1
|
Jiang W. Studying the Collective Functional Response of a Receptor in Alchemical Ligand Binding Free Energy Simulations with Accelerated Solvation Layer Dynamics. J Chem Theory Comput 2024; 20:3085-3095. [PMID: 38568961 DOI: 10.1021/acs.jctc.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Ligand binding free energy simulations (LB-FES) that involve sampling of protein functional conformations have been longstanding challenges in research on molecular recognition. Particularly, modeling of the conformational transition pathway and design of the heuristic biasing mechanism are severe bottlenecks for the existing enhanced configurational sampling (ECS) methods. Inspired by the key role of hydration in regulating conformational dynamics of macromolecules, this report proposes a novel ECS approach that facilitates binding-associated structural dynamics by accelerated hydration transitions in combination with the λ-exchange of free energy perturbation (FEP). Two challenging protein-ligand binding processes involving large configurational transitions of the receptor are studied, with hydration transitions at binding sites accelerated by Hamiltonian-simulated annealing of the hydration layer. Without the need for pathway analysis or ad hoc barrier flattening potential, LB-FES were performed with FEP/λ-exchange molecular dynamics simulation at a minor overhead for annealing of the hydration layer. The LB-FES studies showed that the accelerated rehydration significantly enhances the collective conformational transitions of the receptor, and convergence of binding affinity calculations is obtained at a sweet-spot simulation time scale. Alchemical LB-FES with the proposed ECS strategy is free from the effort of trial and error for the setup and realizes efficient on-the-fly sampling for the collective functional response of the receptor and bound water and therefore presents a practical approach to high-throughput screening in drug discovery.
Collapse
Affiliation(s)
- Wei Jiang
- Computational Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| |
Collapse
|
2
|
Yadav S, Shaik S, Dubey KD. On the engineering of reductase-based-monooxygenase activity in CYP450 peroxygenases. Chem Sci 2024; 15:5174-5186. [PMID: 38577361 PMCID: PMC10988616 DOI: 10.1039/d3sc06538c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Recent bioengineering of CYP450OleT shows that peroxide-based CYP450OleT can be converted to a reductase-based self-sufficient enzyme, which is capable of showing efficient hydroxylation and decarboxylation activity for a wide range of substrates. The so-generated enzyme creates several mechanistic puzzles: (A) as CYP450 peroxygenases lack the conventional acid-alcohol pair, what is the source of two protons that are required to create the ultimate oxidant Cpd I? (B) Why is it only CYP450OleT that shows the reductase-based activity but no other CYP members? The present study provides a mechanistic solution to these puzzles using comprehensive MD simulations and hybrid QM/MM calculations. We show that the fusion of the reductase domain to the heme-binding domain triggers significant conformational rearrangement, which is gated by the propionate side chain, which constitutes a new water aqueduct via the carboxylate end of the substrate that ultimately participates in Cpd I formation. Importantly, such well-synchronized choreographies are controlled by remotely located Tyr359, which senses the fusion of reductase and communicates to the heme domain via non-covalent interactions. These findings provide crucial insights and a broader perspective which enables us to make a verifiable prediction: thus, the catalytic activity is not only limited to the first or second catalytic shell of an enzyme. Furthermore, it is predicted that reinstatement of tyrosine at a similar position in other members of CYP450 peroxygenases can convert these enzymes to reductase-based monooxygenases.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence NH91 Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence NH91 Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| |
Collapse
|
3
|
Taher M, Dubey KD, Mazumdar S. Computationally guided bioengineering of the active site, substrate access pathway, and water channels of thermostable cytochrome P450, CYP175A1, for catalyzing the alkane hydroxylation reaction. Chem Sci 2023; 14:14316-14326. [PMID: 38098704 PMCID: PMC10718072 DOI: 10.1039/d3sc02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Understanding structure-function relationships in proteins is pivotal in their development as industrial biocatalysts. In this regard, rational engineering of protein active site access pathways and various tunnels and channels plays a central role in designing competent enzymes with high stability and enhanced efficiency. Here, we report the rational evolution of a thermostable cytochrome P450, CYP175A1, to catalyze the C-H activation reaction of longer-chain alkanes. A strategy combining computational tools with experiments has shown that the substrate scope and enzymatic activity can be enhanced by rational engineering of certain important channels such as the substrate entry and water channels along with the active site of the enzyme. The evolved enzymes showed an improved catalytic rate for hexadecane hydroxylation with high regioselectivity. The Q67L/Y68F mutation showed binding of the substrate in the active site, water channel mutation L80F/V220T showed improved catalytic activity through the peroxide shunt pathway and substrate entry channel mutation W269F/I270A showed better substrate accessibility to the active pocket. All-atom MD simulations provided the rationale for the inactivity of the wild-type CYP175A1 for hexadecane hydroxylation and predicted the above hot-spot residues to enhance the activity. The reaction mechanism was studied by QM/MM calculations for enzyme-substrate complexes and reaction intermediates. Detailed thermal and thermodynamic stability of all the mutants were analyzed and the results showed that the evolved enzymes were thermally stable. The present strategy showed promising results, and insights gained from this work can be applied to the general enzymatic system to expand substrate scope and improve catalytic activity.
Collapse
Affiliation(s)
- Mohd Taher
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence Delhi-NCR NH91, Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| |
Collapse
|
4
|
Schell K, Li H, Lauterbach L, Taizoumbe KA, Dickschat JS, Hauer B. Alternative Active Site Confinement in Squalene–Hopene Cyclase Enforces Substrate Preorganization for Cyclization. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Yadav S, Kardam V, Tripathi A, T G S, Dubey KD. The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes. J Chem Inf Model 2022; 62:6679-6690. [PMID: 36073971 DOI: 10.1021/acs.jcim.2c00505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water models─TIP3P, SPC/E, and OPC─for three different CYP450 enzymes─CYP450BM3, CYP450OleT, and CYP450BSβ─during MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Ankita Tripathi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Shruti T G
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| |
Collapse
|
6
|
Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial. Molecules 2022; 27:molecules27175426. [PMID: 36080194 PMCID: PMC9457768 DOI: 10.3390/molecules27175426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 12/29/2022] Open
Abstract
Nanozymes are nanomaterials with intrinsic natural enzyme-like catalytic properties. They have received extensive attention and have the potential to be an alternative to natural enzymes. Increasing the atom utilization rate of active centers in nanozymes has gradually become a concern of scientists. As the limit of designing nanozymes at the atomic level, single-atom nanozymes (SAzymes) have become the research frontier of the biomedical field recently because of their high atom utilization, well-defined active centers, and good natural enzyme mimicry. In this review, we first introduce the preparation of SAzymes through pyrolysis and defect engineering with regulated activity, then the characterization and surface modification methods of SAzymes are introduced. The possible influences of surface modification on the activity of SAzymes are discussed. Furthermore, we summarize the applications of SAzymes in the biomedical fields, especially in those of reactive oxygen species (ROS) scavenging and antibacterial. Finally, the challenges and opportunities of SAzymes are summarized and prospected.
