1
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
2
|
Profit AA, Vedad J, Saleh M, Desamero RZB. Aromaticity and amyloid formation: effect of π-electron distribution and aryl substituent geometry on the self-assembly of peptides derived from hIAPP(22-29). Arch Biochem Biophys 2015; 567:46-58. [PMID: 25524740 PMCID: PMC5490837 DOI: 10.1016/j.abb.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/26/2014] [Accepted: 12/07/2014] [Indexed: 10/24/2022]
Abstract
A comprehensive investigation of peptides derived from the 22-29 region of human islet amyloid polypeptide (hIAPP) that contain phenylalanine analogs at position 23 with a variety of electron donating and withdrawing groups, along with heteroaromatic surrogates, has been employed to interrogate how π-electron distribution effects amyloid formation. Kinetic aggregation studies using turbidity measurements indicate that electron rich aromatic ring systems consistently abolish the amyloidogenic propensity of hIAPP(22-29). Electron poor systems modulate the rate of aggregation. Raman and Fourier transform infrared spectroscopy confirm the parallel β-sheet secondary structure of aggregates derived from peptides containing electron poor phenylalanine analogs and provide direct evidence of ring stacking. Transmission electron microscopy confirms the presence of amyloid fibrils. The effect of aryl substituent geometry on peptide self-assembly reveals that the electronic nature of substituents and not their steric profile is responsible for failure of the electron donating group peptides to aggregate. Non-aggregating hIAPP(22-29) peptides were found to inhibit the self-assembly of full-length hIAPP(1-37). The most potent inhibitory peptides contain phenylalanine with the p-amino and p-formamido functionalities. These novel peptides may serve as leads for the development of future aggregation inhibitors. A potential mechanism for inhibition of amylin self-assembly by electron rich (-29) peptides is proposed.
Collapse
Affiliation(s)
- Adam A Profit
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, NY 11451, United States.
| | - Jayson Vedad
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, NY 11451, United States
| | - Mohamad Saleh
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, NY 11451, United States
| | - Ruel Z B Desamero
- York College, Institute for Macromolecular Assemblies and the Graduate Center of the City University of New York, Jamaica, NY 11451, United States.
| |
Collapse
|
3
|
Muñoz G, Urrutia JC, Burgos CF, Silva V, Aguilar F, Sama M, Yeh HH, Opazo C, Aguayo LG. Low concentrations of ethanol protect against synaptotoxicity induced by Aβ in hippocampal neurons. Neurobiol Aging 2015; 36:845-56. [DOI: 10.1016/j.neurobiolaging.2014.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/23/2014] [Accepted: 10/08/2014] [Indexed: 12/27/2022]
|
4
|
Bharadwaj PR, Verdile G, Barr RK, Gupta V, Steele JW, Lachenmayer ML, Yue Z, Ehrlich ME, Petsko G, Ju S, Ringe D, Sankovich SE, Caine JM, Macreadie IG, Gandy S, Martins RN. Latrepirdine (dimebon) enhances autophagy and reduces intracellular GFP-Aβ42 levels in yeast. J Alzheimers Dis 2013; 32:949-67. [PMID: 22903131 DOI: 10.3233/jad-2012-120178] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Latrepirdine (Dimebon), an anti-histamine, has shown some benefits in trials of neurodegenerative diseases characterized by accumulation of aggregated or misfolded protein such as Alzheimer's disease (AD) and has been shown to promote the removal of α-synuclein protein aggregates in vivo. An important pathway for removal of aggregated or misfolded proteins is the autophagy-lysosomal pathway, which has been implicated in AD pathogenesis, and enhancing this pathway has been shown to have therapeutic potential in AD and other proteinopathies. Here we use a yeast model, Saccharomyces cerevisiae, to investigate whether latrepirdine can enhance autophagy and reduce levels of amyloid-β (Aβ)42 aggregates. Latrepirdine was shown to upregulate yeast vacuolar (lysosomal) activity and promote transport of the autophagic marker (Atg8) to the vacuole. Using an in vitro green fluorescent protein (GFP) tagged Aβ yeast expression system, we investigated whether latrepirdine-enhanced autophagy was associated with a reduction in levels of intracellular GFP-Aβ42. GFP-Aβ42 was localized into punctate patterns compared to the diffuse cytosolic pattern of GFP and the GFP-Aβ42 (19:34), which does not aggregate. In the autophagy deficient mutant (Atg8Δ), GFP-Aβ42 showed a more diffuse cytosolic localization, reflecting the inability of this mutant to sequester GFP-Aβ42. Similar to rapamycin, we observed that latrepirdine significantly reduced GFP-Aβ42 in wild-type compared to the Atg8Δ mutant. Further, latrepirdine treatment attenuated Aβ42-induced toxicity in wild-type cells but not in the Atg8Δ mutant. Together, our findings provide evidence for a novel mechanism of action for latrepirdine in inducing autophagy and reducing intracellular levels of GFP-Aβ42.
Collapse
Affiliation(s)
- Prashant R Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, WA, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Sun N, Funke SA, Willbold D. A survey of peptides with effective therapeutic potential in Alzheimer's disease rodent models or in human clinical studies. Mini Rev Med Chem 2012; 12:388-98. [PMID: 22303971 PMCID: PMC3426789 DOI: 10.2174/138955712800493942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia. Today, only palliative therapies are available. The pathological hallmarks of AD are the presence of neurofibrillary tangles and amyloid plaques, mainly composed of the amyloid-β peptide (Aβ), in the brains of the patients. Several lines of evidence suggest that the increased production and/or decreased cleavage of Aβ and subsequent accumulation of Aβ oligomers and aggregates play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. A wide range of Aβ binding peptides were investigated to date for therapeutic purposes. Only very few were shown to be effective in rodent AD models or in clinical studies. Here, we review those peptides and discuss their possible mechanisms of action.
Collapse
Affiliation(s)
- N Sun
- ICS-6, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | |
Collapse
|
7
|
Oxidative stress in Alzheimer's and Parkinson's diseases: insights from the yeast Saccharomyces cerevisiae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:132146. [PMID: 22701754 PMCID: PMC3371773 DOI: 10.1155/2012/132146] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 12/21/2022]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are the two most common causes of dementia in aged population. Both are protein-misfolding diseases characterized by the presence of protein deposits in the brain. Despite growing evidence suggesting that oxidative stress is critical to neuronal death, its precise role in disease etiology and progression has not yet been fully understood. Budding yeast Saccharomyces cerevisiae shares conserved biological processes with all eukaryotic cells, including neurons. This fact together with the possibility of simple and quick genetic manipulation highlights this organism as a valuable tool to unravel complex and fundamental mechanisms underlying neurodegeneration. In this paper, we summarize the latest knowledge on the role of oxidative stress in neurodegenerative disorders, with emphasis on AD and PD. Additionally, we provide an overview of the work undertaken to study AD and PD in yeast, focusing the use of this model to understand the effect of oxidative stress in both diseases.
