1
|
Boyaka PN, Fujihashi K. Immunology of Mucosal Surfaces. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
2
|
Dieye Y, Nguer CM, Thiam F, Diouara AAM, Fall C. Recombinant Helicobacter pylori Vaccine Delivery Vehicle: A Promising Tool to Treat Infections and Combat Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11121701. [PMID: 36551358 PMCID: PMC9774608 DOI: 10.3390/antibiotics11121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health threat. Experts agree that unless proper actions are taken, the number of deaths due to AMR will increase. Many strategies are being pursued to tackle AMR, one of the most important being the development of efficient vaccines. Similar to other bacterial pathogens, AMR in Helicobacter pylori (Hp) is rising worldwide. Hp infects half of the human population and its prevalence ranges from <10% in developed countries to up to 90% in low-income countries. Currently, there is no vaccine available for Hp. This review provides a brief summary of the use of antibiotic-based treatment for Hp infection and its related AMR problems together with a brief description of the status of vaccine development for Hp. It is mainly dedicated to genetic tools and strategies that can be used to develop an oral recombinant Hp vaccine delivery platform that is (i) completely attenuated, (ii) can survive, synthesize in situ and deliver antigens, DNA vaccines, and adjuvants to antigen-presenting cells at the gastric mucosa, and (iii) possibly activate desired compartments of the gut-associated mucosal immune system. Recombinant Hp vaccine delivery vehicles can be used for therapeutic or prophylactic vaccination for Hp and other microbial pathogens.
Collapse
Affiliation(s)
- Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
- Correspondence: or ; Tel.: +221-784-578-766
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Cheikh Fall
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
| |
Collapse
|
3
|
Wang H, Shen X, Zheng X, Pan Y, Zhang Q, Liu Z. Intestinal lysozyme releases Nod2 ligand(s) to promote the intestinal mucosal adjuvant activity of cholera toxin. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1720-1731. [PMID: 33521852 DOI: 10.1007/s11427-020-1862-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/01/2022]
Abstract
Commensal bacteria boost serum IgG production in response to oral immunization with antigen and cholera toxin (CT) in a manner that depends on Nod2 (nucleotide-binding oligomerization domain-containing protein 2). In this study, we examined the role of intestinal lysozyme (Lyz1) in adjuvant activity of CT. We found that Lyz1 released Nod2 ligand(s) from bacteria. Lyz1 deficiency reduced the level of circulating Nod2 ligand in mice. Lyz1 deficiency also reduced the production of IgG and T-cellspecific cytokines after oral immunization in mice. Supplementing Lyz1-deficient mice with MDP restored IgG production. Furthermore, overexpression of Lyz1 in intestinal epithelium boosted the antigen-specific IgG response induced by CT. Collectively, our results indicate that Lyz1 plays an important role in mediating the immune regulatory effect of commensal bacteria through the release of Nod2 ligand(s).
Collapse
Affiliation(s)
- Haifang Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xueying Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojiao Zheng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhihua Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Yakabe K, Uchiyama J, Akiyama M, Kim YG. Understanding Host Immunity and the Gut Microbiota Inspires the New Development of Vaccines and Adjuvants. Pharmaceutics 2021; 13:163. [PMID: 33530627 PMCID: PMC7911583 DOI: 10.3390/pharmaceutics13020163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/26/2022] Open
Abstract
Vaccinations improve the mortality and morbidity rates associated with several infections through the generation of antigen-specific immune responses. Adjuvants are often used together with vaccines to improve immunogenicity. However, the immune responses induced by most on-going vaccines and adjuvants approved for human use vary in individuals; this is a limitation that must be overcome to improve vaccine efficacy. Several reports have indicated that the symbiotic bacteria, particularly the gut microbiota, impact vaccine-mediated antigen-specific immune responses and promote the induction of nonspecific responses via the "training" of innate immune cells. Therefore, the interaction between gut microbiota and innate immune cells should be considered to ensure the optimal immunogenicity of vaccines and adjuvants. In this review, we first introduce the current knowledge on the immunological mechanisms of vaccines and adjuvants. Subsequently, we discuss how the gut microbiota influences immunity and highlight the relationship between gut microbes and trained innate immunity, vaccines, and adjuvants. Understanding these complex interactions will provide insights into novel vaccine approaches centered on the gut microbiota.
Collapse
Affiliation(s)
- Kyosuke Yakabe
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
| |
Collapse
|
5
|
Kobayashi R, Ogawa Y, Hashizume-Takizawa T, Kurita-Ochiai T. Oral bacteria affect the gut microbiome and intestinal immunity. Pathog Dis 2020; 78:5854192. [DOI: 10.1093/femspd/ftaa024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Recently, it has been suggested that the oral administration of Porphyromonas gingivalis, a keystone pathogen for periodontal disease, induces dysbiosis of the mouse intestinal microbiota and affects intestinal barrier function. Since oral streptococci are the predominant oral bacterial group, we compared the effect of their oral administration on the intestinal tract compared to that of P. gingivalis. Swallowing oral bacteria caused gut dysbiosis, due to increased Bacteroides and Staphylococcus and decreased Lactobacillus spp. Furthermore, oral bacterial infection caused an increase in lactate and decreases in succinate and n-butyrate contents. In the small intestine, the decrease in Th17 cells was considered to be a result of oral bacterial infection, although the population of Treg cells remained unaffected. In addition, oral bacterial challenge increased the M1/M2 macrophage ratio and decreased the immunoglobulin A (IgA) antibody titer in feces. These results suggest that gut dysbiosis caused by oral bacteria may cause a decrease in Th17 cells and fecal IgA levels and an increase in the M1/M2 macrophage ratio, thereby promoting chronic inflammation.
Collapse
Affiliation(s)
- Ryoki Kobayashi
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, 271–8587, Japan
| | - Yasuhiro Ogawa
- Department of Oral Surgery, Nihon University School of Dentistry at Matsudo, Chiba, 271–8587, Japan
| | - Tomomi Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, 271–8587, Japan
| | - Tomoko Kurita-Ochiai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, 271–8587, Japan
| |
Collapse
|
6
|
Kim D, Kim YM, Kim WU, Park JH, Núñez G, Seo SU. Recognition of the microbiota by Nod2 contributes to the oral adjuvant activity of cholera toxin through the induction of interleukin-1β. Immunology 2019; 158:219-229. [PMID: 31478196 DOI: 10.1111/imm.13105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/30/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
The role of symbiotic bacteria in the development of antigen-specific immunity remains poorly understood. Previous studies showed that sensing of symbiotic bacteria by nucleotide-binding oligomerization domain-containing protein 2 (Nod2) regulates antibody responses in response to nasal immunization with antigen and cholera toxin (CT). In this study, we examined the role of the microbiota in the adjuvant activity of CT induced after oral immunization with antigen. Germ-free (GF) mice showed impaired production of antibody responses and T-cell-specific cytokines after oral immunization when compared with that observed in conventionally raised mice. Similar to GF mice, Nod2-deficient mice showed reduced humoral responses upon oral immunization with antigen and CT. Treatment with CT enhanced the production of interleukin-1β (IL-1β), but not tumor necrosis factor-α or IL-12p40, induced by stimulation of dendritic cells with muramyl dipeptide, the Nod2 ligand. Mechanistically, the enhanced production of IL-1β induced by muramyl dipeptide and CT stimulation required Nod2 and was mediated by both increased synthesis of pro-IL-1β and caspase-1 activation. Furthermore, antigen-specific antibody and cytokine responses induced by CT were impaired in orally immunized IL-1β-deficient mice. Collectively, our results indicate that Nod2 stimulation by symbiotic bacteria contributes to optimal CT-mediated antigen-specific oral vaccination through the induction of IL-1β production.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, the Catholic University of Korea, Seoul, South Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, the Catholic University of Korea, Seoul, South Korea.,Department of Intestinal Medicine, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, South Korea
| | - Gabriel Núñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sang-Uk Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Wide River Institute of Immunology, Hongcheon, Gangwon-do, South Korea
| |
Collapse
|
7
|
|
8
|
