1
|
Duan L, Li H, Ju A, Zhang Z, Niu J, Zhang Y, Diao J, Liu Y, Song N, Ma H, Kataoka K, Gao S, Wang Y. Methyl-dependent auto-regulation of the DNA N6-adenine methyltransferase AMT1 in the unicellular eukaryote Tetrahymena thermophila. Nucleic Acids Res 2025; 53:gkaf022. [PMID: 39868535 PMCID: PMC11760949 DOI: 10.1093/nar/gkaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
DNA N6-methyladenine (6mA) is a potential epigenetic mark involved in gene transcription in eukaryotes, yet the regulatory mechanism governing its methyltransferase (MTase) activity remains obscure. Here, we exploited the 6mA MTase AMT1 to elucidate its auto-regulation in the unicellular eukaryote Tetrahymena thermophila. The detailed endogenous localization of AMT1 in vegetative and sexual stages revealed a correlation between the 6mA reestablishment in the new MAC and the occurrence of zygotically expressed AMT1. Catalytically inactive AMT1 reduced 6mA level on the AMT1 gene and its expression, suggesting that AMT1 modulated its own transcription via 6mA. Furthermore, AMT1-dependent 6mA regulated the transcription of its target genes, thereby affecting cell fitness. Our findings unveil a positive feedback loop of transcriptional activation on the AMT1 gene and highlight the crucial role of AMT1-dependent 6mA in gene transcription.
Collapse
Affiliation(s)
- Lili Duan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Haicheng Li
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Aili Ju
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Zhe Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Junhua Niu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yumiao Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Jinghan Diao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yongqiang Liu
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Honggang Ma
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Kensuke Kataoka
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Shan Gao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Yuanyuan Wang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
2
|
Identification and utilization of a mutated 60S ribosomal subunit coding gene as an effective and cost-efficient selection marker for Tetrahymena genetic manipulation. Int J Biol Macromol 2022; 204:1-8. [PMID: 35122796 DOI: 10.1016/j.ijbiomac.2022.01.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Since the onset of molecular biology, the ciliate Tetrahymena thermophila has been one of the most convenient single-celled model eukaryotes for genetics, biochemistry, and cell biology. Particularly, thanks to the availability of several different selection markers, it is possible to knock out or knock in genes at multiple genetic loci simultaneously in Tetrahymena, which makes it an excellent model ciliate for tackling complex regulatory mechanisms. Despite these selection markers are efficient for genetic manipulation, the costly drugs used for selection have highlighted the urgent demand for an additional cost-efficient and effective selection marker. Here, we found that a mutated 60S ribosomal subunit component, RPL36A, confers T. thermophila with cycloheximide resistance. On top of that, we developed a cycloheximide cassette and explored suitable transformation and selection conditions. Using the new cassette, we obtained both knockout and knock-in strains successfully at a relatively low cost. This study also provided the first evidence that a cycloheximide resistance gene can be engineered as a selection marker to completely delete a gene from the highly-polyploid somatic nucleus in Tetrahymena.
Collapse
|
3
|
Fabritius AS, Bayless BA, Li S, Stoddard D, Heydeck W, Ebmeier CC, Anderson L, Gunnels T, Nachiappan C, Whittall JB, Old W, Agard DA, Nicastro D, Winey M. Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null Tetrahymena cells reveals functional MIPs. Mol Biol Cell 2021; 32:br8. [PMID: 34406789 PMCID: PMC8693976 DOI: 10.1091/mbc.e20-12-0786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.
Collapse
Affiliation(s)
- Amy S. Fabritius
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Brian A. Bayless
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
- Department of Biology, Santa Clara University, Santa Clara, CA 95053
| | - Sam Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158
| | - Daniel Stoddard
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Westley Heydeck
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Christopher C. Ebmeier
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Lauren Anderson
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| | - Tess Gunnels
- Department of Biology, Santa Clara University, Santa Clara, CA 95053
| | | | | | - William Old
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616
| |
Collapse
|
4
|
Phenotypic plasticity through disposable genetic adaptation in ciliates. Trends Microbiol 2021; 30:120-130. [PMID: 34275698 DOI: 10.1016/j.tim.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Ciliates have an extraordinary genetic system in which each cell harbors two distinct kinds of nucleus, a transcriptionally active somatic nucleus and a quiescent germline nucleus. The latter undergoes classical, heritable genetic adaptation, while adaptation of the somatic nucleus is only short-term and thus disposable. The ecological and evolutionary relevance of this nuclear dimorphism have never been well formalized, which is surprising given the long history of using ciliates such as Tetrahymena and Paramecium as model organisms. We present a novel, alternative explanation for ciliate nuclear dimorphism which, we argue, should be considered an instrument of phenotypic plasticity by somatic selection on the level of the ciliate clone, as if it were a diffuse multicellular organism. This viewpoint helps to put some enigmatic aspects of ciliate biology into perspective and presents the diversity of ciliates as a large natural experiment that we can exploit to study phenotypic plasticity and organismality.
Collapse
|
5
|
Ruehle MD, Stemm-Wolf AJ, Pearson CG. Sas4 links basal bodies to cell division via Hippo signaling. J Cell Biol 2021; 219:151794. [PMID: 32435796 PMCID: PMC7401811 DOI: 10.1083/jcb.201906183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023] Open
Abstract
Basal bodies (BBs) are macromolecular complexes required for the formation and cortical positioning of cilia. Both BB assembly and DNA replication are tightly coordinated with the cell cycle to ensure their accurate segregation and propagation to daughter cells, but the mechanisms ensuring coordination are unclear. The Tetrahymena Sas4/CPAP protein is enriched at assembling BBs, localizing to the core BB structure and to the base of BB-appendage microtubules and striated fiber. Sas4 is necessary for BB assembly and cortical microtubule organization, and Sas4 loss disrupts cell division furrow positioning and DNA segregation. The Hippo signaling pathway is known to regulate cell division furrow position, and Hippo molecules localize to BBs and BB-appendages. We find that Sas4 loss disrupts localization of the Hippo activator, Mob1, suggesting that Sas4 mediates Hippo activity by promoting scaffolds for Mob1 localization to the cell cortex. Thus, Sas4 links BBs with an ancient signaling pathway known to promote the accurate and symmetric segregation of the genome.
Collapse
Affiliation(s)
- Marisa D Ruehle
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Alexander J Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
6
|
Wang Y, Sheng Y, Liu Y, Zhang W, Cheng T, Duan L, Pan B, Qiao Y, Liu Y, Gao S. A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Res 2020; 47:11771-11789. [PMID: 31722409 PMCID: PMC7145601 DOI: 10.1093/nar/gkz1053] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Rediscovered as a potential eukaryotic epigenetic mark, DNA N6-adenine methylation (6mA) varies across species in abundance and its relationships with transcription. Here we characterize AMT1—representing a distinct MT-A70 family methyltransferase—in the ciliate Tetrahymena thermophila. AMT1 loss-of-function leads to severe defects in growth and development. Single Molecule, Real-Time (SMRT) sequencing reveals that AMT1 is required for the bulk of 6mA and all symmetric methylation at the ApT dinucleotides. The detection of hemi-methylated ApT sites suggests a semi-conservative mechanism for maintaining symmetric methylation. AMT1 affects expression of many genes; in particular, RAB46, encoding a Rab family GTPase involved in contractile vacuole function, is likely a direct target. The distribution of 6mA resembles H3K4 methylation and H2A.Z, two conserved epigenetic marks associated with RNA polymerase II transcription. Furthermore, strong 6mA and nucleosome positioning in wild-type cells is attenuated in ΔAMT1 cells. Our results support that AMT1-catalyzed 6mA is an integral part of the transcription-associated epigenetic landscape. AMT1 homologues are generally found in protists and basal fungi featuring ApT hyper-methylation associated with transcription, which are missing in animals, plants, and true fungi. This dichotomy of 6mA functions and the underlying molecular mechanisms may have implications in eukaryotic diversification.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yalan Sheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongqiang Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenxin Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Ting Cheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lili Duan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Pan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yu Qiao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Stoddard D, Zhao Y, Bayless BA, Gui L, Louka P, Dave D, Suryawanshi S, Tomasi RFX, Dupuis-Williams P, Baroud CN, Gaertig J, Winey M, Nicastro D. Tetrahymena RIB72A and RIB72B are microtubule inner proteins in the ciliary doublet microtubules. Mol Biol Cell 2018; 29:2566-2577. [PMID: 30133348 PMCID: PMC6254578 DOI: 10.1091/mbc.e18-06-0405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Doublet and triplet microtubules are essential and highly stable core structures of centrioles, basal bodies, cilia, and flagella. In contrast to dynamic cytoplasmic microtubules, their luminal surface is coated with regularly arranged microtubule inner proteins (MIPs). However, the protein composition and biological function(s) of MIPs remain poorly understood. Using genetic, biochemical, and imaging techniques, we identified Tetrahymena RIB72A and RIB72B proteins as ciliary MIPs. Fluorescence imaging of tagged RIB72A and RIB72B showed that both proteins colocalize to Tetrahymena cilia and basal bodies but assemble independently. Cryoelectron tomography of RIB72A and/or RIB72B knockout strains revealed major structural defects in the ciliary A-tubule involving MIP1, MIP4, and MIP6 structures. The defects of individual mutants were complementary in the double mutant. All mutants had reduced swimming speed and ciliary beat frequencies, and high-speed video imaging revealed abnormal highly curved cilia during power stroke. Our results show that RIB72A and RIB72B are crucial for the structural assembly of ciliary A-tubule MIPs and are important for proper ciliary motility.