Collapse
|
8
|
Effect ofN-homocysteinylation on physicochemical and cytotoxic properties of amyloid β-peptide. FEBS Lett 2011; 586:127-31. [DOI: 10.1016/j.febslet.2011.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 11/30/2011] [Accepted: 12/14/2011] [Indexed: 12/20/2022]
|
9
|
Computational insights into the development of novel therapeutic strategies for Alzheimer's disease. Future Med Chem 2011; 1:119-35. [PMID: 21426072 DOI: 10.4155/fmc.09.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND β-amyloidosis and oxidative stress have been implicated as root causes of Alzheimer's disease (AD). Current potential therapeutic strategies for the treatment of AD include inhibition of amyloid β (Aβ) production, stimulation of Aβ degradation and prevention of Aβ oligomerization. However, efforts in this direction are hindered by the lack of understanding of the biochemical processes occurring at the atomic level in AD. DISCUSSION A radically different approach to achieve this goal would be the application of comprehensive theoretical and computational techniques such as molecular dynamics, quantum mechanics, hybrid quantum mechanics/molecular mechanics, bioinformatics and rotational spectroscopy to investigate complex chemical and physical processes in β-amyloidosis and the oxidative stress mechanism. CONCLUSION Results obtained from these studies will provide an atomic level understanding of biochemical processes occurring in AD and advance efforts to develop effective therapeutic strategies for this disease.
Collapse
|
10
|
Sakurai T, Iwasaki T, Okuno T, Kawata Y, Kise N. Evaluation of Aβ fibrillization inhibitory effect by a PEG-peptide conjugate based on an Aβ peptide fragment with intramolecular FRET. Chem Commun (Camb) 2011; 47:4709-11. [PMID: 21416107 DOI: 10.1039/c0cc05668e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PEG-peptide conjugate based on an amyloid β peptide fragment was synthesized. The formed amyloid protofibril-like aggregates induced intramolecular FRET. It proved to be useful as a bioprobe to evaluate the inhibitory effect of organic molecules toward amyloid fibrillization.
Collapse
Affiliation(s)
- Toshihiko Sakurai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-chou, Tottori 680-8552, Japan.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by acute cognitive decline. The AD brain is featured by extracellular senile amyloid plaques, intraneuronal neurofibrillary tangles and extensive neuronal cell loss in specific regions of the brain associated with memory. The exact mechanism of neuronal cell dysfunction leading to the memory loss in AD is poorly understood. A number of studies have indicated that yeast is a suitable model system to decipher the molecular mechanisms involved in a variety of neurodegenerative disorders caused by pathological protein misfolding and deposition. Here, the knowledge from various studies that have utilized a yeast model to study the mechanism of pathways involved in AD pathogenesis is summarized.
Collapse
Affiliation(s)
- Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Exercise, Biomedical & Health Sciences, Edith Cowan University, Perth, WA, Australia
| | | | | |
Collapse
|
12
|
Li H, Monien BH, Lomakin A, Zemel R, Fradinger EA, Tan M, Spring SM, Urbanc B, Xie CW, Benedek GB, Bitan G. Mechanistic investigation of the inhibition of Abeta42 assembly and neurotoxicity by Abeta42 C-terminal fragments. Biochemistry 2010; 49:6358-64. [PMID: 20568734 DOI: 10.1021/bi100773g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oligomeric forms of amyloid beta-protein (Abeta) are key neurotoxins in Alzheimer's disease (AD). Previously, we found that C-terminal fragments (CTFs) of Abeta42 interfered with assembly of full-length Abeta42 and inhibited Abeta42-induced toxicity. To decipher the mechanism(s) by which CTFs affect Abeta42 assembly and neurotoxicity, here, we investigated the interaction between Abeta42 and CTFs using photoinduced cross-linking and dynamic light scattering. The results demonstrate that distinct parameters control CTF inhibition of Abeta42 assembly and Abeta42-induced toxicity. Inhibition of Abeta42-induced toxicity was found to correlate with stabilization of oligomers with a hydrodynamic radius (R(H)) of 8-12 nm and attenuation of formation of oligomers with an R(H) of 20-60 nm. In contrast, inhibition of Abeta42 paranucleus formation correlated with CTF solubility and the degree to which CTFs formed amyloid fibrils themselves but did not correlate with inhibition of Abeta42-induced toxicity. Our findings provide important insight into the mechanisms by which different CTFs inhibit the toxic effect of Abeta42 and suggest that stabilization of nontoxic Abeta42 oligomers is a promising strategy for designing inhibitors of Abeta42 neurotoxicity.
Collapse
Affiliation(s)
- Huiyuan Li
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, 635 Charles E.Young Drive S., Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gonçalves SA, Matos JE, Outeiro TF. Zooming into protein oligomerization in neurodegeneration using BiFC. Trends Biochem Sci 2010; 35:643-51. [PMID: 20561791 DOI: 10.1016/j.tibs.2010.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/10/2010] [Accepted: 05/13/2010] [Indexed: 11/25/2022]
Abstract
Several neurodegenerative diseases are characterized by the accumulation of misfolded and aggregated proteins, which lead to neurotoxicity. However, the nature of those toxic species is controversial. Developments in optical microscopy and live-cell imaging are essential in providing crucial insight into the molecular mechanisms involved. In particular, the technique of bimolecular fluorescence complementation (BiFC) represents a remarkable improvement for observing protein-protein interactions within living cells. Unlike other techniques, BiFC provides spatial and temporal resolution and can be carried out in a physiological environment. Among other applications, BiFC has been used to study molecular determinants of oligomerization in neurodegenerative disorders, thereby promising to unveil novel targets for therapeutics. We review the applicability of BiFC for investigating the molecular basis of neurodegenerative diseases associated with protein misfolding and aggregation.