Yoshino N, Takeshita R, Kawamura H, Murakami K, Sasaki Y, Sugiyama I, Sadzuka Y, Kagabu M, Sugiyama T, Muraki Y, Sato S. Critical micelle concentration and particle size determine adjuvanticity of cyclic lipopeptides. Scand J Immunol 2018; 88:e12698. [PMID: 29935085 DOI: 10.1111/sji.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Cyclic lipopeptides such as surfactin and polymyxin have potent mucosal adjuvant properties. Cyclic lipopeptides are tensioactive compounds, but the relationship between adjuvanticity and surface activity is unknown. Here, we show that the critical micelle concentration (cmc) of surfactant and particle size of the surfactant-protein complex are important determinants of cyclic lipopeptide adjuvanticity. We found that the diameter of cyclic lipopeptide-ovalbumin (OVA) complex particles was significantly larger than that in the solutions of OVA alone at cyclic lipopeptide concentrations above the cmc. OVA-specific antibody titres in mice immunized intranasally with OVA and a cyclic lipopeptide at concentrations above its cmc were significantly higher than those in mice immunized with OVA plus the same dose of the cyclic lipopeptide but administered with formulations in which cyclic lipopeptide concentration was below the cmc. Thus, the concentration of the cyclic lipopeptide in the formulation at immunization, but not its overall dose, was critical for its adjuvanticity. Furthermore, two types of aggregates, the cyclic lipopeptide simplex micelles and the cyclic lipopeptide-OVA complex micelles, were found in formulations with SF concentrations above its cmc. Degranulation of mast cells exposed to SF simplex micelles was more pronounced when SF concentration was above the cmc. In conclusion, our study showed that surface activity properties, such as the cmc and the size of surfactant-protein complex, contribute to the adjuvanticity of cyclic lipopeptides. Our study proposes a novel idea that cmc is a key parameter for tensioactive adjuvants.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba-cho, Japan
| | - Ryosuke Takeshita
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Hanae Kawamura
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Murakami
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba-cho, Japan
| | - Ikumi Sugiyama
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University, Yahaba-cho, Japan
| | - Yasuyuki Sadzuka
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University, Yahaba-cho, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba-cho, Japan
| | - Shigehiro Sato
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Yahaba-cho, Japan
| |
Collapse
|
9
|
Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol 2018; 9:431. [PMID: 29563912 PMCID: PMC5845866 DOI: 10.3389/fimmu.2018.00431] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination is the process of administering immunogenic formulations in order to induce or harness antigen (Ag)-specific antibody and T cell responses in order to protect against infections. Important successes have been obtained in protecting individuals against many deleterious pathological situations after parenteral vaccination. However, one of the major limitations of the current vaccination strategies is the administration route that may not be optimal for the induction of immunity at the site of pathogen entry, i.e., mucosal surfaces. It is now well documented that immune responses along the genital, respiratory, or gastrointestinal tracts have to be elicited locally to ensure efficient trafficking of effector and memory B and T cells to mucosal tissues. Moreover, needle-free mucosal delivery of vaccines is advantageous in terms of safety, compliance, and ease of administration. However, the quest for mucosal vaccines is challenging due to (1) the fact that Ag sampling has to be performed across the epithelium through a relatively limited number of portals of entry; (2) the deleterious acidic and proteolytic environment of the mucosae that affect the stability, integrity, and retention time of the applied Ags; and (3) the tolerogenic environment of mucosae, which requires the addition of adjuvants to elicit efficient effector immune responses. Until now, only few mucosally applicable vaccine formulations have been developed and successfully tested. In animal models and clinical trials, the use of lipidic structures such as liposomes, virosomes, immune stimulating complexes, gas-filled microbubbles and emulsions has proven efficient for the mucosal delivery of associated Ags and the induction of local and systemic immune reponses. Such particles are suitable for mucosal delivery because they protect the associated payload from degradation and deliver concentrated amounts of Ags via specialized sampling cells (microfold cells) within the mucosal epithelium to underlying antigen-presenting cells. The review aims at summarizing recent development in the field of mucosal vaccination using lipid-based particles. The modularity ensured by tailoring the lipidic design and content of particles, and their known safety as already established in humans, make the continuing appraisal of these vaccine candidates a promising development in the field of targeted mucosal vaccination.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
10
|
Development of Safe and Non-Self-Immunogenic Mucosal Adjuvant by Recombinant Fusion of Cholera Toxin A1 Subunit with Protein Transduction Domain. J Immunol Res 2018; 2018:9830701. [PMID: 29707588 PMCID: PMC5863330 DOI: 10.1155/2018/9830701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/03/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022] Open
Abstract
Potential use of cholera toxin (CT) as a mucosal vaccine adjuvant has been documented in a variety of animal models. However, native CT is highly toxic to be used as a mucosal adjuvant in humans. Here, we demonstrate a new approach to generate a mucosal adjuvant by replacing the B subunit of CT with HIV-1 Tat protein transduction domain (PTD), which efficiently delivers fusion proteins into the cell cytoplasm by unspecific binding to cell surface. We compared the adjuvanticity and toxicity of Tat PTD-CTA1-Tat PTD (TCTA1T) with those of CT. Our results indicate that intranasal (i.n.) delivery of ovalbumin (OVA) with TCTA1T significantly augments the OVA-specific systemic and mucosal antibody responses to levels comparable to those seen with CT adjuvant. Moreover, in vivo cytotoxic T lymphocyte activity elicited by TCTA1T was significantly higher than that elicited by a mutant TCTA1T (TmCTA1T) lacking ADP-ribosyltransferase function. In addition, coadministration of influenza M2 protein with TCTA1T conferred near complete protection against lethal influenza virus challenge. Importantly, TCTA1T, in contrast to CT, did not induce serum IgG antibody responses to itself and was shown to be nontoxic. These results suggest that TCTA1T may be a safe and effective adjuvant when given by mucosal routes.
Collapse
|
11
|
Basophil-derived IL-6 regulates T H17 cell differentiation and CD4 T cell immunity. Sci Rep 2017; 7:41744. [PMID: 28134325 PMCID: PMC5278410 DOI: 10.1038/srep41744] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022] Open
Abstract
Basophils are rare, circulating granulocytes proposed to be involved in T helper (TH) type 2 immunity, mainly through secretion of interleukin (IL)-4. In addition to IL-4, basophils produce IL-6 and tumor necrosis factor (TNF)-α in response to immunoglobulin E (IgE) crosslinking. Differentiation of TH17 cells requires IL-6 and transforming growth factor (TGF)-β, but whether basophils play a significant role in TH17 induction is unknown. Here we show a role for basophils in TH17 cell development by using in vitro T cell differentiation and in vivo TH17-mediated inflammation models. Bone marrow derived-basophils (BMBs) and splenic basophils produce significant amounts of IL-6 as well as IL-4 following stimulation with IgE crosslink or cholera toxin (CT). In addition, through IL-6 secretion, BMBs cooperate with dendritic cells to promote TH17 cell differentiation. In the TH17 lung inflammation model, basophils are recruited to the inflamed lungs following CT challenge, and TH17 responses are significantly reduced in the absence of basophils or IL-6. Furthermore, reconstitution with wild-type, but not IL-6-deficient, basophils restored CT-mediated lung inflammation. Lastly, basophil-deficient mice showed reduced phenotypes of TH17-dependent experimental autoimmune encephalomyelitis. Therefore, our results indicate that basophils are an important inducer of TH17 cell differentiation, which is dependent on IL-6 secretion.
Collapse
|
12
|
Lee TY, Kim CU, Bae EH, Seo SH, Jeong DG, Yoon SW, Chang KT, Kim YS, Kim SH, Kim DJ. Outer membrane vesicles harboring modified lipid A moiety augment the efficacy of an influenza vaccine exhibiting reduced endotoxicity in a mouse model. Vaccine 2016; 35:586-595. [PMID: 28024958 PMCID: PMC7115551 DOI: 10.1016/j.vaccine.2016.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/24/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022]
Abstract
Influenza is an acute respiratory disease and a major health problem worldwide. Since mucosal immunity plays a critical role in protection against influenza virus infection, mucosal immunization is considered a promising vaccination route. However, except for live-attenuated vaccines, there are no effective killed or recombinant mucosal influenza vaccines to date. Outer membrane vesicles (OMVs) are nano-sized vesicles produced by gram-negative bacteria, and contain various bacterial components capable of stimulating the immune system of the host. We generated an OMV with low endotoxicity (fmOMV) by modifying the structure of the lipid A moiety of lipopolysaccharide and investigated its effect as an intranasal vaccine adjuvant in an influenza vaccine model. In this model, fmOMV exhibited reduced toll-like receptor 4-stimulating activity and attenuated endotoxicity compared to that of native OMV. Intranasal injection of the vaccine antigen with fmOMV significantly increased systemic antibody and T cell responses, mucosal IgA levels, and the frequency of lung-resident influenza-specific T cells. In addition, the number of antigen-bearing CD103+ dendritic cells in the mediastinal lymph nodes was significantly increased after fmOMV co-administration. Notably, the mice co-immunized with fmOMV showed a significantly higher protection rate against challenge with a lethal dose of homologous or heterologous influenza viruses without adverse effects. These results show the potential of fmOMV as an effective mucosal adjuvant for intranasal vaccines.