Collapse
|
7
|
Shi N, Zheng Q, Zhang H. Molecular Basis of the Recognition of Cholesterol by Cytochrome P450 46A1 along the Major Access Tunnel. ACS Chem Neurosci 2022; 13:1526-1533. [PMID: 35438962 DOI: 10.1021/acschemneuro.1c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CYP46A1 is an important potential target for the treatment of Alzheimer's disease (AD), which is the most common neurodegenerative disease among older individuals. However, the binding mechanism between CYP46A1 and substrate cholesterol (CH) has not been clarified and will not be conducive to the research of relevant drug molecules. In this study, we integrated molecular docking, molecular dynamics (MD) simulations, and adaptive steered MD simulations to explore the recognition and binding mechanism of CYP46A1 with CH. Two key factors affecting the interaction between CH and CYP46A1 are determined: one is a hydrophobic cavity formed by seven hydrophobic residues (F80, Y109, L112, I222, W368, F371, and T475), which provides nonpolar interactions to stabilize CH, and the other is a hydrogen bond formed by H81 and CH, which ensures the binding direction of CH. In addition, the tunnel analysis results show that tunnel 2a is identified as the primary pathway of CH. The entry of CH induces tunnel 2e to close and tunnel w to open. Our results may provide effective clues for the design of drugs based on the substrate for AD and improve our understanding of the structure-function of CYP46A1.
Collapse
Affiliation(s)
- Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, China
| | - Hongxing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
8
|
Nguyen HL, Thai NQ, Li MS. Determination of Multidirectional Pathways for Ligand Release from the Receptor: A New Approach Based on Differential Evolution. J Chem Theory Comput 2022; 18:3860-3872. [PMID: 35512104 PMCID: PMC9202309 DOI: 10.1021/acs.jctc.1c01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Steered molecular
dynamics (SMD) simulation is a powerful method
in computer-aided drug design as it can be used to access the relative
binding affinity with high precision but with low computational cost.
The success of SMD depends on the choice of the direction along which
the ligand is pulled from the receptor-binding site. In most simulations,
the unidirectional pathway was used, but in some cases, this choice
resulted in the ligand colliding with the complex surface of the exit
tunnel. To overcome this difficulty, several variants of SMD with
multidirectional pulling have been proposed, but they are not completely
devoid of disadvantages. Here, we have proposed to determine the direction
of pulling with a simple scoring function that minimizes the receptor–ligand
interaction, and an optimization algorithm called differential evolution
is used for energy minimization. The effectiveness of our protocol
was demonstrated by finding expulsion pathways of Huperzine A and
camphor from the binding site of Torpedo California acetylcholinesterase
and P450cam proteins, respectively, and comparing them with the previous
results obtained using memetic sampling and random acceleration molecular
dynamics. In addition, by applying this protocol to a set of ligands
bound with LSD1 (lysine specific demethylase 1), we obtained a much
higher correlation between the work of pulling force and experimental
data on the inhibition constant IC50 compared to that obtained using
the unidirectional approach based on minimal steric hindrance.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Life Science Lab, Institute for Computational Science and Technology, QuangTrung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Nguyen Quoc Thai
- Life Science Lab, Institute for Computational Science and Technology, QuangTrung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap 81100, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
9
|
|
10
|
Al-Attar S, Rendon J, Sidore M, Duneau JP, Seduk F, Biaso F, Grimaldi S, Guigliarelli B, Magalon A. Gating of Substrate Access and Long-Range Proton Transfer in Escherichia coli Nitrate Reductase A: The Essential Role of a Remote Glutamate Residue. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sinan Al-Attar
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Julia Rendon
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Marlon Sidore
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Jean-Pierre Duneau
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Farida Seduk
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Frédéric Biaso
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Stéphane Grimaldi
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Bruno Guigliarelli
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Axel Magalon
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| |
Collapse
|
11
|
Surface hydrophobics mediate functional dimerization of CYP121A1 of Mycobacterium tuberculosis. Sci Rep 2021; 11:394. [PMID: 33431984 PMCID: PMC7801616 DOI: 10.1038/s41598-020-79545-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis is caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb) and remains the leading cause of death by infection world-wide. The Mtb genome encodes a disproportionate number of twenty cytochrome P450 enzymes, of which the essential enzyme cytochrome P450 121A1 (CYP121A1) remains a target of drug design efforts. CYP121A1 mediates a phenol coupling reaction of the tyrosine dipeptide cyclo-L-Tyr-L-Tyr (cYY). In this work, a structure and function investigation of dimerization was performed as an overlooked feature of CYP121A1 function. This investigation showed that CYP121A1 dimers form via intermolecular contacts on the distal surface and are mediated by a network of solvent-exposed hydrophobic residues. Disruption of CYP121A1 dimers by site-directed mutagenesis leads to a partial loss of specificity for cYY, resulting in an approximate 75% decrease in catalysis. 19F labeling and nuclear magnetic resonance of the enzyme FG-loop was also combined with protein docking to develop a working model of a functional CYP121A1 dimer. The results obtained suggest that participation of a homodimer interface in substrate selectivity represents a novel paradigm of substrate binding in CYPs, while also providing important mechanistic insight regarding a relevant drug target in the development of novel anti-tuberculosis agents.