Collapse
Affiliation(s)
- Daniel Stoddard
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ying Zhao
- Department of Molecular, Cellular & Developmental Biology University of Colorado Boulder, Boulder, CO 80309
| | - Brian A Bayless
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Long Gui
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Drashti Dave
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Swati Suryawanshi
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Raphaël F-X Tomasi
- Department of Mechanics, LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau Cedex, France.,Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Pascale Dupuis-Williams
- UMR-S 1174 Inserm, Universite Paris-Sud, 91405 Orsay Cedex, France.,Ecole Supérieure de Physique et de Chimie Industrielles ParisTech, 75005 Paris, France
| | - Charles N Baroud
- Department of Mechanics, LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau Cedex, France.,Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Mark Winey
- Department of Molecular, Cellular & Developmental Biology University of Colorado Boulder, Boulder, CO 80309.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Daniela Nicastro
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
8
|
Joachimiak E, Jerka‐Dziadosz M, Krzemień‐Ojak Ł, Wacławek E, Jedynak K, Urbanska P, Brutkowski W, Sas‐Nowosielska H, Fabczak H, Gaertig J, Wloga D. Multiple phosphorylation sites on γ‐tubulin are essential and contribute to the biogenesis of basal bodies in
Tetrahymena. J Cell Physiol 2018; 233:8648-8665. [DOI: 10.1002/jcp.26742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Maria Jerka‐Dziadosz
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Łucja Krzemień‐Ojak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Ewa Wacławek
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Katarzyna Jedynak
- Faculty of BiologyDepartment of Animal PhysiologyInstitute of ZoologyUniversity of WarsawWarsawPoland
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Wojciech Brutkowski
- Laboratory of Imaging Tissue Structure and FunctionNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Hanna Sas‐Nowosielska
- Laboratory of Imaging Tissue Structure and FunctionNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Jacek Gaertig
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgia
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| |
Collapse
|
9
|
Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, Chen X, Dui W, Plemens A, Khadr L, Dhanekula A, Juma M, Dang HQ, Kapler GM, Orias E, Miao W, Liu Y. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 2017; 45:9481-9502. [PMID: 28934495 PMCID: PMC5766162 DOI: 10.1093/nar/gkx652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.
Collapse
Affiliation(s)
- Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amber Plemens
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lara Khadr
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arjune Dhanekula
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mina Juma
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hung Quang Dang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Geoffrey M Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools. Genetics 2017; 203:649-65. [PMID: 27270699 DOI: 10.1534/genetics.114.169748] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022] Open
Abstract
Tetrahymena thermophila is a ciliate model organism whose study has led to important discoveries and insights into both conserved and divergent biological processes. In this review, we describe the tools for the use of Tetrahymena as a model eukaryote, including an overview of its life cycle, orientation to its evolutionary roots, and methodological approaches to forward and reverse genetics. Recent genomic tools have expanded Tetrahymena's utility as a genetic model system. With the unique advantages that Tetrahymena provide, we argue that it will continue to be a model organism of choice.
Collapse
|
11
|
Edamatsu M. Establishment of a mutation system in Tetrahymena outer arm dynein and P-loop functions of the alpha heavy chain (Dyh3p). Biochem Biophys Res Commun 2017; 483:24-31. [PMID: 28069381 DOI: 10.1016/j.bbrc.2017.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022]
Abstract
Axonemal dyneins are large AAA+ type motor proteins that exhibit unique motor properties during ciliary beating. This study established a mutation system for Tetrahymena outer arm dynein and characterized four nucleotide-binding loops (P-loops; P1-P4) in the alpha heavy chain (Dyh3p). Macronuclear transformation of the mutant DYH3 genes in DYH3-knockout (KO-DYH3) cells enabled P-loop mutations that abolish the ability of nucleotide binding to be stably maintained in the polyploid genome. This mutation system revealed that the P3 and P4 mutant dyneins rescued lethality in macronuclear KO-DYH3 cells and exhibited normal ciliary localization. Intriguingly, however, an in vitro motility assay showed that the P3 mutation abolished the motor activity of Dyh3p, whereas the P4 mutation did not affect the gliding velocity or gliding index of Dyh3p. In contrast, no P1 or P2 mutant cells were isolated from the KO-DYH3 cells, which suggests that nucleotide binding at the P1 and P2 sites is required for the intracellular function of Dyh3p. This mutation system will be useful for further molecular studies of diverse axonemal dyneins and ciliary motility.
Collapse
Affiliation(s)
- Masaki Edamatsu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-0041, Japan.
| |
Collapse
|
12
|
Chromodomain protein Tcd1 is required for macronuclear genome rearrangement and repair in Tetrahymena. Sci Rep 2015; 5:10243. [PMID: 25989344 PMCID: PMC4437310 DOI: 10.1038/srep10243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022] Open
Abstract
The survival of an organism’s progeny depends on the maintenance of its genome. Programmed DNA rearrangement and repair in Tetrahymena occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome. Tetrahymena chromodomain protein (Tcd1) exhibited dynamic localization from the parental to the developing macronuclei. In the developing macronuclei, Tcd1 colocalized with Pdd1 and H3K9me3. Furthermore, Tcd1 colocalized with Pdd1 in the conjusome and “donut structure” of DNA elimination heterochromatin region. During the growth and conjugation stages, TCD1 knockout cells appeared normal and similar to wild-type strains. In addition, these knockout cells proceeded to the 2MAC-1MIC stage. However, the progeny of the TCD1 knockout cells did not grow upon return to SPP medium and eventually died. The deletion of the internal elimination sequence R element was partially disrupted in the developing new macronuclei. Gamma H2A staining showed that Tcd1 loss induced the accumulation of DNA double-strand breaks and the failure of genome repair. These results suggest that the chromodomain protein Tcd1 is required for the rearrangement and repair of new macronuclear genome in Tetrahymena.
Collapse
|
13
|
Vasudevan KK, Song K, Alford LM, Sale WS, Dymek EE, Smith EF, Hennessey T, Joachimiak E, Urbanska P, Wloga D, Dentler W, Nicastro D, Gaertig J. FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c. Mol Biol Cell 2014; 26:696-710. [PMID: 25540426 PMCID: PMC4325840 DOI: 10.1091/mbc.e14-11-1506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. Little is known about the assembly and functions of the three individual radial spokes, RS1, RS2, and RS3. In Tetrahymena, a conserved ciliary protein, FAP206, docks RS2 and dynein c to the doublet microtubule. Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo–electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule.