Collapse
Affiliation(s)
- Tae-Young Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea; Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Eun-Hye Bae
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sang-Hwan Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | - Kyu-Tae Chang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young Sang Kim
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Sang-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea.
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea; Department of Biochemistry, Chungnam National University, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea.
| |
Collapse
|
13
|
Giebink GS, Bakaletz LO, Barenkamp SJ, Eskola J, Green B, Gu XX, Harada T, Heikkinen T, Karma P, Klein JO, Kurono Y, Mogi G, Murphy TF, Ogra PL, Patel JA, Suzuki M, Yamanaka N. 7. Vaccine. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894021110s310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Howe SE, Sowa G, Konjufca V. Systemic and Mucosal Antibody Responses to Soluble and Nanoparticle-Conjugated Antigens Administered Intranasally. Antibodies (Basel) 2016; 5:antib5040020. [PMID: 31558001 PMCID: PMC6698832 DOI: 10.3390/antib5040020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/16/2016] [Accepted: 09/18/2016] [Indexed: 02/03/2023] Open
Abstract
Nanoparticles (NPs) are increasingly being used for drug delivery, as well as antigen carriers and immunostimulants for the purpose of developing vaccines. In this work, we examined how intranasal (i.n.) priming followed by i.n. or subcutaneous (s.c.) boosting immunization affects the humoral immune response to chicken ovalbumin (Ova) and Ova conjugated to 20 nm NPs (NP-Ova). We show that i.n. priming with 20 mg of soluble Ova, a dose known to trigger oral tolerance when administered via gastric gavage, induced substantial systemic IgG1 and IgG2c, as well as mucosal antibodies. These responses were further boosted following a s.c. immunization with Ova and complete Freund’s adjuvant (Ova+CFA). In contrast, 100 µg of Ova delivered via NPs induced an IgG1-dominated systemic response, and primed the intestinal mucosa for secretion of IgA. Following a secondary s.c. or i.n. immunization with Ova+CFA or NP-Ova, systemic IgG1 titers significantly increased, and serum IgG2c and intestinal antibodies were induced in mice primed nasally with NP-Ova. Only Ova- and NP-Ova-primed mice that were s.c.-boosted exhibited substantial systemic and mucosal titers for up to 6 months after priming, whereas the antibodies of i.n.-boosted mice declined over time. Our results indicate that although the amount of Ova delivered by NPs was 1000-fold less than Ova delivered in soluble form, the antigen-specific antibody responses, both systemic and mucosal, are essentially identical by 6 months following the initial priming immunization. Additionally, both i.n.- and s.c.-boosting strategies for NP-Ova-primed mice were capable of inducing a polarized Th1/Th2 immune response, as well as intestinal antibodies; however, it is only by using a heterogeneous prime-boost strategy that long-lasting antibody responses were initiated. These results provide valuable insight for future mucosal vaccine development, as well as furthering our understanding of mucosal antibody responses.
Collapse
Affiliation(s)
- Savannah E Howe
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Gavin Sowa
- Department of Chemistry, Southern Illinois University, Carbondale, IL 62901, USA.
| | - Vjollca Konjufca
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
15
|
Fukui M, Shinjo K, Umemura M, Shigeno S, Harakuni T, Arakawa T, Matsuzaki G. Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung Th17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen. Microbiol Immunol 2016; 59:735-43. [PMID: 26577130 DOI: 10.1111/1348-0421.12340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022]
Abstract
Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin-binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN-γ and anti-HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN-γ but also IL-17A production by HBHA-specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB.
Collapse
Affiliation(s)
| | | | - Masayuki Umemura
- Molecular Microbiology Group.,Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Tetsuya Harakuni
- Vaccinology and Vaccine Immunology Group, Department of Infectious Diseases, Tropical Biosphere Research Center
| | - Takeshi Arakawa
- Vaccinology and Vaccine Immunology Group, Department of Infectious Diseases, Tropical Biosphere Research Center
| | - Goro Matsuzaki
- Molecular Microbiology Group.,Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
16
|
Kim D, Kim YG, Seo SU, Kim DJ, Kamada N, Prescott D, Philpott DJ, Rosenstiel P, Inohara N, Núñez G. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat Med 2016; 22:524-30. [PMID: 27064448 PMCID: PMC4860092 DOI: 10.1038/nm.4075] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/04/2016] [Indexed: 01/07/2023]
Abstract
Cholera toxin (CT) is a potent adjuvant for inducing mucosal immune responses. However, the mechanism by which CT induces adjuvant activity remains unclear. Here we show that the microbiota is critical for inducing antigen-specific IgG production after intranasal immunization. After mucosal vaccination with CT, both antibiotic-treated and germ-free (GF) mice had reduced amounts of antigen-specific IgG, smaller recall-stimulated cytokine responses, impaired follicular helper T (TFH) cell responses and reduced numbers of plasma cells. Recognition of symbiotic bacteria via the nucleotide-binding oligomerization domain containing 2 (Nod2) sensor in cells that express the integrin CD11c (encoded by Itgax) was required for the adjuvanticity of CT. Reconstitution of GF mice with a Nod2 agonist or monocolonization with Staphylococcus sciuri, which has high Nod2-stimulatory activity, was sufficient to promote robust CT adjuvant activity, whereas bacteria with low Nod2-stimulatory activity did not. Mechanistically, CT enhanced Nod2-mediated cytokine production in dendritic cells via intracellular cyclic AMP. These results show a role for the microbiota and the intracellular receptor Nod2 in promoting the mucosal adjuvant activity of CT.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yun-Gi Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sang-Uk Seo
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dong-Jae Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dave Prescott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology; University of Kiel, Kiel, Germany
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Nasal Administration of Cholera Toxin as a Mucosal Adjuvant Damages the Olfactory System in Mice. PLoS One 2015; 10:e0139368. [PMID: 26422280 PMCID: PMC4589288 DOI: 10.1371/journal.pone.0139368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/12/2015] [Indexed: 12/30/2022] Open
Abstract
Cholera toxin (CT) induces severe diarrhea in humans but acts as an adjuvant to enhance immune responses to vaccines when administered orally. Nasally administered CT also acts as an adjuvant, but CT and CT derivatives, including the B subunit of CT (CTB), are taken up from the olfactory epithelium and transported to the olfactory bulbs and therefore may be toxic to the central nervous system. To assess the toxicity, we investigated whether nasally administered CT or CT derivatives impair the olfactory system. In mice, nasal administration of CT, but not CTB or a non-toxic CT derivative, reduced the expression of olfactory marker protein (OMP) in the olfactory epithelium and olfactory bulbs and impaired odor responses, as determined with behavioral tests and optical imaging. Thus, nasally administered CT, like orally administered CT, is toxic and damages the olfactory system in mice. However, CTB and a non-toxic CT derivative, do not damage the olfactory system. The optical imaging we used here will be useful for assessing the safety of nasal vaccines and adjuvants during their development for human use and CT can be used as a positive control in this test.
Collapse
|
18
|
|
19
|
The mucosal immune system for vaccine development. Vaccine 2014; 32:6711-23. [DOI: 10.1016/j.vaccine.2014.08.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
|
20
|
Oh IG, Jawale C, Lee J. The B subunits of cholera and Escherichia coli heat-labile toxins enhance the immune responses in mice orally immunised with a recombinant live P-fimbrial vaccine for avian pathogenic E. coli. Acta Vet Hung 2014; 62:293-303. [PMID: 24659715 DOI: 10.1556/avet.2014.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to investigate the adjuvant effect of recombinant attenuated Salmonella expressing cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin B subunit (LTB) for the P-fimbriae subunit-based vaccine of avian pathogenic E. coli (APEC) in a murine model. The PapA-specific sIgA and IgG responses were significantly enhanced after immunisation with the Salmonella-PapA vaccine in the presence of CTB or LTB. The group immunised with the Salmonella-LTB strain promoted Th1-type immunity, whereas that immunised with the Salmonella-CTB strain produced Th2-type immunity. We concluded that both Salmonella-CTB and -LTB strains can enhance the immune response to PapA, and that the LTB strain may be a more effective adjuvant for APEC vaccination, which requires higher Th1-type immunity for protection. Thus, our findings provide evidence that immunisation with an adjuvant, LTB, is one of the strategies of developing effective vaccines against P-fimbriated APEC.