Collapse
Affiliation(s)
- Susana A Gonçalves
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
14
|
Innocent N, Evans N, Hille C, Wonnacott S. Oligomerisation differentially affects the acute and chronic actions of amyloid-beta in vitro. Neuropharmacology 2010; 59:343-52. [PMID: 20388522 DOI: 10.1016/j.neuropharm.2010.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/23/2010] [Accepted: 04/07/2010] [Indexed: 11/26/2022]
Abstract
Key neuropathological hallmarks of Alzheimer's disease include the accumulation of amyloid-beta (Abeta), disruption of Ca(2+) homeostasis and neurodegeneration. However, the physical nature of the toxic Abeta species is controversial. Here, we examined the effect of aging on acute and chronic actions of Abeta peptides: changes in intracellular Ca(2+) and toxic responses, respectively. Acute application of Abeta(1-42) to PC12 cells potentiated KCl-evoked increases in Ca(2+), while chronic application decreased mitochondrial function with concomitant perturbation of membrane integrity and activation of apoptosis in PC12 cells, and reduced neurite length and synaptogenesis in rat cortical neurons. Both the acute and chronic effects of Abeta(1-42) were prevented by the anti-oligomerisation peptide D-KLVFFA, implicating oligomeric structures. The generation of a range of oligomeric species by aging Abeta(1-42) at 37 degrees C for different times was supported by thioflavin T fluorescence and atomic force microscopy. Abeta(1-42) aged for 24 h maximally potentiated KCl-evoked increases in Ca(2+), and this correlated with oligomers composed of 3-6 monomers, as judged by size exclusion filtration. Aging for 72 or 96 h, which generated fibrillar structures, was less efficacious. The Abeta(25-35) fragment that lacks the self-recognition element targeted by D-KLVFFA failed to potentiate KCl-evoked increases in Ca(2+). However, Abeta(25-35) was more efficacious than Abeta(1-42) at decreasing cellular functions when applied chronically. The acute and chronic effects of Abeta(1-42) also showed differential sensitivity to blockade of voltage operated Ca(2+) channels. These results suggest that the acute effects of Abeta(1-42) on Ca(2+) signals do not underpin the toxic responses measured, although both acute and chronic effects are promoted by small oligomeric species.
Collapse
Affiliation(s)
- Neal Innocent
- Department of Biology & Biochemistry, University of Bath, Bath, UK
| | | | | | | |
Collapse
|
15
|
Skjesol A, Hansen T, Shi CY, Thim HL, Jørgensen JB. Structural and functional studies of STAT1 from Atlantic salmon (Salmo salar). BMC Immunol 2010; 11:17. [PMID: 20353564 PMCID: PMC2855521 DOI: 10.1186/1471-2172-11-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/30/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type I and type II interferons (IFNs) exert their effects mainly through the JAK/STAT pathway, which is presently best described in mammals. STAT1 is involved in signaling pathways induced by both types of IFNs. It has a domain-like structure including an amino-terminus that stabilizes interaction between STAT dimers in a promoter-binding situation, a coiled coil domain facilitating interactions to other proteins, a central DNA-binding domain, a SH2 domain responsible for dimerization of phosphorylated STATs and conserved phosphorylation sites within the carboxy terminus. The latter is also the transcriptional activation domain. RESULTS A salmon (Salmo salar) STAT1 homologue, named ssSTAT1a, has been identified and was shown to be ubiquitously expressed in various cells and tissues. The ssSTAT1a had a domain-like structure with functional motifs that are similar to higher vertebrates. Endogenous STAT1 was shown to be phosphorylated at tyrosine residues both in salmon leukocytes and in TO cells treated with recombinant type I and type II IFNs. Also ectopically expressed ssSTAT1 was phosphorylated in salmon cells upon in vitro stimulation by the IFNs, confirming that the cloned gene was recognized by upstream tyrosine kinases. Treatment with IFNs led to nuclear translocation of STAT1 within one hour. The ability of salmon STAT1 to dimerize was also shown. CONCLUSIONS The structural and functional properties of salmon STAT1 resemble the properties of mammalian STAT1.
Collapse
Affiliation(s)
- Astrid Skjesol
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
| | - Tom Hansen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
| | - Cheng-Yin Shi
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
- Current address: Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Hanna L Thim
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø N- 9037 Tromsø, Norway
| |
Collapse
|
16
|
Dasilva KA, Shaw JE, McLaurin J. Amyloid-beta fibrillogenesis: structural insight and therapeutic intervention. Exp Neurol 2009; 223:311-21. [PMID: 19744483 DOI: 10.1016/j.expneurol.2009.08.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/12/2009] [Accepted: 08/27/2009] [Indexed: 02/02/2023]
Abstract
Structural insight into the conformational changes associated with aggregation and assembly of fibrils has provided a number of targets for therapeutic intervention. Solid-state NMR, hydrogen/deuterium exchange and mutagenesis strategies have been used to probe the secondary and tertiary structure of amyloid fibrils and key intermediates. Rational design of peptide inhibitors directed against key residues important for aggregation and stabilization of fibrils has demonstrated effectiveness at inhibiting fibrillogenesis. Studies on the interaction between Abeta and cell membranes led to the discovery that inositol, the head group of phosphatidylinositol, inhibits fibrillogenesis. As a result, scyllo-inositol is currently in clinical trials for the treatment of AD. Additional small-molecule inhibitors, including polyphenolic compounds such as curcumin, (-)-epigallocatechin gallate (EGCG), and grape seed extract have been shown to attenuate Abeta aggregation through distinct mechanisms, and have shown effectiveness at reducing amyloid levels when administered to transgenic mouse models of AD. Although the results of ongoing clinical trials remain to be seen, these compounds represent the first generation of amyloid-based therapeutics, with the potential to alter the progression of AD and, when used prophylactically, alleviate the deposition of Abeta.
Collapse
Affiliation(s)
- Kevin A Dasilva
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Meli G, Visintin M, Cannistraci I, Cattaneo A. Direct in Vivo Intracellular Selection of Conformation-sensitive Antibody Domains Targeting Alzheimer's Amyloid-β Oligomers. J Mol Biol 2009; 387:584-606. [DOI: 10.1016/j.jmb.2009.01.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 12/21/2022]
|
18
|
Hawkes CA, Ng V, McLaurin J. Small molecule inhibitors of Aβ-aggregation and neurotoxicity. Drug Dev Res 2009. [DOI: 10.1002/ddr.20290] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
|
20
|
Nelson TJ, Alkon DL. Protection against beta-amyloid-induced apoptosis by peptides interacting with beta-amyloid. J Biol Chem 2007; 282:31238-49. [PMID: 17761669 DOI: 10.1074/jbc.m705558200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
beta-Amyloid peptide produces apoptosis in neurons at micromolar concentrations, but the mechanism by which beta-amyloid exerts its toxic effect is unknown. The normal biological function of beta-amyloid is also unknown. We used phage display, co-precipitation, and mass spectrometry to examine the protein-protein interactions of beta-amyloid in normal rabbit brain in order to identify the biochemical receptors for beta-amyloid. beta-Amyloid was found to bind primarily to proteins involved in low density lipoprotein and cholesterol transport and metabolism, including sortilin, endoplasmic reticulum-Golgi intermediate compartment 2 (ERGIC2), ERGIC-53, steroid 5alpha-reductase, and apolipoprotein B. beta-Amyloid also bound to the C-reactive protein precursor, a protein involved in inflammation, and to 14-3-3, a protein that regulates glycogen synthase kinase-3beta, the kinase involved in tau phosphorylation. Of eight synthetic peptides identified as targets of beta-amyloid, three were found to be effective blockers of the toxic effect of beta-amyloid on cultured neuronal cells. These peptides bound to the hydrophobic region (residues 17-21) or to the nearby protein kinase C pseudo-phosphorylation site (residues 26-30) of beta-amyloid, suggesting that these may be the most critical regions for beta-amyloid effector action and for aggregation. Peptides or other small molecules that bind to this region may protect against beta-amyloid toxic effect by competitively blocking its ability to bind beta-amyloid effector proteins such as sortilin and 14-3-3.
