1
|
She F, Anderson BW, Khana DB, Zhang S, Steinchen W, Fung DK, Lucas LN, Lesser NG, Stevenson DM, Astmann TJ, Bange G, van Pijkeren JP, Amador-Noguez D, Wang JD. Allosteric Regulation of Pyruvate Kinase Enables Efficient and Robust Gluconeogenesis by Preventing Metabolic Conflicts and Carbon Overflow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607825. [PMID: 39211278 PMCID: PMC11361145 DOI: 10.1101/2024.08.15.607825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glycolysis and gluconeogenesis are reciprocal metabolic pathways that utilize different carbon sources. Pyruvate kinase catalyzes the irreversible final step of glycolysis, yet the physiological function of its regulation is poorly understood. Through metabolomics and enzyme kinetics studies, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis in the soil bacterium Bacillus subtilis . This regulation involves an extra C-terminal domain (ECTD) of pyruvate kinase, which is essential for autoinhibition and regulation by metabolic effectors. Introducing a pyruvate kinase mutant lacking the ECTD into B. subtilis resulted in defects specifically under gluconeogenic conditions, including inefficient carbon utilization, slower growth, and decreased resistance to the herbicide glyphosate. These defects are not caused by the phosphoenolpyruvate-pyruvate-oxaloacetate futile cycle. Instead, we identified two significant metabolic consequences of pyruvate kinase dysregulation during gluconeogenesis: increased carbon overflow into the medium and failure to expand glycolytic intermediates such as phosphoenolpyruvate (PEP). In silico analysis revealed that in wild-type cells, an expanded PEP pool enabled by pyruvate kinase regulation is critical for the thermodynamic feasibility of gluconeogenesis. Our findings underscore the importance of allosteric regulation during gluconeogenesis in coordinating metabolic flux, efficient energy utilization, and antimicrobial resistance.
Collapse
|
2
|
Zimmermann J, Mayer RJ, Moran J. A single phosphorylation mechanism in early metabolism - the case of phosphoenolpyruvate. Chem Sci 2023; 14:14100-14108. [PMID: 38098731 PMCID: PMC10717536 DOI: 10.1039/d3sc04116f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Phosphorylation is thought to be one of the fundamental reactions for the emergence of metabolism. Nearly all enzymatic phosphorylation reactions in the anabolic core of microbial metabolism act on carboxylates to give acyl phosphates, with a notable exception - the phosphorylation of pyruvate to phosphoenolpyruvate (PEP), which involves an enolate. We wondered whether an ancestral mechanism for the phosphorylation of pyruvate to PEP could also have involved carboxylate phosphorylation rather than the modern enzymatic form. The phosphorylation of pyruvate with P4O10 as a model phosphorylating agent was found to indeed occur via carboxylate phosphorylation, as verified by mechanistic studies using model substrates, time course experiments, liquid and solid-state NMR spectroscopy, and DFT calculations. The in situ generated acyl phosphate subsequently undergoes an intramolecular phosphoryl transfer to yield PEP. A single phosphorylation mechanism acting on carboxylates appears sufficient to initiate metabolic networks that include PEP, strengthening the case that metabolism emerged from self-organized chemistry.
Collapse
Affiliation(s)
- Joris Zimmermann
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Robert J Mayer
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg 8 Allée Gaspard Monge 67000 Strasbourg France
- Institut Universitaire de France (IUF) France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
3
|
Soultanas P, Janniere L. The metabolic control of DNA replication: mechanism and function. Open Biol 2023; 13:230220. [PMID: 37582405 PMCID: PMC10427196 DOI: 10.1098/rsob.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolism and DNA replication are the two most fundamental biological functions in life. The catabolic branch of metabolism breaks down nutrients to produce energy and precursors used by the anabolic branch of metabolism to synthesize macromolecules. DNA replication consumes energy and precursors for faithfully copying genomes, propagating the genetic material from generation to generation. We have exquisite understanding of the mechanisms that underpin and regulate these two biological functions. However, the molecular mechanism coordinating replication to metabolism and its biological function remains mostly unknown. Understanding how and why living organisms respond to fluctuating nutritional stimuli through cell-cycle dynamic changes and reproducibly and distinctly temporalize DNA synthesis in a wide-range of growth conditions is important, with wider implications across all domains of life. After summarizing the seminal studies that founded the concept of the metabolic control of replication, we review data linking metabolism to replication from bacteria to humans. Molecular insights underpinning these links are then presented to propose that the metabolic control of replication uses signalling systems gearing metabolome homeostasis to orchestrate replication temporalization. The remarkable replication phenotypes found in mutants of this control highlight its importance in replication regulation and potentially genetic stability and tumorigenesis.
Collapse
Affiliation(s)
- Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
4
|
Holland A, Pitoulias M, Soultanas P, Janniere L. The Replicative DnaE Polymerase of Bacillus subtilis Recruits the Glycolytic Pyruvate Kinase (PykA) When Bound to Primed DNA Templates. Life (Basel) 2023; 13:life13040965. [PMID: 37109494 PMCID: PMC10143966 DOI: 10.3390/life13040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The glycolytic enzyme PykA has been reported to drive the metabolic control of replication through a mechanism involving PykA moonlighting functions on the essential DnaE polymerase, the DnaC helicase and regulatory determinants of PykA catalytic activity in Bacillus subtilis. The mutants of this control suffer from critical replication and cell cycle defects, showing that the metabolic control of replication plays important functions in the overall rate of replication. Using biochemical approaches, we demonstrate here that PykA interacts with DnaE for modulating its activity when the replication enzyme is bound to a primed DNA template. This interaction is mediated by the CAT domain of PykA and possibly allosterically regulated by its PEPut domain, which also operates as a potent regulator of PykA catalytic activity. Furthermore, using fluorescence microscopy we show that the CAT and PEPut domains are important for the spatial localization of origins and replication forks, independently of their function in PykA catalytic activity. Collectively, our data suggest that the metabolic control of replication depends on the recruitment of PykA by DnaE at sites of DNA synthesis. This recruitment is likely highly dynamic, as DnaE is frequently recruited to and released from replication machineries to extend the several thousand RNA primers generated from replication initiation to termination. This implies that PykA and DnaE continuously associate and dissociate at replication machineries for ensuring a highly dynamic coordination of the replication rate with metabolism.
Collapse
Affiliation(s)
- Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, CEDEX, France
| |
Collapse
|
5
|
Horemans S, Pitoulias M, Holland A, Pateau E, Lechaplais C, Ekaterina D, Perret A, Soultanas P, Janniere L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biol 2022; 20:87. [PMID: 35418203 PMCID: PMC9009071 DOI: 10.1186/s12915-022-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis. Results On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions. Conclusions We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01278-3.
Collapse
Affiliation(s)
- Steff Horemans
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dariy Ekaterina
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
6
|
Silverstein TP. The Proton in Biochemistry: Impacts on Bioenergetics, Biophysical Chemistry, and Bioorganic Chemistry. Front Mol Biosci 2021; 8:764099. [PMID: 34901158 PMCID: PMC8661011 DOI: 10.3389/fmolb.2021.764099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The proton is the smallest atomic particle, and in aqueous solution it is the smallest hydrated ion, having only two waters in its first hydration shell. In this article we survey key aspects of the proton in chemistry and biochemistry, starting with the definitions of pH and pK a and their application inside biological cells. This includes an exploration of pH in nanoscale spaces, distinguishing between bulk and interfacial phases. We survey the Eigen and Zundel models of the structure of the hydrated proton, and how these can be used to explain: a) the behavior of protons at the water-hydrophobic interface, and b) the extraordinarily high mobility of protons in bulk water via Grotthuss hopping, and inside proteins via proton wires. Lastly, we survey key aspects of the effect of proton concentration and proton transfer on biochemical reactions including ligand binding and enzyme catalysis, as well as pH effects on biochemical thermodynamics, including the Chemiosmotic Theory. We find, for example, that the spontaneity of ATP hydrolysis at pH ≥ 7 is not due to any inherent property of ATP (or ADP or phosphate), but rather to the low concentration of H+. Additionally, we show that acidification due to fermentation does not derive from the organic acid waste products, but rather from the proton produced by ATP hydrolysis.
