1
|
Fersht AR. From covalent transition states in chemistry to noncovalent in biology: from β- to Φ-value analysis of protein folding. Q Rev Biophys 2024; 57:e4. [PMID: 38597675 DOI: 10.1017/s0033583523000045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solving the mechanism of a chemical reaction requires determining the structures of all the ground states on the pathway and the elusive transition states linking them. 2024 is the centenary of Brønsted's landmark paper that introduced the β-value and structure-activity studies as the only experimental means to infer the structures of transition states. It involves making systematic small changes in the covalent structure of the reactants and analysing changes in activation and equilibrium-free energies. Protein engineering was introduced for an analogous procedure, Φ-value analysis, to analyse the noncovalent interactions in proteins central to biological chemistry. The methodology was developed first by analysing noncovalent interactions in transition states in enzyme catalysis. The mature procedure was then applied to study transition states in the pathway of protein folding - 'part (b) of the protein folding problem'. This review describes the development of Φ-value analysis of transition states and compares and contrasts the interpretation of β- and Φ-values and their limitations. Φ-analysis afforded the first description of transition states in protein folding at the level of individual residues. It revealed the nucleation-condensation folding mechanism of protein domains with the transition state as an expanded, distorted native structure, containing little fully formed secondary structure but many weak tertiary interactions. A spectrum of transition states with various degrees of structural polarisation was then uncovered that spanned from nucleation-condensation to the framework mechanism of fully formed secondary structure. Φ-analysis revealed how movement of the expanded transition state on an energy landscape accommodates the transition from framework to nucleation-condensation mechanisms with a malleability of structure as a unifying feature of folding mechanisms. Such movement follows the rubric of analysis of classical covalent chemical mechanisms that began with Brønsted. Φ-values are used to benchmark computer simulation, and Φ and simulation combine to describe folding pathways at atomic resolution.
Collapse
Affiliation(s)
- Alan R Fersht
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Gonville and Caius College, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Buscajoni L, Martinetz MC, Berkemeyer M, Brocard C. Refolding in the modern biopharmaceutical industry. Biotechnol Adv 2022; 61:108050. [PMID: 36252795 DOI: 10.1016/j.biotechadv.2022.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
Inclusion bodies (IBs) often emerge upon overexpression of recombinant proteins in E. coli. From IBs, refolding is necessary to generate the native protein that can be further purified to obtain pure and active biologicals. This work focusses on refolding as a significant process step during biopharmaceutical manufacturing with an industrial perspective. A theoretical and historical background on protein refolding gives the reader a starting point for further insights into industrial process development. Quality requirements on IBs as starting material for refolding are discussed and further economic and ecological aspects are considered with regards to buffer systems and refolding conditions. A process development roadmap shows the development of a refolding process starting from first exploratory screening rounds to scale-up and implementation in manufacturing plant. Different aspects, with a direct influence on yield, such as the selection of chemicals including pH, ionic strength, additives, etc., and other often neglected aspects, important during scale-up, such as mixing, and gas-fluid interaction, are highlighted with the use of a quality by design (QbD) approach. The benefits of simulation sciences (process simulation and computer fluid dynamics) and process analytical technology (PAT) for seamless process development are emphasized. The work concludes with an outlook on future applications of refolding and highlights open research inquiries.
Collapse
Affiliation(s)
- Luisa Buscajoni
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Michael C Martinetz
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Matthias Berkemeyer
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| | - Cécile Brocard
- Boehringer-Ingelheim RCV GmbH & Co KG, Biopharma Austria, Process Science Downstream Development, Dr. Boehringer-Gasse 5- 11, 1120 Vienna, Austria.
| |
Collapse
|
3
|
Validation of DBFOLD: An efficient algorithm for computing folding pathways of complex proteins. PLoS Comput Biol 2020; 16:e1008323. [PMID: 33196646 PMCID: PMC7704049 DOI: 10.1371/journal.pcbi.1008323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/30/2020] [Accepted: 10/17/2020] [Indexed: 11/19/2022] Open
Abstract
Atomistic simulations can provide valuable, experimentally-verifiable insights into protein folding mechanisms, but existing ab initio simulation methods are restricted to only the smallest proteins due to severe computational speed limits. The folding of larger proteins has been studied using native-centric potential functions, but such models omit the potentially crucial role of non-native interactions. Here, we present an algorithm, entitled DBFOLD, which can predict folding pathways for a wide range of proteins while accounting for the effects of non-native contacts. In addition, DBFOLD can predict the relative rates of different transitions within a protein’s folding pathway. To accomplish this, rather than directly simulating folding, our method combines equilibrium Monte-Carlo simulations, which deploy enhanced sampling, with unfolding simulations at high temperatures. We show that under certain conditions, trajectories from these two types of simulations can be jointly analyzed to compute unknown folding rates from detailed balance. This requires inferring free energies from the equilibrium simulations, and extrapolating transition rates from the unfolding simulations to lower, physiologically-reasonable temperatures at which the native state is marginally stable. As a proof of principle, we show that our method can accurately predict folding pathways and Monte-Carlo rates for the well-characterized Streptococcal protein G. We then show that our method significantly reduces the amount of computation time required to compute the folding pathways of large, misfolding-prone proteins that lie beyond the reach of existing direct simulation. Our algorithm, which is available online, can generate detailed atomistic models of protein folding mechanisms while shedding light on the role of non-native intermediates which may crucially affect organismal fitness and are frequently implicated in disease. Many proteins must adopt a specific structure in order to function. Computational simulations have been used to shed light on the mechanisms of protein folding, but unfortunately, realistic simulations can typically only be run for small proteins, due to severe limits in computational speed. Here, we present a method to solve this problem, whereby instead of directly simulating folding from an unfolded state, we run simulations that allow for computation of equilibrium folding free energies, alongside high temperature simulations to compute unfolding rates. From these quantities, folding rates can be computed using detailed balance. Importantly, our method can account for the effects of nonnative contacts which transiently form during folding and must be broken prior to adoption of the native state. Such contacts, which are often excluded from simple models of folding, may crucially affect real protein folding pathways and are often observed in folding intermediates implicated in disease.
Collapse
|
4
|
Childers MC, Daggett V. Edge Strand Dissociation and Conformational Changes in Transthyretin under Amyloidogenic Conditions. Biophys J 2020; 119:1995-2009. [PMID: 33091379 DOI: 10.1016/j.bpj.2020.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/09/2020] [Accepted: 08/31/2020] [Indexed: 01/18/2023] Open
Abstract
During amyloidogenesis, proteins undergo conformational changes that allow them to aggregate and assemble into insoluble, fibrillar structures. Soluble oligomers that form during this process typically contain 2-24 monomeric subunits and are cytotoxic. Before the formation of these soluble oligomers, monomeric species first adopt aggregation-competent conformations. Knowledge of the structures of these intermediate states is invaluable to the development of molecular strategies to arrest pathological amyloid aggregation. However, the highly dynamic and interconverting nature of amyloidogenic species limits biophysical characterization of their structures during amyloidogenesis. Here, we use molecular dynamics simulations to probe conformations sampled by monomeric transthyretin under amyloidogenic conditions. We show that certain β-strands in transthyretin tend to unfold and sample nonnative conformations and that the edge strands in one β-sheet (the DAGH sheet) are particularly susceptible to conformational changes in the monomeric state. We also find that changes in the tertiary structure of transthyretin can be associated with disruptions to the secondary structure. We evaluated the conformations produced by molecular dynamics by calculating how well molecular-dynamics-derived structures reproduced NMR-derived interatomic distances. Finally, we leverage our computational results to produce experimentally testable hypotheses that may aid experimental explorations of pathological conformations of transthyretin.
Collapse
Affiliation(s)
- Matthew C Childers
- Department of Bioengineering, University of Washington, Seattle, Washington.
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Toofanny RD, Calhoun S, Jonsson AL, Daggett V. Shared unfolding pathways of unrelated immunoglobulin-like β-sandwich proteins. Protein Eng Des Sel 2020; 32:331-345. [PMID: 31868211 DOI: 10.1093/protein/gzz040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 11/12/2022] Open
Abstract
The Dynameomics project contains native state and unfolding simulations of 807 protein domains, where each domain is representative of a different metafold; these metafolds encompass ~97% of protein fold space. There is a long-standing question in structural biology as to whether proteins in the same fold family share the same folding/unfolding characteristics. Using molecular dynamics simulations from the Dynameomics project, we conducted a detailed study of protein unfolding/folding pathways for 5 protein domains from the immunoglobulin (Ig)-like β-sandwich metafold (the highest ranked metafold in our database). The domains have sequence similarities ranging from 4 to 15% and are all from different SCOP superfamilies, yet they share the same overall Ig-like topology. Despite having very different amino acid sequences, the dominant unfolding pathway is very similar for the 5 proteins, and the secondary structures that are peripheral to the aligned, shared core domain add variability to the unfolding pathway. Aligned residues in the core domain display consensus structure in the transition state primarily through conservation of hydrophobic positions. Commonalities in the obligate folding nucleus indicate that insights into the major events in the folding/unfolding of other domains from this metafold may be obtainable from unfolding simulations of a few representative proteins.
