1
|
Abstract
The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
2
|
Hu S, Fu J, Huang F, Ding X, Stewart AF, Xia L, Zhang Y. Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system. Appl Microbiol Biotechnol 2013; 98:2165-72. [DOI: 10.1007/s00253-013-5412-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
|
3
|
Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 2010; 186:791-9. [PMID: 20813883 DOI: 10.1534/genetics.110.120782] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phage lambda-derived Red recombination system is a powerful tool for making targeted genetic changes in Escherichia coli, providing a simple and versatile method for generating insertion, deletion, and point mutations on chromosomal, plasmid, or BAC targets. However, despite the common use of this system, the detailed mechanism by which lambda Red mediates double-stranded DNA recombination remains uncertain. Current mechanisms posit a recombination intermediate in which both 5' ends of double-stranded DNA are recessed by λ exonuclease, leaving behind 3' overhangs. Here, we propose an alternative in which lambda exonuclease entirely degrades one strand, while leaving the other strand intact as single-stranded DNA. This single-stranded intermediate then recombines via beta recombinase-catalyzed annealing at the replication fork. We support this by showing that single-stranded gene insertion cassettes are recombinogenic and that these cassettes preferentially target the lagging strand during DNA replication. Furthermore, a double-stranded DNA cassette containing multiple internal mismatches shows strand-specific mutations cosegregating roughly 80% of the time. These observations are more consistent with our model than with previously proposed models. Finally, by using phosphorothioate linkages to protect the lagging-targeting strand of a double-stranded DNA cassette, we illustrate how our new mechanistic knowledge can be used to enhance lambda Red recombination frequency. The mechanistic insights revealed by this work may facilitate further improvements to the versatility of lambda Red recombination.
Collapse
|
4
|
Szczepańska AK. Bacteriophage-encoded functions engaged in initiation of homologous recombination events. Crit Rev Microbiol 2010; 35:197-220. [PMID: 19563302 DOI: 10.1080/10408410902983129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recombination plays a significant role in bacteriophage biology. Functions promoting recombination are involved in key stages of phage multiplication and drive phage evolution. Their biological role is reflected by the great variety of phages existing in the environment. This work presents the role of recombination in the phage life cycle and highlights the discrete character of phage-encoded recombination functions (anti-RecBCD activities, 5' --> 3' DNA exonucleases, single-stranded DNA binding proteins, single-stranded DNA annealing proteins, and recombinases). The focus of this review is on phage proteins that initiate genetic exchange. Importance of recombination is reviewed based on the accepted coli-phages T4 and lambda models, the recombination system of phage P22, and the recently characterized recombination functions of Bacillus subtilis phage SPP1 and mycobacteriophage Che9c. Key steps of the molecular mechanisms involving phage recombination functions and their application in molecular engineering are discussed.
Collapse
Affiliation(s)
- Agnieszka K Szczepańska
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Katashkina JI, Hara Y, Golubeva LI, Andreeva IG, Kuvaeva TM, Mashko SV. Use of the lambda Red-recombineering method for genetic engineering of Pantoea ananatis. BMC Mol Biol 2009; 10:34. [PMID: 19389224 PMCID: PMC2682490 DOI: 10.1186/1471-2199-10-34] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 04/23/2009] [Indexed: 11/18/2022] Open
Abstract
Background Pantoea ananatis, a member of the Enterobacteriacea family, is a new and promising subject for biotechnological research. Over recent years, impressive progress in its application to L-glutamate production has been achieved. Nevertheless, genetic and biotechnological studies of Pantoea ananatis have been impeded because of the absence of genetic tools for rapid construction of direct mutations in this bacterium. The λ Red-recombineering technique previously developed in E. coli and used for gene inactivation in several other bacteria is a high-performance tool for rapid construction of precise genome modifications. Results In this study, the expression of λ Red genes in P. ananatis was found to be highly toxic. A screening was performed to select mutants of P. ananatis that were resistant to the toxic affects of λ Red. A mutant strain, SC17(0) was identified that grew well under conditions of simultaneous expression of λ gam, bet, and exo genes. Using this strain, procedures for fast introduction of multiple rearrangements to the Pantoea ananatis genome based on the λ Red-dependent integration of the PCR-generated DNA fragments with as short as 40 bp flanking homologies have been demonstrated. Conclusion The λ Red-recombineering technology was successfully used for rapid generation of chromosomal modifications in the specially selected P. ananatis recipient strain. The procedure of electro-transformation with chromosomal DNA has been developed for transfer of the marked mutation between different P. ananatis strains. Combination of these techniques with λ Int/Xis-dependent excision of selective markers significantly accelerates basic research and construction of producing strains.