Collapse
Affiliation(s)
| | - Kangkang Song
- Department of Biology, Rosenstiel Center, Brandeis University, Waltham, MA 02454
| | - Lea M Alford
- Department of Cell Biology, Emory University, Atlanta, GA 30303
| | - Winfield S Sale
- Department of Cell Biology, Emory University, Atlanta, GA 30303
| | - Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Todd Hennessey
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260
| | - Ewa Joachimiak
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Paulina Urbanska
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Dorota Wloga
- Department of Cell Biology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Daniela Nicastro
- Department of Biology, Rosenstiel Center, Brandeis University, Waltham, MA 02454
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
14
|
Zhang C, Gao S, Molascon AJ, Liu Y, Andrews PC. Quantitative proteomics reveals histone modifications in crosstalk with H3 lysine 27 methylation. Mol Cell Proteomics 2014; 13:749-59. [PMID: 24382802 DOI: 10.1074/mcp.m113.029025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methylation at histone H3 lysine 27 (H3K27me) is an evolutionarily conserved epigenetic mark associated with transcriptional repression and replication elongation. We have previously shown that in Tetrahymena thermophila, a unicellular eukaryote, the histone methyltransferases (HMTs) TXR1 and EZL2 are primarily responsible for H3K27 mono-methylation (H3K27me1) and di-/tri-methylation (H3K27me2/3), respectively. Using (15)N metabolically labeled histones as the internal reference, we quantified global changes in histone post-translational modifications in ΔTXR1 and ΔEZL2 cells, to systematically identify potential crosstalk between H3K27 methylation and other PTMs across all four core histones as well as their variants. Most prominently, we observed hyper-acetylation of histones H2A, H2A.Z, and H4 in their N-terminal domains in response to decreased H3K27 methylation. We also provide additional evidence implicating hyper-acetylation in the DNA damage response pathway in replication-defective ΔTXR1 cells, in apparent contrast to the transcriptional role of hyper-acetylation in ΔEZL2 cells.
Collapse
|
15
|
Bregier C, Krzemień-Ojak L, Włoga D, Jerka-Dziadosz M, Joachimiak E, Batko K, Filipiuk I, Smietanka U, Gaertig J, Fabczak S, Fabczak H. PHLP2 is essential and plays a role in ciliogenesis and microtubule assembly in Tetrahymena thermophila. J Cell Physiol 2013; 228:2175-89. [PMID: 23588994 DOI: 10.1002/jcp.24384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 04/04/2013] [Indexed: 01/23/2023]
Abstract
Recent studies have implicated the phosducin-like protein-2 (PHLP2) in regulation of CCT, a chaperonin whose activity is essential for folding of tubulin and actin. However, the exact molecular function of PHLP2 is unclear. Here we investigate the significance of PHLP2 in a ciliated unicellular model, Tetrahymena thermophila, by deleting its single homolog, Phlp2p. Cells lacking Phlp2p became larger and died within 96 h. Overexpressed Phlp2p-HA localized to cilia, basal bodies, and cytosol without an obvious change in the phenotype. Despite similar localization, overexpressed GFP-Phlp2p caused a dominant-negative effect. Cells overproducing GFP-Phlp2p had decreased rates of proliferation, motility and phagocytosis, as compared to wild type cells or cells overproducing a non-tagged Phlp2p. Growing GFP-Phlp2p-overexpressing cells had fewer cilia and, when deciliated, failed to regenerate cilia, indicating defects in cilia assembly. Paclitaxel-treated GFP-Phlp2p cells failed to elongate cilia, indicating a change in the microtubules dynamics. The pattern of ciliary and cytosolic tubulin isoforms on 2D gels differed between wild type and GFP-Phlp2p-overexpressing cells. Thus, in Tetrahymena, PhLP2 is essential and under specific experimental conditions its activity affects tubulin and microtubule-dependent functions including cilia assembly.
Collapse
Affiliation(s)
- Cezary Bregier
- Department of Cell Biology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013; 27:1662-79. [PMID: 23884606 DOI: 10.1101/gad.218966.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vonderfecht T, Cookson MW, Giddings TH, Clarissa C, Winey M. The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Mol Biol Cell 2012; 23:4766-77. [PMID: 23087207 PMCID: PMC3521684 DOI: 10.1091/mbc.e12-06-0454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrins are a ubiquitous family of small Ca(2+)-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
18
|
Lampert TJ, Coleman KD, Hennessey TM. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction. PLoS One 2011; 6:e28022. [PMID: 22140501 PMCID: PMC3226668 DOI: 10.1371/journal.pone.0028022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/30/2011] [Indexed: 11/18/2022] Open
Abstract
Although G-protein coupled receptors (GPCRs) are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490). Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba2+ and K+, suggesting a decrease in basal excitability (decrease in Ca2+ channel activity). The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA) and proteose peptone (PP), two known chemoattractants in Tetrahymena. Using microsomal [35S]GTPγS binding assays, we found that wild-type (CU427) have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor), addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes) towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein.
Collapse
Affiliation(s)
- Thomas J Lampert
- Department of Biological Sciences, University at Buffalo, Amherst, New York, United States of America
| | | | | |
Collapse
|
19
|
Abstract
In most eukaryotic cells, subsets of microtubules are adapted for specific functions by post-translational modifications (PTMs) of tubulin subunits. Acetylation of the ε-amino group of K40 on α-tubulin is a conserved PTM on the luminal side of microtubules1 that was discovered in the flagella of Chlamydomonas reinhardtii2,3. Studies on the significance of microtubule acetylation have been limited by the undefined status of the α-tubulin acetyltransferase. Here, we show that MEC-17, a protein related to the Gcn5 histone acetyltransferases4 and required for the function of touch receptor neurons in C. elegans5,6, acts as a K40-specific acetyltransferase for α-tubulin. In vitro, MEC-17 exclusively acetylates K40 of α-tubulin. Disruption of the Tetrahymena MEC-17 gene phenocopies the K40R α-tubulin mutation and makes microtubules more labile. Depletion of MEC-17 in zebrafish produces phenotypes consistent with neuromuscular defects. In C. elegans, MEC-17 and its paralog W06B11.1 are redundantly required for acetylation of MEC-12 α-tubulin, and contribute to the function of touch receptor neurons partly via MEC-12 acetylation and partly via another function, possibly by acetylating another protein. In summary, we identify MEC-17 as an enzyme that acetylates the K40 residue of α-tubulin, the only PTM known to occur on the luminal surface of microtubules.
Collapse
|
20
|
α-Tubulin mutations alter oryzalin affinity and microtubule assembly properties to confer dinitroaniline resistance. EUKARYOTIC CELL 2010; 9:1825-34. [PMID: 20870876 DOI: 10.1128/ec.00140-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Plant and protozoan microtubules are selectively sensitive to dinitroanilines, which do not disrupt vertebrate or fungal microtubules. Tetrahymena thermophila is an abundant source of dinitroaniline-sensitive tubulin, and we have modified the single T. thermophila α-tubulin gene to create strains that solely express mutant α-tubulin in functional dimers. Previous research identified multiple α-tubulin mutations that confer dinitroaniline resistance in the human parasite Toxoplasma gondii, and when two of these mutations (L136F and I252L) were introduced into T. thermophila, they conferred resistance in these free-living ciliates. Purified tubulin heterodimers composed of L136F or I252L α-tubulin display decreased affinity for the dinitroaniline oryzalin relative to wild-type T. thermophila tubulin. Moreover, the L136F substitution dramatically reduces the critical concentration for microtubule assembly relative to the properties of wild-type T. thermophila tubulin. Our data provide additional support for the proposed dinitroaniline binding site on α-tubulin and validate the use of T. thermophila for expression of genetically homogeneous populations of mutant tubulins for biochemical characterization.
Collapse
|
21
|
Seixas C, Cruto T, Tavares A, Gaertig J, Soares H. CCTalpha and CCTdelta chaperonin subunits are essential and required for cilia assembly and maintenance in Tetrahymena. PLoS One 2010; 5:e10704. [PMID: 20502701 PMCID: PMC2872681 DOI: 10.1371/journal.pone.0010704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/23/2010] [Indexed: 12/24/2022] Open
Abstract
Background The eukaryotic cytosolic chaperonin CCT is a hetero-oligomeric complex formed by two rings connected back-to-back, each composed of eight distinct subunits (CCTα to CCTζ). CCT complex mediates the folding, of a wide range of newly synthesised proteins including tubulin (α, β and γ) and actin, as quantitatively major substrates. Methodology/Principal Findings We disrupted the genes encoding CCTα and CCTδ subunits in the ciliate Tetrahymena. Cells lacking the zygotic expression of either CCTα or CCTδ showed a loss of cell body microtubules, failed to assemble new cilia and died within 2 cell cycles. We also show that loss of CCT subunit activity leads to axoneme shortening and splaying of tips of axonemal microtubules. An epitope-tagged CCTα rescued the gene knockout phenotype and localized primarily to the tips of cilia. A mutation in CCTα, G346E, at a residue also present in the related protein implicated in the Bardet Biedel Syndrome, BBS6, also caused defects in cilia and impaired CCTα localization in cilia. Conclusions/Significance Our results demonstrate that the CCT subunits are essential and required for ciliary assembly and maintenance of axoneme structure, especially at the tips of cilia.