Collapse
Affiliation(s)
- Rudesh D Toofanny
- Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | - Sara Calhoun
- Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | - Amanda L Jonsson
- Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| |
Collapse
|
6
|
Anumalla B, Prabhu NP. Chain Compaction and Synergistic Destabilization of Globular Proteins by Mixture of Denaturants. ChemistrySelect 2019. [DOI: 10.1002/slct.201903122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life SciencesUniversity of Hyderabad Hyderabad – 500 046 India
| | - N. Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life SciencesUniversity of Hyderabad Hyderabad – 500 046 India
| |
Collapse
|
7
|
Childers MC, Daggett V. Drivers of α-Sheet Formation in Transthyretin under Amyloidogenic Conditions. Biochemistry 2019; 58:4408-4423. [PMID: 31609590 DOI: 10.1021/acs.biochem.9b00769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid diseases make up a set of fatal disorders in which proteins aggregate to form fibrils that deposit in tissues throughout the body. Amyloid-associated diseases are challenging to study because amyloid formation occurs on time scales that span several orders of magnitude and involve heterogeneous, interconverting protein conformations. The development of more effective technologies to diagnose and treat amyloid disease requires both a map of the conformations sampled during amyloidogenesis and an understanding of the molecular mechanisms that drive this process. In prior molecular dynamics simulations of amyloid proteins, we observed the formation of a nonstandard type of secondary structure, called α-sheet, that we proposed is associated with the pathogenic conformers in amyloid disease, the soluble oligomers. However, the detailed molecular interactions that drive the conversion to α-sheet remain elusive. Here we use molecular dynamics simulations to interrogate a critical event in transthyretin aggregation, the formation of aggregation-competent, monomeric species. We show that conformational changes in one of the two β-sheets in transthyretin enable solvent molecules and polar side chains to form electrostatic interactions with main-chain peptide groups to facilitate and modulate conversion to α-sheet secondary structure. Our results shed light on the early conformational changes that drive transthyretin toward the α-sheet structure associated with toxicity. Delineation of the molecular events that lead to aggregation at atomic resolution can aid strategies to target the early, critical toxic soluble oligomers.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering , University of Washington , Seattle , Washington 98195-5013 , United States
| | - Valerie Daggett
- Department of Bioengineering , University of Washington , Seattle , Washington 98195-5013 , United States
| |
Collapse
|
8
|
Childers MC, Daggett V. Validating Molecular Dynamics Simulations against Experimental Observables in Light of Underlying Conformational Ensembles. J Phys Chem B 2018; 122:6673-6689. [PMID: 29864281 DOI: 10.1021/acs.jpcb.8b02144] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Far from the static, idealized conformations deposited into structural databases, proteins are highly dynamic molecules that undergo conformational changes on temporal and spatial scales that may span several orders of magnitude. These conformational changes, often intimately connected to the functional roles that proteins play, may be obscured by traditional biophysical techniques. Over the past 40 years, molecular dynamics (MD) simulations have complemented these techniques by providing the "hidden" atomistic details that underlie protein dynamics. However, there are limitations of the degree to which molecular simulations accurately and quantitatively describe protein motions. Here we show that although four molecular dynamics simulation packages (AMBER, GROMACS, NAMD, and ilmm) reproduced a variety of experimental observables for two different proteins (engrailed homeodomain and RNase H) equally well overall at room temperature, there were subtle differences in the underlying conformational distributions and the extent of conformational sampling obtained. This leads to ambiguity about which results are correct, as experiment cannot always provide the necessary detailed information to distinguish between the underlying conformational ensembles. However, the results with different packages diverged more when considering larger amplitude motion, for example, the thermal unfolding process and conformational states sampled, with some packages failing to allow the protein to unfold at high temperature or providing results at odds with experiment. While most differences between MD simulations performed with different packages are attributed to the force fields themselves, there are many other factors that influence the outcome, including the water model, algorithms that constrain motion, how atomic interactions are handled, and the simulation ensemble employed. Here four different MD packages were tested each using best practices as established by the developers, utilizing three different protein force fields and three different water models. Differences between the simulated protein behavior using two different packages but the same force field, as well as two different packages with different force fields but the same water models and approaches to restraining motion, show how other factors can influence the behavior, and it is incorrect to place all the blame for deviations and errors on force fields or to expect improvements in force fields alone to solve such problems.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering , University of Washington , Seattle , Washington 98195-5013 , United States
| | - Valerie Daggett
- Department of Bioengineering , University of Washington , Seattle , Washington 98195-5013 , United States
| |
Collapse
|
9
|
Whitley MJ, Xi Z, Bartko JC, Jensen MR, Blackledge M, Gronenborn AM. A Combined NMR and SAXS Analysis of the Partially Folded Cataract-Associated V75D γD-Crystallin. Biophys J 2017; 112:1135-1146. [PMID: 28355541 DOI: 10.1016/j.bpj.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 11/19/2022] Open
Abstract
A cataract is a pathological condition characterized by the clouding of the normally clear eye lens brought about by deposition of crystallin proteins in the lens fiber cells. These protein aggregates reduce visual acuity by scattering or blocking incoming light. Chemical damage to proteins of the crystallin family, accumulated over a lifetime, leads to age-related cataract, whereas inherited mutations are associated with congenital or early-onset cataract. The V75D mutant of γD-crystallin is associated with congenital cataract in mice and was previously shown to un/fold via a partially folded intermediate. Here, we structurally characterized the stable equilibrium urea unfolding intermediate of V75D at the ensemble level using solution NMR and small-angle x-ray scattering. Our data show that, in the intermediate, the C-terminal domain retains a folded conformation that is similar to the native wild-type protein, whereas the N-terminal domain is unfolded and comprises an ensemble of random conformers, without any detectable residual structural propensities.
Collapse
Affiliation(s)
- Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathan C Bartko
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Martin Blackledge
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Carlson GM, Fenton AW. What Mutagenesis Can and Cannot Reveal About Allostery. Biophys J 2017; 110:1912-23. [PMID: 27166800 DOI: 10.1016/j.bpj.2016.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022] Open
Abstract
Allosteric regulation of protein function is recognized to be widespread throughout biology; however, knowledge of allosteric mechanisms, the molecular changes within a protein that couple one binding site to another, is limited. Although mutagenesis is often used to probe allosteric mechanisms, we consider herein what the outcome of a mutagenesis study truly reveals about an allosteric mechanism. Arguably, the best way to evaluate the effects of a mutation on allostery is to monitor the allosteric coupling constant (Qax), a ratio of the substrate binding constants in the absence versus presence of an allosteric effector. A range of substitutions at a given residue position in a protein can reveal when a particular substitution causes gain-of-function, which addresses a key challenge in interpreting mutation-dependent changes in the magnitude of Qax. Thus, whole-protein mutagenesis studies offer an acceptable means of identifying residues that contribute to an allosteric mechanism. With this focus on monitoring Qax, and keeping in mind the equilibrium nature of allostery, we consider alternative possibilities for what an allosteric mechanism might be. We conclude that different possible mechanisms (rotation-of-solid-domains, movement of secondary structure, side-chain repacking, changes in dynamics, etc.) will result in different findings in whole-protein mutagenesis studies.
Collapse
Affiliation(s)
- Gerald M Carlson
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Aron W Fenton
- Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
11
|
Towse CL, Akke M, Daggett V. The Dynameomics Entropy Dictionary: A Large-Scale Assessment of Conformational Entropy across Protein Fold Space. J Phys Chem B 2017; 121:3933-3945. [PMID: 28375008 DOI: 10.1021/acs.jpcb.7b00577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular dynamics (MD) simulations contain considerable information with regard to the motions and fluctuations of a protein, the magnitude of which can be used to estimate conformational entropy. Here we survey conformational entropy across protein fold space using the Dynameomics database, which represents the largest existing data set of protein MD simulations for representatives of essentially all known protein folds. We provide an overview of MD-derived entropies accounting for all possible degrees of dihedral freedom on an unprecedented scale. Although different side chains might be expected to impose varying restrictions on the conformational space that the backbone can sample, we found that the backbone entropy and side chain size are not strictly coupled. An outcome of these analyses is the Dynameomics Entropy Dictionary, the contents of which have been compared with entropies derived by other theoretical approaches and experiment. As might be expected, the conformational entropies scale linearly with the number of residues, demonstrating that conformational entropy is an extensive property of proteins. The calculated conformational entropies of folding agree well with previous estimates. Detailed analysis of specific cases identifies deviations in conformational entropy from the average values that highlight how conformational entropy varies with sequence, secondary structure, and tertiary fold. Notably, α-helices have lower entropy on average than do β-sheets, and both are lower than coil regions.