Collapse
Affiliation(s)
- Todd P Silverstein
- Chemistry Department (emeritus), Willamette University, Salem, OR, United States
| |
Collapse
|
7
|
Surette MD, Spanogiannopoulos P, Wright GD. The Enzymes of the Rifamycin Antibiotic Resistome. Acc Chem Res 2021; 54:2065-2075. [PMID: 33877820 DOI: 10.1021/acs.accounts.1c00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rifamycin antibiotics include the WHO essential medicines rifampin, rifabutin, and rifapentine. These are semisynthetic derivatives of the natural product rifamycins, originally isolated from the soil bacterium Amycolatopsis rifamycinica. These antibiotics are primarily used to treat mycobacterial infections, including tuberculosis. Rifamycins act by binding to the β-subunit of bacterial RNA polymerase, inhibiting transcription, which results in cell death. These antibiotics consist of a naphthalene core spanned by a polyketide ansa bridge. This structure presents a unique 3D configuration that engages RNA polymerase through a series of hydrogen bonds between hydroxyl groups linked to the naphthalene core and C21 and C23 of the ansa bridge. This binding occurs not in the enzyme active site where template-directed RNA synthesis occurs but instead in the RNA exit tunnel, thereby blocking productive formation of full-length RNA. In their clinical use to treat tuberculosis, resistance to rifamycin antibiotics arises principally from point mutations in RNA polymerase that decrease the antibiotic's affinity for the binding site in the RNA exit tunnel. In contrast, the rifamycin resistome of environmental mycobacteria and actinomycetes is much richer and diverse. In these organisms, rifamycin resistance includes many different enzymatic mechanisms that modify and alter the antibiotic directly, thereby inactivating it. These enzymes include ADP ribosyltransferases, glycosyltransferases, phosphotransferases, and monooxygenases.ADP ribosyltransferases catalyze group transfer of ADP ribose from the cofactor NAD+, which is more commonly deployed for metabolic redox reactions. ADP ribose is transferred to the hydroxyl linked to C23 of the antibiotic, thereby sterically blocking productive interaction with RNA polymerase. Like ADP ribosyltransferases, rifamycin glycosyl transferases also modify the hydroxyl of position C23 of rifamycins, transferring a glucose moiety from the donor molecule UDP-glucose. Unlike other antibiotic resistance kinases that transfer the γ-phosphate of ATP to inactivate antibiotics such as aminoglycosides or macrolides, rifamycin phosphotransferases are ATP-dependent dikinases. These enzymes transfer the β-phosphate of ATP to the C21 hydroxyl of the rifamycin ansa bridge. The result is modification of a critical RNA polymerase binding group that blocks productive complex formation. On the other hand, rifamycin monooxygenases are FAD-dependent enzymes that hydroxylate the naphthoquinone core. The result of this modification is untethering of the ansa chain from the naphthyl moiety, disrupting the essential 3D shape necessary for productive RNA polymerase binding and inhibition that leads to cell death.All of these enzymes have homologues in bacterial metabolism that either are their direct precursors or share common ancestors to the resistance enzyme. The diversity of these resistance mechanisms, often redundant in individual bacterial isolates, speaks to the importance of protecting RNA polymerase from these compounds and validates this enzyme as a critical antibiotic target.
Collapse
Affiliation(s)
- Matthew D. Surette
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| | - Peter Spanogiannopoulos
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| |
Collapse
|
8
|
Aki SS, Yura K, Aoyama T, Tsuge T. SAP130 and CSN1 interact and regulate male gametogenesis in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2021; 134:279-289. [PMID: 33555481 DOI: 10.1007/s10265-021-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
COP9 signalosome (CSN) is a nuclear complex composed of eight distinct subunits that governs vast developmental processes in Arabidopsis thaliana (L.) Heynh. The null alleles of csn mutants display pleiotropic phenotypes that result in seedling lethality. To date, several partially complemented transgenic plants, expressing the particular CSN subunit in its corresponding null mutant allele, were utilized to bypass seedling lethality and investigate CSN regulation at later stages of development. One such transgenic plant corresponding to CSN1 subunit, fus6/CSN1-3-4, accumulates wild-type level of CSN1 and displays normal plant architecture at vegetative stage. Here we show through histological analyses that fus6/CSN1-3-4 plants display impairment of pollen development at the bicellular stage. This defect is identical to that observed in RNAi plants of SAP130, encoding a subunit of the multiprotein splicing factor SF3b. We further dissected the previously reported interaction between CSN1 and SAP130, to reveal that approximately 100 amino-acid residues located at the N-terminal end of CSN1 (CSN1NN) were essential for this interaction. In silico structure modeling demonstrated that CSN1NN could swing out towards SAP130 to dock onto its Helical Insertion protruding from the structure. These results support our model that CSN1 embeds itself within CSN protein complex through its C-terminal half and reaches out to targets through its N-terminal portion of the protein. Taken together, this is the first report to document the identical loss-of-function phenotypes of CSN1 and SAP130 during male gametogenesis. Thus, we propose that SAP130 and CSN1 coordinately regulate development of male reproductive organs.
Collapse
Affiliation(s)
- Shiori S Aki
- Molecular Biology Laboratory, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Kei Yura
- School of Advanced Science and Engineering, Waseda University, 513 Tsurumaki, Waseda, Shinjuku, Tokyo, 162-0041, Japan
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan
- Center for Interdisciplinary AI and Data Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan
| | - Takashi Aoyama
- Molecular Biology Laboratory, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Molecular Biology Laboratory, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
9
|
Mycoplasma bovis Membrane Protein MilA Is a Multifunctional Lipase with Novel Lipid and Glycosaminoglycan Binding Activity. Infect Immun 2020; 88:IAI.00945-19. [PMID: 32253247 DOI: 10.1128/iai.00945-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The survival, replication, and virulence of mycoplasmas depend on their ability to capture and import host-derived nutrients using poorly characterized membrane proteins. Previous studies on the important bovine pathogen Mycoplasma bovis demonstrated that the amino-terminal end of an immunogenic 226-kDa (P226) protein, encoded by milA (the full-length product of which has a predicted molecular weight of 303 kDa), had lipase activity. The predicted sequence of MilA contains glycosaminoglycan binding motifs, as well as multiple copies of a domain of unknown function (DUF445) that is also found in apolipoproteins. We mutagenized the gene to facilitate expression of a series of regions spanning the gene in Escherichia coli Using monospecific antibodies against these recombinant proteins, we showed that MilA was proteolytically processed into 226-kDa and 50-kDa fragments that were both partitioned into the detergent phase by Triton X-114 phase fractionation. Trypsin treatment of intact cells showed that P226 was surface exposed. In vitro, the recombinant regions of MilA bound to 1-anilinonaphthalene-8-sulfonic acid and to a variety of lipids. The MilA fragments were also shown to bind heparin. Antibody against the carboxyl-terminal fragment inhibited the growth of M. bovis in vitro This carboxyl end also bound and hydrolyzed ATP, suggestive of a potential role as an autotransporter. Our studies have demonstrated that DUF445 has lipid binding activity and that MilA is a multifunctional protein that may play multiple roles in the pathogenesis of infection with M. bovis.
Collapse
|
10
|
Picott KJ, Deichert JA, deKemp EM, Snieckus V, Ross AC. Purification and Kinetic Characterization of the Essential Condensation Enzymes Involved in Prodiginine and Tambjamine Biosynthesis. Chembiochem 2020; 21:1036-1042. [DOI: 10.1002/cbic.201900503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/11/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Katherine J. Picott
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Julie A. Deichert
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Ella M. deKemp
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Victor Snieckus
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Avena C. Ross
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| |
Collapse
|
11
|
de Alba E. Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys 2019; 670:15-31. [PMID: 31152698 PMCID: PMC8455077 DOI: 10.1016/j.abb.2019.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The inflammasome is a multi-protein platform that assembles upon the presence of cues derived from infection or tissue damage, and triggers the inflammatory response. Inflammasome components include sensor proteins that detect danger signals, procaspase 1 and the adapter ASC (apoptosis-associated speck-like protein containing a CARD) tethering these molecules together. Upon inflammasome assembly, procaspase 1 self-activates and renders functional cytokines to arbitrate in the defense mechanism. This assembly is mediated by self-association and protein interactions via Death Domains. The inflammasome plays a critical role in innate immunity and its dysregulation is the culprit of many autoimmune disorders. An in-depth understanding of the factors involved in inflammasome assembly could help fight these conditions. This review describes our current knowledge on the biophysical aspects of inflammasome formation from the perspective of ASC. The specific characteristics of the three-dimensional solution structure and interdomain dynamics of ASC are explained in relation to its function in inflammasome assembly. Additionally, the review elaborates on the identification of ASC interacting surfaces at the amino acid level using NMR techniques. Finally, the macrostructures formed by full-length ASC and its two Death Domains studied with Transmission Electron Microscopy are compared in the context of a directional model for inflammasome assembly.
