1
|
Beaumal C, Guapo F, Smith J, Carillo S, Bones J. Combination of hydrophilic interaction liquid chromatography and top-down mass spectrometry for characterisation of adeno-associated virus capsid proteins. Anal Bioanal Chem 2025; 417:3405-3417. [PMID: 40259015 PMCID: PMC12122587 DOI: 10.1007/s00216-025-05874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Adeno-associated virus (AAV) viral vector-based gene therapy is advancing rapidly, offering potential treatments for rare and severe diseases. The AAV capsid consists of a combination of three viral proteins (VPs), VP1, VP2, and VP3, ranging from 59 to 81 kDa and present at a theoretical bulk ratio of 1:1:10. This study employed hydrophilic interaction liquid chromatography (HILIC) and mass spectrometry (MS) to achieve robust separation and detailed characterisation of AAV9 capsid proteins. Advanced top-down MS approaches combining multiple fragmentation techniques (HCD, ETD, EThcD, and UVPD) were successfully applied, increasing the sequence coverage up to 40% for VP3 and confirming N-terminal acetylation on VP1 and VP3. The workflow demonstrated high reproducibility between injection duplicates and was subsequently applied to the characterisation of in-house produced biological replicates of AAV9 samples from HEK293 cells, showing consistent results across them. Analysis of AAV9 derived from Sf9 insect cells, a more complex sample due to higher levels of modification of the capsid VPs, further evidenced method versatility. Overall, this study highlights the potential of HILIC-MS and advanced top-down MS approaches for detailed characterisation of AAV capsid proteins.
Collapse
Affiliation(s)
- Corentin Beaumal
- Characterisation and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin, A94 X099, Ireland
| | - Felipe Guapo
- Characterisation and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin, A94 X099, Ireland
| | - Josh Smith
- Characterisation and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin, A94 X099, Ireland
| | - Sara Carillo
- Characterisation and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin, A94 X099, Ireland
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin, A94 X099, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, D04 V1 W8, Ireland.
| |
Collapse
|
2
|
Bengtsson NE, Tasfaout H, Chamberlain JS. The road toward AAV-mediated gene therapy of Duchenne muscular dystrophy. Mol Ther 2025; 33:2035-2051. [PMID: 40181545 DOI: 10.1016/j.ymthe.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Forty years after the dystrophin gene was cloned, significant progress has been made in developing gene therapy approaches for Duchenne muscular dystrophy (DMD). The disorder has presented numerous challenges, including the enormous size of the gene (2.2 MB), the need to target muscles body wide, and immunogenic issues against both vectors and dystrophin. Among human genetic disorders, DMD is relatively common, and the genetics are complicated since one-third of all cases arise from a spontaneous new mutation, resulting in thousands of independent lesions throughout the locus. Many approaches have been pursued in the goal of finding an effective therapy, including exon skipping, nonsense codon suppression, upregulation of surrogate genes, gene replacement, and gene editing. Here, we focus specifically on methods using AAV vectors, as these approaches have been tested in numerous clinical trials and are able to target muscles systemically. We discuss early advances to understand the structure of dystrophin, which are crucial for the design of effective DMD gene therapies. Included is a summary of efforts to deliver micro-, mini-, and full-length dystrophins to muscles. Finally, we review current approaches to adapt gene editing to the enormous DMD gene with prospects for improved therapies using all these methods.
Collapse
Affiliation(s)
- Niclas E Bengtsson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Hichem Tasfaout
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Lugenbiel P. Gene therapy targeting INa to treat life-threatening arrhythmias: beyond proof-of-concept? Eur Heart J 2025; 46:1763-1765. [PMID: 39981909 DOI: 10.1093/eurheartj/ehae930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Affiliation(s)
- Patrick Lugenbiel
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Herzog RW, Kaczmarek R, High KA. Gene therapy for hemophilia - From basic science to first approvals of "one-and-done" therapies. Mol Ther 2025; 33:2015-2034. [PMID: 40156189 DOI: 10.1016/j.ymthe.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Realistic paths to gene therapy for the X-linked bleeding disorder hemophilia started to materialize in the mid 1990s, resulting in disease correction in small and large animal models. Out of a diversity of approaches, in vivo adeno-associated viral (AAV) gene transfer to hepatocytes emerged as the most promising strategy, eventually forming the basis for multiple advanced clinical trials and regulatory approval of two products for the treatment of hemophilia B (coagulation factor IX deficiency) and one for hemophilia A (factor VIII deficiency). Ideally, gene therapy is effective with a single administration, thus providing therapeutic factor levels over a period of years, without the need for frequent injections. Overcoming multiple obstacles, some not predicted by preclinical studies, sustained partial to complete correction of coagulation for several years to an entire decade has now been documented in patients, with observation ongoing. A hyperactive form of FIX improved efficacy in hemophilia B, and superior engineered variants of FVIII are emerging. Nonetheless, challenges remain, including pre-existing immunity to AAV capsids, toxicities, inter-patient variability in response to treatment, and difficulty in obtaining durable therapeutic expression of FVIII. In alternative approaches, in vivo gene editing and ex vivo gene therapies targeting hemopoietic cells are in development.
Collapse
Affiliation(s)
- Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Radoslaw Kaczmarek
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katherine A High
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Jian X, Wang J, Hu J, Li Y, Wang Q, Wang H, Huang J, Ke Y, Liao H. Intramuscular Reactivity of the Modified Graphene Oxides and Their Bio-Reactivity in Aging Muscle. J Funct Biomater 2025; 16:115. [PMID: 40278223 PMCID: PMC12027639 DOI: 10.3390/jfb16040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 04/26/2025] Open
Abstract
To enhance the biocompatibility and drug delivery efficiency of graphene oxide (GO), poly(ethylene glycol) (PEG), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), or its triblock copolymer PEG-PHBV-PEG (PPP) were used to chemically modify GO. However, it is still unknown whether non-toxic polymer-modified GO mediates muscle toxicity or triggers intramuscular inflammation. This study aims to investigate the biological reactivity and inflammation/immune response induced by PEG, PHBV, or PPP modified GO when injected into the tibialis anterior (TA) muscle of mice prior to drug loading. The results showed that after muscle exposure, the coating of biocompatible polymers on GO is more likely to provoke muscle necrosis. Muscle regeneration was found to occur earlier and more effectively in muscle treated with hydrophilic PEG-GO and PPP-GO compared to muscle treated with hydrophobic PHBV-GO. When observing the transient muscle macrophage invasion of three modified GOs, PHBV-GO caused severe muscle necrosis in the early stage, induced a delayed peak of macrophage aggregation, and caused severe inflammatory progression. All three kinds of modified GO induced T cell aggregation to varying degrees, but PEG-GO induced early mass muscle recruitment of CD4+ T cells and was more sensitive to cytotoxic T cells. Based on the higher biocompatibility of PPP-GO in muscles, PPP-GO was implanted into the muscles of old or adult mice. Compared to adult mice, aged mice are more vulnerable to the stress from PPP-GO, as demonstrated by a delayed inflammatory response and muscle regeneration.
Collapse
Affiliation(s)
- Xiaoting Jian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Jiayin Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Yangyang Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Qisen Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Han Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Jingwen Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| | - Yu Ke
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.J.); (Y.L.); (Q.W.); (H.W.); (J.H.)
| |
Collapse
|
6
|
Yan A, Hasan N, Chhablani J. Dry and neovascular "wet" age-related macular degeneration: Upcoming therapies. Indian J Ophthalmol 2025; 73:S55-S65. [PMID: 39446815 PMCID: PMC11834902 DOI: 10.4103/ijo.ijo_1120_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/26/2024] Open
Abstract
The age-related macular degeneration (AMD) field is witnessing promising advancements in therapeutic options. Breakthrough drugs such as pegcetacoplan and avacincaptad have been FDA-approved for dry AMD, marking a significant development as there were no treatment options until August 2023. While several antivascular endothelial growth factor (VEGF) inhibitors have been approved for wet AMD, challenges persist with the need for frequent dosing. New treatments such as gene therapy, cell therapy, WNT pathway agonists, complement inhibitors, and anti-VEGF combination drugs are under development to address these issues. These developments are exciting and hold promise for transforming the field of medicine, offering hope for improved outcomes and enhanced patient care in managing AMD.
Collapse
Affiliation(s)
- Audrey Yan
- Department of Medicine, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Nasiq Hasan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburg, PA, USA
| |
Collapse
|
7
|
Padmaswari MH, Bulliard G, Agrawal S, Jia MS, Khadgi S, Murach KA, Nelson CE. Precision and efficacy of RNA-guided DNA integration in high-expressing muscle loci. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102320. [PMID: 39398225 PMCID: PMC11466678 DOI: 10.1016/j.omtn.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Gene replacement therapies primarily rely on adeno-associated virus (AAV) vectors for transgene expression. However, episomal expression can decline over time due to vector loss or epigenetic silencing. CRISPR-based integration methods offer promise for long-term transgene insertion. While the development of transgene integration methods has made substantial progress, identifying optimal insertion loci remains challenging. Skeletal muscle is a promising tissue for gene replacement owing to low invasiveness of intramuscular injections, relative proportion of body mass, the multinucleated nature of muscle, and the potential for reduced adverse effects. Leveraging endogenous promoters in skeletal muscle, we evaluated two highly expressing loci using homology-independent targeted integration (HITI) to integrate reporter or therapeutic genes in mouse myoblasts and skeletal muscle tissue. We hijacked the muscle creatine kinase (Ckm) and myoglobin (Mb) promoters by co-delivering CRISPR-Cas9 and a donor plasmid with promoterless constructs encoding green fluorescent protein (GFP) or human Factor IX (hFIX). Additionally, we deeply profiled our genome and transcriptome outcomes from targeted integration and evaluated the safety of the proposed sites. This study introduces a proof-of-concept technology for achieving high-level therapeutic gene expression in skeletal muscle, with potential applications in targeted integration-based medicine and synthetic biology.