Collapse
Affiliation(s)
- Clare-Louise Towse
- Department of Bioengineering, University of Washington , Box 355013, Seattle, Washington 98195-5013, United States
| | - Mikael Akke
- Department of Biophysical Chemistry, Lund University , PO Box 124, SE-22100 Lund, Sweden
| | - Valerie Daggett
- Department of Bioengineering, University of Washington , Box 355013, Seattle, Washington 98195-5013, United States
| |
Collapse
|
12
|
Srivastava A, Granek R. Temperature-induced unfolding behavior of proteins studied by tensorial elastic network model. Proteins 2016; 84:1767-1775. [DOI: 10.1002/prot.25157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/26/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Amit Srivastava
- Department of Computational and Systems Biology, School of Medicine; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Rony Granek
- Department of Biotechnology Engineering; Ben-Gurion University of The Negev; Beer Sheva 84105
- The Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion University of The Negev; Beer Sheva 84105 Israel
| |
Collapse
|
13
|
Childers MC, Towse CL, Daggett V. The effect of chirality and steric hindrance on intrinsic backbone conformational propensities: tools for protein design. Protein Eng Des Sel 2016; 29:271-80. [PMID: 27284086 DOI: 10.1093/protein/gzw023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/30/2023] Open
Abstract
The conformational propensities of amino acids are an amalgamation of sequence effects, environmental effects and underlying intrinsic behavior. Many have attempted to investigate neighboring residue effects to aid in our understanding of protein folding and improve structure prediction efforts, especially with respect to difficult to characterize states, such as disordered or unfolded states. Host-guest peptide series are a useful tool in examining the propensities of the amino acids free from the surrounding protein structure. Here, we compare the distributions of the backbone dihedral angles (φ/ψ) of the 20 proteogenic amino acids in two different sequence contexts using the AAXAA and GGXGG host-guest pentapeptide series. We further examine their intrinsic behaviors across three environmental contexts: water at 298 K, water at 498 K, and 8 M urea at 298 K. The GGXGG systems provide the intrinsic amino acid propensities devoid of any conformational context. The alanine residues in the AAXAA series enforce backbone chirality, thereby providing a model of the intrinsic behavior of amino acids in a protein chain. Our results show modest differences in φ/ψ distributions due to the steric constraints of the Ala side chains, the magnitudes of which are dependent on the denaturing conditions. One of the strongest factors modulating φ/ψ distributions was the protonation of titratable side chains, and the largest differences observed were in the amino acid propensities for the rarely sampled αL region.
Collapse
Affiliation(s)
| | - Clare-Louise Towse
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| |
Collapse
|
14
|
Sprenger KG, Pfaendtner J. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5690-5701. [PMID: 27181161 DOI: 10.1021/acs.langmuir.6b01296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.
Collapse
Affiliation(s)
- K G Sprenger
- Department of Chemical Engineering, University of Washington , Seattle, Washington 98195-1750, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington , Seattle, Washington 98195-1750, United States
| |
Collapse
|
15
|
Srivastava A, Granek R. Protein unfolding from free-energy calculations: integration of the Gaussian network model with bond binding energies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022708. [PMID: 25768532 DOI: 10.1103/physreve.91.022708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 06/04/2023]
Abstract
Motivated by single molecule experiments, we study thermal unfolding pathways of four proteins, chymotrypsin inhibitor, barnase, ubiquitin, and adenylate kinase, using bond network models that combine bond energies and elasticity. The protein elasticity is described by the Gaussian network model (GNM), to which we add prescribed bond binding energies that are assigned to all (nonbackbone) connecting bonds in the GNM of native state and assumed identical for simplicity. Using exact calculation of the Helmholtz free energy for this model, we consider bond rupture single events. The bond designated for rupture is chosen by minimizing the free-energy difference for the process, over all (nonbackbone) bonds in the network. Plotting the free-energy profile along this pathway at different temperatures, we observe a few major partial unfolding, metastable or stable, states, that are separated by free-energy barriers and change role as the temperature is raised. In particular, for adenylate kinase we find three major partial unfolding states, which is consistent with single molecule FRET experiments [Pirchi et al., Nat. Commun. 2, 493 (2011)] for which hidden Markov analysis reveals between three and five such states. Such states can play a major role in enzymatic activity.
Collapse
Affiliation(s)
- Amit Srivastava
- The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering, Ben-Gurion University of The Negev, Beer Sheva 84105, Israel
| | - Rony Granek
- The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering, Ben-Gurion University of The Negev, Beer Sheva 84105, Israel
- The Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion University of The Negev, Beer Sheva 84105, Israel
| |
Collapse
|
16
|
Srivastava A, Granek R. Cooperativity in thermal and force-induced protein unfolding: integration of crack propagation and network elasticity models. PHYSICAL REVIEW LETTERS 2013; 110:138101. [PMID: 23581376 DOI: 10.1103/physrevlett.110.138101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 06/02/2023]
Abstract
We investigate force-induced and temperature-induced unfolding of proteins using the combination of a gaussian network model and a crack propagation model based on "bond"-breaking independent events. We assume the existence of threshold values for the mean strain and strain fluctuations that dictate bond rupture. Surprisingly, we find that this stepwise process usually leads to a few cooperative, first-order-like, transitions in which several bonds break simultaneously, reminiscent of the "avalanches" seen in disordered networks.
Collapse
Affiliation(s)
- Amit Srivastava
- The Stella and Avram Goren-Goldstein Department of Biotechnology Engineering, Ben-Gurion University of The Negev, Beer Sheva 84105, Israel
| | | |
Collapse
|
17
|
Using simulations to provide the framework for experimental protein folding studies. Arch Biochem Biophys 2012; 531:128-35. [PMID: 23266569 DOI: 10.1016/j.abb.2012.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/27/2022]
Abstract
Molecular dynamics simulations are a powerful theoretical tool to model the protein folding process in atomistic details under realistic conditions. Combined with a number of experimental techniques, simulations provide a detailed picture of how a protein folds or unfolds in the presence of explicit solvent and other molecular species, such as cosolvents, osmolytes, cofactors, active binding partners or inert crowding agents. The denaturing effects of temperature, pressure and external mechanical forces can also be probed. Qualitative and quantitative agreement with experiment contributes to a comprehensive molecular picture of protein states along the folding/unfolding pathway. The variety of systems examined reveals key features of the protein folding process.
Collapse
|
18
|
Ngo S, Chiang V, Ho E, Le L, Guo Z. Prion domain of yeast Ure2 protein adopts a completely disordered structure: a solid-support EPR study. PLoS One 2012; 7:e47248. [PMID: 23077577 PMCID: PMC3473064 DOI: 10.1371/journal.pone.0047248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/12/2012] [Indexed: 12/03/2022] Open
Abstract
Amyloid fibril formation is associated with a range of neurodegenerative diseases in humans, including Alzheimer’s, Parkinson’s, and prion diseases. In yeast, amyloid underlies several non-Mendelian phenotypes referred to as yeast prions. Mechanism of amyloid formation is critical for a complete understanding of the yeast prion phenomenon and human amyloid-related diseases. Ure2 protein is the basis of yeast prion [URE3]. The Ure2p prion domain is largely disordered. Residual structures, if any, in the disordered region may play an important role in the aggregation process. Studies of Ure2p prion domain are complicated by its high aggregation propensity, which results in a mixture of monomer and aggregates in solution. Previously we have developed a solid-support electron paramagnetic resonance (EPR) approach to address this problem and have identified a structured state for the Alzheimer’s amyloid-β monomer. Here we use solid-support EPR to study the structure of Ure2p prion domain. EPR spectra of Ure2p prion domain with spin labels at every fifth residue from position 10 to position 75 show similar residue mobility profile for denaturing and native buffers after accounting for the effect of solution viscosity. These results suggest that Ure2p prion domain adopts a completely disordered structure in the native buffer. A completely disordered Ure2p prion domain implies that the amyloid formation of Ure2p, and likely other Q/N-rich yeast prion proteins, is primarily driven by inter-molecular interactions.