Collapse
Affiliation(s)
- Cecilia Seixas
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Teresa Cruto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Helena Soares
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
22
|
Abstract
Tubulin is a highly conserved, negatively charged protein that is found in essentially all eukaryotic cells. These properties ensure that isolation protocols successful in one system will likely work, with a few modifications, in most systems. Tubulin has been isolated most frequently from mammalian brain, and the main difference encountered in other systems versus brain is that tubulin is much less abundant in nearly all other sources than it is in brain. This means that attempting to purify tubulin by direct polymerization from a homogenate will often fail or be quite inefficient. However, the conservation of negative charge on tubulin means that an initial ion exchange step can be used to both purify and concentrate the protein from most systems. Polymerization-competent tubulin can usually be obtained by inducing polymerization in the salt eluate from the ion exchange step. We describe protocols for this procedure and describe its application to a number of vertebrate, fungal, protozoal, and plant sources.
Collapse
Affiliation(s)
- Dan L Sackett
- Laboratory of Integrative and Medical Biophysics, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
23
|
Dave D, Wloga D, Gaertig J. Manipulating ciliary protein-encoding genes in Tetrahymena thermophila. Methods Cell Biol 2009; 93:1-20. [PMID: 20409809 DOI: 10.1016/s0091-679x(08)93001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tetrahymena thermophila has emerged as an excellent protist model for studies on cilia that are based on reverse genetic approaches. In Tetrahymena, genes can be routinely disrupted by the DNA homologous recombination. We present established protocols for the manipulation of genes in either the germline micronucleus or the somatic macronucleus. A detailed protocol is provided for the construction of heterokaryon strains that carry a gene disruption only in the micronucleus. Heterokaryon strain can be propagated like wild-type cells, and ciliary phenotypes can be expressed on demand by mating. We describe methods that can be used for disruption of multiple genes. We include protocols for the generation and maintenance of Tetrahymena cells that either lack cilia or have paralyzed cilia.
Collapse
Affiliation(s)
- Drashti Dave
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
24
|
Wang Z, Cui B, Gorovsky MA. Histone H2B ubiquitylation is not required for histone H3 methylation at lysine 4 in tetrahymena. J Biol Chem 2009; 284:34870-9. [PMID: 19822522 DOI: 10.1074/jbc.m109.046250] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ubiquitylation of histone H2B and/or a component of the system that ubiquitylates H2B is required for methylation of histone H3 at lysine 4 (H3K4) in yeasts and probably in humans. In this study, the single ubiquitylation site was mapped to conserved lysine 115 of the C-terminal region of histone H2B in the single-cell model organism Tetrahymena thermophila. In strains lacking H2B ubiquitylation, H3K4 methylation was not detectably affected. As in other organisms, the E2 ubiquitin-conjugating enzyme Ubc2 and the E3 ubiquitin ligase Bre1 were required for H2B ubiquitylation. However, neither enzyme was required for H3K4 methylation. These studies argue that, in T. thermophila, the histone ubiquitylation mechanism is not required for H3K4 methylation, demonstrating that different organisms can speak different languages in the "cross-talk" among post-translational modifications on different histones.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
25
|
Tanaka H, Yao MC. Palindromic gene amplification--an evolutionarily conserved role for DNA inverted repeats in the genome. Nat Rev Cancer 2009; 9:216-24. [PMID: 19212324 DOI: 10.1038/nrc2591] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The clinical importance of gene amplification in the diagnosis and treatment of cancer has been widely recognized, as it is often evident in advanced stages of diseases. However, our knowledge of the underlying mechanisms is still limited. Gene amplification is an essential process in several organisms including the ciliate Tetrahymena thermophila, in which the initiating mechanism has been well characterized. Lessons from such simple eukaryotes may provide useful information regarding how gene amplification occurs in tumour cells.
Collapse
Affiliation(s)
- Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, 9,500 Euclid Avenue, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
26
|
Rajagopalan V, Subramanian A, Wilkes DE, Pennock DG, Asai DJ. Dynein-2 affects the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena thermophila. Mol Biol Cell 2009; 20:708-20. [PMID: 19019986 PMCID: PMC2626569 DOI: 10.1091/mbc.e08-07-0746] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/28/2008] [Accepted: 11/07/2008] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic cilia and flagella are assembled and maintained by the bidirectional intraflagellar transport (IFT). Studies in alga, nematode, and mouse have shown that the heavy chain (Dyh2) and the light intermediate chain (D2LIC) of the cytoplasmic dynein-2 complex are essential for retrograde intraflagellar transport. In these organisms, disruption of either dynein-2 component results in short cilia/flagella with bulbous tips in which excess IFT particles have accumulated. In Tetrahymena, the expression of the DYH2 and D2LIC genes increases during reciliation, consistent with their roles in IFT. However, the targeted elimination of either DYH2 or D2LIC gene resulted in only a mild phenotype. Both knockout cell lines assembled motile cilia, but the cilia were of more variable lengths and less numerous than wild-type controls. Electron microscopy revealed normally shaped cilia with no swelling and no obvious accumulations of material in the distal ciliary tip. These results demonstrate that dynein-2 contributes to the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena.
Collapse
Affiliation(s)
| | | | - David E. Wilkes
- *Department of Biology, Harvey Mudd College, Claremont, CA 91711
| | | | - David J. Asai
- *Department of Biology, Harvey Mudd College, Claremont, CA 91711
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
27
|
Glutamylation on alpha-tubulin is not essential but affects the assembly and functions of a subset of microtubules in Tetrahymena thermophila. EUKARYOTIC CELL 2008; 7:1362-72. [PMID: 18586949 DOI: 10.1128/ec.00084-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tubulin undergoes glutamylation, a conserved posttranslational modification of poorly understood function. We show here that in the ciliate Tetrahymena, most of the microtubule arrays contain glutamylated tubulin. However, the length of the polyglutamyl side chain is spatially regulated, with the longest side chains present on ciliary and basal body microtubules. We focused our efforts on the function of glutamylation on the alpha-tubulin subunit. By site-directed mutagenesis, we show that all six glutamates of the C-terminal tail domain of alpha-tubulin that provide potential sites for glutamylation are not essential but are needed for normal rates of cell multiplication and cilium-based functions (phagocytosis and cell motility). By comparative phylogeny and biochemical assays, we identify two conserved tubulin tyrosine ligase (TTL) domain proteins, Ttll1p and Ttll9p, as alpha-tubulin-preferring glutamyl ligase enzymes. In an in vitro microtubule glutamylation assay, Ttll1p showed a chain-initiating activity while Ttll9p had primarily a chain-elongating activity. GFP-Ttll1p localized mainly to basal bodies, while GFP-Ttll9p localized to cilia. Disruption of the TTLL1 and TTLL9 genes decreased the rates of cell multiplication and phagocytosis. Cells lacking both genes had fewer cortical microtubules and showed defects in the maturation of basal bodies. We conclude that glutamylation on alpha-tubulin is not essential but is required for efficiency of assembly and function of a subset of microtubule-based organelles. Furthermore, the spatial restriction of modifying enzymes appears to be a major mechanism that drives differential glutamylation at the subcellular level.
Collapse
|
28
|
Tsao CC, Gorovsky MA. Different effects of Tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. Mol Biol Cell 2008; 19:1450-61. [PMID: 18199688 DOI: 10.1091/mbc.e07-05-0403] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intraflagellar transport (IFT) particles are multiprotein complexes that move bidirectionally along the cilium/flagellum. The Tetrahymena IFT172 gene encodes a protein with an N-terminal WD domain (WDD) and a C-terminal repeat domain (RPD). Epitope-tagged Ift172p localized to the basal body and in cilia along the axoneme, and IFT172 knockout cells lost cilia and motility. Using serial deletion constructs to rescue the knockout cells, we found that neither the WDD nor the RPD alone is sufficient to assemble cilia. Ift172p containing only the WDD or the RPD failed to enter cilia. Constructs with a partial truncation of the RPD still rescued although cilia were assembled less efficiently, indicating that the WDD and a part of the RPD are sufficient for anterograde transport. Partial truncation of the RPD caused the accumulation of truncated Ift172p itself and of Ift88p at ciliary tips, suggesting that IFT turnaround or retrograde transport was affected. These results implicate different regions of Ift172p in different steps of the IFT process.
