/2022]
Abstract
Normal functions of the cell are based on the precise regulation of various genes. If this strict regulation and the hierarchy of genes becomes upset due to flaws in this system, the result will be cellular dysfunction which eventually may lead to carcinogenic transformation. Two basic challenges of the classification of cancers are the discovery of new molecular markers characteristic to defined disease groups and the classification of already diagnosed or new cases into existing groups. This precise classification may open the door to tailored treatment or project the expected outcome of the disease. Today there is unlimited access available to the databases containing sequences and localization of the genes within the confines of Human Genome project. It provides significant help for the discovery of chromosome abnormalities and systematic analysis of gene expression patterns. This is important not only to understand normal functions of the cells, but it also contributes to the identification of new genes that are characteristic to given disease groups as markers and that are potential drug targets. Until the second half of the twentieth century the study of the function and regulation of genes was based on step-by-step investigation of individual genes. Regarding the fact, that the genomes of an increasing number of organisms have become known in whole or in part, numerous new techniques have been developed that facilitated the systematic analysis of gene functions. The aim of this study is to summarize the new, molecular based possibilities for classification, diagnosis and prognosis of hematological malignancies, as well as to summarize the main results of these areas.
Collapse
Affiliation(s)
- Agnes Zvara
- Biological Research Center, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | | | | | | | | |
Collapse
|
35
|
Fischer A. Restriction-mediated differential display (RMDD). CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2001; Chapter 25:Unit 25B.4. [PMID: 18265217 DOI: 10.1002/0471142727.mb25b04s56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A variation on differential display, restriction-mediated differential display (RMDD) presents an alternative approach to the fragment display technologies. It touts high sensitivity (detection of mRNAs at a dilution of 1:100,000 and of regulation factors lower than two-fold), a strategy for avoiding false positives, nonradioactive detection, and universal applicability to any polyadenylated RNA.
Collapse
Affiliation(s)
- A Fischer
- F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
36
|
Lievens S, Goormachtig S, Holsters M. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res 2001; 29:3459-68. [PMID: 11522814 PMCID: PMC55879 DOI: 10.1093/nar/29.17.3459] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2001] [Revised: 07/11/2001] [Accepted: 07/11/2001] [Indexed: 11/13/2022] Open
Abstract
Screening for differentially expressed genes is a straightforward approach to study the molecular basis of a biological system. In the last 10 years, differential screening technology has evolved rapidly and currently high-throughput tools for genome-wide transcript profiling, such as expressed sequence tags and microarray analysis, are becoming widely available. Here, an overview of this (r)evolution is given with emphasis on the differential display method, which for many years has been the preferred technique of scientists in diverse fields of research. Differential display has also been the method of choice for the identification of genes involved in the symbiotic interaction between Azorhizobium caulinodans and Sesbania rostrata. The advantages with respect to tissue specificity of this particular model system for legume nodulation and the results of a screening for early nodulation-related genes have been considered in the context of transcriptome analyses in other rhizobium-legume interactions.
Collapse
Affiliation(s)
- S Lievens
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
37
|
Uematsu C, Nishida J, Okano K, Miura F, Ito T, Sakaki Y, Kambara H. Multiplex polymerase chain reaction (PCR) with color-tagged module-shuffling primers for comparing gene expression levels in various cells. Nucleic Acids Res 2001; 29:E84. [PMID: 11504892 PMCID: PMC55868 DOI: 10.1093/nar/29.16.e84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A method based on the multiplex polymerase chain reaction (PCR) and gel electrophoresis for the comparative analysis of gene expression levels was developed. Using the method many cDNA fragments from different sources can be compared simultaneously. Competitive PCR amplification of expressed genes from different sources was performed by using 'module-shuffling primers' (MPSs). The MPSs (labeled with different fluorophores) consist of sequence modules of 3 or 4 nt. The modules are arranged in different orders in each primer; therefore, the base sequences of the primers are different but their melting temperatures are identical. The genes expressed in different sources are ligated with tags complementary with the MPSs. Tag-ligated fragments are mixed in one tube and amplified at the same amplification efficiency by the MPSs. Amplified fragments are detected separately by multiple-color gel electrophoresis. This method can detect different amounts of each expressed gene, up to a difference in amounts of 30%, and its detection limit is 0.1 amol per assay.