Collapse
Affiliation(s)
- Eva de Alba
- Department of Bioengineering. School of Engineering. University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
12
|
Haferkamp P, Tjaden B, Shen L, Bräsen C, Kouril T, Siebers B. The Carbon Switch at the Level of Pyruvate and Phosphoenolpyruvate in Sulfolobus solfataricus P2. Front Microbiol 2019; 10:757. [PMID: 31031731 PMCID: PMC6474364 DOI: 10.3389/fmicb.2019.00757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 01/26/2023] Open
Abstract
Sulfolobus solfataricus P2 grows on different carbohydrates as well as alcohols, peptides and amino acids. Carbohydrates such as D-glucose or D-galactose are degraded via the modified, branched Entner–Doudoroff (ED) pathway whereas growth on peptides requires the Embden–Meyerhof–Parnas (EMP) pathway for gluconeogenesis. As for most hyperthermophilic Archaea an important control point is established at the level of triosephophate conversion, however, the regulation at the level of pyruvate/phosphoenolpyruvate conversion was not tackled so far. Here we describe the cloning, expression, purification and characterization of the pyruvate kinase (PK, SSO0981) and the phosphoenolpyruvate synthetase (PEPS, SSO0883) of Sul. solfataricus. The PK showed only catabolic activity [catalytic efficiency (PEP): 627.95 mM-1s-1, 70°C] with phosphoenolpyruvate as substrate and ADP as phosphate acceptor and was allosterically inhibited by ATP and isocitrate (Ki 0.8 mM). The PEPS was reversible, however, exhibited preferred activity in the gluconeogenic direction [catalytic efficiency (pyruvate): 1.04 mM-1s-1, 70°C] and showed some inhibition by AMP and α-ketoglutarate. The gene SSO2829 annotated as PEPS/pyruvate:phosphate dikinase (PPDK) revealed neither PEPS nor PPDK activity. Our studies suggest that the energy charge of the cell as well as the availability of building blocks in the citric acid cycle and the carbon/nitrogen balance plays a major role in the Sul. solfataricus carbon switch. The comparison of regulatory features of well-studied hyperthermophilic Archaea reveals a close link and sophisticated coordination between the respective sugar kinases and the kinetic and regulatory properties of the enzymes at the level of PEP-pyruvate conversion.
Collapse
Affiliation(s)
- Patrick Haferkamp
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Britta Tjaden
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Lu Shen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Theresa Kouril
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.,Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Baulig A, Helmle I, Bader M, Wolf F, Kulik A, Al-Dilaimi A, Wibberg D, Kalinowski J, Gross H, Kaysser L. Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N-P-bond-forming kinase. Chem Sci 2019; 10:4486-4490. [PMID: 31057776 PMCID: PMC6482885 DOI: 10.1039/c9sc00641a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphoramidon is a potent metalloprotease inhibitor and a widespread tool in cell biology research. It contains a dipeptide backbone that is uniquely linked to a 6-deoxysugar via a phosphoramidate bridge. Herein, we report the identification of a gene cluster for the formation of phosphoramidon and its detailed characterization. In vitro reconstitution of the biosynthesis established TalE as a phosphoramidate-forming kinase and TalC as the glycosyltransferase which installs the l-rhamnose moiety by phosphoester linkage.
Collapse
Affiliation(s)
- Alexandra Baulig
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Irina Helmle
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany .
| | - Marius Bader
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Felix Wolf
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Andreas Kulik
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT) , Microbiology/Biotechnology , University of Tübingen , 72076 Tübingen , Germany
| | - Arwa Al-Dilaimi
- Center for Biotechnology (CeBiTec) , Bielefeld University , 33615 Bielefeld , Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec) , Bielefeld University , 33615 Bielefeld , Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec) , Bielefeld University , 33615 Bielefeld , Germany
| | - Harald Gross
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology , Pharmaceutical Institute , University of Tübingen , 72076 Tübingen , Germany . .,German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| |
Collapse
|
14
|
Minges A, Janßen D, Offermann S, Groth G. Efficient In Vivo Screening Method for the Identification of C 4 Photosynthesis Inhibitors Based on Cell Suspensions of the Single-Cell C 4 Plant Bienertia sinuspersici. FRONTIERS IN PLANT SCIENCE 2019; 10:1350. [PMID: 31736996 PMCID: PMC6831552 DOI: 10.3389/fpls.2019.01350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/01/2019] [Indexed: 05/17/2023]
Abstract
The identification of novel herbicides is of crucial importance to modern agriculture. We developed an efficient in vivo assay based on oxygen evolution measurements using suspensions of chlorenchyma cells isolated from the single-cell C4 plant Bienertia sinuspersici to identify and characterize inhibitors of C4 photosynthesis. This novel approach fills the gap between conventional in vitro assays for inhibitors targeting C4 key enzymes and in vivo experiments on whole plants. The assay addresses inhibition of the target enzymes in a plant context thereby taking care of any reduced target inhibition due to metabolization or inadequate uptake of small molecule inhibitors across plant cell walls and membranes. Known small molecule inhibitors targeting C4 photosynthesis were used to validate the approach. To this end, we tested pyruvate phosphate dikinase inhibitor bisindolylmaleimide IV and phosphoenolpyruvate carboxylase inhibitor okanin. Both inhibitors show inhibition of plant photosynthesis at half-maximal inhibitory concentrations in the sub-mM range and confirm their potential to act as a new class of C4 selective inhibitors.
Collapse
Affiliation(s)
- Alexander Minges
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Dominik Janßen
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Georg Groth,
| |
Collapse
|
15
|
Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep 2019; 36:1654-1686. [DOI: 10.1039/c8np00095f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and characterization of natural product protease inhibitors has inspired the development of numerous pharmaceutical agents.
Collapse
Affiliation(s)
- Leonard Kaysser
- Department of Pharmaceutical Biology
- University of Tübingen
- 72076 Tübingen
- Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
16
|
A fundamental catalytic difference between zinc and manganese dependent enzymes revealed in a bacterial isatin hydrolase. Sci Rep 2018; 8:13104. [PMID: 30166577 PMCID: PMC6117287 DOI: 10.1038/s41598-018-31259-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/15/2018] [Indexed: 11/18/2022] Open
Abstract
The catalytic mechanism of the cyclic amidohydrolase isatin hydrolase depends on a catalytically active manganese in the substrate-binding pocket. The Mn2+ ion is bound by a motif also present in other metal dependent hydrolases like the bacterial kynurenine formamidase. The crystal structures of the isatin hydrolases from Labrenzia aggregata and Ralstonia solanacearum combined with activity assays allow for the identification of key determinants specific for the reaction mechanism. Active site residues central to the hydrolytic mechanism include a novel catalytic triad Asp-His-His supported by structural comparison and hybrid quantum mechanics/classical mechanics simulations. A hydrolytic mechanism for a Mn2+ dependent amidohydrolases that disfavour Zn2+ as the primary catalytically active site metal proposed here is supported by these likely cases of convergent evolution. The work illustrates a fundamental difference in the substrate-binding mode between Mn2+ dependent isatin hydrolase like enzymes in comparison with the vast number of Zn2+ dependent enzymes.
Collapse
|
17
|
On the potential alternate binding change mechanism in a dimeric structure of Pyruvate Phosphate Dikinase. Sci Rep 2017; 7:8020. [PMID: 28808308 PMCID: PMC5556012 DOI: 10.1038/s41598-017-08521-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
The pyruvate phosphate dikinase (PPDK) reaction mechanism is characterized by a distinct spatial separation of reaction centers and large conformational changes involving an opening-closing motion of the nucleotide-binding domain (NBD) and a swiveling motion of the central domain (CD). However, why PPDK is active only in a dimeric form and to what extent an alternate binding change mechanism could underlie this fact has remained elusive. We performed unbiased molecular dynamics simulations, configurational free energy computations, and rigidity analysis to address this question. Our results support the hypothesis that PPDK dimerization influences the opening-closing motion of the NBDs, and that this influence is mediated via the CDs of both chains. Such an influence would be a prerequisite for an alternate binding change mechanism to occur. To the best of our knowledge, this is the first time that a possible explanation has been suggested as to why only dimeric PPDK is active.
Collapse
|
18
|
Minges A, Höppner A, Groth G. Trapped intermediate state of plant pyruvate phosphate dikinase indicates substeps in catalytic swiveling domain mechanism. Protein Sci 2017; 26:1667-1673. [PMID: 28470715 PMCID: PMC5521584 DOI: 10.1002/pro.3184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Pyruvate phosphate dikinase (PPDK) is an essential enzyme of both the C4 photosynthetic pathway and cellular energy metabolism of some bacteria and unicellular protists. In C4 plants, it catalyzes the ATP- and Pi -dependent formation of phosphoenolpyruvate (PEP) while in bacteria and protozoa the ATP-forming direction is used. PPDK is composed out of three distinct domains and exhibits one of the largest single domain movements known today during its catalytic cycle. However, little information about potential intermediate steps of this movement was available. A recent study resolved a discrete intermediate step of PPDK's swiveling movement, shedding light on the details of this intriguing mechanism. Here we present an additional structural intermediate that possibly represents another crucial step in the catalytic cycle of PPDK, providing means to get a more detailed understanding of PPDK's mode of function.