Collapse
Affiliation(s)
- Made Harumi Padmaswari
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | | | - Shilpi Agrawal
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Mary S. Jia
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A. Murach
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E. Nelson
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
8
|
Shipulin GA, Glazkova DV, Urusov FA, Belugin BV, Dontsova V, Panova AV, Borisova AA, Tsyganova GM, Bogoslovskaya EV. Triple Combinations of AAV9-Vectors Encoding Anti-HIV bNAbs Provide Long-Term In Vivo Expression of Human IgG Effectively Neutralizing Pseudoviruses from HIV-1 Global Panel. Viruses 2024; 16:1296. [PMID: 39205270 PMCID: PMC11359378 DOI: 10.3390/v16081296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Anti-human immunodeficiency virus (HIV) broadly neutralizing antibodies (bNAbs) offer a promising approach for the treatment of HIV-1. The current paradigm for antibody therapy involves passive antibody transfer, requiring regular delivery of bNAbs in treating chronic diseases such as HIV-1. An alternative strategy is to use AAV-mediated gene transfer to enable in vivo production of desirable anti-HIV-1 antibodies. In this study, we investigated two sets of triple combinations of AAV9-vectors encoding different bNAbs: N6, 10E8, 10-1074 (CombiMab1), and VRC07-523, PGDM1400, 10-1074 (CombiMab2). We used CBAxC57Bl and C57BL/6 mouse models to characterize rAAV-induced antibody expression and to evaluate the neutralization capacity of mouse sera against a global panel of HIV-1 viral strains. rAAV9-mediated IgG expression varied between bNAb clones and mouse strains, with C57BL/6 mice exhibiting higher bNAb titers following rAAV delivery. Although CombiMab2 treatment elicited a higher IgG titer than CombiMab1, both combinations resulted in neutralization of all the viral strains from the global HIV-1 panel. Our data highlight the potential of AAV vectors as a long-term option for HIV-1 therapy.
Collapse
Affiliation(s)
- German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
| | - Dina V. Glazkova
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
| | - Felix A. Urusov
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
- Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
| | - Boris V. Belugin
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
| | - Valeriya Dontsova
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
| | - Alexandra V. Panova
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
| | - Alyona A. Borisova
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
| | - Galina M. Tsyganova
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
| | - Elena V. Bogoslovskaya
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency, 119992 Moscow, Russia (E.V.B.)
| |
Collapse
|
9
|
Kepreotis SV, Oh JG, Park M, Yoo J, Lee C, Mercola M, Hajjar RJ, Jeong D. Inhibition of miR-25 ameliorates cardiac and skeletal muscle dysfunction in aged mdx/utrn haploinsufficient (+/-) mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102174. [PMID: 38584818 PMCID: PMC10998245 DOI: 10.1016/j.omtn.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.
Collapse
Affiliation(s)
- Sacha V. Kepreotis
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Jae Gyun Oh
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Mina Park
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Cholong Lee
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger J. Hajjar
- Mass General Brigham Gene and Cell Therapy Institute, Boston, MA, USA
| | - Dongtak Jeong
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| |
Collapse
|
10
|
Guapo F, Donohue N, Strasser L, Boi S, Füssl F, Rainbow-Fletcher A, Getty P, Anderson I, Barron N, Bones J. A Direct Comparison of rAAV5 Variants Derived from the Baculovirus Expression System Using LC-MS Workflows Demonstrates Key Differences in Overall Production Yield, Product Quality and Vector Efficiency. Int J Mol Sci 2024; 25:2785. [PMID: 38474031 PMCID: PMC10932283 DOI: 10.3390/ijms25052785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Gene therapy holds great promise for the treatment of severe diseases, and adeno-associated virus (AAV) vectors have emerged as valuable tools in this field. However, challenges such as immunogenicity and high production costs complicate the commercial viability of AAV-based therapies. To overcome these barriers, improvements in production yield, driven through the availability of robust and sensitive characterization techniques that allow for the monitoring of critical quality attributes to deepen product and process understanding are crucial. Among the main attributes affecting viral production and performance, the ratio between empty and full capsids along with capsid protein stoichiometry are emerging as potential parameters affecting product quality and safety. This study focused on the production of AAV vectors using the baculovirus expression vector system (BEVS) in Sf9 cells and the complete characterization of AAV5 variants using novel liquid chromatography and mass spectrometry techniques (LC-MS) that, up to this point, had only been applied to reference commercially produced virions. When comparing virions produced using ATG, CTG or ACG start codons of the cap gene, we determined that although ACG was the most productive in terms of virus yield, it was also the least effective in transducing mammalian cells. This correlated with a low VP1/VP2 ratio and a higher percentage of empty capsids. Overall, this study provides insights into the impact of translational start codon modifications during rAAV5 production using the BEVS, the associated relationship with capsid packaging, capsid protein stoichiometry and potency. The developed characterization workflow using LC-MS offers a comprehensive and transferable analysis of AAV-based gene therapies, with the potential to aid in process optimization and facilitate the large-scale commercial manufacturing of these promising treatments.
Collapse
Affiliation(s)
- Felipe Guapo
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Nicholas Donohue
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Lisa Strasser
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Stefano Boi
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Florian Füssl
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | | | - Paul Getty
- Pharmaron, 12 Estuary Banks, Speke, Liverpool L24 8RB, UK
| | - Ian Anderson
- Pharmaron, 12 Estuary Banks, Speke, Liverpool L24 8RB, UK
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| |
Collapse
|
11
|
Blasiak J, Pawlowska E, Ciupińska J, Derwich M, Szczepanska J, Kaarniranta K. A New Generation of Gene Therapies as the Future of Wet AMD Treatment. Int J Mol Sci 2024; 25:2386. [PMID: 38397064 PMCID: PMC10888617 DOI: 10.3390/ijms25042386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease and the most common cause of vision loss in the Western World. In its advanced stage, AMD occurs in two clinically distinguished forms, dry and wet, but only wet AMD is treatable. However, the treatment based on repeated injections with vascular endothelial growth factor A (VEGFA) antagonists may at best stop the disease progression and prevent or delay vision loss but without an improvement of visual dysfunction. Moreover, it is a serious mental and financial burden for patients and may be linked with some complications. The recent first success of intravitreal gene therapy with ADVM-022, which transformed retinal cells to continuous production of aflibercept, a VEGF antagonist, after a single injection, has opened a revolutionary perspective in wet AMD treatment. Promising results obtained so far in other ongoing clinical trials support this perspective. In this narrative/hypothesis review, we present basic information on wet AMD pathogenesis and treatment, the concept of gene therapy in retinal diseases, update evidence on completed and ongoing clinical trials with gene therapy for wet AMD, and perspectives on the progress to the clinic of "one and done" therapy for wet AMD to replace a lifetime of injections. Gene editing targeting the VEGFA gene is also presented as another gene therapy strategy to improve wet AMD management.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Justyna Ciupińska
- Clinical Department of Infectious Diseases and Hepatology, H. Bieganski Hospital, 91-347 Lodz, Poland;
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
12
|
Daci R, Flotte TR. Delivery of Adeno-Associated Virus Vectors to the Central Nervous System for Correction of Single Gene Disorders. Int J Mol Sci 2024; 25:1050. [PMID: 38256124 PMCID: PMC10816966 DOI: 10.3390/ijms25021050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Genetic disorders of the central nervous system (CNS) comprise a significant portion of disability in both children and adults. Several preclinical animal models have shown effective adeno-associated virus (AAV) mediated gene transfer for either treatment or prevention of autosomal recessive genetic disorders. Owing to the intricacy of the human CNS and the blood-brain barrier, it is difficult to deliver genes, particularly since the expression of any given gene may be required in a particular CNS structure or cell type at a specific time during development. In this review, we analyzed delivery methods for AAV-mediated gene therapy in past and current clinical trials. The delivery routes analyzed were direct intraparenchymal (IP), intracerebroventricular (ICV), intra-cisterna magna (CM), lumbar intrathecal (IT), and intravenous (IV). The results demonstrated that the dose used in these routes varies dramatically. The average total doses used were calculated and were 1.03 × 1013 for IP, 5.00 × 1013 for ICV, 1.26 × 1014 for CM, and 3.14 × 1014 for IT delivery. The dose for IV delivery varies by patient weight and is 1.13 × 1015 IV for a 10 kg infant. Ultimately, the choice of intervention must weigh the risk of an invasive surgical procedure to the toxicity and immune response associated with a high dose vector.
Collapse
Affiliation(s)
- Rrita Daci
- Department of Neurosurgery, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA 01655, USA;
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Terence R. Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, 55 N Lake Ave, Worcester, MA 01655, USA
| |
Collapse
|
13
|
Han JP, Lee Y, Lee JH, Chung HY, Lee GS, Nam YR, Choi M, Moon KS, Lee H, Lee H, Yeom SC. In vivo genome editing using 244- cis LNPs and low-dose AAV achieves therapeutic threshold in hemophilia A mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102050. [PMID: 37916225 PMCID: PMC10616378 DOI: 10.1016/j.omtn.2023.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Gene therapy and rebalancing therapy have emerged as promising approaches for treating hemophilia A, but there are limitations, such as temporary efficacy due to individual differences. Genome editing for hemophilia has shown long-term therapeutic potential in preclinical trials. However, a cautious approach is necessary because genome editing is irreversible. Therefore, we attempted to induce low-level human factor 8 (hF8) gene knockin (KI) using 244-cis lipid nanoparticles and low-dose adeno-associated virus to minimize side effects and achieve a therapeutic threshold in hemophilia A mice. We selected the serpin family C member 1, SerpinC1, locus as a target to enable a combined rebalancing strategy with hF8 KI to augment efficacy. This strategy improved blood coagulation activity and reduced hemophilic complications without adverse effects. Furthermore, hemophilic mice with genome editing exhibit enhanced survival for 40 weeks. Here, we demonstrate an effective, safe, and sustainable treatment for hemophilia A. This study provides valuable information to establish safe and long-term genome-editing-mediated treatment strategies for treating hemophilia and other protein-deficient genetic diseases.
