1
|
Wittmann D, Sinha N, Grimm B. Thioredoxin-dependent control balances the metabolic activities of tetrapyrrole biosynthesis. Biol Chem 2020; 402:379-397. [PMID: 33068374 DOI: 10.1515/hsz-2020-0308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/13/2020] [Indexed: 11/15/2022]
Abstract
Plastids are specialized organelles found in plants, which are endowed with their own genomes, and differ in many respects from the intracellular compartments of organisms belonging to other kingdoms of life. They differentiate into diverse, plant organ-specific variants, and are perhaps the most versatile organelles known. Chloroplasts are the green plastids in the leaves and stems of plants, whose primary function is photosynthesis. In response to environmental changes, chloroplasts use several mechanisms to coordinate their photosynthetic activities with nuclear gene expression and other metabolic pathways. Here, we focus on a redox-based regulatory network composed of thioredoxins (TRX) and TRX-like proteins. Among multiple redox-controlled metabolic activities in chloroplasts, tetrapyrrole biosynthesis is particularly rich in TRX-dependent enzymes. This review summarizes the effects of plastid-localized reductants on several enzymes of this pathway, which have been shown to undergo dithiol-disulfide transitions. We describe the impact of TRX-dependent control on the activity, stability and interactions of these enzymes, and assess its contribution to the provision of adequate supplies of metabolic intermediates in the face of diurnal and more rapid and transient changes in light levels and other environmental factors.
Collapse
Affiliation(s)
- Daniel Wittmann
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| | - Neha Sinha
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| |
Collapse
|
2
|
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. FRONTIERS IN PLANT SCIENCE 2019; 10:593. [PMID: 31156665 PMCID: PMC6530659 DOI: 10.3389/fpls.2019.00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Higher plants contain a small, 5-member family of Rieske non-heme oxygenases that comprise the inner plastid envelope protein TIC55, phaeophorbide a oxygenasee (PAO), chlorophyllide a oxygenase (CAO), choline monooxygenase, and a 52 kDa protein (PTC52) associated with the precursor NADPH:protochlorophyllide (Pchlide) oxidoreductase A (pPORA) A translocon (PTC). Some of these chloroplast proteins have documented roles in chlorophyll biosynthesis (CAO) and degradation (PAO and TIC55), whereas the function of PTC52 remains unresolved. Biochemical evidence provided here identifies PTC52 as Pchlide a oxygenase of the inner plastid envelope linking Pchlide b synthesis to pPORA import. Protochlorophyllide b is the preferred substrate of PORA and its lack no longer allows pPORA import. The Pchlide b-dependent import pathway of pPORA thus operates in etiolated seedlings and is switched off during greening. Using dexamethasone-induced RNA interference (RNAi) we tested if PTC52 is involved in controlling both, pPORA import and Pchlide homeostasis in planta. As shown here, RNAi plants deprived of PTC52 transcript and PTC52 protein were unable to import pPORA and died as a result of excess Pchlide a accumulation causing singlet oxygen formation during greening. In genetic studies, no homozygous ptc52 knock-out mutants could be obtained presumably as a result of embryo lethality, suggesting a role for PTC52 in the initial greening of plant embryos. Phylogenetic studies identified PTC52-like genes amongst unicellular photosynthetic bacteria and higher plants, suggesting that the biochemical function associated with PTC52 may have an ancient evolutionary origin. PTC52 also harbors conserved motifs with bacterial oxygenases such as the terminal oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KshA) from Rhodococcus rhodochrous. 3D-modeling of PTC52 structure permitted the prediction of amino acid residues that contribute to the substrate specificity of this enzyme. In vitro-mutagenesis was used to test the predicted PTC52 model and provide insights into the reaction mechanism of this Rieske non-heme oxygenase.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
- *Correspondence: Steffen Reinbothe, John Gray,
| | - Sandra Bartsch