Collapse
|
12
|
Kalita S, Shaik S, Kisan HK, Dubey KD. A Paradigm Shift in the Catalytic Cycle of P450: The Preparatory Choreography during O 2 Binding and Origins of the Necessity for Two Protonation Pathways. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, Shiv Nadar University, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - Hemanta K. Kisan
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, Shiv Nadar University, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
13
|
Zee DZ, Harris TD. Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metal-organic framework. Chem Sci 2020; 11:5447-5452. [PMID: 32874492 PMCID: PMC7449529 DOI: 10.1039/d0sc01796e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
Catalytic heme active sites of enzymes are sequestered by the protein superstructure and are regulated by precisely defined outer coordination spheres. Here, we emulate these protective functions in the porphyrinic metal-organic framework PCN-224 by post-synthetic acetylation and subsequent hydroxylation of the Zr6 nodes. A suite of physical methods demonstrates that both transformations preserve framework structure, crystallinity, and porosity without modifying the inner coordination spheres of the iron sites. Single-crystal X-ray analyses establish that acetylation replaces the mixture of formate, benzoate, aqua, and terminal hydroxo ligands at the Zr6 nodes with acetate ligands, and hydroxylation affords nodes with seven-coordinate, hydroxo-terminated Zr4+ ions. The chemical influence of these reactions is probed with heme-catalyzed cyclohexane hydroxylation as a model reaction. By virtue of passivated reactive sites at the Zr6 nodes, the acetylated framework oxidizes cyclohexane with a yield of 68(8)%, 2.6-fold higher than in the hydroxylated framework, and an alcohol/ketone ratio of 5.6(3).
Collapse
Affiliation(s)
- David Z Zee
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA
| | - T David Harris
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , USA .
| |
Collapse
|
14
|
Jiang W. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS). J Chem Theory Comput 2019; 15:2179-2186. [PMID: 30821969 DOI: 10.1021/acs.jctc.8b01147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Coupling between binding of a ligand to a receptor and the displacement of a number of bound water molecules is a common event in molecular recognition processes. When the binding site is deeply buried and the exchange of water molecules with the bulk region is difficult to sample, the convergence and accuracy in free energy calculations can be severely compromised. Traditionally, Grand Canonical Monte Carlo (GCMC) based methods have been used to accelerate equilibration of water-at the expense, however, of lengthy trials before a molecular dynamics (MD) simulation. In this paper, a user-friendly and cost-efficient method, Hamiltonian simulated annealing of solvent in combination with λ-exchange of free energy perturbation (FEP) is proposed to accelerate the sampling of water molecules in free energy calculations. As an illustrative example with reliable data from previous GCMC simulations, absolute binding affinity of camphor to cytochrome P450 was calculated. The simulated hydration state change in the buried binding pocket quantitatively agrees with GCMC simulations. It is shown that the new protocol significantly accelerates sampling of water in a buried binding pocket and the convergence of free energy, with negligible setup and computing costs compared to GCMC methods.
Collapse
Affiliation(s)
- Wei Jiang
- Computational Science Division , Argonne National Laboratory , 9700 South Cass Avenue, Building 240 , Argonne , Illinois 60439 , United States
| |
Collapse
|
15
|
Four Major Channels Detected in the Cytochrome P450 3A4: A Step toward Understanding Its Multispecificity. Int J Mol Sci 2019; 20:ijms20040987. [PMID: 30823507 PMCID: PMC6412807 DOI: 10.3390/ijms20040987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
We computed the network of channels of the 3A4 isoform of the cytochrome P450 (CYP) on the basis of 16 crystal structures extracted from the Protein Data Bank (PDB). The calculations were performed with version 2 of the CCCPP software that we developed for this research project. We identified the minimal cost paths (MCPs) output by CCCPP as probable ways to access to the buried active site. The algorithm of calculation of the MCPs is presented in this paper, with its original method of visualization of the channels. We found that these MCPs constitute four major channels in CYP3A4. Among the many channels proposed by Cojocaru et al. in 2007, we found that only four of them open in 3A4. We provide a refined description of these channels together with associated quantitative data.
Collapse
|
16
|
Different Behaviors of a Substrate in P450 Decarboxylase and Hydroxylase Reveal Reactivity-Enabling Actors. Sci Rep 2018; 8:12826. [PMID: 30150737 PMCID: PMC6110716 DOI: 10.1038/s41598-018-31237-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Biological routes to the production of fuels from renewable feedstocks hold significant promise in our efforts towards a sustainable future. The fatty acid decarboxylase enzyme (OleTJE) is a cytochrome P450 enzyme that converts long and medium chain fatty acids to terminal alkenes and shares significant similarities in terms of structure, substrate scope and mechanism with the hydroxylase cytochrome P450 (P450BSβ). Recent reports have demonstrated that catalytic pathways in these enzymes bifurcate when the heme is in its iron-hydroxo (compound II) state. In spite of significant similarities, the fundamental underpinnings of their different characteristic wild-type reactivities remain ambiguous. Here, we develop point charges, modified parameters and report molecular simulations of this crucial intermediate step. Water occupancies and substrate mobility at the active site are observed to be vital differentiating aspects between the two enzymes in the compound II state and corroborate recent experimental hypotheses. Apart from increased substrate mobility in the hydroxylase, which could have implications for enabling the rebound mechanism for hydroxylation, OleTJE is characterized by much stronger binding of the substrate carboxylate group to the active site arginine, implicating it as an important enabling actor for decarboxylation.
Collapse
|
17
|
Microsecond MD simulations of human CYP2D6 wild-type and five allelic variants reveal mechanistic insights on the function. PLoS One 2018; 13:e0202534. [PMID: 30133539 PMCID: PMC6104999 DOI: 10.1371/journal.pone.0202534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
Characterization of cytochrome P450 2D6 (CYP2D6) and the impact of the major identified allelic variants on the activity of one of the most dominating drug-metabolising enzymes is essential to increase drug safety and avoid adverse reactions. Microsecond molecular dynamics simulations have been performed to capture the dynamic signatures of this complex enzyme and five allelic variants with diverse enzymatic activity. In addition to the apo simulations, three substrates (bufuralol, veliparib and tamoxifen) and two inhibitors (prinomastat and quinidine) were included to explore their influence on the structure and dynamical features of the enzyme. Our results indicate that the altered enzyme activity can be attributed to changes in the hydrogen bonding network within the active site, and local structural differences in flexibility, position and shape of the binding pocket. In particular, the increased (CYP2D6*53) or the decreased (CYP2D6*17) activity seems to be related to a change in dynamics of mainly the BC loop due to a modified hydrogen bonding network around this region. In addition, the smallest active site volume was found for CYP2D6*4 (no activity). CYP2D6*2 (normal activity) showed no major differences in dynamic behaviour compared to the wild-type.
