1
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
2
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025:10.1007/s13346-024-01780-x. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
3
|
Hameed H, Sarwar HS, Younas K, Zaman M, Jamshaid M, Irfan A, Khalid M, Sohail MF. Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers. Funct Integr Genomics 2024; 24:177. [PMID: 39340586 DOI: 10.1007/s10142-024-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, 17 Avenue des sciences, 91190, Orsay, France
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maha Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, SBASSE, Lahore University of Management Sciences (LUMS), Lahore, 54000, Pakistan
- Alliant College of Pharmacy and Allied Health Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Zhang Z, Kuo JCT, Zhang C, Huang Y, Lee RJ. Ivermectin Enhanced Antitumor Activity of Resiquimod in a Co-Loaded Squalene Emulsion. J Pharm Sci 2022; 111:3038-3046. [PMID: 35697319 DOI: 10.1016/j.xphs.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022]
Abstract
Immunogenic cell death (ICD) plays an important role in sensitizing tumor cells to antigen-presenting cells followed by antitumor immunity. However, a successful antitumor response by ICD requires both apoptotic tumor microenvironments and activated immune systems. Ivermectin (IVM) has been shown to induce cell apoptosis through autophagy which can be a great candidate for ICD therapy. However, a single treatment of IVM-free drug is not an ideal anticancer therapy due to its anti-inflammatory effects and cytotoxicity. In the present study, IVM was shown to enhance the ICD process in addition to the treatment of resiquimod (R848), a TLR7/8 agonist, when co-loaded in a squalene-based nanoemulsion (NE). R848-IVM co-loaded NE was developed and characterized in vitro. Antitumor activity of R848-IVM NE was also evaluated in vitro and in vivo. R848-IVM NE exhibited long-term stability and reduced cytotoxicity by IVM. In vivo studies demonstrated that IVM significantly augments the ICD by upregulating Cd8a and releasing HMGB1 in tumor tissue, which could enhance R848-driven antitumor immunity. R848-IVM NE treatment showed strong antitumor activity with over 80% tumor growth inhibition, suggesting a potential combination therapy of systemic co-delivering IVM with TLR agonists against solid cancer.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA.
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA.
| | - Chi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA.
| | - Yirui Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Chen L, Cao L, Zhan M, Li J, Wang D, Laurent R, Mignani S, Caminade AM, Majoral JP, Shi X. Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System To Take Down Breast Cancer In Vivo. Biomacromolecules 2022; 23:2827-2837. [PMID: 35694854 DOI: 10.1021/acs.biomac.2c00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conventional small molecular chemical drugs always have challenging limitations in cancer therapy due to their high systemic toxicity and low therapeutic efficacy. Nanotechnology has been applied in drug delivery, bringing new promising potential to realize effective cancer treatment. In this context, we develop here a new nanomicellar drug delivery platform generated by amphiphilic phosphorus dendrons (1-C17G3.HCl), which could form micelles for effective encapsulation of a hydrophobic anticancer drug doxorubicin (DOX) with a high drug loading content (42.4%) and encapsulation efficiency (96.7%). Owing to the unique dendritic rigid structure and surface hydrophilic groups, large steady void space of micelles can be created for drug encapsulation. The created DOX-loaded micelles with a mean diameter of 26.3 nm have good colloidal stability. Strikingly, we show that the drug-free micelles possess good intrinsic anticancer activity and act collectively with DOX to take down breast cancer cells in vitro and the xenografted tumor model in vivo through upregulation of Bax, PTEN, and p53 proteins for enhanced cell apoptosis. Meanwhile, the resulting 1-C17G3.HCl@DOX micelles significantly abolish the toxicity relevant to the free drug. The findings of this study demonstrate a unique nanomicelle-based drug delivery system created with the self-assembling amphiphilic phosphorus dendrons that may be adapted for chemotherapy of different cancer types.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.,Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Dayuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, Paris 75006, France.,CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, Toulouse Cedex 4 31077, France.,Université de Toulouse, UPS, INPT, Toulouse Cedex 4 31077, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.,CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal 9020-105, Portugal
| |
Collapse
|
6
|
A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021; 13:pharmaceutics13122060. [PMID: 34959344 PMCID: PMC8706843 DOI: 10.3390/pharmaceutics13122060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Agonists for toll-like receptors (TLRs) have shown promising activities against cancer. In the present study, a squalene-based nanoemulsion (NE) was loaded with resiquimod, a TLR7/8 agonist for therapeutic delivery. R848 NE was developed and characterized for long-term stability. In vitro and in vivo antitumor immunity of R848 NE were also evaluated in combination with SD-101, a CpG-containing TLR9 agonist. In vitro studies demonstrated strong long-term stability and immune responses to R848 NE. When combined with SD-101, strong antitumor activity was observed in MC38 murine colon carcinoma model with over 80% tumor growth inhibition. The combination treatment showed a 4-fold increase in systemic TNFa production and a 2.6-fold increase in Cd8a expression in tumor tissues, suggesting strong cell-mediated immune responses against the tumor. The treatment not only demonstrated a strong antitumor immunity by TLR7/8 and TLR9 activations but also induced PD-L1 upregulation in tumors, suggesting a potential therapeutic synergy with immune checkpoint inhibitors.
Collapse
|
7
|
Ge S, Wang H, Alavi A, Xing E, Bar-Joseph Z. Supervised Adversarial Alignment of Single-Cell RNA-seq Data. J Comput Biol 2021; 28:501-513. [PMID: 33470876 DOI: 10.1089/cmb.2020.0439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dimensionality reduction is an important first step in the analysis of single-cell RNA-sequencing (scRNA-seq) data. In addition to enabling the visualization of the profiled cells, such representations are used by many downstream analyses methods ranging from pseudo-time reconstruction to clustering to alignment of scRNA-seq data from different experiments, platforms, and laboratories. Both supervised and unsupervised methods have been proposed to reduce the dimension of scRNA-seq. However, all methods to date are sensitive to batch effects. When batches correlate with cell types, as is often the case, their impact can lead to representations that are batch rather than cell-type specific. To overcome this, we developed a domain adversarial neural network model for learning a reduced dimension representation of scRNA-seq data. The adversarial model tries to simultaneously optimize two objectives. The first is the accuracy of cell-type assignment and the second is the inability to distinguish the batch (domain). We tested the method by using the resulting representation to align several different data sets. As we show, by overcoming batch effects our method was able to correctly separate cell types, improving on several prior methods suggested for this task. Analysis of the top features used by the network indicates that by taking the batch impact into account, the reduced representation is much better able to focus on key genes for each cell type.
Collapse
Affiliation(s)
- Songwei Ge
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Haohan Wang
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Amir Alavi
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Eric Xing
- Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Chen L, Li J, Fan Y, Qiu J, Cao L, Laurent R, Mignani S, Caminade AM, Majoral JP, Shi X. Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules 2020; 21:2502-2511. [DOI: 10.1021/acs.biomac.0c00458] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jieru Qiu
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Liu Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Régis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Serge Mignani
- Universite′ Paris Descartes, PRES Sorbonne Paris Cite′, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, 75006 Paris, France
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 CEDEX 4 Toulouse, France
- Université de Toulouse, UPS, INPT, 31077 CEDEX 4 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
9
|
Metabolically stabilized double-stranded mRNA polyplexes. Gene Ther 2018; 25:473-484. [PMID: 30154525 DOI: 10.1038/s41434-018-0038-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/16/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The metabolic instability of mRNA currently limits its utility for gene therapy. Compared to plasmid DNA, mRNA is significantly more susceptible to digestion by RNase in the circulation following systemic dosing. To increase mRNA metabolic stability, we hybridized a complementary reverse mRNA with forward mRNA to generate double-stranded mRNA (dsmRNA). RNase A digestion of dsmRNA established a 3000-fold improved metabolic stability compared to single-stranded mRNA (ssmRNA). Formulation of a dsmRNA polyplex using a PEG-peptide further improved the stability by 3000-fold. Hydrodynamic dosing and quantitative bioluminescence imaging of luciferase expression in the liver of mice established the potent transfection efficiency of dsmRNA and dsmRNA polyplexes. However, hybridization of the reverse mRNA against the 5' and 3' UTR of forward mRNA resulted in UTR denaturation and a tenfold loss in expression. Repeat dosing of dsmRNA polyplexes produced an equivalent transient expression, suggesting the lack of an immune response in mice. Co-administration of excess uncapped dsmRNA with a dsmRNA polyplex failed to knock down expression, suggesting that dsmRNA is not a Dicer substrate. Maximal circulatory stability was achieved using a fully complementary dsmRNA polyplex. The results established dsmRNA as a novel metabolically stable and transfection-competent form of mRNA.