Collapse
Affiliation(s)
- In-Gyeong Oh
- 1 Chonbuk National University College of Veterinary Medicine and Bio-Safety Research Institute 561-756 Jeonju South Korea
| | - Chetan Jawale
- 1 Chonbuk National University College of Veterinary Medicine and Bio-Safety Research Institute 561-756 Jeonju South Korea
| | - John Lee
- 1 Chonbuk National University College of Veterinary Medicine and Bio-Safety Research Institute 561-756 Jeonju South Korea
| |
Collapse
|
21
|
Tinker JK, Yan J, Knippel RJ, Panayiotou P, Cornell KA. Immunogenicity of a West Nile virus DIII-cholera toxin A2/B chimera after intranasal delivery. Toxins (Basel) 2014; 6:1397-418. [PMID: 24759174 PMCID: PMC4014742 DOI: 10.3390/toxins6041397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/19/2022] Open
Abstract
West Nile virus (WNV) causes potentially fatal neuroinvasive disease and persists at endemic levels in many parts of the world. Despite advances in our understanding of WNV pathogenesis, there remains a significant need for a human vaccine. The domain III (DIII) region of the WNV envelope protein contains epitopes that are the target of neutralizing antibodies. We have constructed a chimeric fusion of the non-toxic cholera toxin (CT) CTA2/B domains to DIII for investigation as a novel mucosally-delivered WNV vaccine. Purification and assembly of the chimera, as well as receptor-binding and antigen delivery, were verified by western blot, GM1 ELISA and confocal microscopy. Groups of BALB/c mice were immunized intranasally with DIII-CTA2/B, DIII, DIII mixed with CTA2/B, or CTA2/B control, and boosted at 10 days. Analysis of serum IgG after 14 and 45 days revealed that mucosal immunization with DIII-CTA2/B induced significant DIII-specific humoral immunity and drove isotype switching to IgG2a. The DIII-CTA2/B chimera also induced antigen-specific IgM and IgA responses. Bactericidal assays indicate that the DIII-CTA2/B immunized mice produced DIII-specific antibodies that can trigger complement-mediated killing. A dose escalation resulted in increased DIII-specific serum IgG titers on day 45. DIII antigen alone, in the absence of adjuvant, also induced significant systemic responses after intranasal delivery. Our results indicate that the DIII-CTA2/B chimera is immunogenic after intranasal delivery and merits further investigation as a novel WNV vaccine candidate.
Collapse
Affiliation(s)
- Juliette K Tinker
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| | - Jie Yan
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA.
| | - Reece J Knippel
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA.
| | - Panos Panayiotou
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA.
| | - Kenneth A Cornell
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
22
|
Maeyama JI, Takatsuka H, Suzuki F, Kubota A, Horiguchi S, Komiya T, Shimada I, Murata E, Osawa Y, Kitagawa H, Matsuki T, Isaka M, Yamamoto S, Iho S. A palindromic CpG-containing phosphodiester oligodeoxynucleotide as a mucosal adjuvant stimulates plasmacytoid dendritic cell-mediated T(H)1 immunity. PLoS One 2014; 9:e88846. [PMID: 24586411 PMCID: PMC3933336 DOI: 10.1371/journal.pone.0088846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/11/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND CpG oligodeoxynucleotides (ODNs), resembling bacterial DNA, are currently tested in clinical trials as vaccine adjuvants. They have the nuclease-resistant phosphorothioate bond; the immune responses elicited differ according to the CpG ODN sequence and vaccination method. To develop a CpG ODN that can induce plasmacytoid dendritic cell (pDC)-mediated T(H)1 immunity through the mucosa, we constructed phosphodiester G9.1 comprising one palindromic CpG motif with unique polyguanosine-runs that allows degradation similar to naturally occurring bacterial DNA. METHODS T(H)1 and T(H)2 immunity activation was evaluated by cytokine production pattern and T-bet/GATA-3 ratio in human peripheral blood mononuclear cells and mouse bone marrow cells. Adjuvanticity was evaluated in mice administered G9.1 with diphtheria toxoid (DT) through nasal vaccination. RESULTS G9.1 exhibited stronger IFN-α-inducing activity than A-class CpG ODN2216 and increased T-bet/GATA-3 ratio by enhancing T-bet expression. Nasally administered G9.1 plus DT induced DT-specific mucosal IgA and serum IgG, but not IgE, responses with antitoxin activity in C57BL/6 and BALB/c mice, possibly due to IFN/BAFF production. Induction of T(H)1, but not T(H)2-type Abs depended completely on pDCs, the first in vivo demonstration by CpG ODNs. CONCLUSIONS G9.1 is a promising mucosal adjuvant for induction of pDC-mediated T(H)1 immunity.
Collapse
Affiliation(s)
- Jun-ichi Maeyama
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Hisakazu Takatsuka
- Division of Legal Medicine, Niigata University Graduate School of Medicine and Dental Sciences, Niigata-shi, Niigata, Japan
| | - Fumiko Suzuki
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Ayumi Kubota
- Laboratory of Host Defense, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Satomi Horiguchi
- Department of Anatomy and Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Takako Komiya
- Department of Bacterial Pathogenesis and Infection, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Ichiroh Shimada
- Forensic Medicine and Human Genetics, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
- Research and Education Program for Life Science and Translational Research Program, University of Fukui, Fukui-shi, Fukui, Japan
| | - Eri Murata
- Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Youko Osawa
- Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Harukazu Kitagawa
- Chemical Substances Management, Administration Control Office, Emori & Co., Ltd., Fukui-shi, Fukui, Japan
| | - Takasumi Matsuki
- Forensic Medicine and Human Genetics, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
- Research and Education Program for Life Science and Translational Research Program, University of Fukui, Fukui-shi, Fukui, Japan
| | - Masanori Isaka
- Department of Microbiology, Nagoya City University Medical School, Nagoya-shi, Aichi, Japan
| | - Saburo Yamamoto
- Central Laboratory, Japan BCG Laboratory, Kiyose-shi, Tokyo, Japan
| | - Sumiko Iho
- Laboratory of Host Defense, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
- Research and Education Program for Life Science and Translational Research Program, University of Fukui, Fukui-shi, Fukui, Japan
- * E-mail:
| |
Collapse
|
23
|
Azevedo MP, Vlasova AN, Saif LJ. Human rotavirus virus-like particle vaccines evaluated in a neonatal gnotobiotic pig model of human rotavirus disease. Expert Rev Vaccines 2014; 12:169-81. [DOI: 10.1586/erv.13.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Noda M. [Studies on the mode of action of bacterial AB5 toxins]. Nihon Saikingaku Zasshi 2013; 68:299-311. [PMID: 23985936 DOI: 10.3412/jsb.68.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacterial AB5 toxins are proteins, produced by pathogenic bacteria including of Vibrio cholerae, Shigella dysenteriae, and enterohaemorrhagic Escherichia coli, which are usually released into the extracellular medium and cause disease by killing or altering the metabolism of target eukaryotic cells. The toxins are usually composed of one A subunit (a toxic domain) and five B subunits (a receptor-binding domain). This article overviews the characteristics and mode of actions of AB5 toxins including cholera toxin, Shiga-like toxin, and subtilase cytotoxin, and highlights current topics related to the roles of the effectors in promoting bacterial infection.