Collapse
Affiliation(s)
- Sam Ngo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Vicky Chiang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elaine Ho
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linh Le
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Understanding how small helical proteins fold: conformational dynamics of Im proteins relevant to their folding landscapes. Biochem Soc Trans 2012; 40:424-8. [DOI: 10.1042/bst20110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the mechanism of folding of small proteins requires characterization of their starting unfolded states and any partially unfolded states populated during folding. Here, we review what is known from NMR about these states of Im7, a 4-helix bundle protein that folds via an on-pathway intermediate, and show that there is an alignment of non-native structure in urea-unfolded Im7 with the helices of native Im7 that is a consequence of hydrophobic helix-promoting residues also promoting cluster-formation in the unfolded protein. We suggest that this kind of alignment is present in other proteins and is relevant to how native state topology determines folding rates.
Collapse
|
20
|
Jonsson AL, Daggett V. The effect of context on the folding of β-hairpins. J Struct Biol 2011; 176:143-50. [PMID: 21843644 DOI: 10.1016/j.jsb.2011.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/15/2022]
Abstract
Small β-hairpin peptides have been widely used as models for the folding of β-sheets. But how applicable is the folding of such models to β-structure in larger proteins with conventional hydrophobic cores? Here we present multiple unfolding simulations of three such proteins that contain the WW domain double hairpin β-sheet motif: cold shock protein A (CspA), cold shock protein B (CspB) and glucose permease IIA domain. We compare the behavior of the free motif in solution and in the context of proteins of different size and architecture. Both Csp proteins lost contacts between the double-hairpin motif and the protein core as the first step of unfolding and proceeded to unfold with loss of the third β-strand, similar to the isolated WW domain. The glucose permease IIA domain is a larger protein and the contacts between the motif and the core were not lost as quickly. Instead the unfolding pathway of glucose permease IIA followed a different pathway with β1 pulling away from the sheet first. Interestingly, when the double hairpin motif was excised from the glucose permease IIA domain and simulated in isolation in water it unfolded by the same pathway as the WW domain, indicating that it is tertiary interactions with the protein that alter the motif's unfolding not a sequence dependent effect on its intrinsic unfolding behavior. With respect to the unfolding of the hairpins, there was no consistent order to the loss of hydrogen bonds between the β-strands in the hairpins in any of the systems. Our results show that while the folding behavior of the isolated WW domain is generally consistent with the double hairpin motif's behavior in the cold shock proteins, it is not the case for the glucose permease IIA domain. So, one must be cautious in extrapolating findings from model systems to larger more complicated proteins where tertiary interactions can overwhelm intrinsic behavior.
Collapse
Affiliation(s)
- Amanda L Jonsson
- Department of Bioengineering, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | | |
Collapse
|
21
|
Su JG, Xu XJ, Li CH, Chen WZ, Wang CX. An Analysis of the Influence of Protein Intrinsic Dynamical Properties on its Thermal Unfolding Behavior. J Biomol Struct Dyn 2011; 29:105-21. [DOI: 10.1080/07391102.2011.10507377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Wang HM, Yu C. Investigating the refolding pathway of human acidic fibroblast growth factor (hFGF-1) from the residual structure(s) obtained by denatured-state hydrogen/deuterium exchange. Biophys J 2011; 100:154-64. [PMID: 21190667 DOI: 10.1016/j.bpj.2010.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022] Open
Abstract
Human fibroblast growth factor 1 (hFGF-1) consists of 12 anti-parallel β-strands arranged into a β-trefoil architecture. We directly measured hydrogen/deuterium exchange rates on the urea-denatured hFGF-1 to obtain the information with regard to the persistent residual interaction(s) in the unfolded hFGF-1. Thirty-eight residues whose heteronuclear single quantum coherence cross-peaks can be observed after exchange show higher protections than those predicted for the same residues in a random coil conformation, suggesting the existence of residual structure(s). The urea-denaturation of hFGF-1 tested by both circular dichroism and fluorescence spectroscopy indicated that the unfolding process is a cooperative two-state process and that the residual structures observed did not originate from the existence of a partially structured intermediate. The coincident disappearance of the native heteronuclear single quantum coherence cross-peaks during the urea-denaturation process suggests that the residual structures observed contain no nativelike interactions. The protected residues (fold ons) in the urea-denatured state are mostly those that exchange slowly in the native state H/D exchange. The distribution of these fold ons in the native structure of hFGF-1 suggests that the refolding starts by collisions between the residual structures (microdomains) between the β-strands VI and VII, and between the β-strands II and III, which appear to be two independent refolding coordinates during the refolding process.
Collapse
Affiliation(s)
- Han-Min Wang
- Department of Chemistry, National Tsing-Hua University, Hsin-Chu, Taiwan, Republic of China
| | | |
Collapse
|
23
|
Tai H, Munegumi T, Yamamoto Y. Control of the Stability of Hydrogenobacter Thermophilus Cytochrome c552 through Alteration of the Basicity of the N-Terminal Amino Group of the Polypeptide Chain. Inorg Chem 2010; 49:10840-6. [DOI: 10.1021/ic1005924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Toratane Munegumi
- Department of Materials Chemistry and Bioengineering, Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
24
|
Akanuma S, Yamagishi A. Roles for the two N-terminal (β/α) modules in the folding of a (β/α)8-barrel protein as studied by fragmentation analysis. Proteins 2010; 79:221-31. [DOI: 10.1002/prot.22874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Shen JK. Uncovering specific electrostatic interactions in the denatured states of proteins. Biophys J 2010; 99:924-32. [PMID: 20682271 PMCID: PMC2913194 DOI: 10.1016/j.bpj.2010.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 12/01/2022] Open
Abstract
The stability and folding of proteins are modulated by energetically significant interactions in the denatured state that is in equilibrium with the native state. These interactions remain largely invisible to current experimental techniques, however, due to the sparse population and conformational heterogeneity of the denatured-state ensemble under folding conditions. Molecular dynamics simulations using physics-based force fields can in principle offer atomistic details of the denatured state. However, practical applications are plagued with the lack of rigorous means to validate microscopic information and deficiencies in force fields and solvent models. This study presents a method based on coupled titration and molecular dynamics sampling of the denatured state starting from the extended sequence under native conditions. The resulting denatured-state pK(a)s allow for the prediction of experimental observables such as pH- and mutation-induced stability changes. I show the capability and use of the method by investigating the electrostatic interactions in the denatured states of wild-type and K12M mutant of NTL9 protein. This study shows that the major errors in electrostatics can be identified by validating the titration properties of the fragment peptides derived from the sequence of the intact protein. Consistent with experimental evidence, our simulations show a significantly depressed pK(a) for Asp(8) in the denatured state of wild-type, which is due to a nonnative interaction between Asp(8) and Lys(12). Interestingly, the simulation also shows a nonnative interaction between Asp(8) and Glu(48) in the denatured state of the mutant. I believe the presented method is general and can be applied to extract and validate microscopic electrostatics of the entire folding energy landscape.
Collapse
Affiliation(s)
- Jana K Shen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
26
|
Law PB, Daggett V. The relationship between water bridges and the polyproline II conformation: a large-scale analysis of molecular dynamics simulations and crystal structures. Protein Eng Des Sel 2010; 23:27-33. [PMID: 19917655 DOI: 10.1093/protein/gzp069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been suggested that denatured proteins are predisposed toward the left-handed polyproline II (P(II)) conformation. One possible source of P(II) stability in the denatured state is water bridges. Water bridges are networks of water molecules that link nearby hydrogen bond acceptors and/or donors on proteins. On the basis of the proposed behavior of P(II) and water bridges, the propensity of a residue to participate in water bridges should be correlated with its P(II) propensity. To test this hypothesis, we analyzed the following data sets: 2351 high-resolution crystal structures, and the native and denatured states of 188 different proteins from all-atom, explicit-solvent molecular dynamics (MD) simulations, which are part of our Dynameomics effort. We found that water bridges do not explain the high frequency of P(II) in denatured states; such bridges are less frequent around P(II) than around other conformations. Thus, this analysis casts doubt on water bridges as a dominant factor determining the residue-based P(II) propensities.