Collapse
|
10
|
Natural low- and high-density lipoproteins as mighty bio-nanocarriers for anticancer drug delivery. Cancer Chemother Pharmacol 2018; 82:371-382. [DOI: 10.1007/s00280-018-3626-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
|
11
|
Elnaggar YSR, Elsheikh MA, Abdallah OY. Phytochylomicron as a dual nanocarrier for liver cancer targeting of luteolin: in vitro appraisal and pharmacodynamics. Nanomedicine (Lond) 2018; 13:209-232. [DOI: 10.2217/nnm-2017-0220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: A novel luteolin (LUT) loaded dual bionanocarrier ‘phytochylomicron’ was elaborated to allow LUT injectable delivery and liver cancer targeting. Methods: LUT–phospholipid complex was prepared and loaded into chylomicron nanocarrier. Then phytochylomicron underwent physicochemical characterization, cell culture and pharmacodynamics studies on a new liver-tumor model. Results: Phytochylomicron showed sustained release pattern with minimum drug leakage until reaching the liver. Cell culture studies showed high growth inhibition of Hep G2 cells with 2.6-fold enhancement in cellular uptake. Pharmacodynamics demonstrated enhanced tumor growth inhibition (sixfold) with a significant tumor size reduction. Finally, cell culture results demonstrated an excellent correlation with pharmacodynamics confirming the obtained findings. Conclusion: A novel phytochylomicron nanosystem was successfully elaborated with promising characteristics that promoted injectable LUT delivery and liver cancer targeting. [Formula: see text]
Collapse
Affiliation(s)
- Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Manal A Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Teixeira HF, Bruxel F, Fraga M, Schuh RS, Zorzi GK, Matte U, Fattal E. Cationic nanoemulsions as nucleic acids delivery systems. Int J Pharm 2017; 534:356-367. [DOI: 10.1016/j.ijpharm.2017.10.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
13
|
PEGylated cationic nanoemulsions can efficiently bind and transfect pIDUA in a mucopolysaccharidosis type I murine model. J Control Release 2015; 209:37-46. [PMID: 25886705 DOI: 10.1016/j.jconrel.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/24/2015] [Accepted: 04/11/2015] [Indexed: 11/23/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal disease caused by alpha-L-iduronidase deficiency. This study proposed the use of cationic nanoemulsions as non-viral vectors for a plasmid (pIDUA) containing the gene that codes for alpha-L-iduronidase. Nanoemulsions composed of medium chain triglycerides (MCT)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)/1,2-dioleoyl-sn-glycero-3-trimethylammonium propane (DOTAP)/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG) were prepared by high pressure homogenization. Formulations were prepared by the adsorption or encapsulation of preformed pIDUA-DOTAP complexes into the oil core of nanoemulsions at different charge ratios. pIDUA complexed was protected from enzymatic degradation by DNase I. The physicochemical characteristics of complexes in protein-containing medium were mainly influenced by the presence of DSPE-PEG. Bragg reflections corresponding to a lamellar organization were identified for blank formulations by energy dispersive X-ray diffraction, which could not be detected after pIDUA complexation. The intravenous injection of these formulations in MPS I knockout mice led to a significant increase in IDUA activity (fluorescence assay) and expression (RT-qPCR) in different organs, especially the lungs and liver. These findings were more significant for formulations prepared at higher charge ratios (+4/-), suggesting a correlation between charge ratio and transfection efficiency. The present preclinical results demonstrated that these nanocomplexes represent a potential therapeutic option for the treatment of MPS I.
Collapse
|
14
|
Lu Y, Qiu Y, Qi J, Feng M, Ju D, Wu W. Biomimetic reassembled chylomicrons as novel association model for the prediction of lymphatic transportation of highly lipophilic drugs via the oral route. Int J Pharm 2015; 483:69-76. [DOI: 10.1016/j.ijpharm.2015.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/13/2015] [Accepted: 02/10/2015] [Indexed: 11/25/2022]
|
15
|
Zaro JL. Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS JOURNAL 2014; 17:83-92. [PMID: 25269430 DOI: 10.1208/s12248-014-9670-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/04/2014] [Indexed: 11/30/2022]
Abstract
The combination of lipid drug delivery systems with prodrugs offers several advantages including improved pharmacokinetics, increased absorption, and facilitated targeting. Lipidization and use of lipid carriers can increase the pharmacological half-life of the drug, thus improving pharmacokinetics and allowing less frequent dosing. Lipids also offer advantages such as increased absorption through the intestines for oral drug absorption and to the CNS for brain delivery. Furthermore, the use of lipid delivery systems can enhance drug targeting. Endogenous proteins bind lipids in the blood and carry them to the liver to enable targeting of this organ. Drugs with significant side effects in the stomach can be specifically delivered to enterocytes by exploiting lipases for prodrug activation. Finally, lipids can be used to target the lymphatic system, thus bypassing the liver and avoiding first-pass metabolism. Lymphatic targeting is also important for antiviral drugs in the protection of B and T lymphocytes. In this review, both lipid-drug conjugates and lipid-based carriers will be discussed. An overview, including the chemistry and assembly of the systems, as well as examples from the clinic and in development, will be provided.
Collapse
Affiliation(s)
- Jennica L Zaro
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave., PSC 406BA, Los Angeles, California, 90033, USA,
| |
Collapse
|
16
|
Liu C, Zhang N. Nanoparticles in Gene Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:509-62. [DOI: 10.1016/b978-0-12-416020-0.00013-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Kren BT, Unger GM, Sjeklocha L, Trossen AA, Korman V, Diethelm-Okita BM, Reding MT, Steer CJ. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J Clin Invest 2009; 119:2086-99. [PMID: 19509468 DOI: 10.1172/jci34332] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 04/22/2009] [Indexed: 12/16/2022] Open
Abstract
Liver sinusoidal endothelial cells are a major endogenous source of Factor VIII (FVIII), lack of which causes the human congenital bleeding disorder hemophilia A. Despite extensive efforts, gene therapy using viral vectors has shown little success in clinical hemophilia trials. Here we achieved cell type-specific gene targeting using hyaluronan- and asialoorosomucoid-coated nanocapsules, generated using dispersion atomization, to direct genes to liver sinusoidal endothelial cells and hepatocytes, respectively. To highlight the therapeutic potential of this approach, we encapsulated Sleeping Beauty transposon expressing the B domain-deleted canine FVIII in cis with Sleeping Beauty transposase in hyaluronan nanocapsules and injected them intravenously into hemophilia A mice. The treated mice exhibited activated partial thromboplastin times that were comparable to those of wild-type mice at 5 and 50 weeks and substantially shorter than those of untreated controls at the same time points. Further, plasma FVIII activity in the treated hemophilia A mice was nearly identical to that in wild-type mice through 50 weeks, while untreated hemophilia A mice exhibited no detectable FVIII activity. Thus, Sleeping Beauty transposon targeted to liver sinusoidal endothelial cells provided long-term expression of FVIII, without apparent antibody formation, and improved the phenotype of hemophilia A mice.