Collapse
Affiliation(s)
- Thomas J Nelson
- Blanchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
21
|
Pedersen T, Skjesol A, Jørgensen JB. VP3, a structural protein of infectious pancreatic necrosis virus, interacts with RNA-dependent RNA polymerase VP1 and with double-stranded RNA. J Virol 2007; 81:6652-63. [PMID: 17428850 PMCID: PMC1900092 DOI: 10.1128/jvi.02831-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infectious pancreatic necrosis virus (IPNV) is a bisegmented, double-stranded RNA (dsRNA) virus of the Birnaviridae family that causes widespread disease in salmonids. Its two genomic segments are encapsulated together with the viral RNA-dependent RNA polymerase, VP1, and the assumed internal protein, VP3, in a single-shell capsid composed of VP2. Major aspects of the molecular biology of IPNV, such as particle assembly and interference with host macromolecules, are as yet poorly understood. To understand the infection process, analysis of viral protein interactions is of crucial importance. In this study, we focus on the interaction properties of VP3, the suggested key organizer of particle assembly in birnaviruses. By applying the yeast two-hybrid system in combination with coimmunoprecipitation, VP3 was proven to bind to VP1 and to self-associate strongly. In addition, VP3 was shown to specifically bind to dsRNA in a sequence-independent manner by in vitro pull-down experiments. The binding between VP3 and VP1 was not dependent on the presence of dsRNA. Deletion analyses mapped the VP3 self-interaction domain within the 101 N-terminal amino acids and the VP1 interaction domain within the 62 C-terminal amino acids of VP3. The C-terminal end was also crucial but not sufficient for the dsRNA binding capacity of VP3. For VP1, the 90 C-terminal amino acids constituted the only dispensable part for maintaining VP3-binding ability. Kinetic analysis revealed the presence of VP1-VP3 complexes prior to the formation of mature virions in IPNV-infected CHSE-214 cells, which indicates a role in promoting the assembly process.
Collapse
Affiliation(s)
- Torunn Pedersen
- Department of Marine Biotechnology, Norwegian College of Fishery Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
22
|
Abstract
This review considers the design, synthesis, and mechanistic assessment of peptide-based fibrillogenesis inhibitors, mainly focusing on beta-amyloid, but generalizable to other aggregating proteins and peptides. In spite of revision of the "amyloid hypothesis," the investigation and development of fibrillogenesis inhibitors remain important scientific and therapeutic goals for at least three reasons. First, it is still premature to dismiss fibrils altogether as sources of cytotoxicity. Second, a "fibrillogenesis inhibitor" is typically identified experimentally as such, but these compounds may also bind to intermediates in the fibrillogenesis pathway and have hard-to-predict consequences, including improved clearance of more cytotoxic soluble oligomers. Third, inhibitors are valuable structural probes, as the entire field of enzymology attests. Screening procedures for selection of random inhibitory sequences are briefly considered, but the bulk of the review concentrates on rationally designed fibrillogenesis inhibitors. Among these are internal segments of fibril-forming peptides, amino acid substitutions and side chain modifications of fibrillogenic domains, insertion of prolines into or adjacent to fibrillogenic domains, modification of peptide termini, modification of peptide backbone atoms (including N-methylation), peptide cyclization, use of D-amino acids in fibrillogenic domains, and nonpeptidic beta-sheet mimics. Finally, we consider methods of assaying fibrillogenesis inhibitors, including pitfalls in these assays. We consider binding of inhibitor peptides to their targets, but because this is a specific application of the more general and much larger problem of assessing protein-protein interactions, this topic is covered only briefly. Finally, we consider potential applications of inhibitor peptides to therapeutic strategies.
Collapse
|
23
|
Schwarzman AL, Tsiper M, Gregori L, Goldgaber D, Frakowiak J, Mazur-Kolecka B, Taraskina A, Pchelina S, Vitek MP. Selection of peptides binding to the amyloid b-protein reveals potential inhibitors of amyloid formation. Amyloid 2005; 12:199-209. [PMID: 16399644 DOI: 10.1080/13506120500350762] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by extracellular amyloid plaques, cerebrovascular amyloid deposits, intracellular neurofibrillary tangles, and neuronal loss. Amyloid deposits are composed of insoluble fibers of a 39-43 amino acid peptide named the amyloid beta-protein (A beta). Neuropathological and genetic studies provide strong evidence of a key role for A beta amyloidosis in the pathogenesis of AD. Therefore, an obvious pharmacological target for treatment of AD is the inhibition of amyloid growth and/or inhibition of amyloid function. We took an unbiased approach to generate new inhibitors of amyloid formation by screening a FliTrx combinatorial peptide library for A beta binding peptides and identified four groups of peptides with different A beta binding motifs. In addition, we designed and examined peptides mimicking the A beta binding domain of transthyretin (TTR). Our results showed that A beta binding peptides selected from FliTrx peptide library and from TTR-peptide analogs are capable of inhibiting A beta aggregation and A beta deposition in vitro. These properties demonstrate that binding of selected peptides to the amyloid beta-protein may provide potent therapeutic compounds for the treatment AD.
Collapse
Affiliation(s)
- Alexander L Schwarzman
- Institute for Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dong J, Apkarian RP, Lynn DG. Imaging amyloid β peptide oligomeric particles in solution. Bioorg Med Chem 2005; 13:5213-7. [PMID: 15993093 DOI: 10.1016/j.bmc.2005.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 05/22/2005] [Accepted: 05/23/2005] [Indexed: 11/28/2022]
Abstract
While all protein misfolding diseases are characterized by fibrous amyloid deposits, the favorable free energy and strongly cooperative nature of the self-assembly have complicated the development of therapeutic strategies aimed at preventing their formation. As structural models for the amyloid fibrils approach atomic resolution, increasing evidence suggests that early folding intermediates, rather than the final structure, are more strongly associated with the loss of neuronal function. For that reason we now demonstrate the use of cryo-etch high-resolution scanning electron microscopy (cryo-HRSEM) for the direct observation of pathway intermediates in amyloid assembly. A congener of the Abeta peptide of Alzheimer's disease, Abeta(13-21), samples a variety of time-dependent self-assembles in a manner similar to those seen for larger proteins. A morphological description of these intermediates is the first step towards their structural characterization and the definition of their role in both amyloid assembly and neurotoxicity.