Collapse
Affiliation(s)
- Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seodaemun-gu, Seoul 03760, Korea
| | - Jeong Hyeon Lee
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Hye Yoon Chung
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Geon Seong Lee
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Yu Ri Nam
- Deartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, Korea
| | - Haeshin Lee
- Deartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seodaemun-gu, Seoul 03760, Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Gwanank-gu, Seoul 08826, Korea
| |
Collapse
|
14
|
Choi EA, Park HJ, Choi SM, Lee JI, Jung KC. Prevention of severe lung immunopathology associated with influenza infection through adeno-associated virus vector administration. Lab Anim Res 2023; 39:26. [PMID: 37904257 PMCID: PMC10614381 DOI: 10.1186/s42826-023-00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) have long posed a threat to humans, occasionally causing significant morbidity and mortality. The initial immune response is triggered by infected epithelial cells, alveolar macrophages and dendritic cells. However, an exaggerated innate immune response can result in severe lung injury and even host mortality. One notable pathology observed in hosts succumbing to severe influenza is the excessive influx of neutrophils and monocytes into the lung. In this study, we investigated a strategy for controlling lung immunopathology following severe influenza infection. RESULTS To evaluate the impact of innate immunity on influenza-associated lung injury, we employed CB17.SCID and NOD.SCID mice. NOD.SCID mice exhibited slower weight loss and longer survival than CB17.SCID mice following influenza infection. Lung inflammation was reduced in NOD.SCID mice compared to CB17.SCID mice. Bulk RNA sequencing analysis of lung tissue showed significant downregulation of 827 genes, and differentially expressed gene analysis indicated that the cytokine-cytokine receptor interaction pathway was predominantly downregulated in NOD.SCID mice. Interestingly, the expression of the Cxcl14 gene was higher in the lungs of influenza-infected NOD.SCID mice than in CB17.SCID mice. Therefore, we induced overexpression of the Cxcl14 gene in the lung using the adeno-associated virus 9 (AAV9)-vector system for target gene delivery. However, when we administered the AAV9 vector carrying the Cxcl14 gene or a control AAV9 vector to BALB/c mice from both groups, the morbidity and mortality rates remained similar. Both groups exhibited lower morbidity and mortality than the naive group that did not receive the AAV9 vector prior to IAV infection, suggesting that the pre-administration of the AAV9 vector conferred protection against lethal influenza infection, irrespective of Cxcl14 overexpression. Furthermore, we found that pre-inoculation of BALB/c mice with AAV9 attenuated the infiltration of trans-macrophages, neutrophils and monocytes in the lungs following IAV infection. Although there was no difference in lung viral titers between the naive group and the AAV9 pre-inoculated group, pre-inoculation with AAV9 conferred lung injury protection against lethal influenza infection in mice. CONCLUSIONS Our study demonstrated that pre-inoculation with AAV9 prior to IAV infection protected mouse lungs from immunopathology by reducing the recruitment of inflammatory cells.
Collapse
Affiliation(s)
- Eun Ah Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hi Jung Park
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
| |
Collapse
|
15
|
Nakamura S, Morohoshi K, Inada E, Sato Y, Watanabe S, Saitoh I, Sato M. Recent Advances in In Vivo Somatic Cell Gene Modification in Newborn Pups. Int J Mol Sci 2023; 24:15301. [PMID: 37894981 PMCID: PMC10607593 DOI: 10.3390/ijms242015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Germline manipulation at the zygote stage using the CRISPR/Cas9 system has been extensively employed for creating genetically modified animals and maintaining established lines. However, this approach requires a long and laborious task. Recently, many researchers have attempted to overcome these limitations by generating somatic mutations in the adult stage through tail vein injection or local administration of CRISPR reagents, as a new strategy called "in vivo somatic cell genome editing". This approach does not require manipulation of early embryos or strain maintenance, and it can test the results of genome editing in a short period. The newborn is an ideal stage to perform in vivo somatic cell genome editing because it is immune-privileged, easily accessible, and only a small amount of CRISPR reagents is required to achieve somatic cell genome editing throughout the entire body, owing to its small size. In this review, we summarize in vivo genome engineering strategies that have been successfully demonstrated in newborns. We also report successful in vivo genome editing through the neonatal introduction of genome editing reagents into various sites in newborns (as exemplified by intravenous injection via the facial vein), which will be helpful for creating models for genetic diseases or treating many genetic diseases.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoko Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Aoi-ku, Shizuoka 420-0881, Japan;
| | - Satoshi Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan;
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho 501-0296, Japan;
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
| |
Collapse
|
16
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
17
|
Waggoner LE, Miyasaki KF, Kwon EJ. Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury. Biomater Sci 2023; 11:4238-4253. [PMID: 36987922 PMCID: PMC10262813 DOI: 10.1039/d2bm01846b] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
Traumatic brain injury (TBI) affects millions of people worldwide, yet there are currently no therapeutics that address the long-term impairments that develop in a large portion of survivors. Lipid nanoparticles (LNPs) are a promising therapeutic strategy that may address the molecular basis of TBI pathophysiology. LNPs are the only non-viral gene delivery platform to achieve clinical success, but systemically administered formulations have only been established for targets in the liver. In this work, we evaluated the pharmacokinetics and activity of LNPs formulated with polyethylene glycol (PEG)-lipids of different anchor lengths when systemically administered to a mouse model of TBI. We observed an increase in LNP accumulation and activity in the injured brain hemisphere compared to the uninjured contralateral brain hemisphere. Interestingly, transgene expression mediated by LNPs was more durable in injured brain tissue compared to off-target organs when compared between 4 and 24 hours. The PEG-lipid is an important component of LNP formulation necessary for the stable formation and storage of LNPs, but the PEG-lipid structure and content also has an impact on LNP function. LNP formulations containing various ratios of PEG-lipid with C18 (DSPE-PEG) and C14 (DMG-PEG) anchors displayed similar physicochemical properties, independent of the PEG-lipid compositions. As the proportion of DSPE-PEG was increased in formulations, blood circulation times of LNPs increased and the duration of expression increased. We also evaluated diffusion of LNPs after convection enhanced delivery (CED) in healthy brains and found LNPs distributed >1 mm away from the injection site. Understanding LNP pharmacokinetics and activity in TBI models and the impact of PEG-lipid anchor length informs the design of LNP-based therapies for TBI after systemic administration.
Collapse
Affiliation(s)
- Lauren E Waggoner
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katelyn F Miyasaki
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Ester J Kwon
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
18
|
He Y, Liang L, Luo C, Zhang ZY, Huang J. Strategies for in situ tissue engineering of vascularized bone regeneration (Review). Biomed Rep 2023; 18:42. [PMID: 37325184 PMCID: PMC10265129 DOI: 10.3892/br.2023.1625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/03/2023] [Indexed: 06/17/2023] Open
Abstract
Numerous physiological processes occur following bone fracture, including inflammatory cell recruitment, vascularization, and callus formation and remodeling. In particular circumstances, such as critical bone defects or osteonecrosis, the regenerative microenvironment is compromised, rendering endogenous stem/progenitor cells incapable of fully manifesting their reparative potential. Consequently, external interventions, such as grafting or augmentation, are frequently necessary. In situ bone tissue engineering (iBTE) employs cell-free scaffolds that possess microenvironmental cues, which, upon implantation, redirect the behavior of endogenous stem/progenitor cells towards a pro-regenerative inflammatory response and reestablish angiogenesis-osteogenesis coupling. This process ultimately results in vascularized bone regeneration (VBR). In this context, a comprehensive review of the current techniques and modalities in VBR-targeted iBTE technology is provided.
Collapse
Affiliation(s)
- Yijun He
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Lin Liang
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Cheng Luo
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Jiongfeng Huang
- Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| |
Collapse
|
19
|
Major L, McClements ME, MacLaren RE. A Review of CRISPR Tools for Treating Usher Syndrome: Applicability, Safety, Efficiency, and In Vivo Delivery. Int J Mol Sci 2023; 24:ijms24087603. [PMID: 37108761 PMCID: PMC10146473 DOI: 10.3390/ijms24087603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This review considers research into the treatment of Usher syndrome, a deaf-blindness syndrome inherited in an autosomal recessive manner. Usher syndrome mutations are markedly heterogeneous, involving many different genes, and research grants are limited due to minimal patient populations. Furthermore, gene augmentation therapies are impossible in all but three Usher syndromes as the cDNA sequence exceeds the 4.7 kb AAV packaging limit. It is, therefore, vital to focus research efforts on alternative tools with the broadest applicability. The CRISPR field took off in recent years following the discovery of the DNA editing activity of Cas9 in 2012. New generations of CRISPR tools have succeeded the original CRISPR/Cas9 model to enable more sophisticated genomic amendments such as epigenetic modification and precise sequence alterations. This review will evaluate the most popular CRISPR tools to date: CRISPR/Cas9, base editing, and prime editing. It will consider these tools in terms of applicability (in relation to the ten most prevalent USH2A mutations), safety, efficiency, and in vivo delivery potential with the intention of guiding future research investment.