Collapse
Affiliation(s)
- Che-Chia Tsao
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
29
|
Fillingham JS, Garg J, Tsao N, Vythilingum N, Nishikawa T, Pearlman RE. Molecular genetic analysis of an SNF2/brahma-related gene in Tetrahymena thermophila suggests roles in growth and nuclear development. EUKARYOTIC CELL 2007; 5:1347-59. [PMID: 16896218 PMCID: PMC1539136 DOI: 10.1128/ec.00149-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used a reverse genetic approach to identify three members of the SNF2 superfamily of chromatin remodeling genes in the ciliated protozoan Tetrahymena thermophila in order to investigate possible functions of ATP-dependent chromatin remodeling factors in growth and nuclear development. Comparative sequence analysis of the gene product of the Tetrahymena brahma-related gene (TtBRG1) indicates it is a member of the SNF2/BRM subgroup of the SNF2 superfamily. Northern analysis suggests that TtBRG1 has roles in growth and nuclear development in Tetrahymena. Indirect immunofluorescence analysis during nuclear development indicates that TtBrg1p localizes to both the parental and developing macronucleus of Tetrahymena during the time period corresponding to genome rearrangements. We generated germ line knockout heterokaryons for TtBRG1 and demonstrated that expression of the gene is required to complete nuclear development of Tetrahymena. In addition, the formation of distinct Pdd1p-containing structures is disturbed during the late stages of conjugation in TtBRG1 germ line knockout heterokaryons. We discuss these results in light of possible roles of SNF2-related proteins in growth and nuclear development of Tetrahymena.
Collapse
Affiliation(s)
- Jeffrey S Fillingham
- Department of Biology, York University, 4700 Keele St, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | |
Collapse
|
30
|
Cui B, Liu Y, Gorovsky MA. Deposition and function of histone H3 variants in Tetrahymena thermophila. Mol Cell Biol 2006; 26:7719-30. [PMID: 16908532 PMCID: PMC1636873 DOI: 10.1128/mcb.01139-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Tetrahymena, HHT1 and HHT2 genes encode the same major histone H3; HHT3 and HHT4 encode similar minor H3 variants (H3s), H3.3 and H3.4. Green fluorescent protein (GFP)-tagged H3 is deposited onto chromatin through a DNA replication-coupled (RC) pathway. GFP-tagged H3.3 and H3.4 can be deposited both by a transcription-associated, replication-independent (RI) pathway and also weakly by an RC pathway. Although both types of H3s can be deposited by the RC pathway, DNA repair synthesis associated with meiotic recombination utilizes H3 specifically. The regions distinguishing H3 and H3.3 for their deposition pathways were identified. RC major H3 is not essential. Cells can grow without major H3 if the minor H3s are expressed at high levels. Surprisingly, cells lacking RI H3s are also viable and maintain normal nucleosome density at a highly transcribed region. The RC H3 is not detectably deposited by the RI pathway, even when there are no RI H3s available, indicating that transcription-associated RI H3 deposition is not essential for transcription. Minor H3s are also required to produce viable sexual progeny and play an unexpected role in the germ line micronuclei late in conjugation that is unrelated to transcription.
Collapse
Affiliation(s)
- Bowen Cui
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
31
|
Cui B, Gorovsky MA. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Mol Cell Biol 2006; 26:4499-510. [PMID: 16738316 PMCID: PMC1489134 DOI: 10.1128/mcb.00079-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Tetrahymena thermophila CNA1 gene encodes the centromeric H3, Cna1p. Green fluorescent protein (GFP)-tagged Cna1p localizes in micronuclei in dots whose number and behavior during mitosis and conjugation are consistent with centromeres. During interphase, Cna1p-GFP localizes in peripheral dots, suggesting centromeres are associated with the nuclear envelope. Newly synthesized Cna1p-GFP enters micronuclei in mitosis and accumulates in the nucleoplasm. Its deposition at centromeres starts at early S phase and continues through most of S phase. CNA1 is required for vegetative cell growth. Knockdown of CNA1 genes in the somatic macronucleus results in micronuclear DNA loss and delayed chromosome segregation during mitosis. During conjugation, Cna1p-GFP disappears from the centromeres in the developing macronucleus, consistent with centromeric sequences being internal eliminated sequences. Surprisingly, zygotic CNA1 is required for efficient elimination of germ line-specific sequences during development of the new macronuclei but not for the RNA interference pathway, through which sequences are targeted for elimination. Zygotically expressed Cna1p localizes in the spherical structures in which the later stages of DNA elimination occur, and these structures cannot be formed in the absence of zygotic CNA1, suggesting that, in addition to functioning in centromeres, Cna1p may also play a role in organizing the formation of the DNA elimination structures.
Collapse
Affiliation(s)
- Bowen Cui
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
32
|
Libusová L, Dráber P. Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species. PROTOPLASMA 2006; 227:65-76. [PMID: 16736248 DOI: 10.1007/s00709-005-0152-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 08/26/2005] [Indexed: 05/09/2023]
Abstract
Tetrahymena and Paramecium species are widely used representatives of the phylum Ciliata. Ciliates are particularly suitable model organisms for studying the functional heterogeneity of tubulins, since they provide a wide range of different microtubular structures in a single cell. Sequencing projects of the genomes of members of these two genera are in progress. Nearly all members of the tubulin superfamily (alpha-, beta-, gamma-, delta-, epsilon-, eta-, theta-, iota-, and kappa-tubulins) have been identified in Paramecium tetraurelia. In Tetrahymena spp., the functional consequences of different posttranslational tubulin modifications (acetylation, tyrosination and detyrosination, phosphorylation, glutamylation, and glycylation) have been studied by different approaches. These model organisms provide the opportunity to determine the function of tubulins found in ciliates, as well as in humans, but absent in some other model organisms. They also give us an opportunity to explore the mechanisms underlying microtubule diversity. Here we review current knowledge concerning the diversity of microtubular structures, tubulin genes, and posttranslational modifications in Tetrahymena and Paramecium species.
Collapse
Affiliation(s)
- L Libusová
- Department of Animal Physiology and Developmental Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | | |
Collapse
|
33
|
Shang Y, Tsao CC, Gorovsky MA. Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis. ACTA ACUST UNITED AC 2005; 171:1035-44. [PMID: 16344310 PMCID: PMC2171320 DOI: 10.1083/jcb.200508184] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used in vitro mutagenesis and gene replacement to study the function of the nucleotide-binding domain (NBD) of γ-tubulin in Tetrahymena thermophila. In this study, we show that the NBD has an essential function and that point mutations in two conserved residues lead to over-production and mislocalization of basal body (BB) assembly. These results, coupled with previous studies (Dammermann, A., T. Muller-Reichert, L. Pelletier, B. Habermann, A. Desai, and K. Oegema. 2004. Dev. Cell. 7:815–829; La Terra, S., C.N. English, P. Hergert, B.F. McEwen, G. Sluder, and A. Khodjakov. 2005. J. Cell Biol. 168:713–722), suggest that to achieve the precise temporal and spatial regulation of BB/centriole assembly, the initiation activity of γ-tubulin is normally suppressed by a negative regulatory mechanism that acts through its NBD.