Collapse
Affiliation(s)
- Masatoshi Noda
- Department of Molecular Infectiology, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
25
|
Yoshino N, Endo M, Kanno H, Matsukawa N, Tsutsumi R, Takeshita R, Sato S. Polymyxins as novel and safe mucosal adjuvants to induce humoral immune responses in mice. PLoS One 2013; 8:e61643. [PMID: 23593492 PMCID: PMC3623863 DOI: 10.1371/journal.pone.0061643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/12/2013] [Indexed: 11/21/2022] Open
Abstract
There is currently an urgent need to develop safe and effective adjuvants for enhancing vaccine-induced antigen-specific immune responses. We demonstrate here that intranasal immunization with clinically used polypeptide antibiotics, polymyxin B (PMB) and colistin (CL), along with ovalbumin (OVA), increases OVA-specific humoral immune responses in a dose-dependently manner at both mucosal and systemic compartments. Enhanced immunity by boosting was found to persist during 8 months of observation. Moreover, mice intranasally immunized with OVA plus various doses of PMB or CL showed neither inflammatory responses in the nasal cavity and olfactory bulbs nor renal damages, compared to those given OVA alone. These data suggest that polymyxins may serve as novel and safe mucosal adjuvants to induce humoral immune responses. The polymyxin adjuvanticity was found to be independent of endotoxins liberated by its bactericidal activity, as indicated by similar enhancing effects of PMB in lipopolysaccharide (LPS)-hyporesponsive and LPS-susceptible mice. However, despite the presence of preexisting anti-PMB antibodies, we observed no reduction in the adjuvant function of polymyxins when they were given intranasally. Furthermore, the titers of OVA-specific Abs in mice intranasally immunized with OVA plus PMB or CL were significantly higher than those in mice administered with polymyxin analogues, such as polymyxin B nonapeptide and colistin methanesulfonate. The levels of released β-hexosaminidase and histamine in mast cell culture supernatants stimulated by PMB or CL were also significantly higher than those stimulated by their analogues. These results suggest that both the hydrophobic carbon chain and hydrophilic cationic cyclic peptide contribute to the mucosal adjuvanticity of PMB and CL.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yuki Y, Nochi T, Kong IG, Takahashi H, Sawada SI, Akiyoshi K, Kiyono H. Nanogel-based antigen-delivery system for nasal vaccines. Biotechnol Genet Eng Rev 2013; 29:61-72. [DOI: 10.1080/02648725.2013.801226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Leung S, Smith D, Myc A, Morry J, Baker JR. OT-II TCR transgenic mice fail to produce anti-ovalbumin antibodies upon vaccination. Cell Immunol 2013; 282:79-84. [PMID: 23770715 DOI: 10.1016/j.cellimm.2012.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/15/2012] [Accepted: 12/27/2012] [Indexed: 11/17/2022]
Abstract
OT-II mice were evaluated as a transgenic strain-specific model to assess T-cell help for B-cell responses. OT-II CD4(+) T-cells express transgenic OVA-specific αβ-TCRs. This high frequency of antigen-specific helper T-lymphocytes may augment induction of B-cell responses. Unexpectedly, OT-II mice did not produce OVA-specific antibodies after intranasal immunization. However, B-cells expressed normal antigen-presenting function in vitro for activation of OVA-specific T-cell responses. These OT-II T-cell responses produced a Th1-type cytokine profile with significantly reduced Th2 or Th17 responses. These data suggest that OT-II B-cells are not defective as APCs, however, downstream antibody responses are abrogated in this transgenic strain.
Collapse
Affiliation(s)
- Shelly Leung
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
28
|
Wegmann F, Gartlan KH, Harandi AM, Brinckmann SA, Coccia M, Hillson WR, Kok WL, Cole S, Ho LP, Lambe T, Puthia M, Svanborg C, Scherer EM, Krashias G, Williams A, Blattman JN, Greenberg PD, Flavell RA, Moghaddam AE, Sheppard NC, Sattentau QJ. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nat Biotechnol 2013; 30:883-8. [PMID: 22922673 PMCID: PMC3496939 DOI: 10.1038/nbt.2344] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/19/2012] [Indexed: 12/15/2022]
Abstract
Protection against mucosally transmitted infections probably requires immunity at the site of pathogen entry, yet there are no mucosal adjuvant formulations licensed for human use. Polyethyleneimine (PEI) represents a family of organic polycations used as nucleic acid transfection reagents in vitro and DNA vaccine delivery vehicles in vivo. Here we show that diverse PEI forms have potent mucosal adjuvant activity for viral subunit glycoprotein antigens. A single intranasal administration of influenza hemagglutinin or herpes simplex virus type-2 (HSV-2) glycoprotein D with PEI elicited robust antibody-mediated protection from an otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen, which were taken up by antigen-presenting cells in vitro and in vivo, promoted dendritic cell trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host double-stranded DNA that triggered Irf3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use.
Collapse
Affiliation(s)
- Frank Wegmann
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kaparakis-Liaskos M, Tate MD, Price JD, Pearse M, Wijburg OLC. Increased antigen specific T cell numbers in the absence of altered migration or division rates as a result of mucosal cholera toxin administration. PLoS One 2013; 8:e59934. [PMID: 23544110 PMCID: PMC3609821 DOI: 10.1371/journal.pone.0059934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
Cholera toxin (CT) is a mucosal adjuvant capable of inducing strong immune responses to co-administered antigens following oral or intranasal immunization of mice. To date, the direct effect of CT on antigen-specific CD4(+) T cell migration and proliferation profiles in vivo is not well characterized. In this study, the effect of CT on the migration pattern and proliferative responses of adoptively transferred, CD4(+) TCR transgenic T cells in orally or intranasally vaccinated mice, was analyzed by flow cytometry. GFP-expressing or CFSE-labeled OT-II lymphocytes were adoptively transferred to naïve C57BL/6 mice, and mice were subsequently vaccinated with OVA with or without CT via the oral or intranasal route. CT did not alter the migration pattern of antigen-specific T cells, regardless of the route of immunization, but increased the number of transgenic CD4(+) T cells in draining lymphoid tissue. This increase in the number of transgenic CD4(+) T cells was not due to cells undergoing more rounds of cellular division in vivo, suggesting that CT may exert an indirect adjuvant effect on CD4(+) T cells. The findings reported here suggest that CT functions as a mucosal adjuvant by increasing the number of antigen specific CD4(+) T cells independent of their migration pattern or kinetics of cellular division.
Collapse
Affiliation(s)
- Maria Kaparakis-Liaskos
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Michelle D. Tate
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | - Jason D. Price
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Odilia L. C. Wijburg
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Bellot P, Tiels P, Melkebeek V, Devriendt B, Goddeeris B, Cox E. Maltose-binding protein is a potential carrier for oral immunizations. Vet Immunol Immunopathol 2013; 152:101-8. [DOI: 10.1016/j.vetimm.2012.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Gwinn WM, Johnson BT, Kirwan SM, Sobel AE, Abraham SN, Gunn MD, Staats HF. A comparison of non-toxin vaccine adjuvants for their ability to enhance the immunogenicity of nasally-administered anthrax recombinant protective antigen. Vaccine 2013; 31:1480-9. [PMID: 23352329 DOI: 10.1016/j.vaccine.2013.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/19/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Development of nasal immunization for human use is hindered by the lack of acceptable adjuvants. Although CT is an effective adjuvant, its toxicity will likely prevent its use in nasal vaccines. This study compared non-toxin adjuvants to CT for their ability to induce protective antibody responses with nasal immunization. C3H/HeN and C57BL/6 mice were immunized with rPA formulated with the following adjuvants: CT, IL-1α, LPS, CpG, Pam3CSK4, 3M-019, resiquimod/R848 or c48/80. Serum and nasal wash cytokine concentrations were monitored 6h post-vaccination as biomarkers for acute activation of the innate immune system. Not all of the adjuvants induced significant changes in innate serum or nasal wash cytokines, but when changes were observed, the cytokine signatures were unique for each adjuvant. All adjuvants except Pam3CSK4 induced significantly increased anti-rPA serum IgG titers in both strains of mice, while only IL-1α, c48/80 and CpG enhanced mucosal anti-rPA IgA. Pam3CSK4 was the only adjuvant unable to enhance the induction of serum LeTx-neutralizing antibodies in C3H/HeN mice while c48/80 was the only adjuvant to induce increased serum LeTx-neutralizing antibodies in C57BL/6 mice. Only CT enhanced total serum IgE in C3H/HeN mice while IL-1α enhanced total serum IgE in C57BL/6 mice. The adjuvant influenced antigen-specific serum IgG subclass and T cell cytokine profiles, but these responses did not correlate with the induction of LeTx-neutralizing activity. Our results demonstrate the induction of diverse innate and adaptive immune responses by non-toxin nasal vaccine adjuvants that lead to protective humoral immunity comparable to CT and that these responses may be influenced by the host strain.