Collapse
Affiliation(s)
- Lauren Major
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
20
|
Ishibashi Y, Sung CYW, Grati M, Chien W. Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hear Res 2023; 432:108735. [PMID: 36965335 DOI: 10.1016/j.heares.2023.108735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Adeno-associated virus (AAV)-mediated inner ear gene therapy is a promising treatment option for hearing loss and dizziness. Several studies have shown that AAV-mediated inner ear gene therapy can be applied to various mouse models of hereditary hearing loss to improve their auditory function. Despite the increase in AAV-based animal and clinical studies aiming to rescue auditory and vestibular functions, little is currently known about the host immune responses to AAV in the mammalian inner ear. It has been reported that the host immune response plays an important role in the safety and efficacy of viral-mediated gene therapy. Therefore, in order for AAV-mediated gene therapy to be successfully and safely translated into patients with hearing loss and dizziness, a better understanding of the host immune responses to AAV in the inner ear is critical. In this review, we summarize the current knowledge on host immune responses to AAV-mediated gene therapy in the mammalian inner ear and other organ systems. We also outline the areas of research that are critical for ensuring the safety and efficacy of AAV-mediated inner ear gene therapy in future clinical and translational studies.
Collapse
Affiliation(s)
- Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, 35A 1F220, 35A Covent Dr., Bethesda, MD 20892, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Zhang Y, Xu Y, Kong H, Zhang J, Chan HF, Wang J, Shao D, Tao Y, Li M. Microneedle system for tissue engineering and regenerative medicine. EXPLORATION (BEIJING, CHINA) 2023; 3:20210170. [PMID: 37323624 PMCID: PMC10190997 DOI: 10.1002/exp.20210170] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/18/2022] [Indexed: 06/17/2023]
Abstract
Global increasing demand for high life quality and length facilitates the development of tissue engineering and regenerative medicine, which apply multidisciplinary theories and techniques to achieve the structural reconstruction and functional recovery of disordered or damaged tissues and organs. However, the clinical performances of adopted drugs, materials, and powerful cells in the laboratory are inescapably limited by the currently available technologies. To tackle the problems, versatile microneedles are developed as the new platform for local delivery of diverse cargos with minimal invasion. The efficient delivery, as well as painless and convenient procedure endow microneedles with good patient compliance in clinic. In this review, we first categorize different microneedle systems and delivery models, and then summarize their applications in tissue engineering and regenerative medicine mainly involving maintenance and rehabilitation of damaged tissues and organs. In the end, we discuss the advantages, challenges, and prospects of microneedles in depth for future clinical translations.
Collapse
Affiliation(s)
- Yixin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative MedicineSchool of Biomedical ScienceThe Chinese University of Hong KongHong KongChina
| | - Jiasi Wang
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenChina
| | - Dan Shao
- Institutes of Life SciencesSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouChina
| |
Collapse
|
22
|
Liu R, Xu Y, Qu S, Dai Z. Major Strategies for Spatial Control of Ultrasound-Driven Gene Expression to Enhance Therapeutic Specificity. Crit Rev Biomed Eng 2023; 51:29-40. [PMID: 37522539 DOI: 10.1615/critrevbiomedeng.2023047680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A major challenge of gene therapy is to achieve highly specific transgene expression in tissues of interest with minimized off-target expression. Ultrasound in combination with microbubbles can transiently increase permeability of desired cells or tissues and thereby facilitate gene transfer. This kind of ultrasound-driven transgene expression has gained increasing attention due to its deep tissue penetration and high spatiotemporal resolution. However, successful genetic manipulation in vivo with ultrasound need to well optimize various aspects involved in this process. Ultrasound parameters, microbubble dose, and gene vectors need to be optimized for highly increased transgene expression in the cells of interest. Conversely, the potential off-target transgene expression and toxicities need to be reduced by modification of gene vectors and/or promoter sequence. This review will discuss some major strategies for enhanced specificity of the ultrasound-mediated gene transfer in vivo. Five major strategies will be discussed, including the integration of real-time imaging methods, local injection, targeted microbubbles loaded with nucleic acids, stealth nanocarriers, and cell-specific promoter. The advantages and limitations of each strategy were outlined, hoping to provide a guideline for researchers in achieving high specific ultrasound-driven gene expression.
Collapse
Affiliation(s)
- Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Shuai Qu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| |
Collapse
|
23
|
Coronel J, Yu J, Pilli N, Kane MA, Amengual J. The conversion of β-carotene to vitamin A in adipocytes drives the anti-obesogenic effects of β-carotene in mice. Mol Metab 2022; 66:101640. [PMID: 36400405 PMCID: PMC9707038 DOI: 10.1016/j.molmet.2022.101640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The β-carotene oxygenase 1 (BCO1) is the enzyme responsible for the cleavage of β-carotene to retinal, the first intermediate in vitamin A formation. Preclinical studies suggest that BCO1 expression is required for dietary β-carotene to affect lipid metabolism. The goal of this study was to generate a gene therapy strategy that over-expresses BCO1 in the adipose tissue and utilizes the β-carotene stored in adipocytes to produce vitamin A and reduce obesity. METHODS We generated a novel adipose-tissue-specific, adeno-associated vector to over-express BCO1 (AT-AAV-BCO1) in murine adipocytes. We tested this vector using a unique model to achieve β-carotene accumulation in the adipose tissue, in which Bco1-/- mice were fed β-carotene. An AT-AAV over-expressing green fluorescent protein was utilized as control. We evaluated the adequate delivery route and optimized cellular and organ specificity, dosage, and exposure of our vectors. We also employed morphometric analyses to evaluate the effect of BCO1 expression in adiposity, as well as HPLC and mass spectrometry to quantify β-carotene and retinoids in tissues, including retinoic acid. RESULTS AT-AAV-BCO1 infusions in the adipose tissue of the mice resulted in the production of retinoic acid, a vitamin A metabolite with strong effects on gene regulation. AT-AAV-BCO1 treatment also reduced adipose tissue size and adipocyte area by 35% and 30%, respectively. These effects were sex-specific, highlighting the complexity of vitamin A metabolism in mammals. CONCLUSIONS The over-expression of BCO1 through delivery of an AT-AAV-BCO1 leads to the conversion of β-carotene to vitamin A in adipocytes, which subsequently results in reduction of adiposity. These studies highlight for the first time the potential of adipose tissue β-carotene as a target for BCO1 over-expression in the reduction of obesity.
Collapse
Affiliation(s)
- Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Corresponding author. Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
24
|
Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci U S A 2022; 119:e2210104119. [PMID: 36122230 PMCID: PMC9522375 DOI: 10.1073/pnas.2210104119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CRISPR-Cas-based genome editing technologies could, in principle, be used to treat a wide variety of inherited diseases, including genetic disorders of vision. Programmable CRISPR-Cas nucleases are effective tools for gene disruption, but they are poorly suited for precisely correcting pathogenic mutations in most therapeutic settings. Recently developed precision genome editing agents, including base editors and prime editors, have enabled precise gene correction and disease rescue in multiple preclinical models of genetic disorders. Additionally, new delivery technologies that transiently deliver precision genome editing agents in vivo offer minimized off-target editing and improved safety profiles. These improvements to precision genome editing and delivery technologies are expected to revolutionize the treatment of genetic disorders of vision and other diseases. In this Perspective, we describe current preclinical and clinical genome editing approaches for treating inherited retinal degenerative diseases, and we discuss important considerations that should be addressed as these approaches are translated into clinical practice.
Collapse
Affiliation(s)
- Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Elliot H. Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
25
|
Secretion of functional α1-antitrypsin is cell type dependent: Implications for intramuscular delivery for gene therapy. Proc Natl Acad Sci U S A 2022; 119:e2206103119. [PMID: 35901208 PMCID: PMC9351467 DOI: 10.1073/pnas.2206103119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Heterologous expression of proteins is used widely for the biosynthesis of biologics, many of which are secreted from cells. In addition, gene therapy and messenger RNA (mRNA) vaccines frequently direct the expression of secretory proteins to nonnative host cells. Consequently, it is crucial to understand the maturation and trafficking of proteins in a range of host cells including muscle cells, a popular therapeutic target due to the ease of accessibility by intramuscular injection. Here, we analyzed the production efficiency for α1-antitrypsin (AAT) in Chinese hamster ovary cells, commonly used for biotherapeutic production, and myoblasts (embryonic progenitor cells of muscle cells) and compared it to the production in the major natural cells, liver hepatocytes. AAT is a target protein for gene therapy to address pathologies associated with insufficiencies in native AAT activity or production. AAT secretion and maturation were most efficient in hepatocytes. Myoblasts were the poorest of the cell types tested; however, secretion of active AAT was significantly augmented in myoblasts by treatment with the proteostasis regulator suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. These findings were extended and validated in myotubes (mature muscle cells) where AAT was transduced using an adeno-associated viral capsid transduction method used in gene therapy clinical trials. Overall, our study sheds light on a possible mechanism to enhance the efficacy of gene therapy approaches for AAT and, moreover, may have implications for the production of proteins from mRNA vaccines, which rely on the expression of viral glycoproteins in nonnative host cells upon intramuscular injection.
Collapse
|
26
|
Khanani AM, Thomas MJ, Aziz AA, Weng CY, Danzig CJ, Yiu G, Kiss S, Waheed NK, Kaiser PK. Review of gene therapies for age-related macular degeneration. Eye (Lond) 2022; 36:303-311. [PMID: 35017696 PMCID: PMC8807824 DOI: 10.1038/s41433-021-01842-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
Gene therapies aim to deliver a therapeutic payload to specified tissues with underlying protein deficiency. Since the 1990s, gene therapies have been explored as potential treatments for chronic conditions requiring lifetime care and medical management. Ocular gene therapies target a range of ocular disorders, but retinal diseases are of particular importance due to the prevalence of retinal disease and the current treatment burden of such diseases on affected patients, as well as the challenge of properly delivering these therapies to the target tissue. The purpose of this review is to provide an update on the most current data available for five different retinal gene therapies currently undergoing clinical trials for use against age-related macular degeneration (AMD) and the development of novel delivery routes for the administration of such therapies. Research has been performed and compiled from PubMed and the select authors of this manuscript on the treatment and effectiveness of five current retinal gene therapies: Luxturna, ADVM-022, RGX-314, GT-005, and HMR59. We present the available data of current clinical trials for the treatment of neovascular and dry age-related macular degeneration with different AAV-based gene therapies. We also present current research on the progress of developing novel routes of administration for ocular gene therapies. Retinal gene therapies offer the potential for life-changing treatment for chronic conditions like age-related macular degeneration with a single administration. In doing so, gene therapies change the landscape of treatment options for these chronic conditions for both patient and provider.