Collapse
Affiliation(s)
- Jijun Dong
- Center for the Analysis of SupraMolecular Self-assemblies, Integrated Microscopy and Microanalytical Facility, Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
25
|
Morgan C, Colombres M, Nuñez MT, Inestrosa NC. Structure and function of amyloid in Alzheimer's disease. Prog Neurobiol 2004; 74:323-49. [PMID: 15649580 DOI: 10.1016/j.pneurobio.2004.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 10/26/2004] [Indexed: 12/21/2022]
Abstract
This review is focused on the structure and function of Alzheimer's amyloid deposits. Amyloid formation is a process in which normal well-folded cellular proteins undergo a self-assembly process that leads to the formation of large and ordered protein structures. Amyloid deposition, oligomerization, and higher order polymerization, and the structure adopted by these assemblies, as well as their functional relationship with cell biology are underscored. Numerous efforts have been directed to elucidate these issues and their relation with senile dementia. Significant advances made in the last decade in amyloid structure, dynamics and cell biology are summarized and discussed. The mechanism of amyloid neurotoxicity is discussed with emphasis on the Wnt signaling pathway. This review is focused on Alzheimer's amyloid fibrils in general and has been divided into two parts dealing with the structure and function of amyloid.
Collapse
Affiliation(s)
- Carlos Morgan
- Centro FONDAP de Regulación Celular y Patología Joaquín V. Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | |
Collapse
|
26
|
Li A, Fenselau C. Contact regions in the dimer of Alzheimer beta-amyloid domain [1-28] studied by mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2004; 10:309-316. [PMID: 15103108 DOI: 10.1255/ejms.642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Information is provided about the amino acid residues in the [1-28] domain of the Alzheimer b- amyloid protein, which participate in interstrand pairing and initiate fibillogenesis. The study was carried out using electrospray ionization on a four sector mass spectrometer, measuring kinetic energy release for a fragmentation process, and modeling the transition state with molecular dynamics calculations. The results eliminate the sequence [11-24] proposed earlier as the central core, and are consistent with, but do not distinguish between, residues [17-28] and [17-23] proposed by others based on biochemical studies.
Collapse
Affiliation(s)
- Aiqun Li
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Catonsville, MD 21250, USA
| | | |
Collapse
|
27
|
Mingeot-Leclercq MP, Lins L, Bensliman M, Thomas A, Van Bambeke F, Peuvot J, Schanck A, Brasseur R. Piracetam inhibits the lipid-destabilising effect of the amyloid peptide Abeta C-terminal fragment. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:28-38. [PMID: 12507755 DOI: 10.1016/s0005-2736(02)00654-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid peptide (Abeta) is a 40/42-residue proteolytic fragment of a precursor protein (APP), implicated in the pathogenesis of Alzheimer's disease. The hypothesis that interactions between Abeta aggregates and neuronal membranes play an important role in toxicity has gained some acceptance. Previously, we showed that the C-terminal domain (e.g. amino acids 29-42) of Abeta induces membrane permeabilisation and fusion, an effect which is related to the appearance of non-bilayer structures. Conformational studies showed that this peptide has properties similar to those of the fusion peptide of viral proteins i.e. a tilted penetration into membranes. Since piracetam interacts with lipids and has beneficial effects on several symptoms of Alzheimer's disease, we investigated in model membranes the ability of piracetam to hinder the destabilising effect of the Abeta 29-42 peptide. Using fluorescence studies and 31P and 2H NMR spectroscopy, we have shown that piracetam was able to significantly decrease the fusogenic and destabilising effect of Abeta 29-42, in a concentration-dependent manner. While the peptide induced lipid disorganisation and subsequent negative curvature at the membrane-water interface, the conformational analysis showed that piracetam, when preincubated with lipids, coats the phospholipid headgroups. Calculations suggest that this prevents appearance of the peptide-induced curvature. In addition, insertion of molecules with an inverted cone shape, like piracetam, into the outer membrane leaflet should make the formation of such structures energetically less favourable and therefore decrease the likelihood of membrane fusion.
Collapse
|
28
|
Hetényi C, Szabó Z, Klement E, Datki Z, Körtvélyesi T, Zarándi M, Penke B. Pentapeptide amides interfere with the aggregation of beta-amyloid peptide of Alzheimer's disease. Biochem Biophys Res Commun 2002; 292:931-6. [PMID: 11944904 DOI: 10.1006/bbrc.2002.6745] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid peptides (Abeta) play a central role in the pathogenesis of Alzheimer's disease (AD). The aggregation of Abeta molecules leads to fibril and plaque formation. Fibrillogenesis is at the same time a marker and an indirect cause of AD. Inhibition of the aggregation of Abeta could be a realistic therapy for the illness. Beta sheet breakers (BSBs) are one type of fibrillogenesis inhibitors. The first BSB peptides were designed by Tjernberg et al. (1996) and Soto et al. (1998). These pentapeptides have proved their efficiency in vitro and in vivo. In the present study, the effects of two pentapeptide amides are reported. These compounds were designed by using the C-terminal sequence of the amyloid peptide as a template. Biological assays were applied to demonstrate efficiency. Modes of action were studied by FT-IR spectroscopy and molecular modeling methods.
Collapse
Affiliation(s)
- Csaba Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mesfin FB, Andersen TT, Jacobson HI, Zhu S, Bennett JA. Development of a synthetic cyclized peptide derived from alpha-fetoprotein that prevents the growth of human breast cancer. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 58:246-56. [PMID: 11576331 DOI: 10.1034/j.1399-3011.2001.00922.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The peptide, EMTPVNPG, derived from alpha-fetoprotein, inhibits estrogen-stimulated growth of immature mouse uterus and estrogen-dependent proliferation of human breast cancer cells. However, the biological activities of the peptide diminish over time in storage, even when in the lyophilized state, probably because of peptide aggregation through hydrophobic interaction among monomers. Two analogs of EMTPVNPG were designed with the intent of minimizing aggregation and retaining biological activity during prolonged storage. EMTOVNOG, where O is 4-hydroxyproline, is a linear peptide generated by substituting 4-hydroxyproline for the two prolines, thereby increasing peptide hydrophilicity. This analog exhibited a dose-dependent inhibition of estrogen-stimulated growth of immature mouse uterus similar to that of EMTPVNPG (maximal activity at 1 microg/mouse). A second analog, cyclo-(EMTOVNOGQ), a hydrophilic, cyclic analog with increased conformational constraint, was as potent as the other peptides in its inhibition of estrogen-dependent growth of immature mouse uterus, and had an expanded effective dose range. Both linear and cyclized hydroxyproline-substituted analogs exhibited indefinite shelf-life. Furthermore, both analogs inhibited the estrogen-dependent growth of MCF-7 human breast cancer growing as a xenograft in SCID mice. These analogs may become significant, novel agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- F B Mesfin
- Center for Immunology and Microbial Diseases, Albany Medical College, Albany 12208, USA
| | | | | | | | | |
Collapse
|
30
|
Grégoire C, Marco S, Thimonier J, Duplan L, Laurine E, Chauvin JP, Michel B, Peyrot V, Verdier JM. Three-dimensional structure of the lithostathine protofibril, a protein involved in Alzheimer's disease. EMBO J 2001; 20:3313-21. [PMID: 11432819 PMCID: PMC125531 DOI: 10.1093/emboj/20.13.3313] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative diseases are characterized by the presence of filamentous aggregates of proteins. We previously established that lithostathine is a protein overexpressed in the pre-clinical stages of Alzheimer's disease. Furthermore, it is present in the pathognomonic lesions associated with Alzheimer's disease. After self-proteolysis, the N-terminally truncated form of lithostathine leads to the formation of fibrillar aggregates. Here we observed using atomic force microscopy that these aggregates consisted of a network of protofibrils, each of which had a twisted appearance. Electron microscopy and image analysis showed that this twisted protofibril has a quadruple helical structure. Three-dimensional X-ray structural data and the results of biochemical experiments showed that when forming a protofibril, lithostathine was first assembled via lateral hydrophobic interactions into a tetramer. Each tetramer then linked up with another tetramer as the result of longitudinal electrostatic interactions. All these results were used to build a structural model for the lithostathine protofibril called the quadruple-helical filament (QHF-litho). In conclusion, lithostathine strongly resembles the prion protein in its dramatic proteolysis and amyloid proteins in its ability to form fibrils.