Collapse
Affiliation(s)
- Yuhua Shang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
34
|
Elde NC, Morgan G, Winey M, Sperling L, Turkewitz AP. Elucidation of clathrin-mediated endocytosis in tetrahymena reveals an evolutionarily convergent recruitment of dynamin. PLoS Genet 2005; 1:e52. [PMID: 16276403 PMCID: PMC1277907 DOI: 10.1371/journal.pgen.0010052] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/22/2005] [Indexed: 11/25/2022] Open
Abstract
Ciliates, although single-celled organisms, contain numerous subcellular structures and pathways usually associated with metazoans. How this cell biological complexity relates to the evolution of molecular elements is unclear, because features in these cells have been defined mainly at the morphological level. Among these ciliate features are structures resembling clathrin-coated, endocytic pits associated with plasma membrane invaginations called parasomal sacs. The combination of genome-wide sequencing in Tetrahymena thermophila with tools for gene expression and replacement has allowed us to examine this pathway in detail. Here we demonstrate that parasomal sacs are sites of clathrin-dependent endocytosis and that AP-2 localizes to these sites. Unexpectedly, endocytosis in Tetrahymena also involves a protein in the dynamin family, Drp1p (Dynamin-related protein 1). While phylogenetic analysis of AP subunits indicates a primitive origin for clathrin-mediated endocytosis, similar analysis of dynamin-related proteins suggests, strikingly, that the recruitment of dynamin-family proteins to the endocytic pathway occurred independently during the course of the ciliate and metazoan radiations. Consistent with this, our functional analysis suggests that the precise roles of dynamins in endocytosis, as well as the mechanisms of targeting, differ in metazoans and ciliates. The wings of bats and of birds are similar structures with similar functions but nonetheless evolved independently within these two different branches of animals. Many examples of this phenomenon, called convergent evolution, are known at the level of whole organisms. Here, the authors demonstrate that convergent evolution has also occurred at the level of individual cells, in a pathway responsible for taking up membrane from the cell surface. The authors took advantage of the recent genomic sequencing of distantly related organisms, and in particular of the single-celled ciliate Tetrahymena thermophila. In animal cells, one of the proteins required for membrane uptake is called dynamin. Dynamin is not required for this function in most nonanimal cells, but the authors discovered that Tetrahymena is an exception and that it uses a close relative of dynamin for particle uptake. After reconstructing the history of dynamin proteins, the authors found that the specific role in membrane uptake evolved independently in Tetrahymena and in animals.
Collapse
Affiliation(s)
- Nels C Elde
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Garry Morgan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Mark Winey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Linda Sperling
- Centre de Genetique Moleculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Cervantes MD, Xi X, Vermaak D, Yao MC, Malik HS. The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus. Mol Biol Cell 2005; 17:485-97. [PMID: 16251352 PMCID: PMC1345684 DOI: 10.1091/mbc.e05-07-0698] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ciliated protozoans present several features of chromosome segregation that are unique among eukaryotes, including their maintenance of two nuclei: a germline micronucleus, which undergoes conventional mitosis and meiosis, and a somatic macronucleus that divides by an amitotic process. To study ciliate chromosome segregation, we have identified the centromeric histone gene in the Tetrahymena thermophila genome (CNA1). CNA1p specifically localizes to peripheral centromeres in the micronucleus but is absent in the macronucleus during vegetative growth. During meiotic prophase of the micronucleus, when chromosomes are stretched to twice the length of the cell, CNA1p is found localized in punctate spots throughout the length of the chromosomes. As conjugation proceeds, CNA1p appears initially diffuse, but quickly reverts to discrete dots in those nuclei destined to become micronuclei, whereas it remains diffuse and is gradually lost in developing macronuclei. In progeny of germline CNA1 knockouts, we see no defects in macronuclear division or viability of the progeny cells immediately following the knockout. However, within a few divisions, progeny show abnormal mitotic segregation of their micronucleus, with most cells eventually losing their micronucleus entirely. This study reveals a strong dependence of the germline micronucleus on centromeric histones for proper chromosome segregation.
Collapse
Affiliation(s)
- Marcella D Cervantes
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
36
|
Liu Y, Song X, Gorovsky MA, Karrer KM. Elimination of foreign DNA during somatic differentiation in Tetrahymena thermophila shows position effect and is dosage dependent. EUKARYOTIC CELL 2005; 4:421-31. [PMID: 15701804 PMCID: PMC549336 DOI: 10.1128/ec.4.2.421-431.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the ciliate Tetrahymena thermophila, approximately 15% of the germ line micronuclear DNA sequences are eliminated during formation of the somatic macronucleus. The vast majority of the internal eliminated sequences (IESs) are repeated in the micronuclear genome, and several of them resemble transposable elements. Thus, it has been suggested that DNA elimination evolved as a means for removing invading DNAs. In the present study, bacterial neo genes introduced into the germ line micronuclei were eliminated from the somatic genome. The efficiency of elimination from two different loci increased dramatically with the copy number of the neo genes in the micronuclei. The timing of neo elimination is similar to that of endogenous IESs, and they both produce bidirectional transcripts of the eliminated element, suggesting that the deletion of neo occurred by the same mechanism as elimination of endogenous IESs. These results indicate that repetition of an element in the micronucleus enhances the efficiency of its elimination from the newly formed somatic genome of Tetrahymena thermophila. The implications of these data in relation to the function and mechanism of IES elimination are discussed.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | | | | | |
Collapse
|
37
|
Liu Y, Mochizuki K, Gorovsky MA. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc Natl Acad Sci U S A 2004; 101:1679-84. [PMID: 14755052 PMCID: PMC341817 DOI: 10.1073/pnas.0305421101] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome-wide DNA elimination accompanies development of the somatic macronucleus from the germ-line micronucleus during the sexual process of conjugation in the ciliated protozoan Tetrahymena thermophila. Small RNAs, referred to as "scan RNAs" (scnRNAs), that accumulate only during conjugation are highly enriched in the eliminated sequences, and mutations that prevent DNA elimination also affect the accumulation of scnRNAs, suggesting that an RNA interference (RNAi)-like mechanism is involved in DNA elimination. Histone H3 that is methylated at lysine 9 (K9) is a hallmark of heterochromatin and, in Tetrahymena, is found only in developing macronuclei (anlagen) in association with chromatin containing the sequences undergoing elimination. In this article, we demonstrate that a mutation in the TWI1 gene that eliminates the accumulation of scnRNAs also abolishes H3 methylation at K9. We created mutant strains of Tetrahymena in which the only major H3 contained a K9Q mutation. These mutants accumulated scnRNAs normally during conjugation but showed dramatically reduced efficiency of DNA elimination. These results provide strong genetic evidence linking an RNAi-like pathway, H3 K9 methylation, and DNA elimination in Tetrahymena.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
38
|
Brown JM, Fine NA, Pandiyan G, Thazhath R, Gaertig J. Hypoxia regulates assembly of cilia in suppressors of Tetrahymena lacking an intraflagellar transport subunit gene. Mol Biol Cell 2003; 14:3192-207. [PMID: 12925756 PMCID: PMC181560 DOI: 10.1091/mbc.e03-03-0166] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We cloned a Tetrahymena thermophila gene, IFT52, encoding a homolog of the Chlamydomonas intraflagellar transport protein, IFT52. Disruption of IFT52 led to loss of cilia and incomplete cytokinesis, a phenotype indistinguishable from that of mutants lacking kinesin-II, a known ciliary assembly transporter. The cytokinesis failures seem to result from lack of cell movement rather than from direct involvement of ciliary assembly pathway components in cytokinesis. Spontaneous partial suppressors of the IFT52 null mutants occurred, which assembled cilia at high cell density and resorbed cilia at low cell density. The stimulating effect of high cell density on cilia formation is based on the creation of pericellular hypoxia. Thus, at least under certain conditions, ciliary assembly is affected by an extracellular signal and the Ift52p function may be integrated into signaling pathways that regulate ciliogenesis.
Collapse
Affiliation(s)
- Jason M Brown
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
39
|
Ren Q, Gorovsky MA. The nonessential H2A N-terminal tail can function as an essential charge patch on the H2A.Z variant N-terminal tail. Mol Cell Biol 2003; 23:2778-89. [PMID: 12665578 PMCID: PMC152558 DOI: 10.1128/mcb.23.8.2778-2789.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tetrahymena thermophila cells contain three forms of H2A: major H2A.1 and H2A.2, which make up approximately 80% of total H2A, and a conserved variant, H2A.Z. We showed previously that acetylation of H2A.Z was essential (Q. Ren and M. A. Gorovsky, Mol. Cell 7:1329-1335, 2001). Here we used in vitro mutagenesis of lysine residues, coupled with gene replacement, to identify the sites of acetylation of the N-terminal tail of the major H2A and to analyze its function in vivo. Tetrahymena cells survived with all five acetylatable lysines replaced by arginines plus a mutation that abolished acetylation of the N-terminal serine normally found in the wild-type protein. Thus, neither posttranslational nor cotranslational acetylation of major H2A is essential. Surprisingly, the nonacetylatable N-terminal tail of the major H2A was able to replace the essential function of the acetylation of the H2A.Z N-terminal tail. Tail-swapping experiments between H2A.1 and H2A.Z revealed that the nonessential acetylation of the major H2A N-terminal tail can be made to function as an essential charge patch in place of the H2A.Z N-terminal tail and that while the pattern of acetylation of an H2A N-terminal tail is determined by the tail sequence, the effects of acetylation on viability are determined by properties of the H2A core and not those of the N-terminal tail itself.