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Claudia Rossig
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Steffen Reinbothe, John Gray,
| |
Collapse
|
3
|
Buhr F, Lahroussi A, Springer A, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S. NADPH:protochlorophyllide oxidoreductase B (PORB) action in Arabidopsis thaliana revisited through transgenic expression of engineered barley PORB mutant proteins. PLANT MOLECULAR BIOLOGY 2017; 94:45-59. [PMID: 28260138 DOI: 10.1007/s11103-017-0592-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
NADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme for the light-induced greening of etiolated angiosperm plants. It belongs to the 'RED' family of reductases, epimerases and dehydrogenases. All POR proteins characterized so far contain evolutionarily conserved cysteine residues implicated in protochlorophyllide (Pchlide)-binding and catalysis. cDNAs were constructed by site-directed mutagenesis that encode PORB mutant proteins with defined Cys→Ala exchanges. These cDNAs were expressed in transgenic plants of a PORB-deficient knock-out mutant (porB) of Arabidopsis thaliana. Results show that porB plants expressing PORB mutant proteins with Ala substitutions of Cys276 or Cys303 are hypersensitive to high-light conditions during greening. Hereby, failure to assemble higher molecular weight complexes of PORB with its twin isoenzyme, PORA, as encountered with (Cys303→Ala)-PORB plants, caused more severe effects than replacing Cys276 by an Ala residue in the active site of the enzyme, as encountered in (Cys276→Ala)-PORB plants. Our results are consistent with the presence of two distinct pigment binding sites in PORB, with Cys276 establishing the active site of the enzyme and Cys303 providing a second, low affinity pigment binding site that is essential for the assembly of higher molecular mass light-harvesting PORB::PORA complexes and photoprotection of etiolated seedlings. Failure to assemble such complexes provoked photodynamic damage through the generation of singlet oxygen. Together, our data highlight the importance of PORB for Pchlide homoeostasis and greening in Arabidopsis.
Collapse
Affiliation(s)
- Frank Buhr
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Abderrahim Lahroussi
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Armin Springer
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
- Medical Biology and Electron Microscopy Centre, University Medical Center Rostock, Strempelstraße 14, 18057, Rostock, Germany
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, 29506, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Christiane Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, LBFA, BP53F, 38041, Grenoble cedex 9, France.
| |
Collapse
|
4
|
Kumar G, Chaudhary N. Mitotoxic effect of 2, 4-D and endosulfan in root meristems of Hordeum vulgare. ACTA ACUST UNITED AC 2012. [DOI: 10.3199/iscb.7.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
A combination of the cytokinesis-block micronucleus cytome assay and centromeric identification for evaluation of the genotoxicity of dicamba. Toxicol Lett 2011; 207:204-12. [DOI: 10.1016/j.toxlet.2011.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/15/2011] [Accepted: 09/17/2011] [Indexed: 01/23/2023]
|
6
|
Samol I, Rossig C, Buhr F, Springer A, Pollmann S, Lahroussi A, von Wettstein D, Reinbothe C, Reinbothe S. The Outer Chloroplast Envelope Protein OEP16-1 for Plastid Import of NADPH:Protochlorophyllide Oxidoreductase A in Arabidopsis thaliana. ACTA ACUST UNITED AC 2010; 52:96-111. [DOI: 10.1093/pcp/pcq177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Plöscher M, Granvogl B, Reisinger V, Eichacker LA. Identification of the N-termini of NADPH : protochlorophyllide oxidoreductase A and B from barley etioplasts (Hordeum vulgare L.). FEBS J 2009; 276:1074-81. [DOI: 10.1111/j.1742-4658.2008.06850.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. PHOTOSYNTHESIS RESEARCH 2008; 96:121-43. [PMID: 18273690 DOI: 10.1007/s11120-008-9291-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/29/2008] [Indexed: 05/20/2023]
Abstract
In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade--after many years of intensive research--that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
9
|