Collapse
Affiliation(s)
- Betsy T Kren
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Díez S, Navarro G, de ILarduya CT. In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J Gene Med 2009; 11:38-45. [PMID: 19021130 DOI: 10.1002/jgm.1273] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Transgene expression in vivo for therapeutic purposes will require methods that allow for efficient gene transfer into cells. Although current vector technologies are being improved, the development of novel vector systems with improved targeting specificity, higher transduction efficiencies and improved safety is necessary. METHODS Asialoglycoprotein receptor-targeted cationic nanoparticles for interleukin (IL)-12 encapsulation (NP1) or adsorption (NP2) have been formulated by blending poly(D,L-lactic-co-glycolic) acid (PLGA) (50 : 50) with the cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and the ligand asialofetuin (AF), by using a modified solvent evaporation process. RESULTS We present a novel targeted lipopolymeric vector, which improves significantly the levels of luciferase gene expression in the liver upon i.v. administration. Targeted-NP2 particles showed a five- and 12-fold higher transfection activity in the liver compared to non-targeted (plain) complexes or naked pCMV DNA, respectively. On the other hand, BNL tumor-bearing animals treated with AF-NP1 containing the therapeutic gene IL-12, showed tumor growth inhibition, leading to a complete tumor regression in 75% of the treated mice, without signs of recurrence. High levels of IL-12 and interferon-gamma were detected in the sera of treated animals. Mice survival also improved considerably. Tumor treatment with AF-NP2 formulations lead only to a retardation in the tumor growth. CONCLUSIONS In the present study, we have developed an efficient targeted non-viral vector for IL-12 gene transfer in hepatocellular carcinoma in vivo, by employing non-toxic cationic PLGA/DOTAP/AF nanoparticles. These results demonstrate for the first time that this cationic system could be used successfully and safely for delivery of therapeutic genes with antitumor activity into liver tumors with targeting specificity.
Collapse
Affiliation(s)
- Sonsoles Díez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
19
|
Kanemura H, Iimuro Y, Takeuchi M, Ueki T, Hirano T, Horiguchi K, Asano Y, Fujimoto J. Hepatocyte growth factor gene transfer with naked plasmid DNA ameliorates dimethylnitrosamine-induced liver fibrosis in rats. Hepatol Res 2008; 38:930-9. [PMID: 18637143 DOI: 10.1111/j.1872-034x.2008.00340.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Hepatocyte growth factor (HGF) has various biological properties, including antifibrogenic activity. In the present study, we tested the efficacy of HGF gene therapy using naked plasmid DNA in dimethylnitrosamine (DMN)-induced liver fibrosis in a rat model. METHODS Naked plasmid DNA encoding human HGF was injected once, together with a hypertonic solution, into the hepatic artery after DMN treatment on three consecutive days per week for 3 weeks. Naked plasmid DNA encoding beta-galactosidase was injected similarly in the DMN-treated control rats. DMN treatment was continued once weekly after gene transfer for additional 3 weeks. RESULTS The human HGF protein expression was detected in livers transfected with human HGF naked plasmid DNA, gradually decreasing by day 21. The expression of the endogenous rat HGF protein was also upregulated after human HGF gene transfer. Phosphorylation of c-Met, a HGF receptor, was detected only in livers transfected with human HGF plasmid DNA. Fibrosis was attenuated significantly in livers transfected with the human HGF plasmid. Attenuation wasaccompanied by decreased expression of alpha-smooth muscle actin. Increased portal vein pressure after treatment with DMN was suppressed significantly by HGF gene transfer. The upregulated hepatic protein expression of transforming growth factor-beta (TGF-beta) in response to DMN was markedly attenuated by HGF gene transfer accompanied by the increased protein expression for matrix metalloproteinases (MMP)-3 and -13. CONCLUSION The hepatic arterial injection of human naked plasmid HGF DNA was effective in suppressing liver fibrosis induced in rats by DMN. The mechanisms by which HGF expression attenuated liver fibrosis may include the suppression of hepatic TGF-beta expression and the induction of MMP expression.
Collapse
Affiliation(s)
- Hironari Kanemura
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Martí Bonmati E, Tomas Bondia F, Milara J, Cortijo J. Efecto in vitro de la adición de resinas de intercambio iónico sobre la biodisponibilidad de electrolitos en fórmulas de nutrición enteral artificial. FARMACIA HOSPITALARIA 2008. [DOI: 10.1016/s1130-6343(08)72820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Güven GU, Laçin NT, Pişkin E. Monosize polycationic nanoparticles as non-viral vectors for gene transfer to HeLa cells. J Tissue Eng Regen Med 2008; 2:155-63. [DOI: 10.1002/term.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Dierling AM, Cui Z. Targeting primaquine into liver using chylomicron emulsions for potential vivax malaria therapy. Int J Pharm 2006; 303:143-52. [PMID: 16140485 DOI: 10.1016/j.ijpharm.2005.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 07/19/2005] [Accepted: 07/19/2005] [Indexed: 11/21/2022]
Abstract
Primaquine (PQ) exerts a broad spectrum of activities against various stages of parasitic malaria. It remains as the only drug that destroys late hepatic stages and latent tissue forms of Plasmodium vivax and Plasmodium ovale. However, systems that can target PQ to liver hepatocytes, where malarial sporozoites reside, are needed to minimize the dose-limiting severe toxicities and side-effects caused by PQ. Recently, a reconstituted artificial chylomicron emulsion was generated using commercially available lipids and was shown to be preferentially taken up by liver hepatocytes following intravenous injection. We proposed to target PQ to hepatocytes by incorporating it into this chylomicron emulsion. We have shown that lipophilized PQ can be readily incorporated into the chylomicron emulsion. The PQ remained inside the emulsion without significant release. Moreover, PQ incorporated inside the emulsion was more stable than free PQ when incubated in serum. Finally, when intravenously injected into mice, the PQ-incorporated chylomicron emulsion led to significantly enhanced accumulation of PQ in liver, when compared to the injection of free PQ. This emulsion could be developed into a promising delivery system to target PQ into hepatocytes for vivax malaria therapy.
Collapse
Affiliation(s)
- Annie M Dierling
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
23
|
Huang YC, Riddle K, Rice KG, Mooney DJ. Long-term in vivo gene expression via delivery of PEI-DNA condensates from porous polymer scaffolds. Hum Gene Ther 2005; 16:609-17. [PMID: 15916485 DOI: 10.1089/hum.2005.16.609] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonviral delivery vectors are attractive for gene therapy approaches in tissue engineering, but suffer from low transfection efficiency and short-term gene expression. We hypothesized that the sustained delivery of poly(ethylenimine) (PEI)-condensed DNA from three-dimensional biodegradable scaffolds that encourage cell infiltration could greatly enhance gene expression. To test this hypothesis, a PEI-condensed plasmid encoding beta-galactosidase was incorporated into porous poly(lactide-co-glycolide) (PLG) scaffolds, using a gas foaming process. Four conditions were examined: condensed DNA and uncondensed DNA encapsulated into PLG scaffolds, blank scaffolds, and bolus delivery of condensed DNA in combination with implantation of PLG scaffolds. Implantation of scaffolds incorporating condensed beta-galactosidase plasmid into the subcutaneous tissue of rats resulted in a high level of gene expression for the entire 15-week duration of the experiment, as exemplified by extensive positive staining for beta-galactosidase gene expression observed on the exterior surface and throughout the cross-sections of the explanted scaffolds. No positive staining could be observed for the control conditions either on the exterior surface or in the cross-section at 8- and 15-week time points. In addition, a high percentage (55-60%) of cells within scaffolds incorporating condensed DNA at 15 weeks demonstrated expression of the DNA, confirming the sustained uptake and expression of the encapsulated plasmid DNA. Quantitative analysis of beta-galactosidase gene expression revealed that expression levels in scaffolds incorporating condensed DNA were one order of magnitude higher than those of other conditions at the 2- week time point and nearly two orders of magnitude higher than those of the control conditions at the 8- and 15-week time points. This study demonstrated that the sustained delivery of PEI-condensed plasmid DNA from PLG scaffolds led to an in vivo long-term and high level of gene expression, and this system may find application in areas such as bone tissue engineering.