Collapse
Affiliation(s)
- Alexander Minges
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University DüsseldorfDüsseldorf40204Germany
| | - Astrid Höppner
- X‐ray Facility and Crystal FarmHeinrich Heine University DüsseldorfDüsseldorf40204Germany
| | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University DüsseldorfDüsseldorf40204Germany
| |
Collapse
|
19
|
Taylor ZW, Brown HA, Narindoshvili T, Wenzel CQ, Szymanski CM, Holden HM, Raushel FM. Discovery of a Glutamine Kinase Required for the Biosynthesis of the O-Methyl Phosphoramidate Modifications Found in the Capsular Polysaccharides of Campylobacter jejuni. J Am Chem Soc 2017; 139:9463-9466. [PMID: 28650156 PMCID: PMC5629633 DOI: 10.1021/jacs.7b04824] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial capsular polysaccharides (CPS) are complex carbohydrate structures that play a role in the overall fitness of the organism. Campylobacter jejuni, known for being a major cause of bacterial gastroenteritis worldwide, produces a CPS with a unique O-methyl phosphoramidate (MeOPN) modification on specific sugar residues. The formation of P-N bonds in nature is relatively rare, and the pathway for the assembly of the phosphoramidate moiety in the CPS of C. jejuni is unknown. In this investigation we discovered that the initial transformation in the biosynthetic pathway for the MeOPN modification of the CPS involves the direct phosphorylation of the amide nitrogen of l-glutamine with ATP by the catalytic activity of Cj1418. The other two products are AMP and inorganic phosphate. The l-glutamine-phosphate product was characterized using 31P NMR spectroscopy and mass spectrometry. We suggest that this newly discovered enzyme be named l-glutamine kinase.
Collapse
Affiliation(s)
- Zane W. Taylor
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, 77843
| | - Haley A. Brown
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Cory Q. Wenzel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Christine M. Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602
| | - Hazel M. Holden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Frank M. Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, 77843
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843
| |
Collapse
|
20
|
Small-molecule inhibition of pyruvate phosphate dikinase targeting the nucleotide binding site. PLoS One 2017; 12:e0181139. [PMID: 28700696 PMCID: PMC5507339 DOI: 10.1371/journal.pone.0181139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/27/2017] [Indexed: 01/27/2023] Open
Abstract
Pyruvate phosphate dikinase (PPDK) is an essential enzyme of C4 photosynthesis in plants, catalyzing the ATP-driven conversion of pyruvate to phosphoenolpyruvate (PEP). It is further used by some bacteria and unicellular protists in the reverse, ATP-forming direction. Many weed species use C4 photosynthesis in contrast to world’s major crops, which are C3 plants. Hence inhibitors of PPDK may be used as C4-specific herbicides. By screening a library of 80 commercially available kinase inhibitors, we identified compounds derived from bisindolylmaleimide (bisindolylmaleimide IV, IC50 = 0.76 ± 0.13 μM) and indirubin (indirubin-3’-monoxime, IC50 = 4.2 ± 0.9 μM) that showed high inhibitory potency towards PPDK and are among the most effective PPDK inhibitors described today. Physiological studies on leaf tissues of a C4 model plant confirmed in vivo inhibition of C4-driven photosynthesis by these substances. Moreover, comparative docking studies of non-inhibitory bisindolylmaleimide derivatives suggest that the selectivity towards PPDK may be increased by addition of functional groups to the core structure.
Collapse
|
21
|
Minges A, Ciupka D, Winkler C, Höppner A, Gohlke H, Groth G. Structural intermediates and directionality of the swiveling motion of Pyruvate Phosphate Dikinase. Sci Rep 2017; 7:45389. [PMID: 28358005 PMCID: PMC5371819 DOI: 10.1038/srep45389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Pyruvate phosphate dikinase (PPDK) is a vital enzyme in cellular energy metabolism catalyzing the ATP- and Pi-dependent formation of phosphoenolpyruvate from pyruvate in C4 -plants, but the reverse reaction forming ATP in bacteria and protozoa. The multi-domain enzyme is considered an efficient molecular machine that performs one of the largest single domain movements in proteins. However, a comprehensive understanding of the proposed swiveling domain motion has been limited by not knowing structural intermediates or molecular dynamics of the catalytic process. Here, we present crystal structures of PPDKs from Flaveria, a model genus for studying the evolution of C4 -enzymes from phylogenetic ancestors. These structures resolve yet unknown conformational intermediates and provide the first detailed view on the large conformational transitions of the protein in the catalytic cycle. Independently performed unrestrained MD simulations and configurational free energy calculations also identified these intermediates. In all, our experimental and computational data reveal strict coupling of the CD swiveling motion to the conformational state of the NBD. Moreover, structural asymmetries and nucleotide binding states in the PPDK dimer support an alternate binding change mechanism for this intriguing bioenergetic enzyme.
Collapse
Affiliation(s)
- Alexander Minges
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Daniel Ciupka
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Christian Winkler
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Astrid Höppner
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
22
|
Popovic A, Hai T, Tchigvintsev A, Hajighasemi M, Nocek B, Khusnutdinova AN, Brown G, Glinos J, Flick R, Skarina T, Chernikova TN, Yim V, Brüls T, Paslier DL, Yakimov MM, Joachimiak A, Ferrer M, Golyshina OV, Savchenko A, Golyshin PN, Yakunin AF. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Sci Rep 2017; 7:44103. [PMID: 28272521 PMCID: PMC5341072 DOI: 10.1038/srep44103] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022] Open
Abstract
Metagenomics has made accessible an enormous reserve of global biochemical diversity. To tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. We have validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalytic residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools.
Collapse
Affiliation(s)
- Ana Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Tran Hai
- School of Biological Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Anatoly Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Mahbod Hajighasemi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Julia Glinos
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | | | - Veronica Yim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Thomas Brüls
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale, Institut de Génomique, Université de d'Evry Val d'Essonne (UEVE), Centre National de la Recherche Scientifique (CNRS), UMR8030, Génomique métabolique, Evry, France
| | - Denis Le Paslier
- Université de d'Evry Val d'Essonne (UEVE), Centre National de la Recherche, Scientifique (CNRS), UMR8030, Génomique métabolique, Commissariat à l'Energie, Atomique et aux Energies Alternatives (CEA), Direction de la Recherche, Fondamentale, Institut de Génomique, Evry, France
| | | | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | - Olga V Golyshina
- School of Biological Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
23
|
Mazurkewich S, Seah SYK. Investigation into the Mode of Phosphate Activation in the 4-Hydroxy-4-Methyl-2-Oxoglutarate/4-Carboxy-4-Hydroxy-2-Oxoadipate Aldolase from Pseudomonas putida F1. PLoS One 2016; 11:e0164556. [PMID: 27741265 PMCID: PMC5065237 DOI: 10.1371/journal.pone.0164556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/03/2016] [Indexed: 11/18/2022] Open
Abstract
The 4-hydroxy-4-methyl-2-oxoglutarate (HMG)/4-carboxy-4-hydroxy-2-oxoadipate (CHA) aldolase is the last enzyme of both the gallate and protocatechuate 4,5-cleavage pathways which links aromatic catabolism to central cellular metabolism. The enzyme is a class II, divalent metal dependent, aldolase which is activated in the presence of inorganic phosphate (Pi), increasing its turnover rate >10-fold. This phosphate activation is unique for a class II aldolase. The aldolase pyruvate methyl proton exchange rate, a probe of the general acid half reaction, was increased 300-fold in the presence of 1 mM Pi and the rate enhancement followed saturation kinetics giving rise to a KM of 397 ± 30 μM. Docking studies revealed a potential Pi binding site close to, or overlapping with, the proposed general acid water site. Putative Pi binding residues were substituted by site-directed mutagenesis which resulted in reductions of Pi activation. Significantly, the active site residue Arg-123, known to be critical for the catalytic mechanism of the enzyme, was also implicated in supporting Pi mediated activation.
Collapse
Affiliation(s)
- Scott Mazurkewich
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Hu DX, Withall DM, Challis GL, Thomson RJ. Structure, Chemical Synthesis, and Biosynthesis of Prodiginine Natural Products. Chem Rev 2016; 116:7818-53. [PMID: 27314508 PMCID: PMC5555159 DOI: 10.1021/acs.chemrev.6b00024] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The prodiginine family of bacterial alkaloids is a diverse set of heterocyclic natural products that have likely been known to man since antiquity. In more recent times, these alkaloids have been discovered to span a wide range of chemical structures that possess a number of interesting biological activities. This review provides a comprehensive overview of research undertaken toward the isolation and structural elucidation of the prodiginine family of natural products. Additionally, research toward chemical synthesis of the prodiginine alkaloids over the last several decades is extensively reviewed. Finally, the current, evidence-based understanding of the various biosynthetic pathways employed by bacteria to produce prodiginine alkaloids is summarized.