Schemenewitz A, Pollmann S, Reinbothe C, Reinbothe S. A substrate-independent, 14:3:3 protein-mediated plastid import pathway of NADPH:protochlorophyllide oxidoreductase A. Proc Natl Acad Sci U S A 2007; 104:8538-43. [PMID: 17483469 PMCID: PMC1895985 DOI: 10.1073/pnas.0702058104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Indexed: 11/18/2022] Open
Abstract
Plastids are semiautonomous organelles that contain only limited coding information in their own DNA. Because most of their genome was transferred to the nucleus after their endosymbiotic origin, plastids must import the major part of their protein constituents from the cytosol. The exact role of cytosolic targeting factors in the regulation of plastid protein import has not been determined. Here, we report that the nucleus-encoded NADPH:protochlorophyllide (Pchlide) oxidoreductase A plastid precursor (pPORA) can use two different plastid import pathways that differ by the requirements for cytosolic 14:3:3 proteins and Hsp70. pPORA synthesized in a wheat germ lysate segregated into different precursor fractions. While import of free pPORA and only Hsp70-complexed pPORA was Pchlide-dependent and involved the previously identified Pchlide-dependent translocon, 14:3:3 protein- and Hsp70-complexed pPORA was transported into Pchlide-free chloroplasts through the Toc75-containing standard translocon at the outer chloroplast membrane/translocon at the inner chloroplast membrane machinery. A 14:3:3 protein binding site was identified in the mature region of the (35)S-pPORA, which governed 14:3:3 protein- and Hsp70-mediated, Pchlide-independent plastid import. Collectively, our results reveal that the import of pPORA into the plastids is tightly regulated and involves different cytosolic targeting factors and plastid envelope translocon complexes.
Collapse
Affiliation(s)
- Andreas Schemenewitz
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, Gebäude ND, D-44801 Bochum, Germany
| | - Stephan Pollmann
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Universitätsstrasse 150, Gebäude ND, D-44801 Bochum, Germany
| | - Christiane Reinbothe
- Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany; and
- Unité Mixte de Recherche 5575, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| | - Steffen Reinbothe
- Unité Mixte de Recherche 5575, Université Joseph Fourier et Centre National de la Recherche Scientifique, BP53, F-38041 Grenoble Cedex 9, France
| |
Collapse
|
10
|
Yamasato A, Nagata N, Tanaka R, Tanaka A. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll B accumulation in Arabidopsis. THE PLANT CELL 2005; 17:1585-97. [PMID: 15805480 PMCID: PMC1091776 DOI: 10.1105/tpc.105.031518] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 02/25/2005] [Indexed: 05/19/2023]
Abstract
Plants acclimate to variations in light intensity by changing the antenna size of photosystems. This acclimation allows them to undergo efficient photosynthesis and creates a protective strategy to minimize photodamage. Chlorophyll b synthesis by chlorophyllide a oxygenase (CAO) is a key regulatory step in the control of antenna size. Recently, we found that higher plant CAOs consist of three domains (A, B, and C domains) and confirmed that the C domain possesses catalytic function. To investigate the function of the A domain, we fused various combinations of these three domains with green fluorescent protein (GFP) and introduced them into Arabidopsis thaliana. When a full-length CAO-GFP fusion protein was introduced into a chlorophyll b-less chlorina1-1 mutant, chlorophyll b accumulated to almost the same levels as in the chlorophyll b-containing Columbia wild type, but the CAO-GFP could not be detected by immunoblotting. By contrast, when a GFP-C domain fusion was introduced into chlorina1-1 or Columbia wild type, a large amount of GFP-C domain protein accumulated and the chlorophyll a/b ratio decreased drastically from 3.6 to 2.2 in Columbia wild type. When an A domain-GFP was introduced into Columbia wild type, A domain-GFP levels were very low. Conversely, a large amount of the protein accumulated when it was introduced into the chlorina1-1 mutant. These results indicate that the A domain may sense the presence of chlorophyll b and regulate the accumulation of CAO protein in the chloroplasts.