Collapse
Affiliation(s)
- C Uematsu
- Central Research Laboratory, Hitachi Limited, 1-280 Higashi-Koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Lian Z, Wang L, Yamaga S, Bonds W, Beazer-Barclay Y, Kluger Y, Gerstein M, Newburger PE, Berliner N, Weissman SM. Genomic and proteomic analysis of the myeloid differentiation program. Blood 2001; 98:513-24. [PMID: 11468144 DOI: 10.1182/blood.v98.3.513] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the mature neutrophil is one of the better characterized mammalian cell types, the mechanisms of myeloid differentiation are incompletely understood at the molecular level. A mouse promyelocytic cell line (MPRO), derived from murine bone marrow cells and arrested developmentally by a dominant-negative retinoic acid receptor, morphologically differentiates to mature neutrophils in the presence of 10 microM retinoic acid. An extensive catalog was prepared of the gene expression changes that occur during morphologic maturation. To do this, 3'-end differential display, oligonucleotide chip array hybridization, and 2-dimensional protein electrophoresis were used. A large number of genes whose mRNA levels are modulated during differentiation of MPRO cells were identified. The results suggest the involvement of several transcription regulatory factors not previously implicated in this process, but they also emphasize the importance of events other than the production of new transcription factors. Furthermore, gene expression patterns were compared at the level of mRNA and protein, and the correlation between 2 parameters was studied. (Blood. 2001;98:513-524)
Collapse
Affiliation(s)
- Z Lian
- Department of Genetics, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Ave., New Haven, CT 06536-0812, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morlais I, Severson DW. Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis. Genetics 2001; 158:1125-36. [PMID: 11454761 PMCID: PMC1461701 DOI: 10.1093/genetics/158.3.1125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions.
Collapse
Affiliation(s)
- I Morlais
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
40
|
Subrahmanyam YV, Yamaga S, Prashar Y, Lee HH, Hoe NP, Kluger Y, Gerstein M, Goguen JD, Newburger PE, Weissman SM. RNA expression patterns change dramatically in human neutrophils exposed to bacteria. Blood 2001; 97:2457-68. [PMID: 11290611 DOI: 10.1182/blood.v97.8.2457] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comprehensive study of changes in messenger RNA (mRNA) levels in human neutrophils following exposure to bacteria is described. Within 2 hours there are dramatic changes in the levels of several hundred mRNAs including those for a variety of cytokines, receptors, apoptosis-regulating products, and membrane trafficking regulators. In addition, there are a large number of up-regulated mRNAs that appear to represent a common core of activation response genes that have been identified as early-response products to a variety of stimuli in a number of other cell types. The activation response of neutrophils to nonpathogenic bacteria is greatly altered by exposure to Yersinia pestis, which may be a major factor contributing to the virulence and rapid progression of plague. Several gene clusters were created based on the patterns of gene induction caused by different bacteria. These clusters were consistent with those found by a principal components analysis. A number of the changes could be interpreted in terms of neutrophil physiology and the known functions of the genes. These findings indicate that active regulation of gene expression plays a major role in the neutrophil contribution to the cellular inflammatory response. Interruption of these changes by pathogens, such as Y pestis, could be responsible, at least in part, for the failure to contain infections by highly virulent organisms.
Collapse
Affiliation(s)
- Y V Subrahmanyam
- Department of Genetics, Boyer Center for Molecular Medicine, Yale University School of Medicine, Yale University, New Haven, CT 06536-0812, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Since their development in the early 1990s, differential gene expression (DGE) technologies have been applied to a multitude of biological challenges, both for the purpose of basic biological research and as a valuable tool for the discovery and development of pharmaceuticals. In this review we survey a class of DGE technologies collectively referred to as 'open' architecture systems. These technologies are distinct from the 'closed' DGE technologies (quantitative PCR, chip technologies), in that no pre-existing biological or sequence information is necessary and they are applicable to any species. Examples of open systems include GeneCalling, SAGE, TOGA, READS, and their progenitor DGE technologies, differential display and cDNA representational difference analysis. We review these technologies and summarize a specific application using GeneCalling for novel gene discovery. Additionally, the significance of data management and experimental design in this new age of expression analysis is discussed.