Collapse
Affiliation(s)
- Yen-Chen Huang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
24
|
Wu J, Wu GY, Zern MA. The prospects of hepatic drug delivery and gene therapy. Expert Opin Investig Drugs 2005; 7:1795-817. [PMID: 15991930 DOI: 10.1517/13543784.7.11.1795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver targeted therapy is designed to deliver a substance preferentially to the organ in order to increase the accumulation, improve the therapeutic effect and reduce toxicity to other organs. The aim of selective targeting is to deliver a substance to a specific cell type in the liver. A variety of vehicles have been designed and further modified for selective targeting of therapeutics to the liver. The targeting properties and strategies of commonly used agents, such as liposomes, microspheres and recombinant chylomicrons, are discussed. Viral and non-viral vectors, such as cationic liposomes, reconstituted chylomicron remnants, adenoviruses, adeno-associated viruses, retroviruses, and SV-40, are currently being evaluated for the delivery of DNA to the liver. New developments in improving the targeting efficiency of the available vectors while avoiding their disadvantages have made their use in clinical trials of various genetic disorders possible. For viral hepatitis, antisense and ribozyme techniques are being employed with selective targeting approaches. A commonly employed current strategy for targeting hepatocellular carcinoma cells is to make the tumour cells convert non-toxic 'prodrugs' to toxic metabolites in situ, achieving a high concentration of the toxic product in the local milieu, while avoiding systemic toxicity. Although gene therapy itself is in its infancy, some encouraging results have been developed in studies of familial hypercholesterolaemia, haemophilia, alpha1-antitrypsin deficiency and Crigler-Najjar syndrome. The potential strengths as well as the problems with these studies are discussed.
Collapse
Affiliation(s)
- J Wu
- Department of Medicine, Division of Gastroenterology & Hepatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5083, USA.
| | | | | |
Collapse
|
25
|
Tamilvanan S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res 2005; 43:489-533. [PMID: 15522762 DOI: 10.1016/j.plipres.2004.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lipid emulsions (LEs) are heterogenous dispersions of two immiscible liquids (oil-in-water or water-in-oil) and they are subjected to various instability processes like aggregation, flocculation, coalescence and hence eventual phase separation according to the second law of thermodynamics. However, the physical stability of the LE can substantially be improved with help of suitable emulsifiers that are capable of forming a mono- or multi-layer coating film around the dispersed liquid droplets in such a way to reduce interfacial tension or to increase droplet-droplet repulsion. Depending on the concentrations of these three components (oil-water-emulsifier) and the efficiency of the emulsification equipments used to reduce droplet size, the final LE may be in the form of oil-in-water (o/w), water-in-oil (w/o), micron, submicron and double or multiple emulsions (o/w/o and w/o/w). The o/w type LEs (LE) are colloidal drug carriers, which have various therapeutic applications. As an intravenous delivery system it incorporates lipophilic water non-soluble drugs, stabilize drugs that tend to undergo hydrolysis and reduce side effects of various potent drugs. When the LE is used as an ocular delivery systems they increase local bioavailability, sustain the pharmacological effect of drugs and decrease systemic side effects of the drugs. Thus, the rationale of using LE as an integral part of effective treatment is clear. Following administration of LE through these routes, the biofate of LE associated bioactive molecules are somehow related to the vehicles disposition kinetics inside blood or eyeball. However, the LE is not devoid from undergoing various bio-process while exerting their efficacious actions. The purpose of this review is therefore to give an implication of LE for parenteral and ocular delivering systems.
Collapse
Affiliation(s)
- S Tamilvanan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
26
|
Alanazi F, Fu ZF, Lu DR. Effective transfection of rabies DNA vaccine in cell culture using an artificial lipoprotein carrier system. Pharm Res 2004; 21:675-82. [PMID: 15139525 DOI: 10.1023/b:pham.0000022415.74531.d9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To evaluate the transfection efficiency in cell culture of rabies plasmid DNA vaccine carried by a novel artificial lipoprotein system. METHODS Phospholipid nanoemulsions resembling the lipid core of natural lipoproteins were prepared. The artificial lipoprotein carrier system for DNA was constructed by assembling of the nanoemulsion (NE)-palmitoyl-poly-L-lysine (p-PLL)-rabies DNA complex. Agarose gel electrophoresis, zeta potential, and mobility measurement were conducted to determine the surface charge balance in various complex compositions. Transfection and transfection efficiency were examined by fluorescence microscopy and flow cytometry, respectively. RESULTS The artificial lipoprotein system was successfully constructed and the rabies DNA vaccine was effectively transfected in glioma cell line SF-767. The amount of p-PLL incorporated into the artificial lipoprotein formulations had a significant effect on transfection efficiency. The new system also proved to be more efficient in cellular transfection of rabies DNA vaccine than the commercial lipofectamine formulation. CONCLUSIONS Effective transfection of rabies DNA vaccine in cell culture can be achieved using the novel artificial lipoprotein carrier system, and the charge balance of the NE-p-PLL-DNA complex appears an important factor.
Collapse
Affiliation(s)
- Fars Alanazi
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
27
|
Majeti BK, Singh RS, Yadav SK, Bathula SR, Ramakrishna S, Diwan PV, Madhavendra SS, Chaudhuri A. Enhanced Intravenous Transgene Expression in Mouse Lung Using Cyclic-Head Cationic Lipids. ACTA ACUST UNITED AC 2004; 11:427-37. [PMID: 15123237 DOI: 10.1016/j.chembiol.2004.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/06/2003] [Accepted: 01/05/2004] [Indexed: 11/27/2022]
Abstract
Herein, we report enhanced intravenous mouse lung transfection using novel cyclic-head-group analogs of usually open-head cationic transfection lipids. Design and synthesis of the new cyclic-head lipid N,N-di-n-tetradecyl-3,4-dihydroxy-pyrrolidinium chloride (lipid 1) and its higher alkyl-chain analogs (lipids 2-4) and relative in vitro and in vivo gene transfer efficacies of cyclic-head lipids 1-4 to their corresponding open-head analogs [lipid 5, namely N,N-di-n-tetradecyl-N,N-(2-hydroxyethyl)ammonium chloride and its higher alkyl-chain analogs, lipids 6-8] have been described. In stark contrast to comparable in vitro transfection efficacies of both the cyclic- and open-head lipids, lipids 1-4 with cyclic heads were found to be significantly more efficient (by 5- to 11-fold) in transfecting mouse lung than their corresponding open-head analogs (5-8) upon intravenous administration. The cyclic-head lipid 3 with di-stearyl hydrophobic tail was found to be the most promising for future applications.