Collapse
Affiliation(s)
- Akihiro Yamasato
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | | | | | | |
Collapse
|
11
|
Reinbothe S, Pollmann S, Springer A, James RJ, Tichtinsky G, Reinbothe C. A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH:protochlorophyllide oxidoreductase (POR) A. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:1-12. [PMID: 15773849 DOI: 10.1111/j.1365-313x.2005.02353.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NADPH:protochlorophyllide oxidoreductase (POR) A is a key enzyme of chlorophyll biosynthesis in angiosperms. It is nucleus-encoded, synthesized as a larger precursor in the cytosol and imported into the plastids in a substrate-dependent manner. Plastid envelope membrane proteins, called protochlorophyllide-dependent translocon proteins, Ptcs, have been identified that interact with pPORA during import. Among them are a 16-kDa ortholog of the previously characterized outer envelope protein Oep16 (named Ptc16) and a 33-kDa protein (Ptc33) related to the GTP-binding proteins Toc33 and Toc34 of Arabidopsis. In the present work, we studied the interactions and roles of Ptc16 and Ptc33 during pPORA import. Radiolabeled Ptc16/Oep16 was synthesized from a corresponding cDNA and imported into isolated Arabidopsis plastids. Crosslinking experiments revealed that import of 35S-Oep16/Ptc16 is stimulated by GTP. 35S-Oep16/Ptc16 forms larger complexes with Toc33 but not Toc34. Plastids of the ppi1 mutant of Arabidopsis lacking Toc33, were unable to import pPORA in darkness but imported the small subunit precursor of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSSU), precursor ferredoxin (pFd) as well as pPORB which is a close relative of pPORA. In white light, partial suppressions of pSSU, pFd and pPORB import were observed. Our results unveil a hitherto unrecognized role of Toc33 in pPORA import and suggest photooxidative membrane damage, induced by excess Pchlide accumulating in ppi1 chloroplasts because of the lack of pPORA import, to be the cause of the general drop of protein import.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Université Joseph Fourier et Centre National de la Recherche Scientifique (CNRS), UMR5575, CERMO, BP53, F-38041 Grenoble Cedex 9, France.
| | | | | | | | | | | |
Collapse
|
12
|
Reinbothe C, Satoh H, Alcaraz JP, Reinbothe S. A novel role of water-soluble chlorophyll proteins in the transitory storage of chorophyllide. PLANT PHYSIOLOGY 2004; 134:1355-65. [PMID: 15047899 PMCID: PMC419813 DOI: 10.1104/pp.103.033613] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Revised: 12/03/2003] [Accepted: 12/03/2003] [Indexed: 05/22/2023]
Abstract
All chlorophyll (Chl)-binding proteins involved in photosynthesis of higher plants are hydrophobic membrane proteins integrated into the thylakoids. However, a different category of Chl-binding proteins, the so-called water-soluble Chl proteins (WSCPs), was found in members of the Brassicaceae, Polygonaceae, Chenopodiaceae, and Amaranthaceae families. WSCPs from different plant species bind Chl a and Chl b in different ratios. Some members of the WSCP family are induced after drought and heat stress as well as leaf detachment. It has been proposed that this group of proteins might have a physiological function in the Chl degradation pathway. We demonstrate here that a protein that shared sequence homology to WSCPs accumulated in etiolated barley (Hordeum vulgare) seedlings exposed to light for 2 h. The novel 22-kD protein was attached to the outer envelope of barley etiochloroplasts, and import of the 27-kD precursor was light dependent and induced after feeding the isolated plastids the tetrapyrrole precursor 5-aminolevulinic acid. HPLC analyses and spectroscopic pigment measurements of acetone-extracted pigments showed that the 22-kD protein is complexed with chlorophyllide. We propose a novel role of WSCPs as pigment carriers operating during light-induced chloroplast development.
Collapse
Affiliation(s)
- Christiane Reinbothe
- Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, D-95447 Bayreuth, Germany.