Collapse
Affiliation(s)
- C D Green
- CuraGen Corporation, Departments of Gene Discovery and Engineering and Technology Development, 555 Long Wharf Drive, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
42
|
Abstract
An experimental paradigm for the study of mechanisms of resistance to aging in long-lived organisms has been developed. The paradigm assumes, in concert with accumulating empirical data, that resistance to the aging processes at the organismal level will be reflected in resistance to various stressors at the cellular level. The advantage of this paradigm is that it requires neither the long-term monitoring of individuals nor the use of exceptionally old individuals. The research approach consists of: (1) verifying that primary cell cultures from the long-lived organism exhibit better resistance to key stressors than cells from related, short-lived organisms; (2) assessing differences in gene-expression before and after stress exposure in cultured cells from the long- and short-lived species in order to identify key genes involved in the stress-resistance response; (3) transfecting putative key genes from long-lived species into cells or cell lines of defined stress-resistance and hope to observe that the stress-resistance phenotype has thereby been transferred with the gene(s); (4) generating transgenic model animals containing the gene(s) of interest and look for extended life/health span.
Collapse
Affiliation(s)
- S N Austad
- Department of Biological Sciences, University of Idaho, P.O. Box 44-3051, Moscow, ID 83844-3051, USA.
| |
Collapse
|
43
|
Abstract
In the present study we have developed the two-dimensional Gene Expression Fingerprinting (2-D GEF) procedure suitable for gene expression analysis and new gene discovery. The procedure is based on the two-dimensional gel display of 3'-terminal cDNA restriction fragments produced by one primary (first dimension) and several sequential secondary restriction digestions. Many thousands of individual sequences per cDNA sample can be visualized using this approach, which is also characterized by a high reproducibility, predictable spatial location of cDNA fragments on 2-D gels, and the potential for identifying cDNA fragments solely on the basis of their two-dimensional coordinates. Using this 2-D GEF method, we analyzed and compared the gene expression patterns of two related primitive hematopoietic cell lines, Kg-1 and Kg-1a. A total of 25 candidate differentially expressed sequences were identified, and for 75% of them the presumed expression pattern was confirmed by Northern blotting or reverse transcription-polymerase chain reaction. We also demonstrated that for 70% of bands, correct prediction of their identity could be made on the basis of two-dimensional coordinates, whereas the major part of incorrect predictions was caused by insufficient database quality.
Collapse
Affiliation(s)
- S V Shmelkov
- New York Blood Center, 310 East 67th Street, New York, New York 10021, USA
| | | | | |
Collapse
|
44
|
McKeveney PJ, Hodges VM, Mullan RN, Maxwell P, Simpson D, Thompson A, Winter PC, Lappin TR, Maxwell AP. Characterization and localization of expression of an erythropoietin-induced gene, ERIC-1/TACC3, identified in erythroid precursor cells. Br J Haematol 2001; 112:1016-24. [PMID: 11298601 DOI: 10.1046/j.1365-2141.2001.02644.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gene expression profiles during erythropoietin (Epo)-induced differentiation of erythroid progenitor cells derived from the Friend virus anaemia (FVA) and phenylhydrazine (PHZ) murine models have been examined using differential display polymerase chain reaction (PCR). Ten cDNA fragments upregulated by Epo were isolated. The ribonuclease protection assay confirmed differential expression between Epo-stimulated and Epo-deprived cells for one of these, provisionally named ERIC-1. Sequencing of the full-length cDNA predicted a protein of 558 amino acids, 17 amino acids longer than mTACC3, the third member of a novel family of proteins that contain a coiled-coil domain. The human homologue, cloned using rapid amplification of cDNA ends (RACE)-PCR, encodes a larger protein of 838 amino acids that is identical to hTACC3. In addition to erythroid precursor cells, ERIC-1/TACC3 is expressed at high levels in the testes, at moderate levels in the thymus and peripheral leucocytes, and at lower levels in the spleen and intestinal tissue. Immunohistochemical analysis using an antibody to a GST fusion product of the C-terminus of hERIC-1/TACC3 revealed that it is localized to Sertoli cells in the human testes. Confocal microscopy demonstrated hERIC-1/TACC3 protein concentrated in the perinuclear vesicles of dermal microvascular endothelial cells. Although ERIC-1/TACC3 is expressed in a wide range of tissues, its upregulation by Epo in erythroid progenitors implies that it has a role in terminal erythropoiesis.