Collapse
|
18
|
Ghosh D, Egbuta C, Lo J. Testosterone complex and non-steroidal ligands of human aromatase. J Steroid Biochem Mol Biol 2018; 181:11-19. [PMID: 29476820 PMCID: PMC5997392 DOI: 10.1016/j.jsbmb.2018.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 aromatase (AROM) catalyzes the biosynthesis of estrogen from androgen. Previously crystal structures of human AROM in complex with the substrate androstenedione, and inhibitors exemestane, as well as the newly designed steroidal compounds, have been reported. Here we report the first crystal structure of testosterone complex of human placental AROM. Testosterone binds at the androgen-specific heme distal pocket. The polar and hydrophobic interactions with the surrounding residues resemble the interactions observed for other ligands. The heme proximal region comprises the intermolecular interface in AROM, and also the putative interaction surface of its redox partner cytochrome P450 reductase. Unreported previously, the proximal region is characterized by a large surface cavity, unlike most known P450's. Using five best X-ray data sets from androstenedione and testosterone complexes of AROM, we now unequivocally show the presence of an unexplained ligand electron density inside the proximal cavity. The density is interpreted as ordered five ethylene glycol units of polyethylene glycols used as a solvent for steroids and also in crystallization. Interestingly, polyethylene glycol exhibits weak inhibition of AROM enzyme activity in a time dependent manner. Besides its critical role in the redox partner coupling and electron transfer process, the proximal cavity possibly serves as the interaction site for other molecules that may have regulatory effects on AROM activity. In addition, the new data also reveal a previously unidentified water channel linking the active site to the lipid interface. The channel could be the predicted passage for water molecules involved in catalysis.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210 United States.
| | - Chinaza Egbuta
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210 United States
| | - Jessica Lo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210 United States
| |
Collapse
|
19
|
Srivastava VK, Yadav R, Watanabe N, Tomar P, Mukherjee M, Gourinath S, Nakada-Tsukui K, Nozaki T, Datta S. Structural and thermodynamic characterization of metal binding in Vps29 from Entamoeba histolytica: implication in retromer function. Mol Microbiol 2017; 106:562-581. [PMID: 28898487 DOI: 10.1111/mmi.13836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2017] [Indexed: 11/28/2022]
Abstract
Vps29 is the smallest subunit of retromer complex with metallo-phosphatase fold. Although the role of metal in Vps29 is in quest, its metal binding mutants has been reported to affect the localization of the retromer complex in human cells. In this study, we report the structural and thermodynamic consequences of these mutations in Vps29 from the protozoan parasite, Entamoeba histolytica (EhVps29). EhVps29 is a zinc binding protein as revealed by X-ray crystallography and isothermal titration calorimetry. The metal binding pocket of EhVps29 exhibits marked differences in its 3-dimensional architecture and metal coordination in comparison to its human homologs and other metallo-phosphatases. Alanine substitutions of the metal-coordinating residues showed significant alteration in the binding affinity of EhVps29 for zinc. We also determined the crystal structures of metal binding defective mutants (D62A and D62A/H86A) of EhVps29. Based on our results, we propose that the metal atoms or the bound water molecules in the metal binding site are important for maintaining the structural integrity of the protein. Further cellular studies in the amoebic trophozoites showed that the overexpression of wild type EhVps29 leads to reduction in intracellular cysteine protease activity suggesting its crucial role in secretion of the proteases.
Collapse
Affiliation(s)
- Vijay Kumar Srivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.,Amity Institute of Biotechnology, Amity University Jaipur, Rajasthan 303002, India
| | - Rupali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Department of Biologikal Science, Graduate school of live and Environmental science, University of Tsukuba, Japan
| | - Priya Tomar
- Structural Biology Laboratory, School of Life Sciences (JNU), New Delhi 110067, India
| | - Madhumita Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences (JNU), New Delhi 110067, India
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
20
|
Rydzewski J, Nowak W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys Life Rev 2017; 22-23:58-74. [PMID: 28410930 DOI: 10.1016/j.plrev.2017.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
21
|
Davydov DR, Yang Z, Davydova N, Halpert JR, Hubbell WL. Conformational Mobility in Cytochrome P450 3A4 Explored by Pressure-Perturbation EPR Spectroscopy. Biophys J 2016; 110:1485-1498. [PMID: 27074675 DOI: 10.1016/j.bpj.2016.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022] Open
Abstract
We used high hydrostatic pressure as a tool for exploring the conformational landscape of human cytochrome P450 3A4 (CYP3A4) by electron paramagnetic resonance and fluorescence spectroscopy. Site-directed incorporation of a luminescence resonance energy transfer donor-acceptor pair allowed us to identify a pressure-dependent equilibrium between two states of the enzyme, where an increase in pressure increased the spatial separation between the two distantly located fluorophores. This transition is characterized by volume change (ΔV°) and P1/2 values of -36.8 ± 5.0 mL/mol and 1.45 ± 0.33 kbar, respectively, which corresponds to a Keq° of 0.13 ± 0.06, so that only 15% of the enzyme adopts the pressure-promoted conformation at ambient pressure. This pressure-promoted displacement of the equilibrium is eliminated by the addition of testosterone, an allosteric activator. Using site-directed spin labeling, we demonstrated that the pressure- and testosterone-sensitive transition is also revealed by pressure-induced changes in the electron paramagnetic resonance spectra of a nitroxide side chain placed at position 85 or 409 of the enzyme. Furthermore, we observed a pressure-induced displacement of the emission maxima of a solvatochromic fluorophore (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl) coumarin) placed at the same positions, which suggests a relocation to a more polar environment. Taken together, the results reveal an effector-dependent conformational equilibrium between open and closed states of CYP3A4 that involves a pronounced change at the interface between the region of α-helices A/A' and the meander loop of the enzyme, where residues 85 and 409 are located. Our study demonstrates the high potential of pressure-perturbation strategies for studying protein conformational landscapes.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, Washington; V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | - Zhongyu Yang
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Nadezhda Davydova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - James R Halpert
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Wayne L Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
22
|
Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Med Res Rev 2016; 37:1095-1139. [PMID: 27957758 DOI: 10.1002/med.21430] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Abstract
Many enzymes contain tunnels and gates that are essential to their function. Gates reversibly switch between open and closed conformations and thereby control the traffic of small molecules-substrates, products, ions, and solvent molecules-into and out of the enzyme's structure via molecular tunnels. Many transient tunnels and gates undoubtedly remain to be identified, and their functional roles and utility as potential drug targets have received comparatively little attention. Here, we describe a set of general concepts relating to the structural properties, function, and classification of these interesting structural features. In addition, we highlight the potential of enzyme tunnels and gates as targets for the binding of small molecules. The different types of binding that are possible and the potential pharmacological benefits of such targeting are discussed. Twelve examples of ligands bound to the tunnels and/or gates of clinically relevant enzymes are used to illustrate the different binding modes and to explain some new strategies for drug design. Such strategies could potentially help to overcome some of the problems facing medicinal chemists and lead to the discovery of more effective drugs.