| | | | | | | |
Collapse
|
13
|
Reinbothe S, Quigley F, Springer A, Schemenewitz A, Reinbothe C. The outer plastid envelope protein Oep16: role as precursor translocase in import of protochlorophyllide oxidoreductase A. Proc Natl Acad Sci U S A 2004; 101:2203-8. [PMID: 14769929 PMCID: PMC357075 DOI: 10.1073/pnas.0301962101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 16-kDa plastid envelope protein was identified by chemical crosslinking that interacts with the precursor of NADPH:protochlorophyllide oxdidoreductase A (pPORA) during its posttranslational import into isolated barley chloroplasts. Protein purification and subsequent protein sequencing showed that the 16-kDa protein is an ortholog of a previously identified outer plastid envelope protein, Oep16. A protein of identical size was present in barley etioplasts and interacted with pPORA. Similar 16-kDa protein-dependent crosslink products of pPORA were detected in wheat, pea, and Arabidopsis chloroplasts. Database analyses revealed that the 16-kDa protein belongs to a family of preprotein and amino acid transporters found in free-living bacteria and endosymbiotic mitochondria and chloroplasts. Antibodies raised against the 16-kDa protein inhibited import of pPORA, highlighting its role in protein import.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Université Joseph Fourier et Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5575, BP53, F-38041 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
14
|
Masuda T, Takamiya KI. Novel Insights into the Enzymology, Regulation and Physiological Functions of Light-dependent Protochlorophyllide Oxidoreductase in Angiosperms. PHOTOSYNTHESIS RESEARCH 2004; 81:1-29. [PMID: 16328844 DOI: 10.1023/b:pres.0000028392.80354.7c] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The reduction of protochlorophyllide (Pchlide) is a key regulatory step in the biosynthesis of chlorophyll in phototrophic organisms. Two distinct enzymes catalyze this reduction; a light-dependent NADPH:protochlorophyllide oxidoreductase (POR) and light-independent Pchlide reductase (DPOR). Both enzymes are widely distributed among phototrophic organisms with the exception that only POR is found in angiosperms and only DPOR in anoxygenic photosynthetic bacteria. Consequently, angiosperms become etiolated in the absence of light, since the reduction of Pchlide in angiosperms is solely dependent on POR. In eukaryotic phototrophs, POR is a nuclear-encoded single polypeptide and post-translationally imported into plastids. POR possesses unique features, its light-dependent catalytic activity, accumulation in plastids of dark-grown angiosperms (etioplasts) via binding to its substrate, Pchlide, and cofactor, NADPH, resulting in the formation of prolamellar bodies (PLBs), and rapid degradation after catalysis under subsequent illumination. During the last decade, considerable progress has been made in the study of the gene organization, catalytic mechanism, membrane association, regulation of the gene expression, and physiological function of POR. In this review, we provide a brief overview of DPOR and then summarize the current state of knowledge on the biochemistry and molecular biology of POR mainly in angiosperms. The physiological and evolutional implications of POR are also discussed.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | | |
Collapse
|
15
|
Kim C, Apel K. Substrate-dependent and organ-specific chloroplast protein import in planta. THE PLANT CELL 2004; 16:88-98. [PMID: 14688290 PMCID: PMC301397 DOI: 10.1105/tpc.015008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 10/16/2003] [Indexed: 05/20/2023]
Abstract
The NADPH-dependent protochlorophyllide (Pchlide) oxidoreductase (POR) is unique because it is a photoenzyme that requires light for its catalytic activity and uses Pchlide itself as a photoreceptor. In Arabidopsis, there are three structurally related PORs, denoted PORA, PORB, and PORC. The import of one of them, PORA, into plastids of cotyledons is substrate dependent. This substrate dependence is demonstrated in intact seedlings of wild-type Arabidopsis and two mutants, xantha2, which is devoid of Pchlide, and flu, which upon redarkening rapidly accumulates Pchlide. In true leaves, PORA uptake does not require the presence of Pchlide. The organ specificity of the substrate-dependent import of PORA reveals a means of controlling plastid protein translocation that is closely associated with a key step in plant development, the light-dependent transformation of cotyledons from a storage organ to a photosynthetically active leaf.