Collapse
Affiliation(s)
- William M Gwinn
- Duke University Medical Center, Department of Pathology, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Anthrax lethal toxin and the induction of CD4 T cell immunity. Toxins (Basel) 2012; 4:878-99. [PMID: 23162703 PMCID: PMC3496994 DOI: 10.3390/toxins4100878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/27/2022] Open
Abstract
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
Collapse
|
34
|
Ferreira T, De Gaspari E. The design of new adjuvants for mucosal immunity to Neisseria meningitidis B in nasally primed neonatal mice for adult immune response. ScientificWorldJournal 2012; 2012:292073. [PMID: 22545012 PMCID: PMC3324212 DOI: 10.1100/2012/292073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/30/2011] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to determine the value of detoxified Shiga toxins Stx1 and Stx2 (toxoids of Escherichia coli) as mucosal adjuvants in neonatal mice for immunogenicity against the outer membrane proteins (OMPs) of Neisseria meningitidis B. Mucosal immunization has been shown to be effective for the induction of antigen-specific immune responses in both the systemic and mucosal compartments. Systemic antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, and IgA) and mucosal IgM and IgA were measured by ELISA using an N. meningitidis as an antigen. In addition, IFN-γ and IL-6 production were measured after stimulated proliferation of immune cells. Intranasal administration elicited a higher anti-OMP IgA response in both saliva and vaginal fluids. Our results suggest that both Stx1 and Stx2 toxoids are effective mucosal adjuvants for the induction of Ag-specific IgG, IgM, and IgA antibodies. The toxoids significantly enhanced the IgG and IgM response against OMPs with a potency equivalent to CT, with the response being characterized by both IgG1 and IgG2a isotypes, and increased IFN-gamma production. Additionally, bactericidal activity was induced with IgG and IgM antibodies of high avidity. These results support the use of the new toxoids as potent inducing adjuvants that are particularly suitable for mucosal immunization.
Collapse
Affiliation(s)
- Tatiane Ferreira
- Immunology Department, Adolfo Lutz Institute, Avenue Dr. Arnaldo 355, 11 andar, 01246-902 São Paulo, SP, Brazil
| | | |
Collapse
|
35
|
Yamamoto M, Pascual DW, Kiyono H. M cell-targeted mucosal vaccine strategies. Curr Top Microbiol Immunol 2012; 354:39-52. [PMID: 21688209 DOI: 10.1007/82_2011_134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immune responses in the aerodigestive tract are characterized by production and transport of specific IgA antibodies across the epithelium to act as a first line of defense against pathogens in the external environment. To sample antigens on mucosal surfaces in the intestine and upper respiratory tract, the immune system relies on a close collaboration between specialized antigen-sampling epithelial M cells and lymphoid cells. Depending on various factors, local antigen presentation in the mucosal tissue leads to tolerance or initiation of an active immune response. Recently, molecules that could be used to target vaccine antigens to apical M cell surfaces have been identified. Here we review the M cell-targeted vaccine strategy, an approach that could be used to enhance uptake and efficacy of vaccines delivered in the nasal cavity or intestine.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Oral Immunology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan.
| | | | | |
Collapse
|
36
|
Abstract
Mucosal surfaces are a major portal of entry for many human pathogens that are the cause of infectious diseases worldwide. Vaccines capable of eliciting mucosal immune responses can fortify defenses at mucosal front lines and protect against infection. However, most licensed vaccines are administered parenterally and fail to elicit protective mucosal immunity. Immunization by mucosal routes may be more effective at inducing protective immunity against mucosal pathogens at their sites of entry. Recent advances in our understanding of mucosal immunity and identification of correlates of protective immunity against specific mucosal pathogens have renewed interest in the development of mucosal vaccines. Efforts have focused on efficient delivery of vaccine antigens to mucosal sites that facilitate uptake by local antigen-presenting cells to generate protective mucosal immune responses. Discovery of safe and effective mucosal adjuvants are also being sought to enhance the magnitude and quality of the protective immune response.
Collapse
Affiliation(s)
- Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
37
|
Kim S, Joo DH, Lee JB, Shim BS, Cheon IS, Jang JE, Song HH, Kim KH, Song MK, Chang J. Dual role of respiratory syncytial virus glycoprotein fragment as a mucosal immunogen and chemotactic adjuvant. PLoS One 2012; 7:e32226. [PMID: 22384186 PMCID: PMC3288084 DOI: 10.1371/journal.pone.0032226] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 01/25/2012] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine to prevent RSV infection. The G glycoprotein of RSV, a major attachment protein, is a potentially important target for protective antiviral immune responses and has been shown to exhibit chemotactic activity through CX3C mimicry. Here, we show that sublingual or intranasal immunization of a purified G protein fragment of amino acids from 131 to 230, designated Gcf, induces strong serum IgG and mucosal IgA responses. Interestingly, these antibody responses could be elicited by Gcf even in the absence of any adjuvant, indicating a novel self-adjuvanting property of our vaccine candidate. Gcf exhibited potent chemotactic activity in in vitro cell migration assay and cysteine residues are necessary for chemotactic activity and self-adjuvanticity of Gcf in vivo. Mucosal immunization with Gcf also provides protection against RSV challenge without any significant lung eosinophilia or vaccine-induced weight loss. Together, our data demonstrate that mucosal administration of Gcf vaccine elicits beneficial protective immunity and represents a promising vaccine regimen preventing RSV infection.
Collapse
Affiliation(s)
- Sol Kim
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Dong-Hyun Joo
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Jee-Boong Lee
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Byoung-Shik Shim
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - In Su Cheon
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Ji-Eun Jang
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Ho-Hyun Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | - Kyung-Hyo Kim
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Man Ki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Korea
- * E-mail: (JC); (MKS)
| | - Jun Chang
- Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- * E-mail: (JC); (MKS)
| |
Collapse
|
38
|
Yoshino N, Kanno H, Takahashi K, Endo M, Sato S. Mucosal Immune Responses in W/Wv and Sl/Sld Mutant Mice. Exp Anim 2012; 61:407-16. [DOI: 10.1538/expanim.61.407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Naoto Yoshino
- Department of Microbiology, Iwate Medical University
| | | | | | - Masahiro Endo
- Department of Microbiology, Iwate Medical University
| | | |
Collapse
|
39
|
Mucosal immunization with an unadjuvanted vaccine that targets Streptococcus pneumoniae PspA to human Fcγ receptor type I protects against pneumococcal infection through complement- and lactoferrin-mediated bactericidal activity. Infect Immun 2011; 80:1166-80. [PMID: 22158740 DOI: 10.1128/iai.05511-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Targeting an antigen to Fc receptors (FcR) can enhance the immune response to the antigen in the absence of adjuvant. Furthermore, we recently demonstrated that intranasal immunization with an FcγR-targeted antigen enhances protection against a category A intracellular mucosal pathogen, Francisella tularensis. To determine if a similar strategy could be applied to the important pathogen Streptococcus pneumoniae, we used an improved mucosal FcR-targeting strategy that specifically targets human FcγR type I (hFcγRI). A humanized single-chain antibody component in which the variable domain binds to hFcγRI [anti-hFcγRI (H22)] was linked in a fusion protein with the pneumococcal surface protein A (PspA). PspA is known to elicit protection against pneumococcal sepsis, carriage, and pneumonia in mouse models when administered with adjuvants. Anti-hFcγRI-PspA or recombinant PspA (rPspA) alone was used to intranasally immunize wild-type (WT) and hFcγRI transgenic (Tg) mice in the absence of adjuvant. The hFcγRI Tg mice receiving anti-hFcγRI-PspA exhibited elevated S. pneumoniae-specific IgA, IgG2c, and IgG1 antibodies in serum and bronchoalveolar lavage fluid. Neither immunogen was effective in protecting WT mice in the absence of adjuvant, but when PspA was targeted to hFcγRI as the anti-hFcγRI-PspA fusion, enhanced protection against lethal S. pneumoniae challenge was observed in the hFcγRI Tg mice compared to mice given nontargeted rPspA alone. Immune sera from the anti-hFcγRI-PspA-immunized Tg mice showed enhanced complement C3 deposition on bacterial surfaces, and protection was dependent upon an active complement system. Immune serum also showed an enhanced bactericidal activity directed against S. pneumoniae that appears to be lactoferrin mediated.