Collapse
Affiliation(s)
- Catherine Grégoire
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| | - Sergio Marco
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| | - Jean Thimonier
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| | - Laure Duplan
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| | - Emmanuelle Laurine
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| | - Jean-Paul Chauvin
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| | - Bernard Michel
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| | - Vincent Peyrot
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| | - Jean-Michel Verdier
- UMR CNRS 6032, Faculté de Pharmacie, Marseille, Laboratoire des Protéines Complexes, Université de Tours, UPRES EA 32-90, Faculté de Médecine, Marseille, Laboratoire de Génétique et de Physiologie du Développement, IBDM, Marseille and Unité de Neurogériatrie, Hôpital Sainte-Marguerite, Marseille, France Corresponding author e-mail:
| |
Collapse
|
31
|
Festy F, Lins L, Péranzi G, Octave JN, Brasseur R, Thomas A. Is aggregation of beta-amyloid peptides a mis-functioning of a current interaction process? BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:356-64. [PMID: 11295441 DOI: 10.1016/s0167-4838(01)00158-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In a previous study, Hughes et al. [Proc. Natl. Acad. Sci. USA 93 (1996) 2065-2070] demonstrated that the amyloid peptide is able to interact with itself in a two-hybrid system and that interaction is specific. They further supported that the method could be used to define the sequences that might be important in nucleation-dependent aggregation. The sequence of the amyloid peptide can be split into four clusters, two hydrophilic (1-16 and 22-28) and two hydrophobic (17-21 and 29-42). We designed by molecular modeling and tested by the two-hybrid approach, series of mutations spread all over the sequence and changing the distribution of hydrophobicity and/or the spatial hindrance. In the two-hybrid assay, interaction of native Abeta is reproduced. Screening of mutations demonstrates that the C-domain (residues 29-40 (42)), the median domain (residues 17-22) and the N-domain (1-16) are all crucial for interaction. This demonstrates that almost all fragments of the amyloid peptide but a loop (residues 23-28) and the C-term amino acid are important for the native interaction. We support that the folded three-dimensional (3D) structure is the Abeta-Abeta interacting species, that the whole sequence is involved in that 3D fold which has a low secondary structure propensity and a high susceptibility to mutations and thus should have a low stability. The native fold of Abeta could be stabilized in Abeta-Abeta complexes which could in other circumstances facilitate the nucleation event of aggregation that leads to the formation of stable senile plaques.
Collapse
Affiliation(s)
- F Festy
- INSERM U410, Faculté X. Bichat, 75870 Paris Cedex 18, France
| | | | | | | | | | | |
Collapse
|
32
|
Hughes E, Burke RM, Doig AJ. Inhibition of toxicity in the beta-amyloid peptide fragment beta -(25-35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J Biol Chem 2000; 275:25109-15. [PMID: 10825171 DOI: 10.1074/jbc.m003554200] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-(25-35) is a synthetic derivative of beta-amyloid, the peptide that is believed to cause Alzheimer's disease. As it is highly toxic and forms fibrillar aggregates typical of beta-amyloid, it is suitable as a model for testing inhibitors of aggregation and toxicity. We demonstrate that N-methylated derivatives of beta-(25-35), which in isolation are soluble and non-toxic, can prevent the aggregation and inhibit the resulting toxicity of the wild type peptide. N-Methylation can block hydrogen bonding on the outer edge of the assembling amyloid. The peptides are assayed by Congo red and thioflavin T binding, electron microscopy, and a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay on PC12 cells. One peptide (Gly(25) N-methylated) has properties similar to the wild type, whereas five have varying effects on prefolded fibrils and fibril assembly. In particular, beta-(25-35) with Gly(33) N-methylated is able to completely prevent fibril assembly and to reduce the toxicity of prefolded amyloid. With Leu(34) N-methylated, the fibril morphology is altered and the toxicity reduced. We suggest that the use of N-methylated derivatives of amyloidogenic peptides and proteins could provide a general solution to the problem of amyloid deposition and toxicity.
Collapse
Affiliation(s)
- E Hughes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, United Kingdom
| | | | | |
Collapse
|
33
|
Reixach N, Crooks E, Ostresh JM, Houghten RA, Blondelle SE. Inhibition of beta-amyloid-induced neurotoxicity by imidazopyridoindoles derived from a synthetic combinatorial library. J Struct Biol 2000; 130:247-58. [PMID: 10940229 DOI: 10.1006/jsbi.2000.4245] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by the deposit of amyloid fibrils in the brain that result from the self-aggregative polymerization of the beta-amyloid peptide (Abeta). Evidence of a direct correlation between the ability of Abeta to form stable aggregates in aqueous solution and its neurotoxicity has been reported. The cytotoxic effects of Abeta have been attributed to the aggregation properties of a domain corresponding to the peptide fragment Abeta25-35. In an effort to generate novel inhibitors of Abeta neurotoxicity and/or aggregation, a mixture-based synthetic combinatorial library composed of 23 375 imidazopyridoindoles was generated and screened for inhibition of Abeta25-35 neurotoxicity toward the rat pheochromocytoma PC-12 cell line. The effect of the identified lead compounds on Abeta25-35 aggregation was then evaluated by means of circular dichroism (CD) and thioflavin-T fluorescence spectroscopy. Their activity against Abeta1-42 neurotoxicity toward the PC-12 cell line was also determined. The most active imidazopyridoindoles inhibited both Abeta25-35 and Abeta1-42 neurotoxicity in the low- to mid-micromolar range. Furthermore, inhibition of the random coil to beta-sheet transition and self-aggregation of Abeta25-35 was observed by CD and fluorescence spectroscopy, supporting the relationship between inhibition of the Abeta aggregation process and neurotoxicity.