Collapse
Affiliation(s)
- Chanhong Kim
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
| | | |
Collapse
|
16
|
de Marco A, Volrath S, Law M, Fonné-Pfister R. Correct identification of the chloroplastic protoporphyrinogen IX oxidase N-terminus places the biochemical data in frame. Biochem Biophys Res Commun 2003; 309:873-8. [PMID: 13679054 DOI: 10.1016/j.bbrc.2003.08.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Maize (Zea mays) protoporphyrinogen IX oxidase (PPO: EC 1.3.3.4) possesses a chloroplast transit peptide (CTP) that delivers the enzyme into the chloroplast. The cleavage site yielding the mature protein was predicted by using the ChloroP software and by comparing conserved regions of the available plant PPO sequences. In parallel, the processed NH(2)-terminus of native PPO was identified experimentally by microsequencing the immunoprecipitated plant PPO from maize etioplasts. The cleavage sites identified using the bioinformatic approaches did not match the experimental result. The three sequences have been cloned and expressed in bacteria and their kinetics were compared in order to understand if the generated proteins had biochemically relevant differences. Recombinant PPO corresponding to the native PPO accumulated at higher level and was more active than the two homologues. A cysteine present in the CTP seems to be able to modify the redox state of the enzyme and to be responsible for the alteration of the kinetic features. In contrast, the sensitivity to different herbicides was unaffected by modifications at the NH(2)-terminus, suggesting that the mode of action is non-competitive and that the NH(2)-terminus is involved in the recognition of the natural substrate.
Collapse
Affiliation(s)
- Ario de Marco
- Biochemistry, Syngenta Crop Protection AG, P.O. Box, Basel, CH-4002, Switzerland.
| | | | | | | |
Collapse
|
17
|
Aronsson H, Sundqvist C, Dahlin C. POR - import and membrane association of a key element in chloroplast development. PHYSIOLOGIA PLANTARUM 2003; 118:1-9. [PMID: 12702007 DOI: 10.1034/j.1399-3054.2003.00088.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of proplastids or etioplasts to chloroplast is visualized by the accumulation of chlorophyll in leaves of higher plants. The biosynthesis of chlorophyll includes a light-dependent reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). This light-dependent step is catalysed by the nucleus-encoded NADPH:Pchlide oxidoreductase (POR, EC 1.6.99.1). POR is active within plastids and therefore has to be translocated over the plastid envelope membranes. The import of chloroplast proteins seems to follow a general import pathway using translocons at the outer and inner envelope membrane. POR cross-linking to Toc75, one of the major translocon components at the outer envelope membrane, indicates its use of the general import pathway. However, since variations exist within the so-called general import pathway one has to consider previous data suggesting a novel totally Pchlide-dependent import pathway of one POR isoform, PORA. The suggested Pchlide dependency of POR import is discussed since recent observations contradict this idea. In the stroma the POR transit peptide is cleaved off and the mature POR protein is targeted to the plastid inner membranes. The correct and stable association of POR to the membrane requires the cofactor NADPH. Functional activity of POR calls for formation of an NADPH-Pchlide-POR complex, a formation that probably takes place after the membrane association and is dependent on a phosphorylation reaction.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Biology, Leicester University, University Road, Leicester, LE1 7RH, United Kingdom Department of Plant Physiology, Göteborg University, Box 461, SE-405 30 Göteborg, Sweden School of Business and Engineering, Halmstad University, Box 823, SE-301 18 Halmstad, Sweden
| | | | | |
Collapse
|
18
|
Reinbothe S, Mache R, Reinbothe C. A second, substrate-dependent site of protein import into chloroplasts. Proc Natl Acad Sci U S A 2000; 97:9795-800. [PMID: 10920193 PMCID: PMC16944 DOI: 10.1073/pnas.160242597] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplasts must import a large number of proteins from the cytosol. It generally is assumed that this import proceeds for all stromal and thylakoid proteins in an identical manner and is caused by the operation of two distinctive protein import machineries in the outer and inner plastid envelope, which form the general import site. Here we show that there is a second site of protein translocation into chloroplasts of barley, tobacco, Arabidopsis thaliana, and five other tested monocotyledonous and dicotyledonous plant species. This import site is specific for the cytosolic precursor of the NADPH:protochlorophyllide (Pchlide) oxidoreductase A, pPORA. It couples Pchlide synthesis to pPORA import and thereby reduces the actual level of free Pchlide, which, because of its photodynamic properties, would be destructive to the plastids. Consequently, photoprotection is conferred onto the plant.