Collapse
Affiliation(s)
- Dennis X. Hu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David M. Withall
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gregory L. Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Stogios PJ, Cox G, Spanogiannopoulos P, Pillon MC, Waglechner N, Skarina T, Koteva K, Guarné A, Savchenko A, Wright GD. Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nat Commun 2016; 7:11343. [PMID: 27103605 PMCID: PMC4844700 DOI: 10.1038/ncomms11343] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/15/2016] [Indexed: 11/11/2022] Open
Abstract
Rifampin (RIF) phosphotransferase (RPH) confers antibiotic resistance by conversion of RIF and ATP, to inactive phospho-RIF, AMP and Pi. Here we present the crystal structure of RPH from Listeria monocytogenes (RPH-Lm), which reveals that the enzyme is comprised of three domains: two substrate-binding domains (ATP-grasp and RIF-binding domains); and a smaller phosphate-carrying His swivel domain. Using solution small-angle X-ray scattering and mutagenesis, we reveal a mechanism where the swivel domain transits between the spatially distinct substrate-binding sites during catalysis. RPHs are previously uncharacterized dikinases that are widespread in environmental and pathogenic bacteria. These enzymes are members of a large unexplored group of bacterial enzymes with substrate affinities that have yet to be fully explored. Such an enzymatically complex mechanism of antibiotic resistance augments the spectrum of strategies used by bacteria to evade antimicrobial compounds.
Collapse
Affiliation(s)
- Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Georgina Cox
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Peter Spanogiannopoulos
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Monica C. Pillon
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Tatiana Skarina
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Kalinka Koteva
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Gerard D. Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
26
|
Structural basis of rifampin inactivation by rifampin phosphotransferase. Proc Natl Acad Sci U S A 2016; 113:3803-8. [PMID: 27001859 DOI: 10.1073/pnas.1523614113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rifampin (RIF) is a first-line drug used for the treatment of tuberculosis and other bacterial infections. Various RIF resistance mechanisms have been reported, and recently an RIF-inactivation enzyme, RIF phosphotransferase (RPH), was reported to phosphorylate RIF at its C21 hydroxyl at the cost of ATP. However, the underlying molecular mechanism remained unknown. Here, we solve the structures of RPH from Listeria monocytogenes (LmRPH) in different conformations. LmRPH comprises three domains: an ATP-binding domain (AD), an RIF-binding domain (RD), and a catalytic His-containing domain (HD). Structural analyses reveal that the C-terminal HD can swing between the AD and RD, like a toggle switch, to transfer phosphate. In addition to its catalytic role, the HD can bind to the AD and induce conformational changes that stabilize ATP binding, and the binding of the HD to the RD is required for the formation of the RIF-binding pocket. A line of hydrophobic residues forms the RIF-binding pocket and interacts with the 1-amino, 2-naphthol, 4-sulfonic acid and naphthol moieties of RIF. The R group of RIF points toward the outside of the pocket, explaining the low substrate selectivity of RPH. Four residues near the C21 hydroxyl of RIF, His825, Arg666, Lys670, and Gln337, were found to play essential roles in the phosphorylation of RIF; among these the His825 residue may function as the phosphate acceptor and donor. Our study reveals the molecular mechanism of RIF phosphorylation catalyzed by RPH and will guide the development of a new generation of rifamycins.
Collapse
|
27
|
Du L, Ma L, Qi F, Zheng X, Jiang C, Li A, Wan X, Liu SJ, Li S. Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum. J Biol Chem 2016; 291:6583-94. [PMID: 26817843 DOI: 10.1074/jbc.m115.695320] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
4-Cresol is not only a significant synthetic intermediate for production of many aromatic chemicals, but also a priority environmental pollutant because of its toxicity to higher organisms. In our previous studies, a gene cluster implicated to be involved in 4-cresol catabolism, creCDEFGHIR, was identified in Corynebacterium glutamicum and partially characterized in vivo. In this work, we report on the discovery of a novel 4-cresol biodegradation pathway that employs phosphorylated intermediates. This unique pathway initiates with the phosphorylation of the hydroxyl group of 4-cresol, which is catalyzed by a novel 4-methylbenzyl phosphate synthase, CreHI. Next, a unique class I P450 system, CreJEF, specifically recognizes phosphorylated intermediates and successively oxidizes the aromatic methyl group into carboxylic acid functionality via alcohol and aldehyde intermediates. Moreover, CreD (phosphohydrolase), CreC (alcohol dehydrogenase), and CreG (aldehyde dehydrogenase) were also found to be required for efficient oxidative transformations in this pathway. Steady-state kinetic parameters (Km and kcat) for each catabolic step were determined, and these results suggest that kinetic controls serve a key role in directing the metabolic flux to the most energy effective route.
Collapse
Affiliation(s)
- Lei Du
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and the University of the Chinese Academy of Sciences, Beijing 100049, China, and
| | - Li Ma
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and
| | - Feifei Qi
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and
| | - Xianliang Zheng
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and the University of the Chinese Academy of Sciences, Beijing 100049, China, and
| | - Chengying Jiang
- the State Key Laboratory of Microbial Resources, and Environmental Microbiology and Biotechnology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ailei Li
- the CAS Key Laboratory of Bio-based Materials at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaobo Wan
- the CAS Key Laboratory of Bio-based Materials at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Shuang-Jiang Liu
- the State Key Laboratory of Microbial Resources, and Environmental Microbiology and Biotechnology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengying Li
- From the CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology and
| |
Collapse
|
28
|
McCormick NE, Jakeman DL. On the mechanism of phosphoenolpyruvate synthetase (PEPs) and its inhibition by sodium fluoride: potential magnesium and aluminum fluoride complexes of phosphoryl transfer. Biochem Cell Biol 2015; 93:236-40. [DOI: 10.1139/bcb-2014-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoenolpyruvate synthase (PEPs) catalyzes the conversion of pyruvate to phosphoenolpyruvate (PEP) using a two-step mechanism invoking a phosphorylated-His intermediate. Formation of PEP is an initial step in gluconeogenesis, and PEPs is essential for growth of Escherichia coli on 3-carbon sources such as pyruvate. The production of PEPs has also been linked to bacterial virulence and antibiotic resistance. As such, PEPs is of interest as a target for antibiotic development, and initial investigations of PEPs have indicated inhibition by sodium fluoride. Similar inhibition has been observed in a variety of phospho-transfer enzymes through the formation of metal fluoride complexes within the active site. Herein we quantify the inhibitory capacity of sodium fluoride through a coupled spectrophotometric assay. The observed inhibition provides indirect evidence for the formation of a MgF3−complex within the enzyme active site and insight into the phospho-transfer mechanism of PEPs. The effect of AlCl3on PEPs enzyme activity was also assessed and found to decrease substrate binding and turnover.
Collapse
Affiliation(s)
- Nicole E. McCormick
- College of Pharmacy, Dalhousie University, 5968 College St., Halifax, NS B3H 4R2, Canada
| | - David L. Jakeman
- College of Pharmacy, Dalhousie University, 5968 College St., Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, 6274 Coberg Rd., Halifax, NS B3H 4R2, Canada
| |
Collapse
|
29
|
|
30
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
31
|
Bjerregaard-Andersen K, Sommer T, Jensen JK, Jochimsen B, Etzerodt M, Morth JP. A proton wire and water channel revealed in the crystal structure of isatin hydrolase. J Biol Chem 2014; 289:21351-9. [PMID: 24917679 DOI: 10.1074/jbc.m114.568824] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only when the product is formed. The functional proton wire present in isatin hydrolase isoform b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora.
Collapse
Affiliation(s)
- Kaare Bjerregaard-Andersen
- From the Norwegian Center of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway, the Department for Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Theis Sommer
- From the Norwegian Center of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway
| | - Jan K Jensen
- the Department for Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Bjarne Jochimsen
- the Department for Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - Michael Etzerodt
- the Department for Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus, Denmark
| | - J Preben Morth
- From the Norwegian Center of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Gaustadalléen 21, 0349 Oslo, Norway, the Institute for Experimental Medical Research, Oslo University Hospital, N-0424 Oslo, Norway, and
| |
Collapse
|
32
|
Chen YB, Lu TC, Wang HX, Shen J, Bu TT, Chao Q, Gao ZF, Zhu XG, Wang YF, Wang BC. Posttranslational Modification of Maize Chloroplast Pyruvate Orthophosphate Dikinase Reveals the Precise Regulatory Mechanism of Its Enzymatic Activity. PLANT PHYSIOLOGY 2014; 165:534-549. [PMID: 24710069 PMCID: PMC4044839 DOI: 10.1104/pp.113.231993] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In C4 plants, pyruvate orthophosphate dikinase (PPDK) activity is tightly dark/light regulated by reversible phosphorylation of an active-site threonine (Thr) residue; this process is catalyzed by PPDK regulatory protein (PDRP). Phosphorylation and dephosphorylation of PPDK lead to its inactivation and activation, respectively. Here, we show that light intensity rather than the light/dark transition regulates PPDK activity by modulating the reversible phosphorylation at Thr-527 (previously termed Thr-456) of PPDK in maize (Zea mays). The amount of PPDK (unphosphorylated) involved in C4 photosynthesis is indeed strictly controlled by light intensity, despite the high levels of PPDK protein that accumulate in mesophyll chloroplasts. In addition, we identified a transit peptide cleavage site, uncovered partial amino-terminal acetylation, and detected phosphorylation at four serine (Ser)/Thr residues, two of which were previously unknown in maize. In vitro experiments indicated that Thr-527 and Ser-528, but not Thr-309 and Ser-506, are targets of PDRP. Modeling suggests that the two hydrogen bonds between the highly conserved residues Ser-528 and glycine-525 are required for PDRP-mediated phosphorylation of the active-site Thr-527 of PPDK. Taken together, our results suggest that the regulation of maize plastid PPDK isoform (C4PPDK) activity is much more complex than previously reported. These diverse regulatory pathways may work alone or in combination to fine-tune C4PPDK activity in response to changes in lighting.