Collapse
Affiliation(s)
- N Reixach
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California, 92121, USA
| | | | | | | | | |
Collapse
|
34
|
Kuner P, Bohrmann B, Tjernberg LO, Näslund J, Huber G, Celenk S, Grüninger-Leitch F, Richards JG, Jakob-Roetne R, Kemp JA, Nordstedt C. Controlling polymerization of beta-amyloid and prion-derived peptides with synthetic small molecule ligands. J Biol Chem 2000; 275:1673-8. [PMID: 10636861 DOI: 10.1074/jbc.275.3.1673] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Alzheimer beta-amyloid peptide (Abeta) and a fragment of the prion protein have the capacity of forming amyloid-like fibrils when incubated under physiological conditions in vitro. Here we show that a small amyloid ligand, RO-47-1816/001, enhances this process severalfold by binding to amyloid molecules and apparently promote formation of the peptide-to-peptide bonds that join the monomers of the amyloid fibrils. This effect could be antagonized by other ligands, including analogues of RO-47-1816/001, as well as the structurally unrelated ligand Congo red. Analogues of RO-47-1816/001 with low affinity for amyloid did not display any antagonistic effect. In conclusion, these data suggest that synthetic molecules, and possibly also small natural substances present in the brain, may act in a chaperone-like fashion, promoting Abeta polymerization and growth of amyloid fibrils in vitro and possibly also in vivo. Furthermore, we demonstrate that small organic molecules can be used to inhibit the action of amyloid-enhancing compounds.
Collapse
Affiliation(s)
- P Kuner
- F. Hoffmann-La Roche AG, Pharma Division, Preclinical Research, CH-4070 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cell life depends on the dynamics of molecular processes: molecule folding, organelle building and transformations involving membrane fusion, protein activation and degradation. To carry out these processes, the hydrophilic/hydrophobic interfaces of amphipathic systems such as membranes and native proteins must be disrupted. In the past decade, protein fragments acting in the disruption of interfaces have been evidenced: they are named the tilted or oblique peptides. Due to a peculiar distribution of hydrophobicity, they can disrupt hydrophobicity interfaces. Tilted peptides should be present in many proteins involved in various stages of cell life. This hypothesis overviews their discovery, describes how they are detected and discusses how they could be involved in dynamic biological processes.
Collapse
Affiliation(s)
- R Brasseur
- Centre de Biophysique Moléculaire Numérique, Faculté Universitaire des Sciences Agronomiques de Gembloux, Belgium.
| |
Collapse
|
36
|
Tacken MG, Rottier PJ, Gielkens AL, Peeters BP. Interactions in vivo between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA-dependent RNA polymerase, VP1. J Gen Virol 2000; 81:209-18. [PMID: 10640560 DOI: 10.1099/0022-1317-81-1-209] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to the LexA DNA-binding domain and the B42 transactivation domain. A heterologous interaction between VP1 and VP3, and homologous interactions of pVP2, VP3, VP5 and possibly VP1, were found by co-expression of the fusion proteins in Saccharomyces cerevisiae. The presence of the VP1-VP3 complex in IBDV-infected cells was confirmed by co-immunoprecipitation studies. Kinetic analyses showed that the complex of VP1 and VP3 is formed in the cytoplasm and eventually is released into the cell-culture medium, indicating that VP1-VP3 complexes are present in mature virions. In IBDV-infected cells, VP1 was present in two forms of 90 and 95 kDa. Whereas VP3 initially interacted with both the 90 and 95 kDa proteins, later it interacted exclusively with the 95 kDa protein both in infected cells and in the culture supernatant. These results suggest that the VP1-VP3 complex is involved in replication and packaging of the IBDV genome.
Collapse
Affiliation(s)
- M G Tacken
- Institute for Animal Science and Health (ID-Lelystad), Department of Avian Virology, PO Box 65, NL-8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Szabó Z, Klement E, Jost K, Zarándi M, Soós K, Penke B. An FT-IR study of the beta-amyloid conformation: standardization of aggregation grade. Biochem Biophys Res Commun 1999; 265:297-300. [PMID: 10558860 DOI: 10.1006/bbrc.1999.1667] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aggregation of beta-amyloid peptides is very important for their neurotoxic effect; standardization of the aggregation grade is necessary for biological experiments. Measurement of aggregation with physicochemical methods is a difficult task. The present work revealed that FT-IR can be used for studying the aggregation properties of beta-amyloid peptides and the effects of environmental variables (solvent, pH, ions, and temperature) on aggregation. In dimethyl sulfoxide or hexafluoroisopropanol, amyloid peptides are in a monomeric state; on dilution with phosphate buffer just before measurement is made, aggregation begins. A detailed two-dimensional FT-IR correlation spectroscopic study was made of the conformational transitions that occur during the aggregation of beta-amyloid peptides. Two processes (random/helix-to-beta-sheet and aggregation of beta-sheets) and multiple conformational states were observed before the most stable form was attained. beta-Amyloid peptides undergo decomposition in basic buffers containing Ca(2+); this process should be avoided during aging experiments.
Collapse
Affiliation(s)
- Z Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical University, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
38
|
Contreras CF, Canales MA, Alvarez A, De Ferrari GV, Inestrosa NC. Molecular modeling of the amyloid-beta-peptide using the homology to a fragment of triosephosphate isomerase that forms amyloid in vitro. PROTEIN ENGINEERING 1999; 12:959-66. [PMID: 10585501 DOI: 10.1093/protein/12.11.959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The main component of the amyloid senile plaques found in Alzheimer's brain is the amyloid-beta-peptide (A beta), a proteolytic product of a membrane precursor protein. Previous structural studies have found different conformations for the A beta peptide depending on the solvent and pH used. In general, they have suggested an alpha-helix conformation at the N-terminal domain and a beta-sheet conformation for the C-terminal domain. The structure of the complete A beta peptide (residues 1-40) solved by NMR has revealed that only helical structure is present in A beta. However, this result cannot explain the large beta-sheet A beta aggregates known to form amyloid under physiological conditions. Therefore, we investigated the structure of A beta by molecular modeling based on extensive homology using the Smith and Waterman algorithm implemented in the MPsrch program (Blitz server). The results showed a mean value of 23% identity with selected sequences. Since these values do not allow a clear homology to be established with a reference structure in order to perform molecular modeling studies, we searched for detailed homology. A 28% identity with an alpha/beta segment of a triosephosphate isomerase (TIM) from Culex tarralis with an unsolved three-dimensional structure was obtained. Then, multiple sequence alignment was performed considering A beta, TIM from C.tarralis and another five TIM sequences with known three-dimensional structures. We found a TIM segment with secondary structure elements in agreement with previous experimental data for A beta. Moreover, when a synthetic peptide from this TIM segment was studied in vitro, it was able to aggregate and to form amyloid fibrils, as established by Congo red binding and electron microscopy. The A beta model obtained was optimized by molecular dynamics considering ionizable side chains in order to simulate A beta in a neutral pH environment. We report here the structural implications of this study.