Collapse
Affiliation(s)
- Peter B Law
- Biomolecular Structure and Design Program, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | | |
Collapse
|
27
|
Tzul FO, Bowler BE. Importance of contact persistence in denatured state loop formation: kinetic insights into sequence effects on nucleation early in folding. J Mol Biol 2009; 390:124-34. [PMID: 19426739 DOI: 10.1016/j.jmb.2009.04.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/23/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
Protein folding is dependent on the formation and persistence of simple loops early in folding. Ease of loop formation and persistence is believed to be dependent on the steric interactions of the residues involved in loop formation. We have previously investigated this factor in the denatured state of iso-1-cytochrome c using a five-amino-acid insert in front of a unique histidine in the N-terminal region of the protein. Previously, we reported that the apparent pK(a) values of loop formation for the most flexible (all Gly) and least flexible (all Ala) insert were, within error, the same. We evaluate whether this observation is due to differences in the persistence of loop contacts or due to effects of local sequence sterics and main-chain hydration on the persistence length of the chain. We also test whether sequence order affects loop formation. Here, we report kinetic results coupled to further mutagenesis of the insert to discern between these possibilities. We find that the amino acid-glycine versus alanine-next to the loop forming histidine has a dominant effect on loop kinetics and equilibria. A glycine in this position speeds loop breakage relative to alanine, resulting in less stable loops. At high percentage of Gly in the insert, rates of loop formation and breakage exactly compensate, leading to a leveling out in loop stability. Loop formation rates also increase with glycine content, inconsistent with poly-Gly segments being more extended than previously suspected due to main-chain hydration or local sterics. Unlike loop breakage rates, loop formation rates are insensitive to local sequence. Together, these observations suggest that contact persistence plays a more important role in defining the "folding code" than rates of loop formation.
Collapse
Affiliation(s)
- Franco O Tzul
- Department of Chemistry and Biochemistry and Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, 59812, USA
| | | |
Collapse
|
28
|
Tai H, Munegumi T, Yamamoto Y. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c. Inorg Chem 2009; 48:331-8. [PMID: 19053349 DOI: 10.1021/ic801202d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the denatured states of Hydrogenobacter thermophilus cytochrome c(552) (HT) and Pseudomonas aeruginosa cytochrome c(551) (PA), and their mutants, the N-terminal amino group of the polypeptide chain is coordinated to heme Fe in place of the axial Met, the His-N(term) form being formed. The coordination of the N-terminal amino group to heme Fe leads to loop formation by the N-terminal stretch preceding the first Cys residue bound to the heme, and the N-terminal stretches of HT and PA are different from each other in terms of both the sequence and the number of constituent amino acid residues. The His-N(term) form was shown to be rather stable, and hence it can influence the stability of the denatured state. We have investigated the heme Fe coordination structures and stabilities of the His-N(term) forms emerging upon guanidine hydrochloric acid-induced unfolding of the oxidized forms of the proteins. The Fe-N(term) coordination bond in the His-N(term) form with a 9-residue N-terminal stretch of HT proteins was found to be tilted to some extent away from the heme normal, as reflected by the great heme methyl proton shift spread. On the other hand, the small heme methyl proton shift spread of the His-N(term) form with an 11-residue stretch of PA proteins indicated that its Fe-N(term) bond is nearly parallel with the heme normal. The stability of the His-N(term) form was found to be affected by the structural properties of the N-terminal stretch, such as its length and the N-terminal residue. With a given N-terminal residue, the stability of the His-N(term) form is higher for a 9-residue N-terminal stretch than an 11-residue one. In addition, with a given length of the N-terminal stretch, the His-N(term) form with an N-terminal Glu is stabilized by a few kJ mol(-1) relative to that with an N-terminal Asn. These results provide a novel insight into the stabilizing interactions in the denatured cyts c that will facilitate elucidation of the folding/unfolding mechanisms of the proteins.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | |
Collapse
|
29
|
Ren Y, Gao J, Ge W, Li J. Thermal Unfolding of a Double-Domain Protein: Molecular Dynamics Simulation of Rhodanese. Ind Eng Chem Res 2008. [DOI: 10.1021/ie801441x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Ren
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jian Gao
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Ge
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jinghai Li
- State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, and Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
30
|
Noy K, Kalisman N, Keasar C. Prediction of structural stability of short beta-hairpin peptides by molecular dynamics and knowledge-based potentials. BMC STRUCTURAL BIOLOGY 2008; 8:27. [PMID: 18510728 PMCID: PMC2427033 DOI: 10.1186/1472-6807-8-27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 05/29/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND The structural stability of peptides in solution strongly affects their binding affinities and specificities. Thus, in peptide biotechnology, an increase in the structural stability is often desirable. The present work combines two orthogonal computational techniques, Molecular Dynamics and a knowledge-based potential, for the prediction of structural stability of short peptides (< 20 residues) in solution. RESULTS We tested the new approach on four families of short beta-hairpin peptides: TrpZip, MBH, bhpW and EPO, whose structural stabilities have been experimentally measured in previous studies. For all four families, both computational techniques show considerable correlation (r > 0.65) with the experimentally measured stabilities. The consensus of the two techniques shows higher correlation (r > 0.82). CONCLUSION Our results suggest a prediction scheme that can be used to estimate the relative structural stability within a peptide family. We discuss the applicability of this predictive approach for in-silico screening of combinatorial peptide libraries.
Collapse
Affiliation(s)
- Karin Noy
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| | | | | |
Collapse
|
31
|
Abstract
Experimental and theoretical studies have showed that the native-state topology conceals a wealth of information about protein folding/unfolding. In this study, a method based on the Gaussian network model (GNM) is developed to study some properties of protein unfolding and explore the role of topology in protein unfolding process. The GNM has been successful in predicting atomic fluctuations around an energy minimum. However, in the GNM, the normal mode description is linear and cannot be accurate in studying protein folding/unfolding, which has many local minima in the energy landscape. To describe the nonlinearity of the conformational changes during protein unfolding, a method based on the iterative use of normal mode calculation is proposed. The protein unfolding process is mimicked through breaking the native contacts between the residues one by one according to the fluctuations of the distance between them. With this approach, the unfolding processes of two proteins, CI2 and barnase, are simulated. It is found that the sequence of protein unfolding events revealed by this method is consistent with that obtained from thermal unfolding by molecular dynamics and Monte Carlo simulations. The results indicate that this method is effective in studying protein unfolding. In this method, only the native contacts are considered, which implies that the native topology may play an important role in the protein unfolding process. The simulation results also show that the unfolding pathway is robust against the introduction of some noise, or stochastic characters. Furthermore, several conformations selected from the unfolding process are studied to show that the denatured state does not behave as a random coil, but seems to have highly cooperative motions, which may help and promote the polypeptide chain to fold into the native state correctly and speedily.
Collapse
|
32
|
Norgaard AB, Ferkinghoff-Borg J, Lindorff-Larsen K. Experimental parameterization of an energy function for the simulation of unfolded proteins. Biophys J 2007; 94:182-92. [PMID: 17827232 PMCID: PMC2134871 DOI: 10.1529/biophysj.107.108241] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The determination of conformational preferences in unfolded and disordered proteins is an important challenge in structural biology. We here describe an algorithm to optimize energy functions for the simulation of unfolded proteins. The procedure is based on the maximum likelihood principle and employs a fast and efficient gradient descent method to find the set of parameters of the energy function that best explain the experimental data. We first validate the method by using synthetic reference data, and subsequently apply the algorithms to data from nuclear magnetic resonance spin-labeling experiments on the Delta131Delta fragment of Staphylococcal nuclease. A significant strength of the procedure that we present is that it directly uses experimental data to optimize the energy parameters, without relying on the availability of high resolution structures. The procedure is fully general and can be applied to a range of experimental data and energy functions including the force fields used in molecular dynamics simulations.
Collapse
Affiliation(s)
- Anders B Norgaard
- Department of Molecular Biology and Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
33
|
Boscolo B, Leal SS, Ghibaudi EM, Gomes CM. Lactoperoxidase folding and catalysis relies on the stabilization of the α-helix rich core domain: A thermal unfolding study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1164-72. [PMID: 17698426 DOI: 10.1016/j.bbapap.2007.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/29/2007] [Accepted: 07/05/2007] [Indexed: 11/23/2022]
Abstract
Lactoperoxidase (LPO) belongs to the mammalian peroxidase family and catalyzes the oxidation of halides, pseudo-halides and a number of aromatic substrates at the expense of hydrogen peroxide. Despite the complex physiological role of LPO and its potential involvement in carcinogenic mechanisms, cystic fibrosis and inflammatory processes, little is known on the folding and structural stability of this protein. We have undertaken an investigation of the conformational dynamics and catalytic properties of LPO during thermal unfolding, using complementary biophysical techniques (differential scanning calorimetry, electron spin resonance, optical absorption, fluorescence and circular dichroism spectroscopies) together with biological activity assays. LPO is a particularly stable protein, capable of maintaining catalysis and structural integrity up to a high temperature, undergoing irreversible unfolding at 70 degrees C. We have observed that the first stages of the thermal denaturation involve a minor conformational change occurring at 40 degrees C, possibly at the level of the protein beta-sheets, which nevertheless does not result in an unfolding transition. Only at higher temperature, the protein hydrophobic core, which is rich in alpha-helices, unfolds with concomitant disruption of the catalytic heme pocket and activity loss. Evidences concerning the stabilizing role of the disulfide bridges and the covalently bound heme cofactor are shown and discussed in the context of understanding the structural stability determinants in a relatively large protein.