Collapse
Affiliation(s)
- Arshad M. Khanani
- grid.492896.8Sierra Eye Associates, Reno, NV USA ,grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Mathew J. Thomas
- grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Aamir A. Aziz
- grid.492896.8Sierra Eye Associates, Reno, NV USA ,grid.266818.30000 0004 1936 914XThe University of Nevada, Reno School of Medicine, Reno, NV USA
| | - Christina Y. Weng
- grid.39382.330000 0001 2160 926XDepartment of Ophthalmology, Baylor College of Medicine, Houston, TX USA
| | - Carl J. Danzig
- Rand Eye Institute, Deerfield Beach, FL USA ,grid.255951.fFlorida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL USA
| | - Glenn Yiu
- grid.27860.3b0000 0004 1936 9684Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA USA
| | - Szilárd Kiss
- grid.413734.60000 0000 8499 1112Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY USA
| | - Nadia K. Waheed
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Tufts University School of Medicine, Boston, MA USA
| | - Peter K. Kaiser
- grid.239578.20000 0001 0675 4725Cole Eye Institute, Cleveland Clinic, Cleveland, OH USA
| |
Collapse
|
27
|
Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat Biomed Eng 2022; 7:349-369. [PMID: 35027688 DOI: 10.1038/s41551-021-00829-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,NUS Suzhou Research Institute, Suzhou, Jiangsu, P. R. China.
| |
Collapse
|
28
|
Guapo F, Strasser L, Millán-Martín S, Anderson I, Bones J. Fast and efficient digestion of adeno associated virus (AAV) capsid proteins for liquid chromatography mass spectrometry (LC-MS) based peptide mapping and post translational modification analysis (PTMs). J Pharm Biomed Anal 2022; 207:114427. [PMID: 34757284 DOI: 10.1016/j.jpba.2021.114427] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) represent a widely used delivery mechanism for gene therapy treatments currently being developed. The size and complexity of these molecules requires the development of sensitive analytical methods for detailed product characterization. Among the quality attributes that need to be monitored, characterization of the AAV capsid protein amino acid sequences and any associated post translational modifications (PTM) present, should be performed. As commonly used for recombinant protein analysis, LC-MS based peptide mapping can provide sequence coverage and PTM information to improve product understanding and the development and deployment of the associated manufacturing processes. In the current study, we report a fast and efficient method to digest AAV5 capsid proteins in only 30 min prior to peptide mapping analysis. The performance of different proteases in digesting AAV5 was compared and the benefits of using nanoflow liquid chromatography for separation prior to high resolution mass spectrometry to obtain 100% sequence coverage are highlighted. Characterization and quantitation of PTMs on AAV5 capsid proteins when using pepsin as a single protease is reported, thereby demonstrating the potential of this method to aid with complete characterization of AAV serotypes in gene therapy development laboratories.
Collapse
Affiliation(s)
- Felipe Guapo
- Characterization and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin A94 X099, Ireland
| | - Lisa Strasser
- Characterization and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin A94 X099, Ireland
| | - Silvia Millán-Martín
- Characterization and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin A94 X099, Ireland
| | - Ian Anderson
- Pharmaron, 12 Estuary Banks, Speke, Liverpool L24 8RB, United Kingdom
| | - Jonathan Bones
- Characterization and Comparability Laboratory, NIBRT - National Institute for Bioprocessing Research and Training, Foster Avenue, Belfield, Blackrock, Dublin A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin D04 V1W8, Ireland.
| |
Collapse
|
29
|
Zolotukhin S, Trivedi PD, Corti M, Byrne BJ. Scratching the surface of RGD-directed AAV capsid engineering. Mol Ther 2021; 29:3099-3100. [PMID: 34699781 DOI: 10.1016/j.ymthe.2021.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sergei Zolotukhin
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610-0296, USA.
| | - Prasad D Trivedi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610-0296, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610-0296, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610-0296, USA
| |
Collapse
|
30
|
Moreno-Gutierrez DS, Zepeda-Cervantes J, Vaca L, Hernandez-Garcia A. An artificial virus-like triblock protein shows low in vivo humoral immune response and high stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112348. [PMID: 34579876 DOI: 10.1016/j.msec.2021.112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
The use of viral vectors for in vivo gene therapy can be severely limited by their immunogenicity. Non-viral vectors may represent an alternative, however, reports analyzing their immunogenicity are still lacking. Here, we studied the humoral immune response in a murine model triggered by artificial virus-like particles (AVLPs) carrying plasmid or antisense DNA. The AVLPs were assembled using a family of modular proteins based on bioinspired collagen-like and silk-like sequences that produce virus-like particles. We compared our AVLPs against an Adeno Associated Virus 1 (AAV), a widely used viral vector for in vivo gene delivery that has been approved by the FDA and EMA for gene therapy. We found that a 1000-fold higher mass of AVLPs than AAV are necessary to obtain similar specific antibody titters. Furthermore, we studied the stability of AVLPs against relevant biological reagents such as heparin and fetal bovine serum to ensure nucleic acid protection in biological media. Our study demonstrates that the AVLPs are stable in physiological conditions and can overcome safety limitations such as immunogenicity. The scarce humoral immunogenicity and high stability found with AVLPs suggest that they have potential to be used as stealth non-viral gene delivery systems for in vivo studies or gene therapy.
Collapse
Affiliation(s)
- David Silverio Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Jesús Zepeda-Cervantes
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, Mexico; Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, UNAM, Mexico
| | - Luis Vaca
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, UNAM, Mexico; Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico.
| |
Collapse
|
31
|
Zhong C, Jiang W, Wang Y, Sun J, Wu X, Zhuang Y, Xiao X. Repeated systemic dosing of AAV vectors in immunocompetent mice after blockade of T-cell costimulatory pathways. Hum Gene Ther 2021; 33:290-300. [PMID: 34486389 DOI: 10.1089/hum.2021.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neutralizing antibodies (NAbs) strongly limit adeno-associated virus (AAV) vector transduction and repeated administration. Previous studies have shown that NAbs induced by AAVs are associated with T and B cell activation and that the B7/CD28 and CD40/CD40L costimulation signaling pathways are involved. CTLA4 and CD40 are vital molecules that participate in the costimulatory pathway. In this study, we evaluated CTLA4-Ig and CD40-Ig immunosuppressive efficacies through AAV and investigated their effects on the feasibility for multiple systemic administrations of AAV vectors. The results showed that a single administration of AAV vector carrying either CTLA4-Ig alone or with CD40-Ig could greatly reduce the level of NAbs. An AAV serotype-specific immune tolerance could be successfully established, which enabled repeated, i.e., second and third, systemic administration of AAV vectors in the same mice. A combination of CTLA4-Ig and CD40-Ig delivered via AAV vectors significantly inhibited T and B cell activations without affecting immune response to the total immunoglobulin G (IgG) production and cytokines. Interestingly, exogenous gene expression significantly improved after multiple administrations of AAV vector in vivo. Our study generates a reliable and effective method for repeated dosing of AAV vectors that is needed on gene therapy.
Collapse
Affiliation(s)
- Chen Zhong
- East China University of Science and Technology, 47860, State Key Laboratory of Bioreactor Engineering, School of Biotechnology, shanghai, China;
| | - Wei Jiang
- East China University of Science and Technology, 47860, Shanghai, Shanghai, China;
| | - Yefan Wang
- East China University of Science and Technology, 47860, Shanghai, Shanghai, China;
| | - Junjiang Sun
- The University of North Carolina at Chapel Hill, 2331, Gene Therapy Center, Chapel Hill, North Carolina, United States.,University of North Carolina at Chapel Hill Eshelman School of Pharmacy, 15521, Division of Molecular Pharmaceutics, Chapel Hill, North Carolina, United States;
| | - Xia Wu
- East China University of Science and Technology, 47860, School of Pharmacy, Shanghai, Shanghai, China;
| | - Yingping Zhuang
- East China University of Science and Technology, 47860, State Key Laboratory of Bioreactor Engineering, School of Biotechnology, Shanghai, Shanghai, China;
| | - Xiao Xiao
- East China University of Science and Technology, 47860, School of Pharmacy, Shanghai, Shanghai, China;
| |
Collapse
|
32
|
Chatterjee S, Sivanandam V, Wong KKM. Adeno-Associated Virus and Hematopoietic Stem Cells: The Potential of Adeno-Associated Virus Hematopoietic Stem Cells in Genetic Medicines. Hum Gene Ther 2021; 31:542-552. [PMID: 32253938 DOI: 10.1089/hum.2020.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adeno-associated virus (AAV)-based vectors have transformed into powerful elements of genetic medicine with proven therapeutic efficacy and a good safety profile. Over the years, efforts to transduce hematopoietic stem cells (HSCs) with AAV2 vectors have, however, been challenging. While there was evidence that AAV2 delivered vector genomes to primitive, quiescent, multipotential, self-renewing, in vivo engrafting HSCs, transgene expression was elusive. In this study, we review the evolution of AAV transduction of HSC, starting with AAV2 vectors leading to the isolation of a family of naturally occurring AAVs from human CD34+ HSC, the AAVHSC. The stem cell-derived AAVHSCs have turned out to have remarkable potentials for genetic therapies well beyond the hematopoietic system. AAVHSCs have tropism for a wide variety of peripheral tissues, including the liver, muscle, and the retina. They cross the blood-brain barrier and transduce cells of the central nervous system. Preclinical gene therapy studies underway using AAVHSC vectors are discussed. We review the notable ability of AAVHSCs to mediate efficient, seamless homologous recombination in the absence of exogenous nuclease activity and discuss the therapeutic implications. We also discuss early results from an AAVHSC-based clinical gene therapy trial that is underway for the treatment of phenylketonuria. Thus, the stem cell-derived AAVHSC, offer a multifaceted platform for in vivo gene therapy and genome editing for the treatment of inherited diseases.