Collapse
Affiliation(s)
- Bharat Kumar Majeti
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pan G, Shawer M, Oie S, Lu DR. In vitro gene transfection in human glioma cells using a novel and less cytotoxic artificial lipoprotein delivery system. Pharm Res 2003; 20:738-44. [PMID: 12751628 DOI: 10.1023/a:1023477317668] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop and evaluate a novel artificial lipoprotein delivery system for in vitro gene transfection in human glioma cells. METHOD Nanoemulsion was formulated with similar lipid compositions present in natural lipoproteins. The oil phase of nanoemulsion was composed of triolein (70%), egg phosphatidylcholine (22.7%), lysophosphatidylcholine (2.3%), cholesterol oleate (3.0%), and cholesterol (2.0%). To replace the surface protein as in natural lipoprotein, poly-L-lysine was modified to add palmitoyl chains at a basic condition and was incorporated onto the nanoemulsion particles through hydrophobic interaction. A model plasmid DNA, pSV-beta-Gal containing a reporter gene for beta-galactosidase was carried by the nanoemulsion/poly-L-lysine particles. The charge variation of soformed complex was examined by agarose gel electrophoresis and zeta potential measurement. In vitro transfection was conducted on human SF-767 glioma cell line using this new system. After standard X-Gal staining, transfected cells were observed under light microscope. The effect of chloroquine on the transfection was examined and, finally, the cytotoxicity of this new system was evaluated in comparison with commercial Lipofectamine gene transfection system. RESULTS The plasmid DNA was effectively carried by this artificial lipoprotein delivery system and the reporter gene was expressed in the glioma cells. Transfection efficiency was significantly increased by the treatment of chloroquine, indicating that endocytosis possibly was the major cellular uptake pathway. Compared to Lipofectamine system, this new delivery system demonstrated similar transfection efficiency but a much lower cytotoxicity. In the experiment, the cell viability showed up to 75% using this system compared to only 24% using Lipofectamine system. CONCLUSION A new artificial lipoprotein delivery system was developed for in vitro gene transfection in tumor cells. The new system showed similar transfection efficiency but a much lower cytotoxicity compared with commercial Lipofectamine system.
Collapse
Affiliation(s)
- Guangliang Pan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
29
|
Arangoa MA, Düzgüneş N, Tros de Ilarduya C. Increased receptor-mediated gene delivery to the liver by protamine-enhanced-asialofetuin-lipoplexes. Gene Ther 2003; 10:5-14. [PMID: 12525832 DOI: 10.1038/sj.gt.3301840] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel lipidic vector composed of DOTAP/Chol liposomes, asialofetuin (AF), protamine sulfate and DNA has been developed. The resulting protamine-AF-lipoplexes improved significantly the levels of gene expression in cultured cells and in the liver upon i.v. administration. Lipoplexes containing the optimal amount of AF (1 microg/microg DNA) showed a 16-fold higher transfection activity in HepG2 cells than non-targeted (plain) complexes. The uptake by cells having asialoglycoprotein receptors (ASGPr) on their plasma membrane was decreased by the addition of free AF, indicating that AF-lipoplexes were taken up specifically by cells via ASGPr-mediated endocytosis. Results from transfections performed in cells defective in ASGPr, ie HeLa cells, confirmed this mechanism. By addition of the condensing peptide, protamine sulfate, smaller complexes were obtained, which enhanced even more the uptake of AF-complexes in HepG2 cells and in the liver. The optimal amount of protamine was 0.4 microg/mcirog DNA, and gene expression was about 5-fold over that obtained with AF-lipoplexes in the absence of the peptide, and 75-fold higher than that with plain conventional lipoplexes. Protamine-AF-lipoplexes increased by a factor of 12 luciferase gene expression in the liver of mice administered systemically via the tail vein, compared to plain complexes. In summary, our findings extend the scope of previous studies where AF-lipoplexes were used to introduce DNA into hepatocytes. The combination of targeting and protamine condensation obviated the need for partial hepatectomy, commonly required to obtain efficient gene delivery in this organ. Since protamine sulfate has been proven to be non-toxic in humans, the novel liver-specific vector described here may be useful for the delivery of clinically important genes to this organ.
Collapse
Affiliation(s)
- M A Arangoa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona. Spain
| | | | | |
Collapse
|
30
|
Abstract
Liver transplantation has become a well-recognized therapy for hepatic failure resulting from acute or chronic liver disease. It also plays a role in the treatment of certain inborn errors of metabolism that do not directly injure the liver. In fact, the liver maintains a central role in many inherited and acquired genetic disorders. There has been a considerable effort to develop new and more effective gene therapy approaches, in part, to overcome the need for transplantation as well as the shortage of donor livers. Traditional gene therapy involves the delivery of a piece of DNA to replace the faulty gene. More recently, there has been a growing interest in the use of gene repair to correct certain genetic defects. In fact, targeted gene repair has many advantages over conventional replacement strategies. In this review, we will describe a variety of viral and nonviral strategies that are now available to the liver. The ever-growing list includes viral vectors, antisense and ribozyme technology, and the Sleeping Beauty transposon system. In addition, targeted gene repair with RNA/DNA oligonucleotides, small-fragment homologous replacement, and triplex-forming and single-stranded oligonucleotides is a long-awaited and potentially exciting approach. Although each method uses different mechanisms for gene repair and therapy, they all share a basic requirement for the efficient delivery of DNA.
Collapse
Affiliation(s)
- Betsy T Kren
- Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
31
|
Poussin D, Malassagne B, Tran Van Nhieu J, Trébéden H, Guéry L, Chéreau C, Soubrane O, Calmus Y, Weill B, Batteux F. Biliary administration of naked DNA encoding Fas-Fc protein prevents acute liver failure in mice. Hum Gene Ther 2002; 13:901-8. [PMID: 12031123 DOI: 10.1089/10430340252939014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute liver failure (ALF) of infectious origin results from massive Fas-mediated hepatocyte apoptosis. To cure Fas-induced ALF in mice, we have designed a noninvasive procedure for intrahepatic transfer of a plasmid that encodes a molecule inhibiting Fas-Fas ligand interaction. For that purpose, naked pDNA encoding green fluorescent protein (GFP) or the Fas-Fc chimeric protein was transferred into mice by the biliary route. Ten percent of hepatocytes expressed GFP. After pFas-Fc transfer, about 40 ng of Fas-Fc protein per milliliter could be detected in sera from day 4 to day 28. Serum recombinant Fas-Fc could neutralize Fas-induced cell death in vitro. Furthermore, pFas-Fc biliary transfer efficiently protected mice against Fas-mediated ALF, because survival rates (p < 0.01), serum transaminase activities (p < 0.05), and histological data (p < 0.02) were improved versus control pTNFR-Fc-transfected mice. In conclusion, naked pDNA encoding Fas-Fc is efficiently expressed by hepatocytes after biliary gene transfer in mice. This method, devoid of virus-related risks, could be considered for the treatment of Fas-mediated ALF in humans.
Collapse
Affiliation(s)
- Delphine Poussin
- Laboratoire d'Immunologie, AP-HP, Faculté Cochin, Université Paris V, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chesnoy S, Durand D, Doucet J, Stolz DB, Huang L. Improved DNA/emulsion complex stabilized by poly(ethylene glycol) conjugated phospholipid. Pharm Res 2001; 18:1480-4. [PMID: 11697477 DOI: 10.1023/a:1012221310136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- S Chesnoy
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
33
|
Sakurai F, Nishioka T, Yamashita F, Takakura Y, Hashida M. Effects of erythrocytes and serum proteins on lung accumulation of lipoplexes containing cholesterol or DOPE as a helper lipid in the single-pass rat lung perfusion system. Eur J Pharm Biopharm 2001; 52:165-72. [PMID: 11522482 DOI: 10.1016/s0939-6411(01)00165-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasmid DNA-cationic liposome complexes (lipoplexes) accumulate in the lung to a great extent immediately after intravenous administration, and gene expression occurs predominantly in the lung. However, the detailed mechanisms underlying the lung accumulation of lipoplexes are not fully understood. In this study, we investigated the effect of blood components on the lung accumulation of lipoplexes using a single-pass rat lung perfusion system. Two types of lipoplexes, Chol-containing lipoplex ([(32)P]DNA-DOTMA/Chol liposome complex) and DOPE-containing lipoplex ([(32)P]DNA-DOTMA/DOPE liposome complex), pre-incubated with whole blood, serum, or erythrocytes, were injected into the perfused lung via an artery. Similarly to in vivo observations, extensive lung accumulation was observed for both types of lipoplexes after incubation with whole blood during a single passage. The (32)P-labeled lipoplexes pre-incubated with erythrocytes showed similar lung accumulation, whereas their lung accumulation after incubation with serum was significantly reduced, suggesting that erythrocytes would be more responsible blood components for extensive uptake by the perfused lung. However, there was a clear difference in the amounts of the accumulated erythrocytes after intra-arterial injection between the two lipoplex formulations. A significant degree of erythrocyte accumulation was observed when the DOPE-containing lipoplex was injected, whereas the Chol-containing lipoplex failed to induce any significant erythrocyte accumulation in the lung. In vitro experiments showed that the major fraction of both lipoplexes was bound to erythrocytes. These data suggested that Chol-containing lipoplexes bound to erythrocytes before injection dissociate from the erythrocytes and are transferred to the lung capillary endothelial cells during their passage through the lung. In contrast, DOPE-containing lipoplexes bound to erythrocytes cause aggregation and are embolized in the lung capillary with erythrocytes. Thus, the present study demonstrated that the interaction with erythrocytes plays an important role in the lung accumulation of lipoplexes and that neutral helper lipid significantly affects this interaction.