Collapse
Affiliation(s)
- Qinghu Ren
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
40
|
Shang Y, Li B, Gorovsky MA. Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J Cell Biol 2002; 158:1195-206. [PMID: 12356864 PMCID: PMC2173235 DOI: 10.1083/jcb.200205101] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The gene (GTU1) encoding Tetrahymena thermophila gamma-tubulin was cloned and analyzed. GTU1 is a single-copy, essential gene encoding a conventional gamma-tubulin. HA-tagged GTU1p localizes to four microtubule-organizing centers (MTOCs) in vegetative cells: basal bodies (BBs), macronuclear envelopes, micronuclear envelopes, and contractile vacuole pores. gamma-Tubulin function was studied by placing the GTU1 gene under control of an inducible-repressible promoter. Overexpression of GTU1 had no detectable effect on cell growth or morphology. Depletion of gamma-tubulin resulted in marked changes in cell morphology and in MT bundling. MTOCs showed different sensitivities to gamma-tubulin depletion, with BBs being the most sensitive. gamma-Tubulin was required not only for the formation of new BBs but also for maintenance of mature BBs. BBs disappeared in stages, first losing gamma-tubulin and then centrin and glutamylated tubulin. When GTU1 expression was reinduced in depleted cells, BBs reformed rapidly, and the normal, highly organized structure of the Tetrahymena cell cortex was reestablished, indicating that the precise patterning of the cortex can be formed de novo.
Collapse
Affiliation(s)
- Yuhua Shang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
41
|
Shang Y, Song X, Bowen J, Corstanje R, Gao Y, Gaertig J, Gorovsky MA. A robust inducible-repressible promoter greatly facilitates gene knockouts, conditional expression, and overexpression of homologous and heterologous genes in Tetrahymena thermophila. Proc Natl Acad Sci U S A 2002; 99:3734-9. [PMID: 11891286 PMCID: PMC122593 DOI: 10.1073/pnas.052016199] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Cd(2+)-inducible metallothionein (MTT1) gene was cloned from Tetrahymena thermophila. Northern blot analysis showed that MTT1 mRNA is not detectable in the absence of Cd(2+), is induced within 10 min of its addition, is expressed in proportion to its concentration, and rapidly disappears upon its withdrawal. Similarly, when the neo1 gene coding region flanked by the MTT1 gene noncoding sequences was used to disrupt the MTT1 locus, no transformants were observed in the absence of Cd(2+), and the number of transformants was proportional to increased Cd(2+) concentration. The neo3 cassette, in which the MTT1 promoter replaced the histone gene HHF1 promoter of the previously used neo2 cassette, transformed cells at much higher frequencies than neo2 and produced germ-line knockouts where neo2 had failed. Rescuing the progeny of a mating of gamma-tubulin gene, GTU1, knockout heterokaryons with a GTU1 gene inserted into the MTT1 locus yielded >75 times more transformants than rescuing with the wild-type GTU1 gene itself. When cells rescued with the MTT1-GTU1 chimeric gene were transferred to medium lacking Cd(2+), they stopped growing and had phenotypic changes indistinguishable from cells containing only disrupted GTU1 genes. Thus, it is now possible to create conditional lethal mutants and study the terminal phenotypes of null mutations for essential genes by replacing the endogenous gene with one under the control of the MTT1 promoter. The MTT1 promoter also resulted in approximately 30 times more overexpression of the IAG48[G1] surface antigen gene of the ciliate fish parasite Ichthyophthirius multifiliis than the highly expressed BTU1 promoter, accounting for approximately 1% of the total cell protein. Thus, the MTT1 promoter should enable routine over-expression of endogenous and foreign genes in Tetrahymena.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Cadmium/pharmacology
- Down-Regulation/drug effects
- Gene Deletion
- Gene Expression Regulation/drug effects
- Gene Frequency/genetics
- Genes, Essential/genetics
- Genes, Lethal/genetics
- Genes, Protozoan/genetics
- Genes, Reporter/genetics
- Germ-Line Mutation/genetics
- Histones/genetics
- Metallothionein/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Neomycin
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Tetrahymena thermophila/drug effects
- Tetrahymena thermophila/genetics
- Transgenes/genetics
- Tubulin/genetics
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Yuhua Shang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Thazhath R, Liu C, Gaertig J. Polyglycylation domain of beta-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena. Nat Cell Biol 2002; 4:256-9. [PMID: 11862218 DOI: 10.1038/ncb764] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyglycylation occurs through the post-translational addition of a polyglycine peptide to the gamma-carboxyl group of glutamic acids near the C terminus of alpha- and beta-tubulin, and has been found only in cells with axonemes, from protists to humans. In Tetrahymena thermophila, multiple sites of polyglycylation on alpha-tubulin are dispensable. By contrast, mutating similar sites on beta-tubulin has site-specific effects, affecting cell motility and cytokinesis, or resulting in cell death. Here, we address the lethality of a polyglycylation deficiency in T. thermophila using heterokaryons. Cells with a lethal mutation in the polyglycylation domain of beta-tubulin assembled axonemes that lack the central pair, B-subfibres and the transitional zone of outer microtubules (MTs). Furthermore, an arrest in cytokinesis occurred, and was associated with incomplete severing of cortical MTs positioned near the cleavage furrow. Thus, tubulin polyglycylation is required for the maintenance of some stable microtubular organelles that are all known to be polyglycylated in vivo, but its effects on MTs appear to be organelle-specific.
Collapse
Affiliation(s)
- Rupal Thazhath
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
43
|
Duan J, Gorovsky MA. Both carboxy-terminal tails of alpha- and beta-tubulin are essential, but either one will suffice. Curr Biol 2002; 12:313-6. [PMID: 11864572 DOI: 10.1016/s0960-9822(02)00651-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microtubules (MTs) are organized into distinct systems essential for cell shape, movement, intracellular transport, and division. Electron crystallographic analyses provide little information about how MTs produce diverse structures and functions, perhaps because they failed to visualize the last 10 residues of the alpha- and the last 18 of the beta-tubulin C-terminal tails (CTTs), which likely play a role in MT diversity. CTTs define conserved, nonallelic isotypes in mammals, are major sites of posttranslational modifications (PTMs), are binding sites for microtubule-associated proteins (MAPs), and determine MT motor processivity. Using mutagenesis and homologous gene replacement in Tetrahymena thermophila, we analyzed mutations, deletions, tail switches, and tail duplications of alpha- and beta-tubulin CTTs. We demonstrate that a tail is required for the essential function of both alpha- and beta-tubulin. However, the two tails are interchangeable, and cells grow normally with either an alpha or a beta tail on both tubulins. In addition, an alpha gene containing a duplicated alpha C terminus rescues a lethal mutant lacking all known posttranslational modification sites on the beta C terminus but cannot rescue deletion of the beta tail. Thus, tubulin tails have a second essential function that is not associated with posttranslational modification.
Collapse
Affiliation(s)
- Jianming Duan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
44
|
Abstract
Over the past decade, researchers have manipulated the unique biology of Tetrahymena thermophila to generate a premier experimental organism for functional genomic analysis. A diverse array of DNA transformation methods have spearheaded in vivo strategies for discovering and dissecting universal eukaryotic processes, such as telomere addition and chromatin remodeling. Compartmentalization of this protist's genome into two functionally distinct nuclei - the silent 'germline' micronucleus and the transcriptionally active macronucleus - provides a powerful means for controlling the expression of transgenes. Heterokaryons that silently harbor homozygous recessive mutations (including lethal ones) in the germline have been exploited. The coupling of forward and reverse genetic approaches with genomics-based methods for gene discovery presents a bright future for research in this rising model eukaryote.