Collapse
Affiliation(s)
- Barbara Boscolo
- Dipartimento di Chimica I.F.M., Università di Torino, Torino, Italy
| | | | | | | |
Collapse
|
34
|
Lazaridis T, Karplus M. Heat capacity and compactness of denatured proteins. Biophys Chem 2007; 78:207-17. [PMID: 17030309 DOI: 10.1016/s0301-4622(99)00022-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/1998] [Revised: 02/02/1999] [Accepted: 02/10/1999] [Indexed: 11/21/2022]
Abstract
One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model.
Collapse
Affiliation(s)
- T Lazaridis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
35
|
Kmiecik S, Kolinski A. Characterization of protein-folding pathways by reduced-space modeling. Proc Natl Acad Sci U S A 2007; 104:12330-5. [PMID: 17636132 PMCID: PMC1941469 DOI: 10.1073/pnas.0702265104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ab initio simulations of the folding pathways are currently limited to very small proteins. For larger proteins, some approximations or simplifications in protein models need to be introduced. Protein folding and unfolding are among the basic processes in the cell and are very difficult to characterize in detail by experiment or simulation. Chymotrypsin inhibitor 2 (CI2) and barnase are probably the best characterized experimentally in this respect. For these model systems, initial folding stages were simulated by using CA-CB-side chain (CABS), a reduced-space protein-modeling tool. CABS employs knowledge-based potentials that proved to be very successful in protein structure prediction. With the use of isothermal Monte Carlo (MC) dynamics, initiation sites with a residual structure and weak tertiary interactions were identified. Such structures are essential for the initiation of the folding process through a sequential reduction of the protein conformational space, overcoming the Levinthal paradox in this manner. Furthermore, nucleation sites that initiate a tertiary interactions network were located. The MC simulations correspond perfectly to the results of experimental and theoretical research and bring insights into CI2 folding mechanism: unambiguous sequence of folding events was reported as well as cooperative substructures compatible with those obtained in recent molecular dynamics unfolding studies. The correspondence between the simulation and experiment shows that knowledge-based potentials are not only useful in protein structure predictions but are also capable of reproducing the folding pathways. Thus, the results of this work significantly extend the applicability range of reduced models in the theoretical study of proteins.
Collapse
Affiliation(s)
- Sebastian Kmiecik
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Andrzej Kolinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Olufsen M, Brandsdal BO, Smalås AO. Comparative unfolding studies of psychrophilic and mesophilic uracil DNA glycosylase: MD simulations show reduced thermal stability of the cold-adapted enzyme. J Mol Graph Model 2007; 26:124-34. [PMID: 17134924 DOI: 10.1016/j.jmgm.2006.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 11/22/2022]
Abstract
Uracil DNA glycosylase (UDG) is a DNA repair enzyme involved in the base excision repair (BER) pathway, removing misincorporated uracil from the DNA strand. The native and mutant forms of Atlantic cod and human UDG have previously been characterized in terms of kinetic and thermodynamic properties as well as the determination of several crystal structures. This data shows that the cold-adapted enzyme is more catalytically efficient but at the same time less resistant to heat compared to its warm-active counterpart. In this study, the structure-function relationship is further explored by means of comparative molecular dynamics (MD) simulations at three different temperatures (375, 400 and 425K) to gain a deeper insight into the structural features responsible for the reduced thermostability of the cold-active enzyme. The simulations show that there are distinct structural differences in the unfolding pathway between the two homologues, particularly evident in the N- and C-terminals. Distortion of the mesophilic enzyme is initiated simultaneously in the N- and C-terminal, while the C-terminal part plays a key role for the stability of the psychrophilic enzyme. The simulations also show that at certain temperatures the cold-adapted enzyme unfolds faster than the warm-active homologues in accordance with the lower thermal stability found experimentally.
Collapse
Affiliation(s)
- Magne Olufsen
- The Norwegian Structural Biology Centre, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
37
|
Shinoda K, Takahashi KI, Go M. Retention of local conformational compactness in unfolding of barnase; Contribution of end-to-end interactions within quasi-modules. Biophysics (Nagoya-shi) 2007; 3:1-12. [PMID: 27857562 PMCID: PMC5036653 DOI: 10.2142/biophysics.3.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/11/2007] [Indexed: 12/01/2022] Open
Abstract
To understand how protein reduces the conformational space to be searched for the native structure, it is crucial to characterize ensembles of conformations on the way of folding processes, in particular ensembles of relatively long-range structures connecting between an extensively unfolded state and a state with a native-like overall chain topology. To analyze such intermediate conformations, we performed multiple unfolding molecular dynamics simulations of barnase at 498K. Some short-range structures such as part of helix and turn were well sustained while most of the secondary structures and the hydrophobic cores were eventually lost, which is consistent with the results by other experimental and computational studies. The most important novel findings were persistence of long-range relatively compact substructures, which was captured by exploiting the concept of module. Module is originally introduced to describe the hierarchical structure of a globular protein in the native state. Modules are conceptually such relatively compact substructures that are resulted from partitioning the native structure of a globular protein completely into several contiguous segments with the least extended conformations. We applied this concept of module to detect a possible hierarchical structure of each snapshot structure in unfolding processes as well. Along with this conceptual extension, such detected relatively compact substructures are named quasi-modules. We found almost perfect persistence of quasi-module boundaries that are positioned close to the native module boundaries throughout the unfolding trajectories. Relatively compact conformations of the quasi-modules seemed to be retained mainly by hydrophobic interactions formed between residues located at both terminal regions within each module. From these results, we propose a hypothesis that hierarchical folding with the early formation of quasi-modules effectively reduces search space for the native structure.
Collapse
Affiliation(s)
- Kazuki Shinoda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Ken-Ichi Takahashi
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Mitiko Go
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan; Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
38
|
Tzul FO, Kurchan E, Bowler BE. Sequence composition effects on denatured state loop formation in iso-1-cytochrome c variants: polyalanine versus polyglycine inserts. J Mol Biol 2007; 371:577-84. [PMID: 17583729 PMCID: PMC2075356 DOI: 10.1016/j.jmb.2007.04.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/14/2007] [Accepted: 04/23/2007] [Indexed: 11/15/2022]
Abstract
Protein folding is dependent on the formation and persistence of simple loops during the earliest events of the folding process. Ease of loop formation and persistence is believed to be dependent on the steric properties of the residues involved in loop formation. We have investigated this conformational factor in the denatured state of iso-1-cytchrome c using a five alanine insert in front of a unique histidine in the N-terminal region of the protein. The alanine residues have then been progressively substituted with sterically less-constrained glycine residues. Guanidine-HCl unfolding shows that all variants have a free energy of unfolding of approximately 2 kcal/mol. The low stability of these variants is well accounted for by stabilization of the denatured state by histidine-heme loop formation. The stability of the 22 residue histidine-heme loop has been measured in 3 M guanidine hydrochloride for all variants. Surprisingly, relative to alanine, glycine has only a very modest effect on equilibrium loop stability. Thus, the greater flexibility that glycine confers on the main-chain provides no advantage in terms of the persistence of simple loops early in folding. The underlying basis for the similar behavior of loops with polyalanine versus polyglycine inserts is discussed in terms of the current knowledge of the structure and loop formation kinetics of glycine versus alanine-rich peptides.
Collapse
Affiliation(s)
| | | | - Bruce E. Bowler
- * To whom correspondence should be addressed. Phone (406) 243-6114. Fax (406) 243-4227. E-mail:
| |
Collapse
|
39
|
Scott KA, Alonso DOV, Sato S, Fersht AR, Daggett V. Conformational entropy of alanine versus glycine in protein denatured states. Proc Natl Acad Sci U S A 2007; 104:2661-6. [PMID: 17307875 PMCID: PMC1815238 DOI: 10.1073/pnas.0611182104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Indexed: 11/18/2022] Open
Abstract
The presence of a solvent-exposed alanine residue stabilizes a helix by 0.4-2 kcal.mol(-1) relative to glycine. Various factors have been suggested to account for the differences in helical propensity, from the higher conformational freedom of glycine sequences in the unfolded state to hydrophobic and van der Waals' stabilization of the alanine side chain in the helical state. We have performed all-atom molecular dynamics simulations with explicit solvent and exhaustive sampling of model peptides to address the backbone conformational entropy difference between Ala and Gly in the denatured state. The mutation of Ala to Gly leads to an increase in conformational entropy equivalent to approximately 0.4 kcal.mol(-1) in a fully flexible denatured, that is, unfolded, state. But, this energy is closely counterbalanced by the (measured) difference in free energy of transfer of the glycine and alanine side chains from the vapor phase to water so that the unfolded alanine- and glycine-containing peptides are approximately isoenergetic. The helix-stabilizing propensity of Ala relative to Gly thus mainly results from more favorable interactions of Ala in the folded helical structure. The small difference in energetics in the denatured states means that the Phi-values derived from Ala --> Gly scanning of helices are a very good measure of the extent of formation of structure in proteins with little residual structure in the denatured state.