Collapse
Affiliation(s)
- F Sakurai
- Department of Drug Delivery Research, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
34
|
Rensen PC, de Vrueh RL, Kuiper J, Bijsterbosch MK, Biessen EA, van Berkel TJ. Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Adv Drug Deliv Rev 2001; 47:251-76. [PMID: 11311995 DOI: 10.1016/s0169-409x(01)00109-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoproteins are endogenous particles that transport lipids through the blood to various cell types, where they are recognised and taken up via specific receptors. These particles are, therefore, excellent candidates for the targeted delivery of drugs to various tissues. For example, the remnant receptor and the asialoglycoprotein receptor (ASGPr), which are uniquely localised on hepatocytes, recognise chylomicrons and lactosylated high density lipopoteins (HDL), respectively. In addition, tumour cells of various origins overexpress the low density lipoprotein (LDL) receptor that recognises apolipoprotein E (apoE) on small triglyceride-rich particles and apoB-100 on LDL. Being endogenous, lipoproteins are biodegradable, do not trigger immune reactions, and are not recognised by the reticuloendothelial system (RES). However, their endogenous nature also hampers large-scale pharmaceutical application. In the past two decades, various research groups have successfully synthesised recombinant lipoproteins from commercially available natural and synthetic lipids and serum-derived or recombinant apolipoproteins, which closely mimic the metabolic behaviour of their native counterparts in animal models as well as humans. In this paper, we will summarise the studies that led to the development of these recombinant lipoproteins, and we will address the possibility of using these lipidic particles to selectively deliver a wide range of lipophilic, amphiphilic, and polyanionic compounds to hepatocytes and tumour cells. In addition, the intrinsic therapeutic activities of recombinant chylomicrons and HDL in sepsis and atherosclerosis will be discussed.
Collapse
Affiliation(s)
- P C Rensen
- Sylvius Laboratories, Amsterdam Center for Drug Research, Division of Biopharmaceutics, Leiden, University of Leiden, P.O. Box 9503, 2300 RA, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Chesnoy S, Huang L. Structure and function of lipid-DNA complexes for gene delivery. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:27-47. [PMID: 10940242 DOI: 10.1146/annurev.biophys.29.1.27] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to the rapid development of in vivo applications for nonviral gene delivery vectors, it is necessary to have a better understanding of how the structure-activity relationships of these lipid-DNA complexes are affected by their environment. Indeed, research in gene therapy first focused on in vitro cell culture studies to determine the mechanisms involved in the delivery of DNA into the cell. New biophysical techniques such as electron microscopy and X-ray diffraction have been developed to discern the structure of the lipid-DNA complex. However, further studies have revealed discrepancies between optimal lipid-DNA formulations for in vitro transfection and for in vivo administration of these vectors. Furthermore, some immune stimulatory effects have been associated with in vivo lipid-DNA administration. This review summarizes the current state of knowledge on in vitro and in vivo lipid-DNA complex transfections. New prospects of vectors for in vivo gene transfer are also discussed.
Collapse
Affiliation(s)
- S Chesnoy
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA. Chesnoy+@pitt.edu
| | | |
Collapse
|
36
|
Kawakami S, Yamashita F, Hashida M. Disposition characteristics of emulsions and incorporated drugs after systemic or local injection. Adv Drug Deliv Rev 2000; 45:77-88. [PMID: 11104899 DOI: 10.1016/s0169-409x(00)00102-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Lipid emulsions are useful tools for controlling the in vivo disposition of drugs and plasmid DNA. The dispositions of lipid emulsions are determined by their tissue interaction depending on the anatomical and physiological characteristics of each tissue and the physicochemical and biological properties of lipid emulsions. In addition, the retention of drugs is another issue, as too rapid a release of the drug would lead to failure of exerting its therapeutic potency. This review presents an overview about the disposition profiles and various physicochemical properties of lipid emulsions and incorporated drugs after systemic or local injection. Controlled biodistribution of lipid emulsions and incorporated drugs are also discussed.
Collapse
Affiliation(s)
- S Kawakami
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 825-8521, Japan
| | | | | |
Collapse
|
37
|
Zhang G, Song YK, Liu D. Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure. Gene Ther 2000; 7:1344-9. [PMID: 10918507 DOI: 10.1038/sj.gt.3301229] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver is an important target organ for gene transfer due to its large capacity for synthesizing serum proteins and its involvement in numerous genetic and acquired diseases. Previously, we and others have shown that an efficient gene transfer to liver cells in vivo can be achieved by an intravenous injection of plasmid DNA using a hydrodynamics-based procedure. In this study, we systematically characterized the expression of transgene encoding a secretory protein in mouse. Using human alpha1-antitrypsin (hAAT) gene as a reporter, we demonstrate that the serum level of hAAT can reach as high as 0.5 mg/ml by a simple tail vein injection of 10-50 microg plasmid DNA into a mouse. The serum hAAT reaches the peak level 1 day after DNA injection and then declines during the following 2 to 4 weeks to 2-5 microg/ml, a level which persists for at least 6 months. Southern analysis of extracted DNA and RT-PCR analysis of RNA from the liver reveal that hAAT gene is active and present as episomal form after 6 months. These results suggest that the hydrodynamics-based transfection procedure provides a valuable tool for screening genes for therapeutic purposes in whole animals.
Collapse
Affiliation(s)
- G Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
38
|
Colin M, Moritz S, Schneider H, Capeau J, Coutelle C, Brahimi-Horn MC. Haemoglobin interferes with the ex vivo luciferase luminescence assay: consequence for detection of luciferase reporter gene expression in vivo. Gene Ther 2000; 7:1333-6. [PMID: 10918505 DOI: 10.1038/sj.gt.3301248] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The luciferase reporter gene is a useful tool for determining the efficacy of transfection of plasmid DNA and adenovirus-mediated gene transfer in vivo. However, we report here that the haemoglobin present in tissue samples can mask the detection of the luciferase activity and lead to underestimation of the luciferase levels. We evaluated the degree of interference in different organ samples of mice and investigated the possibilities for removal of haemoglobin from tissue samples by: (1) perfusion of the whole animal; (2) different hypotonic treatments lysing preferentially red blood cells; and (3) chromatographic separation. Removal of haemoglobin resulted in significantly improved detection of luciferase activity from tissue samples. The results indicate that the luciferase activity determined in tissue samples may not reflect the actual level of reporter gene expression, if contaminating blood is not taken into consideration.