Collapse
Affiliation(s)
- S Reinbothe
- Université Joseph Fourier et Centre National de la Recherche Scientifique, Grenoble, France
| | | | | |
Collapse
|
19
|
Skinner JS, Timko MP. Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine. PLANT MOLECULAR BIOLOGY 1999; 39:577-92. [PMID: 10092184 DOI: 10.1023/a:1006144630071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The expression patterns of the two distinct subfamilies of genes (designated porA and porB) encoding the light-dependent NADPH:protochlorophyllide oxidoreductases (PORs) in loblolly pine (Pinus taeda L.) were examined. Transcripts arising from both gene subfamilies were shown to be present at high levels in the cotyledons of dark-grown pine seedlings and to a lesser extent in their stems. Exposure of dark-grown seedlings to light resulted in increased levels of both porA and porB transcripts, as well as increased levels of mRNAs encoding other photosynthesis-related gene products, suggesting that they are under a common mode of regulation. Relative levels of the porA and porB transcripts were similar in seedling cotyledons and primary needles of two-month-old pine trees, whereas only porB transcripts were present at a significant level in mature secondary needles of two-year-old trees. Immunoblot analysis showed that the 37 kDa PORA protein was most abundant in dark-grown tissues, decreased dramatically upon exposure to light, but could still be detected at low levels in light-grown seedlings. In comparison, levels of the 38 kDa PORB protein were not significantly changed upon transfer of dark-grown tissues to light. While both PORA and PORB were detected in cotyledons and primary needles, only PORB could be detected in mature needles. Transcripts derived from the three plastid genes, chlL, chlN, and chlB, encoding subunits of the light-independent protochlorophyllide reductase were detected in the cotyledons and stems of dark-grown seedlings, and in mature needles. The highest levels of chlL, chlN, and chlB transcripts were detected within the top one-third of the stem and decreased gradually towards the stem/root transition zone. Correspondingly, the highest levels of light-independent chlorophyll formation took place near the top of the hypocotyl. A similar pattern of expression was observed for other photosynthesis-related gene products, including porA and porB. Our results suggest that many aspects of the light-dependent, tissue-specific and developmental regulation of POR expression first described in angiosperms were already established in the less evolutionarily advanced gymnosperms. However, unlike angiosperms, light is not the dominant regulatory factor controlling porA expression in these species.
Collapse
Affiliation(s)
- J S Skinner
- Department of Biology, University of Virginia, Charlottesville 22903, USA
| | | |
Collapse
|
20
|
Reinbothe C, Lebedev N, Apel K, Reinbothe S. Regulation of chloroplast protein import through a protochlorophyllide-responsive transit peptide. Proc Natl Acad Sci U S A 1997; 94:8890-4. [PMID: 11038562 PMCID: PMC23185 DOI: 10.1073/pnas.94.16.8890] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is the key enzyme of chlorophyll biosynthesis in angiosperms. In barley, two POR enzymes, termed PORA and PORB, exist. Both are nucleus-encoded plastid proteins that must be imported posttranslationally from the cytosol. Whereas the import of the precursor of PORA, pPORA, previously has been shown to depend on Pchlide, the import of pPORB occurred constitutively. To study this striking difference, chimeric precursor proteins were constructed in which the transit sequences of the pPORA and pPORB were exchanged and fused to either their cognate polypeptides or to a cytosolic dihydrofolate reductase (DHFR) reporter protein of mouse. As shown here, the transit peptide of the pPORA (transA) conferred the Pchlide requirement of import onto both the mature PORB and the DHFR. By contrast, the transit peptide of the pPORB directed the reporter protein into both chloroplasts that contained or lacked translocation-active Pchlide. In vitro binding studies further demonstrated that the transit peptide of the pPORA, but not of the pPORB, is able to bind Pchlide. We conclude that the import of the authentic pPORA and that of the transA-PORB and transA-DHFR fusion proteins is regulated by a direct transit peptide-Pchlide interaction, which is likely to occur in the plastid envelope, a major site of porphyrin biosynthesis.
Collapse
Affiliation(s)
- C Reinbothe
- Institute for Plant Sciences, Department of Plant Genetics, Swiss Federal Institute of Technology Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|