Collapse
Affiliation(s)
- Saswati Chatterjee
- Department of Surgery, Beckman Research Institute of City of Hope Medical Center, Duarte, California, USA
| | - Venkatesh Sivanandam
- Department of Surgery, Beckman Research Institute of City of Hope Medical Center, Duarte, California, USA
| | - Kamehameha Kai-Min Wong
- Department of Hematology and Stem Cell Transplantation, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
33
|
Muhuri M, Zhan W, Maeda Y, Li J, Lotun A, Chen J, Sylvia K, Dasgupta I, Arjomandnejad M, Nixon T, Keeler AM, Manokaran S, He R, Su Q, Tai PWL, Gao G. Novel Combinatorial MicroRNA-Binding Sites in AAV Vectors Synergistically Diminish Antigen Presentation and Transgene Immunity for Efficient and Stable Transduction. Front Immunol 2021; 12:674242. [PMID: 33995418 PMCID: PMC8113644 DOI: 10.3389/fimmu.2021.674242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) platforms hold promise for in vivo gene therapy but are undermined by the undesirable transduction of antigen presenting cells (APCs), which in turn can trigger host immunity towards rAAV-expressed transgene products. In light of recent adverse events in patients receiving high systemic AAV vector doses that were speculated to be related to host immune responses, development of strategies to mute innate and adaptive immunity is imperative. The use of miRNA binding sites (miR-BSs) to confer endogenous miRNA-mediated regulation to detarget transgene expression from APCs has shown promise for reducing transgene immunity. Studies have shown that designing miR-142BSs into rAAV1 vectors were able to repress costimulatory signals in dendritic cells (DCs), blunt the cytotoxic T cell response, and attenuate clearance of transduced muscle cells in mice to allow sustained transgene expression in myofibers with negligible anti-transgene IgG production. In this study, we screened individual and combinatorial miR-BS designs against 26 miRNAs that are abundantly expressed in APCs, but not in skeletal muscle. The highly immunogenic ovalbumin (OVA) transgene was used as a proxy for foreign antigens. In vitro screening in myoblasts, mouse DCs, and macrophages revealed that the combination of miR-142BS and miR-652-5pBS strongly mutes transgene expression in APCs but maintains high myoblast and myocyte expression. Importantly, rAAV1 vectors carrying this novel miR-142/652-5pBS cassette achieve higher transgene levels following intramuscular injections in mice than previous detargeting designs. The cassette strongly inhibits cytotoxic CTL activation and suppresses the Th17 response in vivo. Our approach, thus, advances the efficiency of miRNA-mediated detargeting to achieve synergistic reduction of transgene-specific immune responses and the development of safe and efficient delivery vehicles for gene therapy.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Yukiko Maeda
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anoushka Lotun
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jennifer Chen
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Katelyn Sylvia
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Thomas Nixon
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Allison M. Keeler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sangeetha Manokaran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ran He
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Phillip W. L. Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
34
|
Bombyx mori Pupae Efficiently Produce Recombinant AAV2/HBoV1 Vectors with a Bombyx mori Nuclear Polyhedrosis Virus Expression System. Viruses 2021; 13:v13040704. [PMID: 33919645 PMCID: PMC8073075 DOI: 10.3390/v13040704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/07/2023] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors have broad application prospects in the field of gene therapy. The establishment of low-cost and large-scale manufacturing is now the general agenda for industry. The baculovirus-insect cell/larva expression system has great potential for these applications due to its scalability and predictable biosafety. To establish a more efficient production system, Bombyx mori pupae were used as a new platform and infected with recombinant Bombyx mori nuclear polyhedrosis virus (BmNPV). The production of a chimeric recombinant adeno-associated virus (rAAV) serotype 2/human bocavirus type-1 (HBoV1) vector was used to evaluate the efficiency of this new baculovirus expression vector (BEV)–insect expression system. For this purpose, we constructed two recombinant BmNPVs, which were named rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP. The yields of rAAV2/HBoV1 derived from the rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP co-infected BmN cells exceeded 2 × 104 vector genomes (VG) per cell. The rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP can express stably for at least five passages. Significantly, rAAV2/HBoV1 could be efficiently generated from BmNPV-infected silkworm larvae and pupae at average yields of 2.52 × 1012 VG/larva and 4.6 × 1012 VG/pupa, respectively. However, the vectors produced from the larvae and pupae had a high percentage of empty particles, which suggests that further optimization is required for this platform in the future. Our work shows that silkworm pupae, as an efficient bioreactor, have great potential for application in the production of gene therapy vectors.
Collapse
|
35
|
Chung SH, Mollhoff IN, Mishra A, Sin TN, Ngo T, Ciulla T, Sieving P, Thomasy SM, Yiu G. Host Immune Responses after Suprachoroidal Delivery of AAV8 in Nonhuman Primate Eyes. Hum Gene Ther 2021; 32:682-693. [PMID: 33446041 PMCID: PMC8312020 DOI: 10.1089/hum.2020.281] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The suprachoroid is a potential space located between the sclera and choroid of the eye, which provides a novel route for ocular drug or viral vector delivery. Suprachoroidal injection of adeno-associated virus (AAV)8 using transscleral microneedles enables widespread transgene expression in eyes of nonhuman primates, but may cause intraocular inflammation. We characterized the host humoral and cellular immune responses after suprachoroidal delivery of AAV8 expressing green fluorescent protein (GFP) in rhesus macaques, and found that it can induce mild chorioretinitis that resolves after systemic corticosteroid administration, with recovery of photoreceptor morphology, but persistent immune cell infiltration after 3 months, corresponding to a loss of GFP expression from retinal pigment epithelial cells, but persistent expression in scleral fibroblasts. Suprachoroidal AAV8 triggered B cell and T cell responses against GFP, but only mild antibody responses to the viral capsid compared to intravitreal injections of the same vector and dose. Systemic biodistribution studies showed lower AAV8 levels in liver and spleen after suprachoroidal injection compared with intravitreal delivery. Our findings suggest that suprachoroidal AAV8 primarily triggers host immune responses to GFP, likely due to sustained transgene expression in scleral fibroblasts outside the blood-retinal barrier, but elicits less humoral immune reactivity to the viral capsid than intravitreal delivery due to lower egress into systemic circulation. As GFP is not native to primates and not a clinically relevant transgene, suprachoroidal AAV delivery of human transgenes may have significant translational potential for retinal gene therapy.
Collapse
Affiliation(s)
- Sook Hyun Chung
- Department of Ophthalmology and Vision Science, University of California Davis, Davis, California, USA
| | - Iris Natalie Mollhoff
- Department of Ophthalmology and Vision Science, University of California Davis, Davis, California, USA
| | - Alaknanda Mishra
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA
| | - Tzu-Ni Sin
- Department of Ophthalmology and Vision Science, University of California Davis, Davis, California, USA
| | - Taylor Ngo
- Department of Ophthalmology and Vision Science, University of California Davis, Davis, California, USA
| | - Thomas Ciulla
- Department of Clearside Biomedical, Inc., Alpharetta, Georgia, USA
| | - Paul Sieving
- Department of Ophthalmology and Vision Science, University of California Davis, Davis, California, USA
| | - Sara M Thomasy
- Department of Ophthalmology and Vision Science, University of California Davis, Davis, California, USA.,Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California Davis, Davis, California, USA
| |
Collapse
|
36
|
Koblan LW, Erdos MR, Wilson C, Cabral WA, Levy JM, Xiong ZM, Tavarez UL, Davison LM, Gete YG, Mao X, Newby GA, Doherty SP, Narisu N, Sheng Q, Krilow C, Lin CY, Gordon LB, Cao K, Collins FS, Brown JD, Liu DR. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature 2021; 589:608-614. [PMID: 33408413 PMCID: PMC7872200 DOI: 10.1038/s41586-020-03086-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1-4. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.
Collapse
Affiliation(s)
- Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Michael R Erdos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Wilson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Wayne A Cabral
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zheng-Mei Xiong
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Urraca L Tavarez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay M Davison
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yantenew G Gete
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaojing Mao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Sean P Doherty
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Narisu Narisu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chad Krilow
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Therapeutic Innovation Center, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Kronos, Bio Inc., Cambridge, MA, USA
| | - Leslie B Gordon
- Hasbro Children's Hospital, Alpert Medical School of Brown University, Providence, RI, USA
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
37
|
Palla AR, Ravichandran M, Wang YX, Alexandrova L, Yang AV, Kraft P, Holbrook CA, Schürch CM, Ho ATV, Blau HM. Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle mass and strength. Science 2020; 371:science.abc8059. [PMID: 33303683 DOI: 10.1126/science.abc8059] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Treatments are lacking for sarcopenia, a debilitating age-related skeletal muscle wasting syndrome. We identifed increased amounts of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), the prostaglandin E2 (PGE2)-degrading enzyme, as a hallmark of aged tissues, including skeletal muscle. The consequent reduction in PGE2 signaling contributed to muscle atrophy in aged mice and results from 15-PGDH-expressing myofibers and interstitial cells, such as macrophages, within muscle. Overexpression of 15-PGDH in young muscles induced atrophy. Inhibition of 15-PGDH, by targeted genetic depletion or a small-molecule inhibitor, increased aged muscle mass, strength, and exercise performance. These benefits arise from a physiological increase in PGE2 concentrations, which augmented mitochondrial function and autophagy and decreased transforming growth factor-β signaling and activity of ubiquitin-proteasome pathways. Thus, PGE2 signaling ameliorates muscle atrophy and rejuvenates muscle function, and 15-PGDH may be a suitable therapeutic target for countering sarcopenia.