Collapse
|
40
|
Suzuki H, Kondoh M, Kakutani H, Yamane S, Uchida H, Hamakubo T, Yagi K. The application of an alanine-substituted mutant of the C-terminal fragment of Clostridium perfringens enterotoxin as a mucosal vaccine in mice. Biomaterials 2011; 33:317-24. [PMID: 21983135 DOI: 10.1016/j.biomaterials.2011.09.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/21/2011] [Indexed: 01/22/2023]
Abstract
Efficient delivery of antigen to mucosal immune tissues is an essential part of mucosal vaccination. Claudin-4 is expressed on the epithelial cells that cover the mucosal immune tissues. We previously found that claudin-4-targeting is a promising strategy for mucosal vaccination by using a claudin-4 binder, the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE). Substitution of Asn and Ser at positions 309 and 313, respectively, with alanine increased the affinity of C-CPE for claudin-4. However, application of the C-CPE mutant as a mucosal vaccine has never been tried. Here, we investigated whether the C-CPE mutant could serve as a mucosal vaccine. We used ovalbumin (OVA) as a model antigen and fused the C-CPE mutant to it. The resultant fusion protein was bound to claudin-4. When mice were immunized with the C-CPE mutant-fused OVA, OVA-specific serum IgG and nasal IgA increased relative to levels in mice immunized with a C-CPE-fused antigen. Immunization with the C-CPE mutant-fused OVA activated Th1- and Th2-type responses and led to increased anti-tumor activity against OVA-expressing thymoma cells relative to that of mice immunized with the C-CPE-fused antigen. These findings suggest that the alanine-substituted C-CPE mutant shows promise as a claudin-targeted mucosal vaccine.
Collapse
Affiliation(s)
- Hidehiko Suzuki
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Kataoka K, Fujihashi K, Terao Y, Gilbert RS, Sekine S, Kobayashi R, Fukuyama Y, Kawabata S, Fujihashi K. Oral-nasopharyngeal dendritic cells mediate T cell-independent IgA class switching on B-1 B cells. PLoS One 2011; 6:e25396. [PMID: 21980444 PMCID: PMC3183055 DOI: 10.1371/journal.pone.0025396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/02/2011] [Indexed: 01/01/2023] Open
Abstract
Native cholera toxin (nCT) as a nasal adjuvant was shown to elicit increased levels of T-independent S-IgA antibody (Ab) responses through IL-5- IL-5 receptor interactions between CD4+ T cells and IgA+ B-1 B cells in murine submandibular glands (SMGs) and nasal passages (NPs). Here, we further investigate whether oral-nasopharyngeal dendritic cells (DCs) play a central role in the induction of B-1 B cell IgA class switch recombination (CSR) for the enhancement of T cell-independent (TI) mucosal S-IgA Ab responses. High expression levels of activation-induced cytidine deaminase, Iα-Cμ circulation transcripts and Iμ-Cα transcripts were seen on B-1 B cells purified from SMGs and NPs of both TCRβ−/− mice and wild-type mice given nasal trinitrophenyl (TNP)-LPS plus nCT, than in the same tissues of mice given nCT or TNP-LPS alone. Further, DCs from SMGs, NPs and NALT of mice given nasal TNP-LPS plus nCT expressed significantly higher levels of a proliferation-inducing ligand (APRIL) than those in mice given TNP-LPS or nCT alone, whereas the B-1 B cells in SMGs and NPs showed elevated levels of transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI) expression. Interestingly, high frequencies of IgA+ B-1 B cells were induced when peritoneal IgA− IgM+ B cells were stimulated with mucosal DCs from mice given nasal TNP-LPS plus nCT. Taken together, these findings show that nasal nCT plays a key role in the enhancement of mucosal DC-mediated TI IgA CSR by B-1 B cells through their interactions with APRIL and TACI.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Keiko Fujihashi
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Yutaka Terao
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Rebekah S. Gilbert
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Shinichi Sekine
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Ryoki Kobayashi
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Yoshiko Fukuyama
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Kohtaro Fujihashi
- Departments of Pediatric Dentistry and Microbiology, The Immunobiology Vaccine Center, The University of Alabama, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
42
|
Meza-Sánchez D, Pérez-Montesinos G, Sánchez-García J, Moreno J, Bonifaz LC. Intradermal immunization in the ear with cholera toxin and its non-toxic β subunit promotes efficient Th1 and Th17 differentiation dependent on migrating DCs. Eur J Immunol 2011; 41:2894-904. [DOI: 10.1002/eji.201040997] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Intranasal immunization with recombinant HA and mast cell activator C48/80 elicits protective immunity against 2009 pandemic H1N1 influenza in mice. PLoS One 2011; 6:e19863. [PMID: 21625486 PMCID: PMC3098841 DOI: 10.1371/journal.pone.0019863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 04/06/2011] [Indexed: 01/14/2023] Open
Abstract
Background Pandemic influenza represents a major threat to global health. Vaccination is the most economic and effective strategy to control influenza pandemic. Conventional vaccine approach, despite being effective, has a number of major deficiencies including limited range of protection, total dependence on embryonated eggs for production, and time consuming for vaccine production. There is an urgent need to develop novel vaccine strategies to overcome these deficiencies. Methodology/Principal Findings The major objective of this work was to develop a novel vaccine strategy combining recombinant haemagglutinin (HA) protein and a master cell (MC) activator C48/80 for intranasal immunization. We demonstrated in BALB/c mice that MC activator C48/80 had strong adjuvant activity when co-administered with recombinant HA protein intranasally. Vaccination with C48/80 significantly increased the serum IgG and mucosal surface IgA antibody responses against HA protein. Such increases correlated with stronger and durable neutralizing antibody activities, offering protection to vaccinated animals from disease progression after challenge with lethal dose of A/California/04/2009 live virus. Furthermore, protected animals demonstrated significant reduction in lung virus titers, minimal structural alteration in lung tissues as well as higher and balanced production of Th1 and Th2 cytokines in the stimulated splenocytes when compared to those without C48/80. Conclusions/Significance The present study demonstrates that the novel vaccine approach of combining recombinant HA and mucosal adjuvant C48/80 is safe and effective in eliciting protective immunity in mice. Future studies on the mechanism of action of C48/80 and potential combination with other vaccine strategies such as prime and boost approach may help to induce even more potent and broad immune responses against viruses from various clades.
Collapse
|
44
|
Bharati K, Ganguly NK. Cholera toxin: a paradigm of a multifunctional protein. Indian J Med Res 2011; 133:179-87. [PMID: 21415492 PMCID: PMC3089049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cholera toxin (CT) was discovered exactly half a century ago by S.N. De. We have come a long way since this epoch-making discovery. Retrospectively, science had to wait a long time since Koch's prediction of the existence of a toxin, and its actual discovery by De. CT is not just another enterotoxin that causes the signs and symptoms of the dreaded disease, cholera. It is unique in many respects, starting from its structure to its functions. CT is a multifunctional protein that is capable of influencing the immune system in many ways. It not only has remarkable adjuvant properties, but also acts as an anti-inflammatory agent, by modulating specific signal transduction pathways. Its immunomodulatory properties can be harnessed for treatment of various autoimmune disorders, and have shown great promise in the area of immunotherapeutics. CT can truly be considered as a paradigm of a multifunctional protein.