Collapse
Affiliation(s)
- Sergio M Marques
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
23
|
Ebert MCCJC, Dürr SL, A. Houle A, Lamoureux G, Pelletier JN. Evolution of P450 Monooxygenases toward Formation of Transient Channels and Exclusion of Nonproductive Gases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian C. C. J. C. Ebert
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
| | - Simon L. Dürr
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
- Département
de chimie, Université de Montréal, Montréal H3T 1J4, Canada
| | - Armande A. Houle
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
| | - Guillaume Lamoureux
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- Department
of Chemistry and Biochemistry and Centre for Research in Molecular
Modeling (CERMM), Concordia University, Montreal H4B 1R6, Canada
| | - Joelle N. Pelletier
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
- Département
de chimie, Université de Montréal, Montréal H3T 1J4, Canada
| |
Collapse
|
24
|
Rydzewski J, Nowak W. Memetic algorithms for ligand expulsion from protein cavities. J Chem Phys 2016; 143:124101. [PMID: 26428990 DOI: 10.1063/1.4931181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper, two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics (MD) and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic G-protein-coupled receptor, enzyme nitrile hydratase, and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform simulated annealing and random acceleration molecular dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a network of channels is studied.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
25
|
Rydzewski J, Nowak W. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam. J Chem Theory Comput 2016; 12:2110-20. [DOI: 10.1021/acs.jctc.6b00212] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Rydzewski
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W. Nowak
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
26
|
Mancini G, Zazza C. F429 Regulation of Tunnels in Cytochrome P450 2B4: A Top Down Study of Multiple Molecular Dynamics Simulations. PLoS One 2015; 10:e0137075. [PMID: 26415031 PMCID: PMC4587367 DOI: 10.1371/journal.pone.0137075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/12/2015] [Indexed: 01/22/2023] Open
Abstract
The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization.
Collapse
Affiliation(s)
- Giordano Mancini
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126, Pisa, Italy, and Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
- * E-mail:
| | - Costantino Zazza
- Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185, Roma, Italy
| |
Collapse
|
27
|
Selvan A, Anishetty S. Cavities create a potential back door in epoxide hydrolase Rv1938 from Mycobacterium tuberculosis-A molecular dynamics simulation study. Comput Biol Chem 2015; 58:222-30. [PMID: 26256802 DOI: 10.1016/j.compbiolchem.2015.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/13/2015] [Accepted: 07/25/2015] [Indexed: 10/23/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative organism of tuberculosis. Extensively drug resistant strains and latency have posed formidable challenges in the treatment of tuberculosis. The current study addresses an alpha/beta hydrolase fold bearing enzyme, epoxide hydrolase Rv1938 from Mtb. Epoxide hydrolases are involved in detoxification processes, catabolism and regulation of signaling molecules. Using GROMACS, a 100ns Molecular Dynamics (MD) simulation was performed for Rv1938. Cavities were identified within the protein at various time frames of the simulation and their volumes were computed. During MD simulation, in addition to the substrate binding cavity, opening of two new cavities located behind the active site was observed. These cavities may be similar to the backdoor proposed for acetylcholinesterase. Structural superimposition of epoxide hydrolase from Mtb with the epoxide hydrolase of Agrobacterium radiobacter1 AD1 (Ephy) indicates that cavity1 in Mtb lies at an identical position to that of the water tunnel in Ephy. Further, docking of the substrate and an inhibitor with protein structures obtained from MD simulation at various time frames was also performed. The potential role of these cavities is discussed.
Collapse
Affiliation(s)
- Anitha Selvan
- Centre for Biotechnology, Anna University, Chennai 600 025, India
| | | |
Collapse
|
28
|
Peng Y, Swanson JMJ, Kang SG, Zhou R, Voth GA. Hydrated Excess Protons Can Create Their Own Water Wires. J Phys Chem B 2015; 119:9212-8. [PMID: 25369445 PMCID: PMC4515783 DOI: 10.1021/jp5095118] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/01/2014] [Indexed: 11/30/2022]
Abstract
Grotthuss shuttling of an excess proton charge defect through hydrogen bonded water networks has long been the focus of theoretical and experimental studies. In this work we show that there is a related process in which water molecules move ("shuttle") through a hydrated excess proton charge defect in order to wet the path ahead for subsequent proton charge migration. This process is illustrated through reactive molecular dynamics simulations of proton transport through a hydrophobic nanotube, which penetrates through a hydrophobic region. Surprisingly, before the proton enters the nanotube, it starts "shooting" water molecules into the otherwise dry space via Grotthuss shuttling, effectively creating its own water wire where none existed before. As the proton enters the nanotube (by 2-3 Å), it completes the solvation process, transitioning the nanotube to the fully wet state. By contrast, other monatomic cations (e.g., K(+)) have just the opposite effect, by blocking the wetting process and making the nanotube even drier. As the dry nanotube gradually becomes wet when the proton charge defect enters it, the free energy barrier of proton permeation through the tube via Grotthuss shuttling drops significantly. This finding suggests that an important wetting mechanism may influence proton translocation in biological systems, i.e., one in which protons "create" their own water structures (water "wires") in hydrophobic spaces (e.g., protein pores) before migrating through them. An existing water wire, e.g., one seen in an X-ray crystal structure or MD simulations without an explicit excess proton, is therefore not a requirement for protons to transport through hydrophobic spaces.