Collapse
Affiliation(s)
- M Colin
- INSERM U402, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
39
|
Collard WT, Yang Y, Kwok KY, Park Y, Rice KG. Biodistribution, metabolism, and in vivo gene expression of low molecular weight glycopeptide polyethylene glycol peptide DNA co-condensates. J Pharm Sci 2000; 89:499-512. [PMID: 10737911 DOI: 10.1002/(sici)1520-6017(200004)89:4<499::aid-jps7>3.0.co;2-v] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The biodistribution, metabolism, cellular targeting, and gene expression of a nonviral peptide DNA gene delivery system was examined. (125)I-labeled plasmid DNA was condensed with low molecular weight peptide conjugates and dosed i.v. in mice to determine the influence of peptide DNA formulation parameters on specific gene targeting to hepatocytes. Optimal targeting to hepatocytes required the combined use of a triantennary glycopeptide (Tri-CWK(18)) and a polyethylene glycol-peptide (PEG-CWK(18)) to mediate specific recognition by the asialoglycoprotein receptor and to reduce nonspecific uptake by Kupffer cells. Tri-CWK(18)/PEG-CWK(18) DNA co-condensates were stabilized and protected from metabolism by glutaraldehyde crosslinking. An optimized formulation targeted 60% of the dose to the liver with 80% of the liver targeted DNA localized to hepatocytes. Glutaraldehyde crosslinking of DNA condensates reduced the liver elimination rate from a t((1/2)) of 0.8 to 3.6 h. An optimized gene delivery formulation produced detectable levels of human alpha1-antitrypsin in mouse serum which peaked at day 7 compared to no expression using control formulations. The results demonstrate the application of formulation optimization to improve the targeting selectivity and gene expression of a peptide DNA delivery system.
Collapse
Affiliation(s)
- W T Collard
- Divisions of Pharmaceutics and Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109-1065, USA
| | | | | | | | | |
Collapse
|
40
|
Nishikawa M, Yamauchi M, Morimoto K, Ishida E, Takakura Y, Hashida M. Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther 2000; 7:548-55. [PMID: 10819569 DOI: 10.1038/sj.gt.3301140] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To achieve hepatocyte-targeted in vivo gene expression, a carrier that controls both the tissue and intracellular distribution of DNA was designed and synthesized. A cationic polymer, poly(L-ornithine) (pOrn), was modified first with galactose, then with a fusigenic peptide (mHA2) to obtain Gal-pOrn-mHA2. When applied with Gal-pOrn-mHA2 to asialoglycoprotein receptor-positive cells, fluorescein-labeled DNA showed a diffuse profile, suggesting the release of DNA from endosomes and/or lysosomes by the carrier. Then the biodistribution and gene expression after intravenous injection of DNA complexes (10 microg DNA per mouse) were examined. After injection of [32P]DNA/Gal-pOrn-mHA2, about 60% of the radioactivity was recovered in the liver, mostly in parenchymal cells. A large amount (81 ng/g tissue) of transgene product (luciferase) was detected in the liver of mice injected with DNA/Gal-pOm-mHA2, which was 280-fold greater than that obtained with DNA/DOTMA:Chol liposomes (50 microg DNA). Prior administration of galactosylated albumin reduced the gene expression to 1/100, indicating the asialoglycoprotein receptor-mediated gene transfer in liver parenchymal cells, ie hepatocytes. The luciferase activity in hepatocytes contributed more than 95% of the total activity in all the tissues examined. Thus, hepatocyte-targeted in vivo gene expression was achieved by the intravenous injection of DNA complex with the multifunctional gene carrier.
Collapse
Affiliation(s)
- M Nishikawa
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
BACKGROUND Several nonviral vectors including linear polyethylenimine (L-PEI) confer a pronounced lung tropism to plasmid DNA when injected into the mouse tail vein in a nonionic solution. METHODS and results We have optimized this route by injecting 50 microg DNA with excess L-PEI (PEI nitrogen/DNA phosphate = 10) in a large volume of 5% glucose (0.4 ml). In these conditions, 1-5% of lung cells were transfected (corresponding to 2 ng luciferase/mg protein), the other organs remaining essentially refractory to transfection (1-10 pg luciferase/mg protein). beta-Galactosidase histochemistry confirmed alveolar cells, including pneumocytes, to be the main target, thus leading to the puzzling observation that the lung microvasculature must be permeable to cationic L-PEI/DNA particles of ca 60 nm. A smaller injected volume, premixing of the complexes with autologous mouse serum, as well as removal of excess free L-PEI, all severely decreased transgene expression in the lung. Arterial or portal vein delivery did not increase transgene expression in other organs. CONCLUSIONS These observations suggest that effective lung transfection primarily depends on the injection conditions: the large nonionic glucose bolus prevents aggregation as well as mixing of the cationic complexes and excess free L-PEI with blood. This may favour vascular leakage in the region where the vasculature is dense and fragile, i.e. around the lung alveoli. Cationic particles can thus reach the epithelium from the basolateral side where their receptors (heparan sulphate proteoglycans) are abundant.
Collapse
Affiliation(s)
- S M Zou
- Laboratoire de Chimie Génétique, Faculté de Pharmacie de Strasbourg, France
| | | | | | | |
Collapse
|
42
|
Dash PR, Read ML, Fisher KD, Howard KA, Wolfert M, Oupicky D, Subr V, Strohalm J, Ulbrich K, Seymour LW. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. J Biol Chem 2000; 275:3793-802. [PMID: 10660529 DOI: 10.1074/jbc.275.6.3793] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of serum proteins to polyelectrolyte gene delivery complexes is thought to be an important factor limiting bloodstream circulation and restricting access to target tissues. Protein binding can also inhibit transfection activity in vitro. In this study a multivalent reactive hydrophilic polymer has been used to inhibit protein binding. This polymer is based on poly-[N-(2-hydroxypropyl)methacrylamide] (pHPMA) bearing pendent oligopeptide (Gly-Phe-Leu-Gly) side chains terminated in reactive 4-nitrophenoxy groups (8.6 mol%). The polymer reacts with the primary amino groups of poly(L-lysine) (pLL) and produces a hydrophilic coating on the surface of pLL.DNA complexes (as measured by fluorescamine). The resulting pHPMA-coated complexes show a decreased surface charge (from +14 mV for pLL.DNA complexes to -25 mV for pHPMA-modified complexes) as measured by zeta potential analysis. The pHPMA-coated complexes also show a slightly increased average diameter (approximately 90 nm compared with 60 nm for pLL. DNA complexes) as viewed by atomic force and transmission electron microscopy and around 100 nm as viewed by photon correlation spectroscopy. They are completely resistant to protein interaction, as determined by turbidometry and SDS-polyacrylamide gel electrophoresis analysis of complexes isolated from plasma, and show significantly decreased nonspecific uptake into cells in vitro. Spare reactive ester groups can be used to conjugate targeting ligands (e.g. transferrin) on to the surface of the complex to provide a means of tissue-specific targeting and transfection. The properties of these complexes therefore make them promising candidates for targeted gene delivery, both in vitro and potentially in vivo.
Collapse
Affiliation(s)
- P R Dash
- Cancer Research Campaign Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Guevara JG, Kang D, Moore JP. Nucleic acid-binding properties of low-density lipoproteins: LDL as a natural gene vector. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:845-57. [PMID: 10839621 DOI: 10.1023/a:1020627212272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of apo B-100 as a transcription factor is indicated by the presence of regions in its primary structure that are similar to the DNA-binding domains of the transcription factors ISGF3gamma, STATs, IRFs, and SREBPs as well as by the presence of 11 RNA-binding KH domains. The Apo B-100 sequence also contains numerous bipartite nuclear localization sequences (NLS). A modified gel shift assay was used to show binding of highly purified preparations of human LDLs to fragmented genomic DNA, plasmid DNA, synthetic oligonucleotides (ISRE, 5'-GGGAAACCGAAACTG and E/C, E-box motif and CCAAT, adipocyte-specific genes promoter site), and total RNA from human liver. LDL was observed to bind preferentially to plasmid DNA containing the hCMV IE2 promoter region. In experiments using human liver total RNA, RNA for five different genes was recovered from LDL and VLDL bands. Gene transfection experiments using human skin fibroblast cells were used to study the gene transfer capacity of LDL. Cells transfected with a pEGFP-N1 plasmid DNA and LDL expressed functional GFP, as indicated by fluorescence, at approximately 3 hrs after transfection. Our results strongly support an alternative role for apo B-100, in toto or perhaps as functional fragments, in the control of gene expression and as gene transfer vector.