Collapse
Affiliation(s)
- Yi-Bo Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Tian-Cong Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Hong-Xia Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Jie Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Tian-Tian Bu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Qing Chao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Zhi-Fang Gao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Xin-Guang Zhu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Yue-Feng Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China (Y.-B.C., J.S., T.-T.B., Q.C., Z.-F.G., Y.-F.W., B.-C.W.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (T.-C.L.);Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing 100850, China (H.-X.W.); andShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China (X.-G.Z.)
| |
Collapse
|
33
|
Busi MV, Gomez-Casati DF, Martín M, Barchiesi J, Grisolía MJ, Hedín N, Carrillo JB. Starch Metabolism in Green Plants. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_78-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
González-Marcano E, Mijares A, Quiñones W, Cáceres A, Concepción JL. Post-translational modification of the pyruvate phosphate dikinase from Trypanosoma cruzi. Parasitol Int 2013; 63:80-6. [PMID: 24060543 DOI: 10.1016/j.parint.2013.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022]
Abstract
In kinetoplastids such as Trypanosoma cruzi, glycolysis is compartmentalized in peroxisome-like organelles called glycosomes. Pyruvate phosphate dikinase (PPDK), an auxiliary enzyme of glycolysis, is also located in the glycosomes. We have detected that this protein is post-translationally modified by phosphorylation and proteolytic cleavage. On western blots of T. cruzi epimastigotes, two PPDK forms were found with apparent MW of 100 kDa and 75 kDa, the latter one being phosphorylated at Thr481, a residue present in a highly conserved region. In subcellular localization assays the 75 kDa PPDK was located peripherally at the glycosomal membrane. Both PPDK forms were found in all life-cycle stages of the parasite. When probing for both PPDK forms during a growth of epimastigotes in batch culture, an increase in the level of the 75 kDa form and a decrease of the 100 kDa one were observed by western blot analysis, signifying that glucose starvation and the concomitant switch of the metabolism to amino acid catabolism may play a role in the post-translational processing of the PPDK. Either one or both of the processes, phosphorylation and proteolytic cleavage of PPDK, result in inactivation of the enzyme. It remains to be established whether the phenomenon exerts a regulatory function.
Collapse
Affiliation(s)
- Eglys González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela.
| | | | | | | | | |
Collapse
|
35
|
Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach. J Biotechnol 2013; 167:111-22. [PMID: 23792782 DOI: 10.1016/j.jbiotec.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) synthesizes huge amounts of the exopolysaccharide xanthan and is a plant pathogen affecting Brassicaceae, among them the model plant Arabidopsis thaliana. Xanthan is produced as a thickening agent at industrial scale by fermentation of Xcc. In an approach based on 2D gel electrophoresis, protein samples from different growth phases were characterized to initialize analysis of the Xanthomonas phosphoproteome. The 2D gels were stained with Pro-Q Diamond phosphoprotein stain to identify putatively phosphorylated proteins. Spots of putatively phosphorylated proteins were excised from the gel and analyzed by mass spectrometry. Three proteins were confirmed to be phosphorylated, the phosphoglucomutase/phosphomannomutase XanA that is important for xanthan and lipopolysaccharide biosynthesis, the phosphoenolpyruvate synthase PspA that is involved in gluconeogenesis, and an anti-sigma factor antagonist RsbR that was so far uncharacterized in xanthomonads. The growth phase in which the samples were collected had an influence on protein phosphorylation in Xcc, particular distinct in case of RsbR, which was phosphorylated during the transition from the late exponential growth phase to the stationary phase.
Collapse
|
36
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Wu C, Dunaway-Mariano D, Mariano PS. Design, synthesis, and evaluation of inhibitors of pyruvate phosphate dikinase. J Org Chem 2012; 78:1910-22. [PMID: 23094589 DOI: 10.1021/jo3018473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pyruvate phosphate dikinase (PPDK) catalyzes the phosphorylation reaction of pyruvate that forms phosphoenolpyruvate (PEP) via two partial reactions: PPDK + ATP + P(i) → PPDK-P + AMP + PP(i) and PPDK-P + pyruvate → PEP + PPDK. Based on its role in the metabolism of microbial human pathogens, PPDK is a potential drug target. A screen of substances that bind to the PPDK ATP-grasp domain active site revealed that flavone analogues are potent inhibitors of the Clostridium symbiosum PPDK. In silico modeling studies suggested that placement of a 3–6 carbon-tethered ammonium substituent at the 3′- or 4′-positions of 5,7-dihydroxyflavones would result in favorable electrostatic interactions with the PPDK Mg-ATP binding site. As a result, polymethylene-tethered amine derivatives of 5,7-dihydroxyflavones were prepared. Steady-state kinetic analysis of these substances demonstrates that the 4′-aminohexyl-5,7-dyhydroxyflavone 10 is a potent competitive PPDK inhibitor (K(i) = 1.6 ± 0.1 μM). Single turnover experiments were conducted using 4′-aminopropyl-5,7-dihydroxyflavone 7 to show that this flavone specifically targets the ATP binding site and inhibits catalysis of only the PPDK + ATP + P(i) → PPDK-P + AMP PP(i) partial reaction. Finally, the 4′-aminopbutyl-5,7-dihydroxyflavone 8 displays selectivity for inhibition of PPDK versus other enzymes that utilize ATP and NAD.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | |
Collapse
|
38
|
Coincon M, Wang W, Sygusch J, Seah SYK. Crystal structure of reaction intermediates in pyruvate class II aldolase: substrate cleavage, enolate stabilization, and substrate specificity. J Biol Chem 2012; 287:36208-21. [PMID: 22908224 PMCID: PMC3476288 DOI: 10.1074/jbc.m112.400705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of divalent metal-dependent pyruvate aldolase, HpaI, in complex with substrate and cleavage products were determined to 1.8-2.0 Å resolution. The enzyme·substrate complex with 4-hydroxy-2-ketoheptane-1,7-dioate indicates that water molecule W2 bound to the divalent metal ion initiates C3-C4 bond cleavage. The binding mode of the aldehyde donor delineated a solvent-filled capacious binding locus lined with predominantly hydrophobic residues. The absence of direct interactions with the aldehyde aliphatic carbons accounts for the broad specificity and lack of stereospecific control by the enzyme. Enzymatic complex structures formed with keto acceptors, pyruvate, and 2-ketobutyrate revealed bidentate interaction with the divalent metal ion by C1-carboxyl and C2-carbonyl oxygens and water molecule W4 that is within close contact of the C3 carbon. Arg(70) assumes a multivalent role through its guanidinium moiety interacting with all active site enzymatic species: C2 oxygen in substrate, pyruvate, and ketobutyrate; substrate C4 hydroxyl; aldehyde C1 oxygen; and W4. The multiple interactions made by Arg(70) stabilize the negatively charged C4 oxygen following proton abstraction, the aldehyde alignment in aldol condensation, and the pyruvate enolate upon aldol cleavage as well as support proton exchange at C3. This role is corroborated by loss of aldol cleavage ability and pyruvate C3 proton exchange activity and by a 730-fold increase in the dissociation constant toward the pyruvate enolate analog oxalate in the R70A mutant. Based on the crystal structures, a mechanism is proposed involving the two enzyme-bound water molecules, W2 and W4, in acid/base catalysis that facilitates reversible aldol cleavage. The same reaction mechanism promotes decarboxylation of oxaloacetate.