Collapse
Affiliation(s)
- P J McKeveney
- Department of Nephrology, Belfast City Hospital, The Queen's University of Belfast, Tower Block, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Doyu M, Sawada K, Mitsuma N, Niwa J, Yoshimoto M, Fujii Y, Sobue G, Kato K. Gene expression profile in Alzheimer's brain screened by molecular indexing. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 87:1-11. [PMID: 11223154 DOI: 10.1016/s0169-328x(00)00223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene expression in the Alzheimer brain and normal brain was compared by molecular indexing, an advanced version of differential display. Using this technique, each gene was represented by a 3'-end cDNA fragment generated by class IIS restriction enzymes. The fragments were divided into 384 groups, and each group was separated by denaturing polyacrylamide gel electrophoresis. Comparison of gel patterns revealed 70 genes exhibiting marked differences in gene expression between AD and normal brain. A similarity search revealed 22 genes already reported, including those considered to be related to the pathogenesis such as G protein, G protein-related, and mitochondrial components. Detailed analysis of one from those only matched to EST sequences revealed a novel protein with leucine-zipper and SH3-binding motifs. Its expression was suppressed in a subpopulation of cortical pyramidal neurons in the AD brain, suggesting a possible relation to the pathogenesis. Thus, genome-scale analysis of gene expression of neurodegeneration is a potentially powerful approach to listing genes related to the pathogenesis.
Collapse
Affiliation(s)
- M Doyu
- Department of Neurology, Nagoya University School of Medicine, 65 Tsurumai, Syowa, 466-8550, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 2001; 29:E25. [PMID: 11160945 PMCID: PMC29632 DOI: 10.1093/nar/29.4.e25] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we present the successful application of the microarray technology platform to the analysis of DNA polymorphisms. Using the rice genome as a model, we demonstrate the potential of a high-throughput genome analysis method called Diversity Array Technology, DArT'. In the format presented here the technology is assaying for the presence (or amount) of a specific DNA fragment in a representation derived from the total genomic DNA of an organism or a population of organisms. Two different approaches are presented: the first involves contrasting two representations on a single array while the second involves contrasting a representation with a reference DNA fragment common to all elements of the array. The Diversity Panels created using this method allow genetic fingerprinting of any organism or group of organisms belonging to the gene pool from which the panel was developed. Diversity Arrays enable rapid and economical application of a highly parallel, solid-state genotyping technology to any genome or complex genomic mixtures.