Collapse
Affiliation(s)
- J G Guevara
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
45
|
Belalcazar M, Chan L. Somatic gene therapy for dyslipidemias. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:194-214. [PMID: 10482304 DOI: 10.1016/s0022-2143(99)90199-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Somatic gene transfer is a valuable tool for the in vivo evaluation of lipoprotein metabolism. It has been used to dissect metabolic pathways, to establish structure-function relationships of various gene products, and to evaluate conventional lipid-lowering and novel therapeutic genes for the treatment of lipoprotein disorders. In this article we review some general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. We highlight some recent advances in adenoviral vector development that make this vector an attractive system for clinical trials.
Collapse
Affiliation(s)
- M Belalcazar
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
46
|
Shiratori Y, Kanai F, Ohashi M, Omata M. Strategy of liver-directed gene therapy: present status and future prospects. LIVER 1999; 19:265-74. [PMID: 10459623 DOI: 10.1111/j.1478-3231.1999.tb00048.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The liver is particularly amenable to gene therapy as it is the site of many metabolic diseases and malignancies. Thus, liver-directed gene therapy is being actively pursued and developed as a method of treatment for various liver diseases. Strategies of liver-directed gene therapy include drug delivery to the liver, compensation of the defective gene(s), anti-tumor activity, anti-viral therapy, and immunomodulation. The strategy chosen for liver-directed gene therapy depends on the genetic basis of the disease. Many aspects are key factors to the success of the chosen strategy: intervention of genes, efficient gene delivery system, stable transgene expression, transgene regulation, target cell transfection, and timing of transgene expression. Several tactics can be used to overcome problems in the above, and these include the use of a gene switch to exogenously regulate transgene expression, targeting at the transcriptional level, circumvention of the immune response (as in the use of adenovirus vector to achieve long-term correction of genetic diseases), and genetically engineered antibodies in gene transfer. At the present rate of research activity and development, gene therapies may soon be more efficient than current standard treatments for some liver diseases.
Collapse
Affiliation(s)
- Y Shiratori
- Department of Internal Medicine (Gastroenterology), Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Themis M, Schneider H, Kiserud T, Cook T, Adebakin S, Jezzard S, Forbes S, Hanson M, Pavirani A, Rodeck C, Coutelle C. Successful expression of beta-galactosidase and factor IX transgenes in fetal and neonatal sheep after ultrasound-guided percutaneous adenovirus vector administration into the umbilical vein. Gene Ther 1999; 6:1239-48. [PMID: 10455432 DOI: 10.1038/sj.gt.3300970] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In utero somatic gene therapy in the later stages of pregnancy may allow targeting of organ systems which are difficult to reach later in life and to prevent the development of tissue damage otherwise caused by the early onset of inherited diseases. We report here on the percutaneous delivery of two adenoviral vectors, containing the beta-galactosidase reporter gene and the human Factor IX gene respectively, to the fetal liver and circulation by ultrasound-guided umbilical vein puncture similar to procedures used in human pregnancy. Vector spread, as detected by PCR analysis for the beta-galactosidase encoding vector, was found in almost all fetal and neonatal organs and in the maternal liver. Expression of the beta-galactosidase transgene was detected in many fetal tissues by RT-PCR. High beta-galactosidase production was shown by immuno-histochemistry predominantly in the liver, where about 30percent of the hepatocytes stained positive, and in the adrenal cortex. Production of factor IX was determined by ELISA in the plasma of treated fetuses and newborn lambs and reached at birth up to 80percent of the normal human plasma concentration. This demonstrates a very hopeful proof of principle for the development of prenatal treatment of many genetic diseases but also requires more detailed investigations with respect to the observed systemic spread of the vector.
Collapse
Affiliation(s)
- M Themis
- Cystic Fibrosis Gene Therapy Research Group, Section of Molecular Genetics, Division of Biomedical Sciences, Imperial College School of Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bandyopadhyay P, Ma X, Linehan-Stieers C, Kren BT, Steer CJ. Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides. Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor. J Biol Chem 1999; 274:10163-72. [PMID: 10187800 DOI: 10.1074/jbc.274.15.10163] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chimeric RNA/DNA oligonucleotides have been shown to promote single nucleotide exchange in genomic DNA. A chimeric molecule was designed to introduce an A to C nucleotide conversion at the Ser365 position of the rat factor IX gene. The oligonucleotides were encapsulated in positive, neutral, and negatively charged liposomes containing galactocerebroside or complexed with lactosylated polyethyleneimine. The formulations were evaluated for stability and efficiency in targeting hepatocytes via the asialoglycoprotein receptor. Physical characterization and electron microscopy revealed that the oligonucleotides were efficiently encapsulated within the liposomes, with the positive and negative formulations remaining stable for at least 1 month. Transfection efficiencies in isolated rat hepatocytes approached 100% with each of the formulations. However, the negative liposomes and 25-kDa lactosylated polyethyleneimine provided the most intense nuclear fluorescence with the fluorescein-labeled oligonucleotides. The lactosylated polyethyleneimine and the three different liposomal formulations resulted in A to C conversion efficiencies of 19-24%. In addition, lactosylated polyethyleneimine was also highly effective in transfecting plasmid DNA into isolated hepatocytes. The results suggest that both the liposomal and polyethyleneimine formulations are simple to prepare and stable and give reliable, reproducible results. They provide efficient delivery systems to hepatocytes for the introduction or repair of genetic mutations by the chimeric RNA/DNA oligonucleotides.
Collapse
Affiliation(s)
- P Bandyopadhyay
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
The history of liposomes, progress in liposome gene delivery, and future directions are discussed. Specific characteristics of liposomes and DNA:liposome complexes have been identified that are essential for optimal delivery and gene expression. Of particular interest are the requirements for increased delivery and high levels of gene expression in vivo. At present, significant efforts are focused towards achieving specific delivery and gene expression in target organs and tissues.
Collapse
Affiliation(s)
- N S Templeton
- Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX 77030, USA.
| | | |
Collapse
|
50
|
Schughart K, Bischoff R, Hadji DA, Boussif O, Perraud F, Accart N, Rasmussen UB, Pavirani A, van Rooijen N, Kolbe HV. Effect of liposome-encapsulated clodronate pretreatment on synthetic vector-mediated gene expression in mice. Gene Ther 1999; 6:448-53. [PMID: 10435095 DOI: 10.1038/sj.gt.3300826] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the main limitations for the use of synthetic vectors in gene therapy is their relatively low in vivo efficiency when compared with viral vectors. Here, we describe a pretreatment protocol with liposome-encapsulated clodronate in mice by which gene expression levels of a luciferase reporter gene could be increased up to nine-fold in the lung, after intravenous (i.v.) injection of glycerolipoplexes. Optimal results were obtained if mice were pretreated with liposome-encapsulated clodronate 1 day before injection of lipoplexes. The enhancement effect could be observed for lipoplexes prepared with different multivalent cationic glycerolipids. Most remarkably, polyplexes behaved in the opposite way. Liposome-encapsulated clodronate pretreatment strongly reduced reporter gene expression after i.v. injection of polyethylenimine-polyplexes (ExGen500).
Collapse
Affiliation(s)
- K Schughart
- Department of Molecular and Cellular Biology, TRANSGENE SA, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|