Collapse
Affiliation(s)
- Yuxing Peng
- †Department of Chemistry, James Franck Institute, Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jessica M J Swanson
- †Department of Chemistry, James Franck Institute, Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Seung-gu Kang
- ‡Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Ruhong Zhou
- ‡Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Gregory A Voth
- †Department of Chemistry, James Franck Institute, Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
29
|
Roccatano D. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:273102. [PMID: 26061496 DOI: 10.1088/0953-8984/27/27/273102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure-dynamics-function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions.
Collapse
Affiliation(s)
- Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
30
|
Lian P, Wei D. An application of QM/MM simulation: the second protonation of cytochrome P450. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 827:311-24. [PMID: 25387972 DOI: 10.1007/978-94-017-9245-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The multiscale model strategy, hybrid quantum mechanics and molecular mechanics (QM/MM), has become more and more prevalent in the theoretical study of enzymatic reactions. It combines both the efficiency of the Newtonian molecular calculations and the accuracy of the quantum mechanical methods. Simulation using QM/MM multiscale model may be one of the most promising approaches that could further narrow the gap between the theoretical models and the real problems. It is capable of dealing with not only the conformational changes of biomacromolecules, but also the catalytic reactions. Herein, we reviewed some of our recent work to demonstrate the application of the QM/MM simulations in exploring the enzymatic reactions.
Collapse
Affiliation(s)
- Peng Lian
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
31
|
Linke K, Ho FM. Water in Photosystem II: Structural, functional and mechanistic considerations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:14-32. [DOI: 10.1016/j.bbabio.2013.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 12/30/2022]
|
32
|
Affiliation(s)
- Artur Gora
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical
Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
33
|
Teze D, Hendrickx J, Dion M, Tellier C, Woods VL, Tran V, Sanejouand YH. Conserved Water Molecules in Family 1 Glycosidases: A DXMS and Molecular Dynamics Study. Biochemistry 2013; 52:5900-10. [DOI: 10.1021/bi400260b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- David Teze
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Johann Hendrickx
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Michel Dion
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Charles Tellier
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | - Virgil L. Woods
- Department of Medicine, University of California−San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0652, United States
| | - Vinh Tran
- UFIP, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,
France
| | | |
Collapse
|
34
|
Vohra S, Musgaard M, Bell SG, Wong LL, Zhou W, Biggin PC. The dynamics of camphor in the cytochrome P450 CYP101D2. Protein Sci 2013; 22:1218-29. [PMID: 23832606 DOI: 10.1002/pro.2309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/09/2023]
Abstract
The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate-free) and camphor-soaked forms have open conformations. Furthermore, two other potential camphor-binding sites were also identified from electron densities in the camphor-soaked structure, one being located in the access channel and the other in a cavity on the surface near the F-helix side of the F-G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor-bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor-bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit.
Collapse
Affiliation(s)
- Shabana Vohra
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Lian P, Li J, Wang DQ, Wei DQ. Car–Parrinello Molecular Dynamics/Molecular Mechanics (CPMD/MM) Simulation Study of Coupling and Uncoupling Mechanisms of Cytochrome P450cam. J Phys Chem B 2013; 117:7849-56. [DOI: 10.1021/jp312107r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Lian
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Jue Li
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Dong-Qi Wang
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093
Zurich, Switzerland
| | - Dong-Qing Wei
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
36
|
Vidal-Limón A, Águila S, Ayala M, Batista CV, Vazquez-Duhalt R. Peroxidase activity stabilization of cytochrome P450BM3 by rational analysis of intramolecular electron transfer. J Inorg Biochem 2013; 122:18-26. [DOI: 10.1016/j.jinorgbio.2013.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
|
37
|
Bell SG, Yang W, Dale A, Zhou W, Wong LL. Improving the affinity and activity of CYP101D2 for hydrophobic substrates. Appl Microbiol Biotechnol 2012; 97:3979-90. [DOI: 10.1007/s00253-012-4278-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/24/2012] [Accepted: 06/29/2012] [Indexed: 11/28/2022]
|
38
|
Medlock AE, Najahi-Missaoui W, Ross TA, Dailey TA, Burch J, O'Brien JR, Lanzilotta WN, Dailey HA. Identification and characterization of solvent-filled channels in human ferrochelatase. Biochemistry 2012; 51:5422-33. [PMID: 22712763 DOI: 10.1021/bi300598g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferrochelatase catalyzes the formation of protoheme from two potentially cytotoxic products, iron and protoporphyrin IX. While much is known from structural and kinetic studies on human ferrochelatase of the dynamic nature of the enzyme during catalysis and the binding of protoporphyrin IX and heme, little is known about how metal is delivered to the active site and how chelation occurs. Analysis of all ferrochelatase structures available to date reveals the existence of several solvent-filled channels that originate at the protein surface and continue to the active site. These channels have been proposed to provide a route for substrate entry, water entry, and proton exit during the catalytic cycle. To begin to understand the functions of these channels, we investigated in vitro and in vivo a number of variants that line these solvent-filled channels. Data presented herein support the role of one of these channels, which originates at the surface residue H240, in the delivery of iron to the active site. Structural studies of the arginyl variant of the conserved residue F337, which resides at the back of the active site pocket, suggest that it not only regulates the opening and closing of active site channels but also plays a role in regulating the enzyme mechanism. These data provide insight into the movement of the substrate and water into and out of the active site and how this movement is coordinated with the reaction mechanism.