Collapse
Affiliation(s)
- D Jaccoud
- Center for the Application of the Molecular Biology to International Agriculture (CAMBIA) Canberra, ACT, Australia
| | | | | | | |
Collapse
|
47
|
Abstract
Prophylactic vaccination has made an essential contribution to the improvement of human health over the 20th century. However, we still lack efficient vaccines against major human diseases such as malaria or tuberculosis. Today, the design of therapeutic vaccines referred to as 'pharmaccines' is actively investigated in order to treat diseases such as cancer. In that context, novel ways to rationalize and accelerate vaccine discovery are needed. A series of advances in the fields of molecular biology and computer science, have greatly accelerated the rate at which candidate vaccine antigens can be discovered. In this review, we will present and discuss how applied genome research may facilitate antigen discovery and the design of new prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- F X Berthet
- SmithKline Beecham Biologicals, 89 rue de l'Institut, B-1330, Rixensart, Belgium
| | | | | |
Collapse
|
48
|
Jing C, Rudland PS, Foster CS, Ke Y. Microquantity differential display: a strategy for a systematic analysis of differential gene expression with a small quantity of starting RNA. Anal Biochem 2000; 287:334-7. [PMID: 11112282 DOI: 10.1006/abio.2000.4864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- C Jing
- Molecular Pathology Laboratory, School of Biological Sciences, Liverpool, L69 3BX, United Kingdom
| | | | | | | |
Collapse
|
49
|
Ali A, Mahmud ZH, Morris JG, Sozhamannan S, Johnson JA. Sequence analysis of TnphoA insertion sites in Vibrio cholerae mutants defective in rugose polysaccharide production. Infect Immun 2000; 68:6857-64. [PMID: 11083805 PMCID: PMC97790 DOI: 10.1128/iai.68.12.6857-6864.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae can switch from a smooth to a wrinkled or rugose colony phenotype characterized by the secretion of a polysaccharide that enables the bacteria to survive harsh environmental conditions. In order to understand the genetic basis of rugosity, we isolated TnphoA-induced stable, smooth mutants of two O1 El Tor rugose strains and mapped the insertion sites in several of the mutants using a modified Y-adapter PCR technique. One of the TnphoA insertions was mapped to the first gene of the vps region that was previously shown to encode the rugose polysaccharide biosynthesis cluster. Three insertions were mapped to a previously unknown hlyA-like gene, also in the vps region. Five other insertions were found in loci unlinked to the vps region: (i) in the epsD gene (encodes the "secretin" of the extracellular protein secretion apparatus), (ii) in a hydG-like gene (encodes a sigma(54)-dependent transcriptional activator similar to HydG involved in labile hydrogenase production in Escherichia coli, (iii) in a gene encoding malic acid transport protein upstream of a gene similar to yeiE of E. coli (encodes a protein with similarities to LysR-type transcriptional activators), (iv) in dxr (encodes 1-deoxy-D-xylulose 5-phosphate reductoisomerase), and (v) in the intergenic region of lpd and odp (encode enzymes involved in the pyruvate dehydrogenase complex formation). These data suggest the involvement of a complex regulatory network in rugose polysaccharide production and highlight the general utility of the Y-adapter PCR technique described here for rapid mapping of transposon insertion sites.
Collapse
Affiliation(s)
- A Ali
- Departments of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
50
|
Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin Microbiol Rev 2000. [PMID: 10885984 DOI: 10.1128/cmr.13.3.408-427.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host-fungus interaction is characterized by changes in gene expression in both host and pathogen. Differential-display reverse transcription PCR (DDRT-PCR) is a PCR-based method that allows extensive analysis of gene expression among several cell populations. Several limitations and drawbacks to this procedure have now been addressed, including the large number of false-positive results and the difficulty in confirming differential expression. Modifications that simplify the reaction time, allow the use of minute quantities of RNA, or address unusual species- or gene-specific sequences have been reported. DDRT-PCR has been used to address biological questions in mammalian systems, including cell differentiation, cell activation, cell stress, and identification of drug targets. In microbial pathogenesis and plant pathogenesis, DDRT-PCR has allowed the identification of virulence factors, genes involved in cell death, and signaling genes. In Candida albicans, DDRT-PCR studies identified TIF-2, which may play a role in the upregulation of phospholipases, and the stress-related genes, CIP1 and CIP2. In Histoplasma capsulatum and C. albicans, genes involved in the host-pathogen interaction, including a member of the 100-kDa family in Histoplasma and an ALS and 14-3-3 gene in Candida, were potentially identified by DDRT-PCR. Although very few reports have been published in medical mycology, studies in mammalian, nonfungal microbial, and plant pathogen systems are easily applied to basic questions in fungal pathogenesis and antifungal therapeutics.
Collapse
|