Collapse
Affiliation(s)
- Mathieu Coincon
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Weijun Wang
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jurgen Sygusch
- From the Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada and
| | - Stephen Y. K. Seah
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
39
|
Palayam M, Lakshminarayanan K, Radhakrishnan M, Krishnaswamy G. Preliminary analysis to target pyruvate phosphate dikinase from wolbachia endosymbiont of Brugia malayi for designing anti-filarial agents. Interdiscip Sci 2012; 4:74-82. [PMID: 22392278 DOI: 10.1007/s12539-011-0109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/27/2011] [Accepted: 05/20/2011] [Indexed: 11/24/2022]
Abstract
Filariasis causing nematode Brugia malayi is shown to harbor wolbachia bacteria as symbionts. The sequenced genome of the wolbachia endosymbiont from B.malayi (wBm) offers an unprecedented opportunity to identify new wolbachia drug targets. Genome analysis of the glycolytic/gluconeogenic pathway has revealed that wBm lacks pyruvate kinase (PK) and may instead utilize the enzyme pyruvate phosphate dikinase (PPDK; ATP: pyruvate, orthophosphate phosphotransferase, EC 2.7.9.1). PPDK catalyses the reversible conversion of AMP, PPi and phosphoenolpyruvate into ATP, Pi and pyruvate. Most organisms including mammals exclusively possess PK. Therefore the absence of PPDK in mammals makes this enzyme as attractive wolbachia drug target. In the present study we have modeled the three dimensional structure of wBm PPDK. The template with 50% identity and 67% similarity in amino acid sequence was employed for homology-modeling approach. The putative active site consists of His476, Arg360, Glu358, Asp344, Arg112, Lys43 and Glu346 was selected as site of interest for designing suitable inhibitor molecules. Docking studies were carried out using induced fit algorithms with OPLS force field of Schrödinger's Glide. The lead molecules which inhibit the PPDK activity are taken from the small molecule library (Pubchem database) and the interaction analysis showed that these compounds may inhibit the function of PPDK in wBm.
Collapse
Affiliation(s)
- Malathy Palayam
- Centre of Advanced study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | | | | |
Collapse
|
40
|
Dudkiewicz M, Szczepińska T, Grynberg M, Pawłowski K. A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life. PLoS One 2012; 7:e32138. [PMID: 22359664 PMCID: PMC3281104 DOI: 10.1371/journal.pone.0032138] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 01/24/2012] [Indexed: 12/21/2022] Open
Abstract
Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised. Here, the structural and functional prediction for the uncharacterised selenoprotein O (SELO) is presented. Using bioinformatics tools, we predict that SELO protein adopts a three-dimensional fold similar to protein kinases. Furthermore, we argue that despite the lack of conservation of the “classic” catalytic aspartate residue of the archetypical His-Arg-Asp motif, SELO kinases might have retained catalytic phosphotransferase activity, albeit with an atypical active site. Lastly, the role of the selenocysteine residue is considered and the possibility of an oxidoreductase-regulated kinase function for SELO is discussed. The novel kinase prediction is discussed in the context of functional data on SELO orthologues in model organisms, FMP40 a.k.a.YPL222W (yeast), and ydiU (bacteria). Expression data from bacteria and yeast suggest a role in oxidative stress response. Analysis of genomic neighbourhoods of SELO homologues in the three domains of life points toward a role in regulation of ABC transport, in oxidative stress response, or in basic metabolism regulation. Among bacteria possessing SELO homologues, there is a significant over-representation of aquatic organisms, also of aerobic ones. The selenocysteine residue in SELO proteins occurs only in few members of this protein family, including proteins from Metazoa, and few small eukaryotes (Ostreococcus, stramenopiles). It is also demonstrated that enterobacterial mchC proteins involved in maturation of bactericidal antibiotics, microcins, form a distant subfamily of the SELO proteins. The new protein structural domain, with a putative kinase function assigned, expands the known kinome and deserves experimental determination of its biological role within the cell-signaling network.
Collapse
Affiliation(s)
| | - Teresa Szczepińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Pawłowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
41
|
Astley HM, Parsley K, Aubry S, Chastain CJ, Burnell JN, Webb ME, Hibberd JM. The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis are both bifunctional and interact with the catalytic and nucleotide-binding domains of pyruvate, orthophosphate dikinase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1070-1080. [PMID: 21883547 DOI: 10.1111/j.1365-313x.2011.04759.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pyruvate orthophosphate dikinase (PPDK) is a key enzyme in C(4) photosynthesis and is also found in C(3) plants. It is post-translationally modified by the PPDK regulatory protein (RP) that possesses both kinase and phosphotransferase activities. Phosphorylation and dephosphorylation of PPDK lead to inactivation and activation respectively. Arabidopsis thaliana contains two genes that encode chloroplastic (RP1) and cytosolic (RP2) isoforms of RP, and although RP1 has both kinase and phosphotransferase activities, to date RP2 has only been shown to act as a kinase. Here we demonstrate that RP2 is able to catalyse the dephosphorylation of PPDK, although at a slower rate than RP1 under the conditions of our assay. From yeast two-hybrid analysis we propose that RP1 binds to the central catalytic domain of PPDK, and that additional regions towards the carboxy and amino termini are required for a stable interaction between RP2 and PPDK. For 21 highly conserved amino acids in RP1, mutation of 15 of these reduced kinase and phosphotransferase activity, while mutation of six residues had no impact on either activity. We found no mutant in which only one activity was abolished. However, in some chimaeric fusions that comprised the amino and carboxy termini of RP1 and RP2 respectively, the kinase reaction was severely compromised but phosphotransferase activity remained unaffected. These findings are consistent with the findings that both RP1 and RP2 modulate reversibly the activity of PPDK, and possess one bifunctional active site or two separate sites in close proximity.
Collapse
Affiliation(s)
- Holly M Astley
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Sakasegawa SI, Hayashi J, Ikura Y, Ueda S, Imamura S, Kumazawa T, Nishimura A, Ohshima T, Sakuraba H. Colorimetric inorganic pyrophosphate assay using a double cycling enzymatic method. Anal Biochem 2011; 416:61-6. [DOI: 10.1016/j.ab.2011.04.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 04/15/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
|
43
|
Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen THT. Functional evolution of C(4) pyruvate, orthophosphate dikinase. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3083-91. [PMID: 21414960 DOI: 10.1093/jxb/err058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pyruvate,orthophosphate dikinase (PPDK) plays a controlling role in the PEP-regeneration phase of the C(4) photosynthetic pathway. Earlier studies have fully documented its biochemical properties and its post-translational regulation by the PPDK regulatory protein (PDRP). However, the question of its evolution into the C(4) pathway has, until recently, received little attention. One assumption concerning this evolution is that changes in catalytic and regulatory properties of PPDK were necessary for the enzyme to fulfil its role in the C(4) pathway. In this study, the functional evolution of PPDK from its ancient origins in the Archaea to its ascension as a photosynthetic enzyme in modern C(4) angiosperms is reviewed. This analysis is accompanied by a comparative investigation into key catalytic and regulatory properties of a C(3) PPDK isoform from Arabidopsis and the C(4) PPDK isoform from Zea mays. From these analyses, it is proposed that PPDK first became functionally seated in C(3) plants as an ancillary glycolytic enzyme and that its transition into a C(4) pathway enzyme involved only minor changes in enzyme properties per se.
Collapse
Affiliation(s)
- Chris J Chastain
- Department of Biosciences, Minnesota State University-Moorhead, Moorhead, MN 56563, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Piszczek G, Lee JC, Tjandra N, Lee CR, Seok YJ, Levine RL, Peterkofsky A. Deuteration of Escherichia coli enzyme I(Ntr) alters its stability. Arch Biochem Biophys 2011; 507:332-42. [PMID: 21185804 PMCID: PMC3058872 DOI: 10.1016/j.abb.2010.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/18/2010] [Indexed: 11/21/2022]
Abstract
Enzyme I(Ntr) is the first protein in the nitrogen phosphotransferase pathway. Using an array of biochemical and biophysical tools, we characterized the protein, compared its properties to that of EI of the carbohydrate PTS and, in addition, examined the effect of substitution of all nonexchangeable protons by deuterium (perdeuteration) on the properties of EI(Ntr). Notably, we find that the catalytic function (autophosphorylation and phosphotransfer to NPr) remains unperturbed while its stability is modulated by deuteration. In particular, the deuterated form exhibits a reduction of approximately 4°C in thermal stability, enhanced oligomerization propensity, as well as increased sensitivity to proteolysis in vitro. We investigated tertiary, secondary, and local structural changes, both in the absence and presence of PEP, using near- and far-UV circular dichroism and Trp fluorescence spectroscopy. Our data demonstrate that the aromatic residues are particularly sensitive probes for detecting effects of deuteration with an enhanced quantum yield upon PEP binding and apparent decreases in tertiary contacts for Tyr and Trp side chains. Trp mutagenesis studies showed that the region around Trp522 responds to binding of both PEP and NPr. The significance of these results in the context of structural analysis of EI(Ntr) are evaluated.