Collapse
Affiliation(s)
- Amy E Medlock
- Biomedical and Health Sciences Institute, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, 30602, United States.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kirchmair J, Williamson MJ, Tyzack JD, Tan L, Bond PJ, Bender A, Glen RC. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model 2012; 52:617-48. [PMID: 22339582 PMCID: PMC3317594 DOI: 10.1021/ci200542m] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Metabolism of xenobiotics remains a central challenge
for the discovery
and development of drugs, cosmetics, nutritional supplements, and
agrochemicals. Metabolic transformations are frequently related to
the incidence of toxic effects that may result from the emergence
of reactive species, the systemic accumulation of metabolites, or
by induction of metabolic pathways. Experimental investigation of
the metabolism of small organic molecules is particularly resource
demanding; hence, computational methods are of considerable interest
to complement experimental approaches. This review provides a broad
overview of structure- and ligand-based computational methods for
the prediction of xenobiotic metabolism. Current computational approaches
to address xenobiotic metabolism are discussed from three major perspectives:
(i) prediction of sites of metabolism (SOMs), (ii) elucidation of
potential metabolites and their chemical structures, and (iii) prediction
of direct and indirect effects of xenobiotics on metabolizing enzymes,
where the focus is on the cytochrome P450 (CYP) superfamily of enzymes,
the cardinal xenobiotics metabolizing enzymes. For each of these domains,
a variety of approaches and their applications are systematically
reviewed, including expert systems, data mining approaches, quantitative
structure–activity relationships (QSARs), and machine learning-based
methods, pharmacophore-based algorithms, shape-focused techniques,
molecular interaction fields (MIFs), reactivity-focused techniques,
protein–ligand docking, molecular dynamics (MD) simulations,
and combinations of methods. Predictive metabolism is a developing
area, and there is still enormous potential for improvement. However,
it is clear that the combination of rapidly increasing amounts of
available ligand- and structure-related experimental data (in particular,
quantitative data) with novel and diverse simulation and modeling
approaches is accelerating the development of effective tools for
prediction of in vivo metabolism, which is reflected by the diverse
and comprehensive data sources and methods for metabolism prediction
reviewed here. This review attempts to survey the range and scope
of computational methods applied to metabolism prediction and also
to compare and contrast their applicability and performance.
Collapse
Affiliation(s)
- Johannes Kirchmair
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
41
|
Sabarinathan R, Aishwarya K, Sarani R, Vaishnavi MK, Sekar K. Water-mediated ionic interactions in protein structures. J Biosci 2011; 36:253-63. [PMID: 21654080 DOI: 10.1007/s12038-011-9067-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is well known that water molecules play an indispensable role in the structure and function of biological macromolecules. The water-mediated ionic interactions between the charged residues provide stability and plasticity and in turn address the function of the protein structures. Thus, this study specifically addresses the number of possible water-mediated ionic interactions, their occurrence, distribution and nature found in 90% non-redundant protein chains. Further, it provides a statistical report of different charged residue pairs that are mediated by surface or buried water molecules to form the interactions. Also, it discusses its contributions in stabilizing various secondary structural elements of the protein. Thus, the present study shows the ubiquitous nature of the interactions that imparts plasticity and flexibility to a protein molecule.
Collapse
Affiliation(s)
- R Sabarinathan
- Bioinformatics Centre, Centre of Excellence in Structural Biology and Bio-computing, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
42
|
Miao Y, Baudry J. Active-site hydration and water diffusion in cytochrome P450cam: a highly dynamic process. Biophys J 2011; 101:1493-503. [PMID: 21943431 DOI: 10.1016/j.bpj.2011.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 07/28/2011] [Accepted: 08/11/2011] [Indexed: 11/15/2022] Open
Abstract
Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.
Collapse
Affiliation(s)
- Yinglong Miao
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | | |
Collapse
|
43
|
Xu Y, Shen Z, Shen J, Liu G, Li W, Tang Y. Computational insights into the different catalytic activities of CYP2A13 and CYP2A6 on NNK. J Mol Graph Model 2011; 30:1-9. [PMID: 21680215 DOI: 10.1016/j.jmgm.2011.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 02/06/2023]
Abstract
The human cytochrome P450 2A13 (CYP2A13) and P450 2A6 (CYP2A6) are 94% identical in amino acid sequence, but they metabolize many substrates with different efficiencies. Previous experimental results have shown that CYP2A13 exhibited catalytic activity that was more than 300-fold higher than CYP2A6 toward 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a carcinogen present in tobacco products. At present, however, the structural determinants accounting for the differential catalytic activities of these two isozymes toward NNK remain unclear. In the present study, molecular docking combined with molecular dynamics simulation and binding free energy calculation was performed to investigate the above issue. The results demonstrate that NNK was able to form a hydrogen bond with Asn297 in either CYP2A13 or CYP2A6. The hydrogen-bond acceptor was the pyridine nitrogen of NNK in the CYP2A13 complex, but it changed to the carbonyl oxygen in the CYP2A6 complex. NNK interacted with the residues in helix I and the K-β2 loop in CYP2A13, whereas it preferred to contact with the phenylalanine cluster in CYP2A6. The residues in helix I and the K-β2 loop of CYP2A13 played a vital role in keeping NNK in a more stable binding state. The binding free energies calculated by MM-GBSA were in agreement with the experimental results.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
44
|
Olsson E, Martinez A, Teigen K, Jensen VR. Substrate Hydroxylation by the Oxido-Iron Intermediate in Aromatic Amino Acid Hydroxylases: A DFT Mechanistic Study. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Rentmeister A, Brown TR, Snow CD, Carbone MN, Arnold FH. Engineered Bacterial Mimics of Human Drug Metabolizing Enzyme CYP2C9. ChemCatChem 2011. [DOI: 10.1002/cctc.201000452] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Olsson E, Martinez A, Teigen K, Jensen VR. Formation of the iron-oxo hydroxylating species in the catalytic cycle of aromatic amino acid hydroxylases. Chemistry 2011; 17:3746-58. [PMID: 21351297 DOI: 10.1002/chem.201002910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Indexed: 12/20/2022]
Abstract
The first part of the catalytic cycle of the pterin-dependent, dioxygen-using nonheme-iron aromatic amino acid hydroxylases, leading to the Fe(IV)=O hydroxylating intermediate, has been investigated by means of density functional theory. The starting structure in the present investigation is the water-free Fe-O(2) complex cluster model that represents the catalytically competent form of the enzymes. A model for this structure was obtained in a previous study of water-ligand dissociation from the hexacoordinate model complex of the X-ray crystal structure of the catalytic domain of phenylalanine hydroxylase in complex with the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) (PAH-Fe(II)-BH(4)). The O-O bond rupture and two-electron oxidation of the cofactor are found to take place via a Fe-O-O-BH(4) bridge structure that is formed in consecutive radical reactions involving a superoxide ion, O(2)(-). The overall effective free-energy barrier to formation of the Fe(IV)=O species is calculated to be 13.9 kcal mol(-1), less than 2 kcal mol(-1) lower than that derived from experiment. The rate-limiting step is associated with a one-electron transfer from the cofactor to dioxygen, whereas the spin inversion needed to arrive at the quintet state in which the O-O bond cleavage is finalized, essentially proceeds without activation.