Collapse
Affiliation(s)
- C F Contreras
- Laboratorio de Biofísica Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción and Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica
| | | | | | | | | |
Collapse
|
39
|
Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehöök C, Terenius L, Thyberg J, Nordstedt C. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem 1999; 274:12619-25. [PMID: 10212241 DOI: 10.1074/jbc.274.18.12619] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymerization of the amyloid beta (Abeta) peptide into protease-resistant fibrils is a significant step in the pathogenesis of Alzheimer's disease. It has not been possible to obtain detailed structural information about this process with conventional techniques because the peptide has limited solubility and does not form crystals. In this work, we present experimental results leading to a molecular level model for fibril formation. Systematically selected Abeta-fragments containing the Abeta16-20 sequence, previously shown essential for Abeta-Abeta binding, were incubated in a physiological buffer. Electron microscopy revealed that the shortest fibril-forming sequence was Abeta14-23. Substitutions in this decapeptide impaired fibril formation and deletion of the decapeptide from Abeta1-42 inhibited fibril formation completely. All studied peptides that formed fibrils also formed stable dimers and/or tetramers. Molecular modeling of Abeta14-23 oligomers in an antiparallel beta-sheet conformation displayed favorable hydrophobic interactions stabilized by salt bridges between all charged residues. We propose that this decapeptide sequence forms the core of Abeta-fibrils, with the hydrophobic C terminus folding over this core. The identification of this fundamental sequence and the implied molecular model could facilitate the design of potential inhibitors of amyloidogenesis.
Collapse
Affiliation(s)
- L O Tjernberg
- Laboratory of Biochemistry and Molecular Pharmacology, Section of Drug Dependence Research, Department of Clinical Neuroscience, CMM L8:01, Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hughes SR, Khorkova O, Goyal S, Knaeblein J, Heroux J, Riedel NG, Sahasrabudhe S. Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation. Proc Natl Acad Sci U S A 1998; 95:3275-80. [PMID: 9501253 PMCID: PMC19732 DOI: 10.1073/pnas.95.6.3275] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have used the yeast two-hybrid system to isolate cDNAs encoding proteins that specifically interact with the 42-aa beta-amyloid peptide (Abeta), a major constituent of senile plaques in Alzheimer's disease. The carboxy terminus of alpha2-macroglobulin (alpha2M), a proteinase inhibitor released in response to inflammatory stimuli, was identified as a strong and specific interactor of Abeta, utilizing this system. Direct evidence for this interaction was obtained by co-immunoprecipitation of alpha2M with Abeta from the yeast cell, and by formation of SDS-resistant Abeta complexes in polyacrylamide gels by using synthetic Abeta and purified alpha2M. The association of Abeta with alpha2M and various purified amyloid binding proteins was assessed by employing a method measuring protein-protein interactions in liquid phase. The dissociation constant by this technique for the alpha2M-Abeta association using labeled purified proteins was measured (Kd = 350 nM). Electron microscopy showed that a 1:8 ratio of alpha2M to Abeta prevented fibril formation in solution; the same ratio to Abeta of another acute phase protein, alpha1-antichymotrypsin, was not active in preventing fibril formation in vitro. These results were corroborated by data obtained from an in vitro aggregation assay employing Thioflavine T. The interaction of alpha2M with Abeta suggests new pathway(s) for the clearance of the soluble amyloid peptide.
Collapse
Affiliation(s)
- S R Hughes
- Biotechnology Group and the Central Nervous System Disease Group, Hoechst Marion Roussel, Inc., P.O. Box 6800, Bridgewater, NJ 08876-0800, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Tjernberg LO, Lilliehöök C, Callaway DJ, Näslund J, Hahne S, Thyberg J, Terenius L, Nordstedt C. Controlling amyloid beta-peptide fibril formation with protease-stable ligands. J Biol Chem 1997; 272:12601-5. [PMID: 9139713 DOI: 10.1074/jbc.272.19.12601] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that short peptides incorporating the sequence KLVFF can bind to the approximately 40amino acid residue Alzheimer amyloid beta-peptide (Abeta) and disrupt amyloid fibril formation (Tjernberg, L. O., Näslund, J., Lindqvist, F., Johansson, J., Karlström, A. R., Thyberg, J., Terenius, L., and Nordstedt, C. (1996) J. Biol. Chem. 271, 8545-8548). Here, it is shown that KLVFF binds stereospecifically to the homologous sequence in Abeta (i.e. Abeta16-20). Molecular modeling suggests that association of the two homologous sequences leads to the formation of an atypical anti-parallel beta-sheet structure stabilized primarily by interaction between the Lys, Leu, and COOH-terminal Phe. By screening combinatorial pentapeptide libraries exclusively composed of D-amino acids, several ligands with a general motif containing phenylalanine in the second position and leucine in the third position were identified. Ligands composed of D-amino acids were not only capable of binding Abeta but also prevented formation of amyloid-like fibrils. These ligands are protease-resistant and may thus be useful as experimental agents against amyloid fibril formation in vivo.
Collapse
Affiliation(s)
- L O Tjernberg
- Laboratory of Biochemistry and Molecular Pharmacology, Section of Drug Dependence Research, Department of Clinical Neuroscience, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ghanta J, Shen CL, Kiessling LL, Murphy RM. A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem 1996; 271:29525-8. [PMID: 8939877 DOI: 10.1074/jbc.271.47.29525] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
beta-Amyloid peptide is the major protein component of Alzheimer's plaques. When aggregated into amyloid fibrils, the peptide is toxic to neuronal cells. Here, an approach to the design of inhibitors of beta-amyloid toxicity is described; in this strategy, a recognition element, which interacts specifically with beta-amyloid, is combined with a disrupting element, which alters beta-amyloid aggregation pathways. The synthesis, biophysical characterization, and biological activity of such an inhibitor is reported. This prototype inhibitor is composed of residues 15-25 of beta-amyloid peptide, designed to function as the recognition element, linked to an oligolysine disrupting element. The inhibitor does not alter the apparent secondary structure of beta-amyloid nor prevent its aggregation; rather, it causes changes in aggregation kinetics and higher order structural characteristics of the aggregate. Evidence for these effects includes changes in fibril morphology and a reduction in thioflavin T fluorescence. In addition to its influence on the physical properties of beta-amyloid aggregates, the inhibitor completely blocks beta-amyloid toxicity to PC-12 cells. Together, these data suggest that this general strategy for design of beta-amyloid toxicity inhibitors is effective. Significantly, these results demonstrate that complete disruption of amyloid fibril formation is not necessary for abrogation of toxicity.
Collapse
Affiliation(s)
- J Ghanta
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|