Collapse
Affiliation(s)
| | - Nirmal K. Ganguly
- National Institute of Immunology, New Delhi, India,Reprint requests: Prof. N.K. Ganguly, Distinguished Biotechnology Research Professor & Advisor, Translational Health Science and Technology Institute, National Institute of Immunology, Aruna Asaf Ali Marg, J.N.U. Complex, New Delhi 110 067, India e-mail:
| |
Collapse
|
45
|
Tiwari S, Agrawal GP, Vyas SP. Molecular basis of the mucosal immune system: from fundamental concepts to advances in liposome-based vaccines. Nanomedicine (Lond) 2010; 5:1617-40. [DOI: 10.2217/nnm.10.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mucosal immune system, the primary portal for entry of most prevalent and devastating pathogens, is guarded by the special lymphoid tissues (mucosally associated lymphoid tissues) for immunity. Mucosal immune infection results in induction of IgA-manifested humoral immunity. Cell-mediated immunity may also be generated, marked by the presence of CD4+ Th1 and CD8+ cells. Furthermore, the immunity generated at the mucosal site is transported to the distal mucosal site as well as to systemic tissues. An understanding of the molecular basis of the mucosal immune system provides a unique platform for designing a mucosal vaccine. Coadministration of immunostimulatory molecules further accelerates functioning of the immune system. Mimicking receptor-mediated binding of the pathogen may be achieved by direct conjugation of antigen with an immunostimulatory molecule or encapsulation in a carrier followed by anchoring of a ligand having affinity to the cells of the mucosal immune system. Nanotechnology has played a significant role in mucosal vaccine development and among the available options liposomes are the most promising. Liposomes are phospholipid bilayered vesicles that can encapsulate protein as well as DNA-based vaccines and offer coencapsulation of adjuvant along with the antigen. At the same, time ligand-conjugated liposomes augment interaction of antigen with the cells of the mucosal immune system and thereby serve as suitable candidates for the mucosal delivery of vaccines. This article exhaustively explores strategies involved in the generation of mucosal immunity and also provides an insight to the progress that has been made in the development of liposome-based mucosal vaccine.
Collapse
Affiliation(s)
- Shailja Tiwari
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | - Govind P Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | | |
Collapse
|
46
|
Progress towards a needle-free hepatitis B vaccine. Pharm Res 2010; 28:986-1012. [PMID: 21088986 DOI: 10.1007/s11095-010-0314-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/27/2010] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) infection is a worldwide public health problem. Vaccination is the most efficient way to prevent hepatitis B. Despite the success of the currently available vaccine, there is a clear need for the development of new generation of HBV vaccines. Needle-free immunization is an attractive approach for mass immunization campaigns, since avoiding the use of needles reduces the risk of needle-borne diseases and prevents needle-stick injuries and pain, thus augmenting patient compliance and eliminating the need for trained medical personnel. Moreover, this kind of immunization was shown to induce good systemic as well as mucosal immunological responses, which is important for the creation of both a prophylactic and therapeutic vaccine. In order to produce a better, safer, more efficient and more suitable vaccine, adjuvants have been used. In this article, several adjuvants tested over the years for their potential to help create a needle-free vaccine against HBV are reviewed.
Collapse
|
47
|
Duverger A, Carré JM, Jee J, Leppla SH, Cormet-Boyaka E, Tang WJ, Tomé D, Boyaka PN. Contributions of edema factor and protective antigen to the induction of protective immunity by Bacillus anthracis edema toxin as an intranasal adjuvant. THE JOURNAL OF IMMUNOLOGY 2010; 185:5943-52. [PMID: 20952678 DOI: 10.4049/jimmunol.0902795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that intranasal coapplication of Bacillus anthracis protective Ag (PA) together with a B. anthracis edema factor (EF) mutant having reduced adenylate cyclase activity (i.e., EF-S414N) enhances anti-PA Ab responses, but also acts as a mucosal adjuvant for coadministered unrelated Ags. To elucidate the role of edema toxin (EdTx) components in its adjuvanticity, we examined how a PA mutant lacking the ability to bind EF (PA-U7) or another mutant that allows the cellular uptake of EF, but fails to efficiently mediate its translocation into the cytosol (PA-dFF), would affect EdTx-induced adaptive immunity. Native EdTx promotes costimulatory molecule expression by macrophages and B lymphocytes, and a broad spectrum of cytokine responses by cervical lymph node cells in vitro. These effects were reduced or abrogated when cells were treated with EF plus PA-dFF, or PA-U7 instead of PA. We also intranasally immunized groups of mice with a recombinant fusion protein of Yersinia pestis F1 and LcrV Ags (F1-V) together with EdTx variants consisting of wild-type or mutants PA and EF. Analysis of serum and mucosal Ab responses against F1-V or EdTx components (i.e., PA and EF) revealed no adjuvant activity in mice that received PA-U7 instead of PA. In contrast, coimmunization with PA-dFF enhanced serum Ab responses. Finally, immunization with native PA and an EF mutant lacking adenylate cyclase activity (EF-K346R) failed to enhance Ab responses. In summary, a fully functional PA and a minimum of adenylate cyclase activity are needed for EdTx to act as a mucosal adjuvant.
Collapse
Affiliation(s)
- Alexandra Duverger
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Mucosa-associated lymphoid tissue (MALT) plays pivotal roles in mucosal immune responses. Efficient delivery of antigens to MALT is a critical issue for the development of mucosal vaccines. Although claudin-4 is preferentially expressed in MALT in the gut, a claudin-4-targeting approach for mucosal vaccination has never been developed. In the present study, we found that claudin-4 is expressed in nasal MALT, and we prepared a fusion protein of ovalbumin (OVA) as a model antigen with a claudin-4-binder, the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) (OVA-C-CPE). Nasal immunization with OVA-C-CPE, but not a mixture of OVA and C-CPE, induced the production of OVA-specific serum IgG and nasal, vaginal and fecal IgA. Deletion of the claudin-4-binding region in OVA-C-CPE attenuated the induction of the immune responses. OVA-C-CPE immunization activated both Th1 and Th2 responses, and nasal immunization with OVA-C-CPE showed anti-tumor activity in mice inoculated with OVA-expressing thymoma cells. These results indicate that the claudin-4-targeting may be a potent strategy for nasal vaccination.
Collapse
|
49
|
Totrov M, Jiang X, Kong XP, Cohen S, Krachmarov C, Salomon A, Williams C, Seaman MS, Abagyan R, Cardozo T, Gorny MK, Wang S, Lu S, Pinter A, Zolla-Pazner S. Structure-guided design and immunological characterization of immunogens presenting the HIV-1 gp120 V3 loop on a CTB scaffold. Virology 2010; 405:513-23. [PMID: 20663531 DOI: 10.1016/j.virol.2010.06.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/04/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
Abstract
V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boosting with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.
Collapse
Affiliation(s)
- Maxim Totrov
- Molsoft LLC, 3366 N Torrey Pines Ct., La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lu B, Huang Y, Huang L, Li B, Zheng Z, Chen Z, Chen J, Hu Q, Wang H. Effect of mucosal and systemic immunization with virus-like particles of severe acute respiratory syndrome coronavirus in mice. Immunology 2010; 130:254-61. [PMID: 20406307 PMCID: PMC2878469 DOI: 10.1111/j.1365-2567.2010.03231.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nasal administration has emerged as a promising and attractive route for vaccination, especially for the prophylaxis of respiratory diseases. Our previous studies have shown that severe acute respiratory syndrome coronavirus (SARS-CoV) virus-like particles (VLPs) can be assembled using a recombinant baculovirus (rBV) expression system and such VLPs induce specific humoral and cellular immune responses in mice after subcutaneous injection. Here, we investigated mucosal immune responses to SARS-CoV VLPs in a mouse model. Mice were immunized in parallel, intraperitoneally or intranasally, with VLPs alone or with VLPs plus cytosine–phosphate–guanosine (CpG). Immune responses, including the production of SARS-CoV-specific serum immunoglobulin G (IgG) and secretory immunoglobulin A (sIgA), were determined in mucosal secretions and tissues. Both immunizations induced SARS-CoV-specific IgG, although the levels of IgG in groups immunized via the intraperitoneal (i.p.) route were higher. sIgA was detected in saliva in groups immunized intranasally but not in groups immunized intraperitoneally. CpG had an adjuvant effect on IgA production in genital tract washes when administered intranasally but only affected IgA production in faeces samples when administered intraperitoneally. In addition, IgA was also detected in mucosal tissues from the lung and intestine, while CpG induced an increased level of IgA in the intestine. Most importantly, neutralization antibodies were detected in sera after i.p. and intranasal (i.n.) immunizations. Secretions in genital tract washes from the i.n. group also showed neutralization activity. Furthermore, VLPs that were administered intraperitoneally elicited cellular immune responses as demonstrated by enzyme-linked immunospot (ELISPOT) assay analyses. In summary, our study indicates that mucosal immunization with rBV SARS-CoV VLPs represent an effective means for eliciting protective systemic and mucosal immune responses against SARS-CoV, providing important information for vaccine design.
Collapse
Affiliation(s)
- Baojing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan
| | | | | | | | | | | | | | | | | |
Collapse
|