Collapse
Affiliation(s)
- A R Palla
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - M Ravichandran
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Y X Wang
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - L Alexandrova
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA, USA
| | - A V Yang
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - P Kraft
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - C A Holbrook
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - C M Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA.,Nolan Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA
| | - A T V Ho
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA.,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - H M Blau
- Blau Laboratory, Stanford School of Medicine, Stanford, CA 94305, USA. .,Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Shi H, Xue T, Yang Y, Jiang C, Huang S, Yang Q, Lei D, You Z, Jin T, Wu F, Zhao Q, Ye X. Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. SCIENCE ADVANCES 2020; 6:eaaz3621. [PMID: 32596444 PMCID: PMC7299628 DOI: 10.1126/sciadv.aaz3621] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/04/2020] [Indexed: 06/01/2023]
Abstract
Cardiovascular disorders are still the primary cause of mortality worldwide. Although intramyocardial injection can effectively deliver agents to the myocardium, this approach is limited because of its restriction to needle-mediated injection and the minor retention of agents in the myocardium. Here, we engineered phase-transition microneedles (MNs) coated with adeno-associated virus (AAV) and achieved homogeneous distribution of AAV delivery. Bioluminescence imaging revealed the successful delivery and transfection of AAV-luciferase. AAV-green fluorescent protein-transfected cardiomyocytes were homogeneously distributed on postoperative day 28. AAV-vascular endothelial growth factor (VEGF)-loaded MNs improved heart function by enhancing VEGF expression, promoting functional angiogenesis, and activating the Akt signaling pathway. The results indicated the superiority of MNs over direct muscle injection. Consequently, MNs might emerge as a promising tool with great versatility for delivering various agents to treat ischemic myocardial disease.
Collapse
Affiliation(s)
- Hongpeng Shi
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Tong Xue
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Yang
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China
| | - Chenyu Jiang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Shixing Huang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Qi Yang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Dong Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering Donghua University, Shanghai 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering Donghua University, Shanghai 201620, P. R. China
| | - Tuo Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fei Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qiang Zhao
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xiaofeng Ye
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
39
|
Abstract
The adoptive cell transfer (ACT) of genetically engineered T cell receptor (TCR) T cells is one of the burgeoning fields of immunotherapy, with promising results in current clinical trials. Presently, clinicaltrials.gov has over 200 active trials involving adoptive cell therapy. The ACT of genetically engineered T cells not only allows the ability to select for TCRs with desired properties such as high-affinity receptors and tumor reactivity but to further enhance those receptors allowing for better targeting and killing of cancer cells in patients. Moreover, the addition of genetic material, including cytokines and cytokine receptors, can increase the survival and persistence of the T cell allowing for complete and sustained remission of cancer targets. The potential for improvement in adoptive cell therapy is limitless, with genetic modifications targeting to improve weaknesses of ACT and to thus enhance receptor affinity and functional avidity of the genetically engineered T cells.
Collapse
|
40
|
Keeler AM, Flotte TR. Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here? Annu Rev Virol 2019; 6:601-621. [PMID: 31283441 PMCID: PMC7123914 DOI: 10.1146/annurev-virology-092818-015530] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent market approvals of recombinant adeno-associated virus (rAAV) gene therapies in Europe and the United States are landmark achievements in the history of modern science. These approvals are also anticipated to herald the emergence of a new class of therapies for monogenic disorders, which had hitherto been considered untreatable. These events can be viewed as stemming from the convergence of several important historical trends: the study of basic virology, the development of genomic technologies, the imperative for translational impact of National Institutes of Health-funded research, and the development of economic models for commercialization of rare disease therapies. In this review, these historical trends are described and the key developments that have enabled clinical rAAV gene therapies are discussed, along with an overview of the current state of the field and future directions.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| | - Terence R Flotte
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| |
Collapse
|
41
|
Mesoporous bioactive glasses for bone healing and biomolecules delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110180. [PMID: 31753410 DOI: 10.1016/j.msec.2019.110180] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023]
Abstract
Impact of bone diseases and injury is increasing at an enormous rate during the past decades due to increase in road traffic accidents and other injuries. Bioactive glasses have excellent biocompatibility and osteoconductivity that makes it suitable for bone regeneration. Researches and studies conducted on several bioactive glasses gives an insight on the need of multi-disciplinary approaches involving various scientific fields to attain its full potential. Of late, a next generation bioactive glass called as mesoporous bioactive glass (MBG) has been developed with higher specific surface area and control over mesoporous structure that presents a new material for bone regeneration. A brief discussion and overview on the potential use of MBG as a suitable material for bone tissue regeneration and biomolecule delivery is included. Additionally, possible control of the structural and functional property based on composition and fabrication techniques are also covered. According to recent researches, MBG-implant interaction with bone forming cells for cellular growth and differentiation as well as its effect on delivery of growth factor, both in vitro and in vivo, are optimistic; yet, the complete efficacy of this material is still to be explored. Hence, in this article we will review the current development and its applications for bone tissue engineering (TE).
Collapse
|
42
|
Saito S, Ohno SI, Harada Y, Oikawa K, Fujita K, Mineo S, Gondo A, Kanno Y, Kuroda M. rAAV6-mediated miR-29b delivery suppresses renal fibrosis. Clin Exp Nephrol 2019; 23:1345-1356. [PMID: 31482255 DOI: 10.1007/s10157-019-01783-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies showed that microRNA-29b (miR-29b) inhibits renal fibrosis. Therefore, miR-29b replacement therapy represents a promising approach for treating renal fibrosis. However, an efficient method of kidney-targeted miRNA delivery has yet to be established. Recombinant adeno-associated virus (rAAV) vectors have great potential for clinical application. For kidney-targeted gene delivery, the most suitable AAV serotype has yet to be established. Here, we identified the most suitable AAV serotype for kidney-targeted gene delivery and determined that AAV-mediated miR-29b delivery can suppress renal fibrosis in vivo. METHOD To determine which AAV serotype is suitable for kidney cells, GFP-positive cells were identified by flow cytometry after the infection of rAAV serotype 1-9 vectors containing the EGFP gene. Next, we injected rAAV vectors into the renal pelvis to determine transduction efficiency in vivo. GFP expression was measured seven days after injecting rAAV serotype 1-9 vectors carrying the EGFP gene. Finally, we investigated whether rAAV6-mediated miR-29b delivery can suppress renal fibrosis in UUO mouse model. RESULTS We found that rAAV6 vector is the most suitable for targeting kidney cells regardless of animal species in vitro and rAAV6 is the most suitable vector for kidney-targeted in vivo gene delivery in mice. Intra-renal pelvic injection of rAAV vectors can transduce genes into kidney TECs. Furthermore, rAAV6-mediated miR-29b delivery attenuated renal fibrosis in UUO model by suppressing Snail1 expression. CONCLUSION Our study has revealed that rAAV6 is the most suitable serotype for kidney-targeted gene delivery and rAAV6-mediated miR-29b delivery into kidney TECs can suppress established renal fibrosis.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan.
| | - Yuichirou Harada
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| | - Keiki Oikawa
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| | - Koji Fujita
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| | - Shouichirou Mineo
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| | - Asako Gondo
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiko Kanno
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| |
Collapse
|
43
|
Ma H, Lu Y, Lowe K, van der Meijden-Erkelens L, Wasserfall C, Atkinson MA, Song S. Regulated hAAT Expression from a Novel rAAV Vector and Its Application in the Prevention of Type 1 Diabetes. J Clin Med 2019; 8:jcm8091321. [PMID: 31466263 PMCID: PMC6780368 DOI: 10.3390/jcm8091321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022] Open
Abstract
We, and others, have previously achieved high and sustained levels of transgene expression from viral vectors, such as recombinant adeno-associated virus (rAAV). However, regulatable transgene expression may be preferred in gene therapy for diseases, such as type 1 diabetes (T1D) and rheumatoid arthritis (RA), in which the timing and dosing of the therapeutic gene product play critical roles. In the present study, we generated a positive feedback regulation system for human alpha 1 antitrypsin (hAAT) expression in the rAAV vector. We performed quantitative kinetics studies in vitro and in vivo demonstrating that this vector system can mediate high levels of inducible transgene expression. Transgene induction could be tailored to occur rapidly or gradually, depending on the dose of the inducing drug, doxycycline (Dox). Conversely, after withdrawal of Dox, the silencing of transgene expression occurred slowly over the course of several weeks. Importantly, rAAV delivery of inducible hAAT significantly prevented T1D development in non-obese diabetic (NOD) mice. These results indicate that this Dox-inducible vector system may facilitate the fine-tuning of transgene expression, particularly for hAAT treatment of human autoimmune diseases, including T1D.