Collapse
Affiliation(s)
- Elaine Olsson
- Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | | | | | | |
Collapse
|
47
|
Conner KP, Woods C, Atkins WM. Interactions of cytochrome P450s with their ligands. Arch Biochem Biophys 2011; 507:56-65. [PMID: 20939998 PMCID: PMC3041843 DOI: 10.1016/j.abb.2010.10.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/01/2010] [Accepted: 10/04/2010] [Indexed: 01/12/2023]
Abstract
Cytochrome P450s (CYPs) are heme-containing monooxygenases that contribute to an enormous range of enzymatic function including biosynthetic and detoxification roles. This review summarizes recent studies concerning interactions of CYPs with ligands including substrates, inhibitors, and diatomic heme-ligating molecules. These studies highlight the complexity in the relationship between the heme spin state and active site occupancy, the roles of water in directing protein-ligand and ligand-heme interactions, and the details of interactions between heme and gaseous diatomic CYP ligands. Both kinetic and thermodynamic aspects of ligand binding are considered.
Collapse
Affiliation(s)
- Kip P. Conner
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| | - Caleb Woods
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| | - William M. Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610
| |
Collapse
|
48
|
Buch I, Fishelovitch D, London N, Raveh B, Wolfson HJ, Nussinov R. Allosteric regulation of glycogen synthase kinase 3β: a theoretical study. Biochemistry 2010; 49:10890-901. [PMID: 21105670 PMCID: PMC3005830 DOI: 10.1021/bi100822q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a serine-threonine kinase belonging to the CMGC family that plays a key role in many biological processes, such as glucose metabolism, cell cycle regulation, and proliferation. Like most protein kinases, GSK-3β is regulated via multiple pathways and sites. We performed all-atom molecular dynamics simulations on the unphosphorylated and phosphorylated unbound GSK-3β and the phosphorylated GSK-3β bound to a peptide substrate, its product, and a derived inhibitor. We found that GSK-3β autophosphorylation at residue Tyr(216) results in widening of the catalytic groove, thereby facilitating substrate access. In addition, we studied the interactions of the phosphorylated GSK-3β with a substrate and peptide inhibitor located at the active site and observed higher affinity of the inhibitor to the kinase. Furthermore, we detected a potential remote binding site which was previously identified in other kinases. In agreement with experiments we observed that binding of specific peptides at this remote site leads to stabilization of the activation loop located in the active site. We speculate that this stabilization could enhance the catalytic activity of the kinase. We point to this remote site as being structurally conserved and suggest that the allosteric phenomenon observed here may occur in the protein kinase superfamily.
Collapse
Affiliation(s)
- Idit Buch
- Department of Human Molecular Genetics and Biochemistry, Sackler Institute of Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Yin H, Feng G, Clore GM, Hummer G, Rasaiah JC. Water in the polar and nonpolar cavities of the protein interleukin-1β. J Phys Chem B 2010; 114:16290-7. [PMID: 21047091 DOI: 10.1021/jp108731r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water in the protein interior serves important structural and functional roles and is also increasingly recognized as a relevant factor in drug binding. The nonpolar cavity in the protein interleukin-1β has been reported to be filled by water on the basis of some experiments and simulations and to be empty on the basis of others. Here we study the thermodynamics of filling the central nonpolar cavity and the four polar cavities of interleukin-1β by molecular dynamics simulation. We use different water models (TIP3P and SPC/E) and protein force fields (amber94 and amber03) to calculate the semigrand partition functions term by term that quantify the hydration equilibria. We consistently find that water in the central nonpolar cavity is thermodynamically unstable, independent of force field and water model. The apparent reason is the relatively small size of the cavity, with a volume less than ∼80 Å(3). Our results are consistent with the most recent X-ray crystallographic and simulation studies but disagree with an earlier interpretation of nuclear magnetic resonance (NMR) experiments probing protein-water interactions. We show that, at least semiquantitatively, the measured nuclear Overhauser effects indicating the proximity of water to the methyl groups lining the nonpolar cavity can, in all likelihood, be attributed to interactions with buried and surface water molecules near the cavity. The same methods applied to determine the occupancy of the polar cavities show that they are filled by the same number of water molecules observed in crystallography, thereby validating the theoretical and simulation methods used to study the water occupancy in the nonpolar protein cavity.
Collapse
Affiliation(s)
- Hao Yin
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | | | | | | | | |
Collapse
|
50
|
Fishelovitch D, Shaik S, Wolfson HJ, Nussinov R. How does the reductase help to regulate the catalytic cycle of cytochrome P450 3A4 using the conserved water channel? J Phys Chem B 2010; 114:5964-70. [PMID: 20387782 PMCID: PMC2861407 DOI: 10.1021/jp101894k] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/27/2010] [Indexed: 11/28/2022]
Abstract
Water molecules play a major role in the P450 catalytic cycle. Here, we locate the preferred water pathways and their gating mechanisms for the human cytochrome P450 3A4 (CYP3A4) and elucidate the role of the cytochrome P450 reductase (CPR) in turning on and activating these water channels. We perform explicit solvent molecular dynamic simulations of CYP3A4, unbound and bound to two substrates, and with and without the flavin mononucleotide (FMN)-binding domain of CPR. We observe in/out passage of water molecules via a water-specific and conserved channel (aqueduct) located between the active site and the heme proximal side. We find that the aqueduct gating mechanism is mediated by R375, the conserved arginine that salt bridges with the heme 7-propionate. When R375 rotates, it opens the aqueduct and establishes a connection between a cluster of active site water molecules network and the bulk solvent. The aqueduct region overlaps with the CPR binding-site to CYP3A4. Indeed, we find that when the FMN domain of CPR binds to CYP3A4, the aqueduct fully opens up, thereby allowing a flow of water molecules. The aqueduct's opening can permit proton transfer, shuttling the protons to the active site through ordered water molecules. In addition, the expulsion of water molecules via the aqueduct contributes to substrate binding. As such, the CPR binding has a function: it triggers the aqueduct's opening and thereby enables a proton shuttle pathway, which is needed for the dioxygen activation. This mechanism could be a general paradigm in P450s.
Collapse
Affiliation(s)
| | | | | | - Ruth Nussinov
- Corresponding author. Phone: 301-846-5579. Fax: 301-846-5598. E-mail:
| |
Collapse
|