Collapse
Affiliation(s)
- Kathryn A. Scott
- *Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610; and
| | - Darwin O. V. Alonso
- *Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610; and
| | - Satoshi Sato
- Medical Research Council Centre for Protein Engineering and Department of Chemistry, Cambridge University, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Alan R. Fersht
- Medical Research Council Centre for Protein Engineering and Department of Chemistry, Cambridge University, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Valerie Daggett
- *Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610; and
| |
Collapse
|
40
|
Geierhaas CD, Nickson AA, Lindorff-Larsen K, Clarke J, Vendruscolo M. BPPred: a Web-based computational tool for predicting biophysical parameters of proteins. Protein Sci 2007; 16:125-34. [PMID: 17123959 PMCID: PMC2222837 DOI: 10.1110/ps.062383807] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 09/17/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
We exploit the availability of recent experimental data on a variety of proteins to develop a Web-based prediction algorithm (BPPred) to calculate several biophysical parameters commonly used to describe the folding process. These parameters include the equilibrium m-values, the length of proteins, and the changes upon unfolding in the solvent-accessible surface area, in the heat capacity, and in the radius of gyration. We also show that the knowledge of any one of these quantities allows an estimate of the others to be obtained, and describe the confidence limits with which these estimations can be made. Furthermore, we discuss how the kinetic m-values, or the Beta Tanford values, may provide an estimate of the solvent-accessible surface area and the radius of gyration of the transition state for protein folding. Taken together, these results suggest that BPPred should represent a valuable tool for interpreting experimental measurements, as well as the results of molecular dynamics simulations.
Collapse
|
41
|
Wen EZ, Luo R. Interplay of secondary structures and side-chain contacts in the denatured state of BBA1. J Chem Phys 2006; 121:2412-21. [PMID: 15260796 DOI: 10.1063/1.1768151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The denatured state of a miniprotein BBA1 is studied under the native condition with the AMBER/Poisson-Boltzmann energy model and with the self-guided enhanced sampling technique. Forty independent trajectories are collected to sample the highly diversified denatured structures. Our simulation data show that the denatured BBA1 contains high percentage of native helix and native turn, but low percentage of native hairpin. Conditional population analysis indicates that the native helix formation and the native hairpin formation are not cooperative in the denatured state. Side-chain analysis shows that the native hydrophobic contacts are more preferred than the non-native hydrophobic contacts in the denatured BBA1. In contrast, the salt-bridge contacts are more or less nonspecific even if their populations are higher than those of hydrophobic contacts. Analysis of the trajectories shows that the native helix mostly initiates near the N terminus and propagates to the C terminus, and mostly forms from 3(10)-helix/turn to alpha helix. The same analysis shows that the native turn is important but not necessary in its formation in the denatured BBA1. In addition, the formations of the two strands in the native hairpin are rather asymmetric, demonstrating the likely influence of the protein environment. Energetic analysis shows that the native helix formation is largely driven by electrostatic interactions in denatured BBA1. Further, the native helix formation is associated with the breakup of non-native salt-bridge contacts and the accumulation of native salt-bridge contacts. However, the native hydrophobic contacts only show a small increase upon the native helix formation while the non-native hydrophobic contacts stay essentially the same, different from the evolution of hydrophobic contacts observed in an isolated helix folding.
Collapse
Affiliation(s)
- Edward Z Wen
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA
| | | |
Collapse
|
42
|
Mitomo D, Nakamura HK, Ikeda K, Yamagishi A, Higo J. Transition state of a SH3 domain detected with principle component analysis and a charge-neutralized all-atom protein model. Proteins 2006; 64:883-94. [PMID: 16807919 DOI: 10.1002/prot.21069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The src SH3 domain has been known to be a two-state folder near room temperature. However, in a previous study with an all-atom model simulation near room temperature, the transition state of this protein was not successfully detected on a free-energy profile using two axes: the radius of gyration (R(g)) and native contact reproduction ratio (Q value). In this study, we focused on an atom packing effect to characterize the transition state and tried another analysis to detect it. To explore the atom packing effect more efficiently, we introduced a charge-neutralized all-atom model, where all of the atoms in the protein and water molecules were treated explicitly, but their partial atomic charges were set to zero. Ten molecular dynamics simulations were performed starting from the native structure at 300 K, where the simulation length of each run was 90 ns, and the protein unfolded in all runs. The integrated trajectories (10 x 90 = 900 ns) were analyzed by a principal component analysis (PCA) and showed a clear free-energy barrier between folded- and unfolded-state conformational clusters in a conformational space generated by PCA. There were segments that largely deformed when the conformation passed through the free-energy barrier. These segments correlated well with the structural core regions characterized by large phi-values, and the atom-packing changes correlated with the conformational deformations. Interestingly, using the same simulation data, no significant barrier was found in a free-energy profile using the R(g) and Q values for the coordinate axes. These results suggest that the atom packing effect may be one of the most important determinants of the transition state.
Collapse
Affiliation(s)
- Daisuke Mitomo
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | |
Collapse
|
43
|
Akanuma S, Miyagawa H, Kitamura K, Yamagishi A. A detailed unfolding pathway of a (beta/alpha)8-barrel protein as studied by molecular dynamics simulations. Proteins 2006; 58:538-46. [PMID: 15614829 DOI: 10.1002/prot.20349] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The (beta/alpha)(8)-barrel is the most common protein fold. Similar structural properties for folding intermediates of (beta/alpha)(8)-barrel proteins involved in tryptophan biosynthesis have been reported in a number of experimental studies; these intermediates have the last two beta-strands and three alpha-helices partially unfolded, with other regions of the polypeptide chain native-like in conformation. To investigate the detailed folding/unfolding pathways of these (beta/alpha)(8)-barrel proteins, temperature-induced unfolding simulations of N-(5'-phosphoribosyl)anthranilate isomerase from Escherichia coli were carried out using a special-purpose parallel computer system. Unfolding simulations at five different temperatures showed a sequential unfolding pathway comprised of several events. Early events in unfolding involved disruption of the last two strands and three helices, producing an intermediate ensemble similar to those detected in experimental studies. Then, denaturation of the first two betaalpha units and separation of the sixth strand from the fifth took place independently. The remaining central betaalphabetaalphabeta module persisted the longest during all simulations, suggesting an important role for this module as the incipient folding scaffold. Our simulations also predicted the presence of a nucleation site, onto which several hydrophobic residues condensed forming the foundation for the central betaalphabetaalphabeta module.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Valerie Daggett
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195-7610, USA
| |
Collapse
|
45
|
Smolin N, Winter R. A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:522-34. [PMID: 16469548 DOI: 10.1016/j.bbapap.2006.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 12/09/2005] [Accepted: 01/02/2006] [Indexed: 11/19/2022]
Abstract
Temperature- and pressure-induced unfolding of staphylococcal nuclease (SNase) was studied by Royer, Winter et al. using a variety of experimental techniques (SAXS, FT-IR and fluorescence spectroscopy, DSC, PPC, densimetry). For a more detailed understanding of the underlying mechanistic processes of the different unfolding scenarios, we have carried out a series of molecular dynamics (MD) computer simulations on SNase. We investigated the initial changes of the structure of the protein upon application of pressure (up to 5 kbar) and discuss volumetric and structural differences between the native and pressure pre-denatured state. Additionally, we have obtained the compressibility of the protein and hydration water and compare these data with experimental results. As water plays a crucial role in determining the structure, dynamics and function of proteins, we undertook a detailed analysis of the structure of the interfacial water and the protein-solvent H-bond network as well. Moreover, we report here also MD results on the temperature-induced unfolding of SNase. The time evolution of the protein volume and solvent accessible surface area during thermal unfolding have been investigated, and we present a detailed discussion of the temperature-induced unfolding pathway of SNase in terms of secondary and tertiary structural changes.