Collapse
Affiliation(s)
- Hongxia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA
| | - Yuanqing Lu
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA
| | - Keith Lowe
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA
| | | | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sihong Song
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
44
|
Sokołowska E, Błachnio-Zabielska AU. A Critical Review of Electroporation as A Plasmid Delivery System in Mouse Skeletal Muscle. Int J Mol Sci 2019; 20:ijms20112776. [PMID: 31174257 PMCID: PMC6600476 DOI: 10.3390/ijms20112776] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
The gene delivery to skeletal muscles is a promising strategy for the treatment of both muscular disorders (by silencing or overexpression of specific gene) and systemic secretion of therapeutic proteins. The use of a physical method like electroporation with plate or needle electrodes facilitates long-lasting gene silencing in situ. It has been reported that electroporation enhances the expression of the naked DNA gene in the skeletal muscle up to 100 times and decreases the changeability of the intramuscular expression. Coelectransfer of reporter genes such as green fluorescent protein (GFP), luciferase or beta-galactosidase allows the observation of correctly performed silencing in the muscles. Appropriate selection of plasmid injection volume and concentration, as well as electrotransfer parameters, such as the voltage, the length and the number of electrical pulses do not cause long-term damage to myocytes. In this review, we summarized the electroporation methodology as well as the procedure of electrotransfer to the gastrocnemius, tibialis, soleus and foot muscles and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Emilia Sokołowska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, 15-222 Bialystok, Poland.
| | | |
Collapse
|
45
|
Yu DL, Stegelmeier AA, Chow N, Rghei AD, Matuszewska K, Lawler J, Bridle BW, Petrik JJ, Wootton SK. AAV-mediated expression of 3TSR inhibits tumor and metastatic lesion development and extends survival in a murine model of epithelial ovarian carcinoma. Cancer Gene Ther 2019; 27:356-367. [PMID: 31160686 DOI: 10.1038/s41417-019-0108-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
An integral step in the development of solid tumors is the recruitment of blood vessels to fuel tumor growth. Antiangiogenic therapies can inhibit this process and control solid tumor growth. Thrombospondin-1 is an antiangiogenic protein possessing three type I repeats (3TSR) near the center of the protein and a CD47-binding peptide (CD47) in its C-terminus. Previously, we showed that treatment with recombinant 3TSR induces tumor regression, normalizes tumor vasculature, and improves uptake of chemotherapy drugs in an orthotopic, syngeneic mouse model of advanced stage epithelial ovarian cancer (EOC). While effective, this intervention required daily intraperitoneal injections. To circumvent this, here we employ adeno-associated virus (AAV) gene therapy vectors to express 3TSR alone or in combination with the CD47-binding peptide of TSP-1 and evaluate the impact on tumor development and survival in a mouse model of EOC. A single intraperitoneal injection of 1 × 1011 vg of AAV expressing 3TSR, CD47-binding peptide, or 3TSR + CD47 effectively suppressed primary tumor growth; however, only AAV-3TSR was able to inhibit development of secondary lesions at 90-days post-tumor implantation and significantly improve survival. Taken together, AAV-mediated expression of 3TSR appears safe and effective at inhibiting tumor development and represents a novel, less invasive approach for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Darrick L Yu
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Natalie Chow
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - James J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
46
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
47
|
Cao M, Bandyopadhyay S, Zhu H, You H, Hermonat PL. The HPV16 E1 Carboxyl Domain Provides a Helper Function for Adeno-Associated Virus Replication. Intervirology 2019; 61:185-192. [PMID: 30654371 DOI: 10.1159/000495137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Recombinant adeno-associated virus (rAAV) is now in the clinic, yet production of rAAV remains problematic. We previously determined that human papillomavirus type 16 (HPV16) E1 protein boosts rAAV yields and E1 enhances AAV Rep78's replication-related biochemistries. Here, we deletion-mapped the helper domain within E1 to help glean its mechanism of action. METHODS Rep78-E1 interaction was analyzed by Gal4-based yeast two-hybrid (Y2H)-cDNA assay. rAAV DNA replication was studied by AAV/helper plasmid transfection into HEK293 cells and Southern blot. Gene expression analysis was made of AAV and E1 plasmid transfection, cDNA generation, and then quantitative polymerase chain reaction. NCBI protein BLAST was used for the homology analysis. RESULTS Gal4-Y2H- cDNA assay found in vivo Rep78-E1-binding activity across E1, but the carboxyl-third (amino acids [aa] 421-649) of E1 contained the predominant DNA replication helper domain. The amino-half of E1 (aa 1-337) inhibited transcription of rep (p5 promoter) and cap (p40, trending lower) from non-replicating helper plasmid by quantitative (q)RT-PCR. CONCLUSIONS The aa 421-649 helper domain of HPV16 E1 includes the ATP-binding/helicase region of E1 which boosts rAAV production and has homology with the analogous region of parvovirus NS-1/Rep78 by NCBI protein BLAST, suggesting these biochemistries are responsible for the mechanism of action in E1 helper function.
Collapse
Affiliation(s)
- Maohua Cao
- Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sarmistha Bandyopadhyay
- Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hongqing Zhu
- Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hong You
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Paul L Hermonat
- Beijing Friendship Hospital, Capital Medical University, Beijing, China, .,Departments of Obstetrics and Gynecology and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA,
| |
Collapse
|
48
|
McCall AL, Stankov SG, Cowen G, Cloutier D, Zhang Z, Yang L, Clement N, Falk DJ, Byrne BJ. Reduction of Autophagic Accumulation in Pompe Disease Mouse Model Following Gene Therapy. Curr Gene Ther 2019; 19:197-207. [PMID: 31223086 DOI: 10.2174/1566523219666190621113807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pompe disease is a fatal neuromuscular disorder caused by a deficiency in acid α-glucosidase, an enzyme responsible for glycogen degradation in the lysosome. Currently, the only approved treatment for Pompe disease is enzyme replacement therapy (ERT), which increases patient survival, but does not fully correct the skeletal muscle pathology. Skeletal muscle pathology is not corrected with ERT because low cation-independent mannose-6-phosphate receptor abundance and autophagic accumulation inhibits the enzyme from reaching the lysosome. Thus, a therapy that more efficiently targets skeletal muscle pathology, such as adeno-associated virus (AAV), is needed for Pompe disease. OBJECTIVE The goal of this project was to deliver a rAAV9-coGAA vector driven by a tissue restrictive promoter will efficiently transduce skeletal muscle and correct autophagic accumulation. METHODS Thus, rAAV9-coGAA was intravenously delivered at three doses to 12-week old Gaa-/- mice. 1 month after injection, skeletal muscles were biochemically and histologically analyzed for autophagy-related markers. RESULTS At the highest dose, GAA enzyme activity and vacuolization scores achieved therapeutic levels. In addition, resolution of autophagosome (AP) accumulation was seen by immunofluorescence and western blot analysis of autophagy-related proteins. Finally, mice treated at birth demonstrated persistence of GAA expression and resolution of lysosomes and APs compared to those treated at 3 months. CONCLUSION In conclusion, a single systemic injection of rAAV9-coGAA ameliorates vacuolar accumulation and prevents autophagic dysregulation.
Collapse
Affiliation(s)
- Angela L McCall
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sylvia G Stankov
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Gabrielle Cowen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Denise Cloutier
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Zizhao Zhang
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States
| | - Lin Yang
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States
| | - Nathalie Clement
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Darin J Falk
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
49
|
Rao VK, Kapp D, Schroth M. Gene Therapy for Spinal Muscular Atrophy: An Emerging Treatment Option for a Devastating Disease. J Manag Care Spec Pharm 2018; 24:S3-S16. [PMID: 30582825 PMCID: PMC10408414 DOI: 10.18553/jmcp.2018.24.12-a.s3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease that, in most cases, involves homozygous deletion of the SMN1 gene. This causes a deficiency in survival motor neuron (SMN) protein, which plays a critical role in motor neuron development. SMA has a range of phenotype expression resulting in variable age of symptom onset, maximum motor strength achieved, and survival. Without intervention, infants with a more severe form of the disease (type 1 SMA) die before 2 years of age. Although it is rare, SMA is the most common fatal inherited disease of infancy, and until recently, treatment was primarily supportive. In 2016, a new agent, nusinersen, was approved by the FDA. Other treatments are in development, including a gene therapy, AVXS-101. These treatments are not only improving the lives of patients with SMA and their families, they are changing the disease phenotype. They have the greatest benefit when given early in the disease course. OBJECTIVES To discuss current knowledge about SMA, provide clinical evidence for available and emerging treatment options, and present approaches for adding new therapies to hospital/health system formularies to ensure timely access to newly approved therapies for SMA. SUMMARY Advances in clinical care have significantly extended the lives of individuals with SMA, and research into the genetic mechanisms leading to disease have revealed strategies for intervention that target the underlying cause of SMA. Nusinersen is now on the market, and other treatment options, such as AVXS-101, may soon be approved. This article provides an overview of SMA and the genetic mechanisms leading to SMN deficiency, then describes how new and emerging treatments work to overcome this deficiency and prevent associated nerve damage and disability. In addition, we discuss steps for incorporating AVXS-101 into hospital/health system formularies, along with barriers and concerns that may delay access, based in part on lessons learned with nusinersen.
Collapse
|
50
|
Abstract
The ability to efficiently modify the genome using CRISPR technology has rapidly revolutionized biology and genetics and will soon transform medicine. Duchenne muscular dystrophy (DMD) represents one of the first monogenic disorders that has been investigated with respect to CRISPR-mediated correction of causal genetic mutations. DMD results from mutations in the gene encoding dystrophin, a scaffolding protein that maintains the integrity of striated muscles. Thousands of different dystrophin mutations have been identified in DMD patients, who suffer from a loss of ambulation followed by respiratory insufficiency, heart failure, and death by the third decade of life. Using CRISPR to bypass DMD mutations, dystrophin expression has been efficiently restored in human cells and mouse models of DMD. Here, we review recent progress toward the development of possible CRISPR therapies for DMD and highlight opportunities and potential obstacles in attaining this goal.
Collapse
Affiliation(s)
- Yi-Li Min
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|