Collapse
Affiliation(s)
- Grzegorz Piszczek
- The National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Jennifer C. Lee
- The National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Nico Tjandra
- The National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Chang-Ro Lee
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-742
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-742
| | - Rodney L. Levine
- The National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Alan Peterkofsky
- The National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Wang W, Mazurkewich S, Kimber MS, Seah SYK. Structural and kinetic characterization of 4-hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate aldolase, a protocatechuate degradation enzyme evolutionarily convergent with the HpaI and DmpG pyruvate aldolases. J Biol Chem 2010; 285:36608-15. [PMID: 20843800 PMCID: PMC2978589 DOI: 10.1074/jbc.m110.159509] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/03/2010] [Indexed: 11/06/2022] Open
Abstract
4-Hydroxy-4-methyl-2-oxoglutarate/4-carboxy-4-hydroxy-2-oxoadipate (HMG/CHA) aldolase from Pseudomonas putida F1 catalyzes the last step of the bacterial protocatechuate 4,5-cleavage pathway. The preferred substrates of the enzyme are 2-keto-4-hydroxy acids with a 4-carboxylate substitution. The enzyme also exhibits oxaloacetate decarboxylation and pyruvate α-proton exchange activity. Sodium oxalate is a competitive inhibitor of the aldolase reaction. The pH dependence of k(cat)/K(m) and k(cat) for the enzyme is consistent with a single deprotonation with pK(a) values of 8.0 ± 0.1 and 7.0 ± 0.1 for free enzyme and enzyme substrate complex, respectively. The 1.8 Å x-ray structure shows a four-layered α-β-β-α sandwich structure with the active site at the interface of two adjacent subunits of a hexamer; this fold resembles the RNase E inhibitor, RraA, but is novel for an aldolase. The catalytic site contains a magnesium ion ligated by Asp-124 as well as three water molecules bound by Asp-102 and Glu-199'. A pyruvate molecule binds the magnesium ion through both carboxylate and keto oxygen atoms, completing the octahedral geometry. The carbonyl oxygen also forms hydrogen bonds with the guanadinium group of Arg-123, which site-directed mutagenesis confirms is essential for catalysis. A mechanism for HMG/CHA aldolase is proposed on the basis of the structure, kinetics, and previously established features of other aldolase mechanisms.
Collapse
Affiliation(s)
- Weijun Wang
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Scott Mazurkewich
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S. Kimber
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stephen Y. K. Seah
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
46
|
Chastain CJ. Chapter 15 Structure, Function, and Post-translational Regulation of C4 Pyruvate Orthophosphate Dikinase. C4 PHOTOSYNTHESIS AND RELATED CO2 CONCENTRATING MECHANISMS 2010. [DOI: 10.1007/978-90-481-9407-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Oberholzer AE, Schneider P, Siebold C, Baumann U, Erni B. Crystal structure of enzyme I of the phosphoenolpyruvate sugar phosphotransferase system in the dephosphorylated state. J Biol Chem 2009; 284:33169-76. [PMID: 19801641 DOI: 10.1074/jbc.m109.057612] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP) sugar phosphotransferase system mediates sugar uptake and controls the carbon metabolism in response to carbohydrate availability. Enzyme I (EI), the first component of the phosphotransferase system, consists of an N-terminal protein binding domain (EIN) and a C-terminal PEP binding domain (EIC). EI transfers phosphate from PEP by double displacement via a histidine residue on EIN to the general phosphoryl carrier protein HPr. Here we report the 2.4 A crystal structure of the homodimeric EI from Staphylococcus aureus. EIN consists of the helical hairpin HPr binding subdomain and the phosphorylatable betaalpha phospho-histidine (P-His) domain. EIC folds into an (betaalpha)(8) barrel. The dimer interface of EIC buries 1833 A(2) of accessible surface per monomer and contains two Ca(2+) binding sites per dimer. The structures of the S. aureus and Escherichia coli EI domains (Teplyakov, A., Lim, K., Zhu, P. P., Kapadia, G., Chen, C. C., Schwartz, J., Howard, A., Reddy, P. T., Peterkofsky, A., and Herzberg, O. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16218-16223) are very similar. The orientation of the domains relative to each other, however, is different. In the present structure the P-His domain is docked to the HPr binding domain in an orientation appropriate for in-line transfer of the phosphate to the active site histidine of the acceptor HPr. In the E. coli structure the phospho-His of the P-His domain projects into the PEP binding site of EIC. In the S. aureus structure the crystallographic temperature factors are lower for the HPr binding domain in contact with the P-His domain and higher for EIC. In the E. coli structure it is the reverse.
Collapse
Affiliation(s)
- Anselm E Oberholzer
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Raverdy S, Foster JM, Roopenian E, Carlow CK. The Wolbachia endosymbiont of Brugia malayi has an active pyruvate phosphate dikinase. Mol Biochem Parasitol 2008; 160:163-6. [DOI: 10.1016/j.molbiopara.2008.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022]
|
49
|
Suzuki K, Ito S, Shimizu-Ibuka A, Sakai H. Crystal structure of pyruvate kinase from Geobacillus stearothermophilus. J Biochem 2008; 144:305-12. [PMID: 18511452 DOI: 10.1093/jb/mvn069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pyruvate kinase (PK) from a moderate thermophile, Geobacillus stearothermophilus, is an allosteric enzyme activated by AMP and ribose 5-phosphate but not fructose 1, 6-bisphosphate (FBP), which is a common activator of PKs. It has an extra C-terminal sequence (ECTS), which contains a highly conserved phosphoenolpyruvate (PEP) binding motif, but its function and structure remain unclear. To elucidate the structural characteristics of the effector-binding site and the ECTS, the crystal structure of the C9S/C268S mutant of the enzyme was determined at 2.4 A resolution. The crystal belonged to space group P6(2)22, with unit cell parameters a, b = 145.97 A, c = 118.03 A. The enzyme was a homotetramer and its overall domain structure was similar to the previously solved structures except that the ECTS formed a new domain (C' domain). The structure of the C' domain closely resembled that of the PEP binding domain of maize pyruvate phosphate dikinase. A sulphate ion was found in a pocket in the effector-binding C domain. This site corresponds to the 6-phosphate group-binding site in yeast PK bound FBP and seems to be the effector-binding site. Through comparison of the structure of the putative effector-binding site to that of the FBP binding site of the yeast enzyme, the structural basis of the effector specificity of the G. stearothermophilus PK is discussed.
Collapse
Affiliation(s)
- Kenichiro Suzuki
- Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
50
|
Yeang CH, Haussler D. Detecting coevolution in and among protein domains. PLoS Comput Biol 2007; 3:e211. [PMID: 17983264 PMCID: PMC2098842 DOI: 10.1371/journal.pcbi.0030211] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/17/2007] [Indexed: 01/17/2023] Open
Abstract
Correlated changes of nucleic or amino acids have provided strong information about the structures and interactions of molecules. Despite the rich literature in coevolutionary sequence analysis, previous methods often have to trade off between generality, simplicity, phylogenetic information, and specific knowledge about interactions. Furthermore, despite the evidence of coevolution in selected protein families, a comprehensive screening of coevolution among all protein domains is still lacking. We propose an augmented continuous-time Markov process model for sequence coevolution. The model can handle different types of interactions, incorporate phylogenetic information and sequence substitution, has only one extra free parameter, and requires no knowledge about interaction rules. We employ this model to large-scale screenings on the entire protein domain database (Pfam). Strikingly, with 0.1 trillion tests executed, the majority of the inferred coevolving protein domains are functionally related, and the coevolving amino acid residues are spatially coupled. Moreover, many of the coevolving positions are located at functionally important sites of proteins/protein complexes, such as the subunit linkers of superoxide dismutase, the tRNA binding sites of ribosomes, the DNA binding region of RNA polymerase, and the active and ligand binding sites of various enzymes. The results suggest sequence coevolution manifests structural and functional constraints of proteins. The intricate relations between sequence coevolution and various selective constraints are worth pursuing at a deeper level. The sequences of different components within and across genes often undergo coordinated changes in order to maintain the structures or functions of the genes. Identifying the coordinated changes—the “coevolution”—of those components in the context of evolution is important in predicting the structures, interactions, and functions of genes. The authors incur a large-scale screening on all the known protein sequences and build a compendium about the coevolving relations of all protein domains—subunits of proteins. The majority of the coevolving protein domains either belongs to the same proteins, appears in the same protein complexes, or shares the same functional annotations. Furthermore, coevolving positions in the same proteins or protein complexes are spatially coupled, as they tend to be closer than random positions in the 3-D structures of the proteins/protein complexes. More strikingly, many coevolving positions are located at functionally important sites of the molecules. The results provide useful insights about the relations between sequence evolution and protein structures and functions.
Collapse
Affiliation(s)
- Chen-Hsiang Yeang
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, United States of America.
| | | |
Collapse
|