Collapse
Affiliation(s)
- Nikolai Smolin
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry, University of Dortmund, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany. nikolai.smolin @uni-dortmund.de
| | | |
Collapse
|
46
|
Akanuma S, Yamagishi A. Identification and Characterization of Key Substructures Involved in the Early Folding Events of a (β/α)8-barrel Protein as Studied by Experimental and Computational Methods. J Mol Biol 2005; 353:1161-70. [PMID: 16216267 DOI: 10.1016/j.jmb.2005.08.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 07/30/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
A number of studies have examined the structural properties of late folding intermediates of (beta/alpha)8-barrel proteins involved in tryptophan biosynthesis, whereas there is little information available about the early folding events of these proteins. To identify the contiguous polypeptide segments important to the folding of the (beta/alpha)8-barrel protein Escherichia coli N-(5'-phosphoribosyl)anthranilate isomerase, we structurally characterized fragments and circularly permuted forms of the protein. We also simulated thermal unfolding of the protein using molecular dynamics. Our fragmentation experiments demonstrate that the isolated (beta/alpha)(1-4)beta5 fragment is almost as stable as the full-length protein. The far and near-UV CD spectra of this fragment are indicative of native-like secondary and tertiary structures. Structural analysis of the circularly permutated proteins shows that if the protein is cleaved within the two N-terminal betaalpha modules, the amount of secondary structure is unaffected, whereas, when cleaved within the central (beta/alpha)(3-4)beta5 segment, the protein simply cannot fold. An ensemble of the denatured structures produced by thermal unfolding simulations contains a persistent local structure comprised of beta3, beta4 and beta5. The presence of this three-stranded beta-barrel suggests that it may be an important early-stage folding intermediate. Interactions found in (beta/alpha)(3-4)beta5 may be essential for the early events of ePRAI folding if they provide a nucleation site that directs folding.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | |
Collapse
|
47
|
Salvatella X, Dobson CM, Fersht AR, Vendruscolo M. Determination of the folding transition states of barnase by using PhiI-value-restrained simulations validated by double mutant PhiIJ-values. Proc Natl Acad Sci U S A 2005; 102:12389-94. [PMID: 16116084 PMCID: PMC1194897 DOI: 10.1073/pnas.0408226102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Indexed: 11/18/2022] Open
Abstract
The protein barnase folds from the denatured state into its native conformation via a high-energy intermediate. Using PhiI-values determined experimentally from single-point mutations as restraints in all-atom molecular dynamics simulations, we have determined ensembles of structures corresponding to the transition states for the formation of the folding intermediate and its conversion into the native state. We have also introduced a stringent validation of the approach used to calculate such structures by predicting interaction PhiIJ-values determined experimentally from a series of double-mutant cycles. The ensembles that we have obtained illustrate the heterogeneity in the nucleation-condensation process by which barnase folds. Obligatory steps of this process include the sequential formation of two folding nuclei, which correspond to the two main hydrophobic cores of the protein. Nonobligatory steps include the elongation of the strand beta1 and the formation of the helix alpha2. The results confirm that the use of experimental observables such as PhiI-values as restraints in molecular dynamics simulations is a powerful general strategy to characterize the relatively heterogeneous structural ensembles that populate nonnative regions of the energy landscapes of proteins.
Collapse
Affiliation(s)
- Xavier Salvatella
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
48
|
MacDonald JT, Purkiss AG, Smith MA, Evans P, Goodfellow JM, Slingsby C. Unfolding crystallins: the destabilizing role of a beta-hairpin cysteine in betaB2-crystallin by simulation and experiment. Protein Sci 2005; 14:1282-92. [PMID: 15840832 PMCID: PMC2253261 DOI: 10.1110/ps.041227805] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The thermodynamic and kinetic stabilities of the eye lens family of betagamma-crystallins are important factors in the etiology of senile cataract. They control the chance of proteins unfolding, which can lead to aggregation and loss of transparency. betaB2-Crystallin orthologs are of low stability and comprise two typical betagamma-crystallin domains, although, uniquely, the N-terminal domain has a cysteine in one of the conserved folded beta-hairpins. Using high-temperature (500 K) molecular dynamics simulations with explicit solvent on the N-terminal domain of rodent betaB2-crystallin, we have identified in silico local flexibility in this folded beta-hairpin. We have shown in vitro using two-domain human betaB2-crystallin that replacement of this cysteine with a more usual aromatic residue (phenylalanine) results in a gain in conformational stability and a reduction in the rate of unfolding. We have used principal components analysis to visualize and cluster the coordinates from eight separate simulated unfolding trajectories of both the wild-type and the C50F mutant N-terminal domains. These data, representing fluctuations around the native well, show that although the mutant and wild-type appear to behave similarly over the early time period, the wild type appears to explore a different region of conformational space. It is proposed that the advantage of having this low-stability cysteine may be correlated with a subunit-exchange mechanism that allows betaB2-crystallin to interact with a range of other beta-crystallin subunits.
Collapse
Affiliation(s)
- James T MacDonald
- School of Crystallography, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | | | | | | | | | | |
Collapse
|
49
|
DeMarco ML, Alonso DOV, Daggett V. Diffusing and colliding: the atomic level folding/unfolding pathway of a small helical protein. J Mol Biol 2004; 341:1109-24. [PMID: 15328620 DOI: 10.1016/j.jmb.2004.06.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 06/08/2004] [Accepted: 06/19/2004] [Indexed: 11/26/2022]
Abstract
Proteins with ultra-fast folding/unfolding kinetics are excellent candidates for study by molecular dynamics. Here, we describe such simulations of a three helix bundle protein, the engrailed homeodomain (En-HD), which folds via the diffusion-collision model. The unfolding pathway of En-HD was characterized by seven simulations of the protein and 12 simulations of its helical fragments yielding over 1.1 micros of simulation time in water. Various conformational states along the unfolding pathway were identified. There is the compact native-like transition state, a U-shaped helical intermediate and an unfolded state with dynamic helical segments. Each of these states is in good agreement with experimental data. Examining these states as well as the transitions between them, we find the role of long-range tertiary contacts, specifically salt-bridges, important in the folding/unfolding pathway. In the folding direction, charged residues form long-range tertiary contacts before the hydrophobic core is formed. The formation of HII is assisted by a specific salt-bridge and by non-specific (fluctuating) tertiary contacts, which we call contact-assisted helix formation. Salt-bridges persist as the protein approaches the transition state, stabilizing HII until the hydrophobic core is formed. To complement this information, simulations of fragments of En-HD illustrate the helical propensities of the individual segments. By thermal denaturation, HII proved to be the least stable helix, unfolding in less than 450 ps at high temperature. We observed the low helical propensity of C-terminal residues from HIII in fragment simulations which, when compared to En-HD unfolding simulations, link the unraveling of HIII to the initial event that drives the unfolding of En-HD.
Collapse
Affiliation(s)
- Mari L DeMarco
- Biomolecular Structure and Design Program, University of Washington, Seattle 98195-7610, USA
| | | | | |
Collapse
|
50
|
Alston RW, Urbanikova L, Sevcik J, Lasagna M, Reinhart GD, Scholtz JM, Pace CN. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa. Biophys J 2004; 87:4036-47. [PMID: 15377518 PMCID: PMC1304912 DOI: 10.1529/biophysj.104.050377] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribonuclease Sa (RNase Sa) contains no tryptophan (Trp) residues. We have added single Trp residues to RNase Sa at sites where Trp is found in four other microbial ribonucleases, yielding the following variants of RNase Sa: Y52W, Y55W, T76W, and Y81W. We have determined crystal structures of T76W and Y81W at 1.1 and 1.0 A resolution, respectively. We have studied the fluorescence properties and stabilities of the four variants and compared them to wild-type RNase Sa and the other ribonucleases on which they were based. Our results should help others in selecting sites for adding Trp residues to proteins. The most interesting findings are: 1), Y52W is 2.9 kcal/mol less stable than RNase Sa and the fluorescence intensity emission maximum is blue-shifted to 309 nm. Only a Trp in azurin is blue-shifted to a greater extent (308 nm). This blue shift is considerably greater than observed for Trp71 in barnase, the Trp on which Y52W is based. 2), Y55W is 2.1 kcal/mol less stable than RNase Sa and the tryptophan fluorescence is almost completely quenched. In contrast, Trp59 in RNase T1, on which Y55W is based, has a 10-fold greater fluorescence emission intensity. 3), T76W is 0.7 kcal/mol more stable than RNase Sa, indicating that the Trp side chain has more favorable interactions with the protein than the threonine side chain. The fluorescence properties of folded Y76W are similar to those of the unfolded protein, showing that the tryptophan side chain in the folded protein is largely exposed to solvent. This is confirmed by the crystal structure of the T76W which shows that the side chain of the Trp is only approximately 7% buried. 4), Y81W is 0.4 kcal/mol less stable than RNase Sa. Based on the crystal structure of Y81W, the side chain of the Trp is 87% buried. Although all of the Trp side chains in the variants contribute to the unusual positive circular dichroism band observed near 235 nm for RNase Sa, the contribution is greatest for Y81W.
Collapse
Affiliation(s)
- Roy W Alston
- Department of Medical Biochemistry and Genetics, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | | | |
Collapse
|