Collapse
Affiliation(s)
- Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
45
|
Abstract
Histone H2A.Z is structurally and functionally distinct from the major H2As. To understand the function of H2A.Z acetylation, we performed a mutagenic analysis of the six acetylated lysines in the N-terminal tail of Tetrahymena H2A.Z. Tetrahymena cannot survive with arginines at all six sites. Retention of one acetylatable lysine is sufficient to provide the essential function of H2A.Z acetylation. This essential function can be mimicked by deleting the region encompassing all six sites, or by mutations that reduce the positive charge of the N terminus at the acetylation sites themselves, or at other sites in the tail. These properties argue that the essential function of H2A.Z acetylation is to modify a "charge patch" by reducing the charge of the tail.
Collapse
Affiliation(s)
- Q Ren
- Department of Biology, University of Rochester, 14627, Rochester, NY, USA
| | | |
Collapse
|
46
|
Abstract
New studies show that three types of evolutionarily conserved post translational tubulin modification, polyglutamylation, polyglycylation and detyrosination, play important roles in vivo. These modifications appear to act by modulating the binding of molecular motors to the external surface of microtubules.
Collapse
Affiliation(s)
- J Rosenbaum
- Department of Biology, Yale University, 310 Kline Biology Tower, New Haven, Connecticut 06511-8112, USA.
| |
Collapse
|
47
|
Brimmer A, Weber K. The cDNA sequences of three tetrins, the structural proteins of the Tetrahymena oral filaments, show that they are novel cytoskeletal proteins. Protist 2000; 151:171-80. [PMID: 10965956 DOI: 10.1078/1434-4610-00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oral filaments of the ciliate Tetrahymena consist of the tetrins, insoluble polypeptides with molecular masses of around 85 kD. We characterised the tetrins of T. thermophila by two-dimensional gels and derived a large number of peptide sequences by in gel digestion. Using RT-PCR techniques and RACE-PCR, the complete cDNA sequences of tetrins A, B and C were established. Although tetrins differ strikingly in protein sequence they show a common structural principle. A N-terminal domain of 60 to 100 residues contains most of the proline residues of the tetrins and is probably globular. It is followed by a long alpha-helical domain of 620 to 640 residues which either lacks prolines or in tetrin A contains a single proline residue. Although this long domain has coiled coil forming ability, the individual heptad repeats are not extensive. Tetrins are novel cytoskeletal proteins unique to ciliates. Since the three tetrin sequences account for all 900 amino acid residues obtained by microsequencing of peptides, an additional major tetrin seems excluded. A minor component D is related to tetrin B by peptide sequences. The isoelectric variants, particularly obvious for tetrin A, most likely reflect post-translational modifications. These could arise by phosphorylation of serines and threonines in the proline rich N-terminal domain.
Collapse
Affiliation(s)
- A Brimmer
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany
| | | |
Collapse
|
48
|
Abstract
Important scientific discoveries have utilized the unique advantages of Tetrahymena thermophila as a research organism. Recently developed molecular genetic manipulations allow full exploitation of the many scientific dividends that would result from having its genome sequenced. As a typical ciliated protozoan, Tetrahymena exhibits "nuclear dimorphism". It possesses two differentiated forms of its nuclear genome: a globally repressed, diploid germline or micronuclear genome, and a polyploid, site-specifically fragmented somatic or macronuclear genome. The macronuclear genome is, in effect, a natural, large-insert library of the micronuclear genome. This presentation describes how the gifts of nuclear dimorphism are being exploited in the experimental analysis of molecular and cell biology. Mechanisms present in humans that are either absent in other eukaryotic microbial model systems, or not as readily accessible in them as in Tetrahymena, are especially relevant. This presentation also reviews unique tools generated by nuclear dimorphism that are being used for genetically and physically mapping the Tetrahymena genome.
Collapse
Affiliation(s)
- E Orias
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara 93106, USA.
| |
Collapse
|
49
|
Xia L, Hai B, Gao Y, Burnette D, Thazhath R, Duan J, Bré MH, Levilliers N, Gorovsky MA, Gaertig J. Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J Cell Biol 2000; 149:1097-106. [PMID: 10831613 PMCID: PMC2174830 DOI: 10.1083/jcb.149.5.1097] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2000] [Accepted: 05/01/2000] [Indexed: 12/02/2022] Open
Abstract
We analyzed the role of tubulin polyglycylation in Tetrahymena thermophila using in vivo mutagenesis and immunochemical analysis with modification-specific antibodies. Three and five polyglycylation sites were identified at glutamic acids near the COOH termini of alpha- and beta-tubulin, respectively. Mutants lacking all polyglycylation sites on alpha-tubulin have normal phenotype, whereas similar sites on beta-tubulin are essential. A viable mutant with three mutated sites in beta-tubulin showed reduced tubulin glycylation, slow growth and motility, and defects in cytokinesis. Cells in which all five polyglycylation sites on beta-tubulin were mutated were viable if they were cotransformed with an alpha-tubulin gene whose COOH terminus was replaced by the wild-type COOH terminus of beta-tubulin. In this double mutant, beta-tubulin lacked detectable polyglycylation, while the alpha-beta tubulin chimera was hyperglycylated compared with alpha-tubulin in wild-type cells. Thus, the essential function of polyglycylation of the COOH terminus of beta-tubulin can be transferred to alpha-tubulin, indicating it is the total amount of polyglycylation on both alpha- and beta-tubulin that is essential for survival.
Collapse
Affiliation(s)
- Lu Xia
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| | - Bing Hai
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Yan Gao
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| | - Dylan Burnette
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| | - Rupal Thazhath
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| | - Jianming Duan
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Marie-Helene Bré
- Laboratoire de Biologie Cellulaire 4, CNRS UPRES-A 8080, Université Paris XI, 91405, Orsay Cedex, France
| | - Nicolette Levilliers
- Laboratoire de Biologie Cellulaire 4, CNRS UPRES-A 8080, Université Paris XI, 91405, Orsay Cedex, France
| | - Martin A. Gorovsky
- Department of Biology, University of Rochester, Rochester, New York 14627
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607
| |
Collapse
|
50
|
Leondaritis G, Galanopoulou D. Characterization of inositol phospholipids and identification of a mastoparan-induced polyphosphoinositide response in Tetrahymena pyriformis. Lipids 2000; 35:525-32. [PMID: 10907787 DOI: 10.1007/s11745-000-552-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The unicellular eukaryote Tetrahymena is a popular model for the study of lipid metabolism. Less attention, however, has been given to the inositol phospholipids of the cell, although it is known that this class of lipids plays an important role in eukaryotic cell signaling. Tetrahymena pyriformis phosphatidylinositol was isolated, purified, and characterized by proton nuclear magnetic resonance analysis and [2-(3)H]myoinositol labeling. Labeling was also used for polyphosphoinositide (phosphatidylinositol phosphate and phosphatidylinositol bisphosphate) identification. Tetrahymena inositol phospholipids were found to belong to the diacylglycerol group, although major Tetrahymena phospholipids, phosphatidylcholine and aminoethylphosphonoglycerides, have been found to be mainly alkylacylglyceroderivatives. Further characterization of Tetrahymena phosphatidylinositol by gas chromatographic analysis indicated that 80% of fatty acids were myristic acid and palmitic acid. This is also in contrast to the fatty acid profile of Tetrahymena phosphatidylcholine and phosphatidylethanolamine, with respect both to the fatty acid length and degree of unsaturation, and may indicate that specific diacylglycerol species are connected with the phosphatidylinositol metabolism in this cell. Treatment of [3H]inositol-labeled Tetrahymena cells with mastoparan, a G-protein-activating peptide, induced changes in the polyphosphoinositide levels, suggesting that inositol phospholipids may form in Tetrahymena a functional signaling system similar to that of higher eukaryotes. Addition of 10 microM mastoparan resulted in a rapid and transient increase in [3H]phosphatidylinositol phosphate followed by a decrease in [3H]phosphatidylinositol bisphosphate. Similar changes in lipids have been reported when phosphoinositide-phospholipase C pathway is activated in both animal and plant cells.
Collapse
Affiliation(s)
- G Leondaritis
- Department of Chemistry, University of Athens, Greece
| | | |
Collapse
|