Collapse
Affiliation(s)
- Joanna I Katashkina
- Closed Joint-Stock Company Ajinomoto-Genetika Research Institute, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
6
|
The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination. J Virol 2009; 83:4236-50. [PMID: 19224992 DOI: 10.1128/jvi.02255-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.
Collapse
|
7
|
Birmingham EC, Lee SA, McCulloch RD, Baker MD. Testing predictions of the double-strand break repair model relating to crossing over in Mammalian cells. Genetics 2004; 168:1539-55. [PMID: 15579705 PMCID: PMC1448801 DOI: 10.1534/genetics.104.029215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 07/22/2004] [Indexed: 11/18/2022] Open
Abstract
In yeast, four-stranded, biparental "joint molecules" containing a pair of Holliday junctions are demonstrated intermediates in the repair of meiotic double-strand breaks (DSBs). Genetic and physical evidence suggests that when joint molecules are resolved by the cutting of each of the two Holliday junctions, crossover products result at least most of the time. The double-strand break repair (DSBR) model is currently accepted as a paradigm for acts of DSB repair that lead to crossing over. In this study, a well-defined mammalian gene-targeting assay was used to test predictions that the DSBR model makes about the frequency and position of hDNA in recombinants generated by crossing over. The DSBR model predicts that hDNA will frequently form on opposite sides of the DSB in the two homologous sequences undergoing recombination [half conversion (HC); 5:3, 5:3 segregation]. By examining the segregation patterns of poorly repairable small palindrome genetic markers, we show that this configuration of hDNA is rare. Instead, in a large number of recombinants, full conversion (FC) events in the direction of the unbroken chromosomal sequence (6:2 segregation) were observed on one side of the DSB. A conspicuous fraction of the unidirectional FC events was associated with normal 4:4 marker segregation on the other side of the DSB. In addition, a large number of recombinants displayed evidence of hDNA formation. In several, hDNA was symmetrical on one side of the DSB, suggesting that the two homologous regions undergoing recombination swapped single strands of the same polarity. These data are considered within the context of modified versions of the DSBR model.
Collapse
Affiliation(s)
- Erin C Birmingham
- Department of Molecular Biology and Genetics, College of Biological Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
8
|
Abstract
In the past few years, in vivo technologies have emerged that, due to their efficiency and simplicity, may one day replace standard genetic engineering techniques. Constructs can be made on plasmids or directly on the Escherichia coli chromosome from PCR products or synthetic oligonucleotides by homologous recombination. This is possible because bacteriophage-encoded recombination functions efficiently recombine sequences with homologies as short as 35 to 50 base pairs. This technology, termed recombineering, is providing new ways to modify genes and segments of the chromosome. This review describes not only recombineering and its applications, but also summarizes homologous recombination in E. coli and early uses of homologous recombination to modify the bacterial chromosome. Finally, based on the premise that phage-mediated recombination functions act at replication forks, specific molecular models are proposed.
Collapse
Affiliation(s)
- Donald L Court
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
9
|
Vellani TS, Myers RS. Bacteriophage SPP1 Chu is an alkaline exonuclease in the SynExo family of viral two-component recombinases. J Bacteriol 2003; 185:2465-74. [PMID: 12670970 PMCID: PMC152610 DOI: 10.1128/jb.185.8.2465-2474.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many DNA viruses concatemerize their genomes as a prerequisite to packaging into capsids. Concatemerization arises from either replication or homologous recombination. Replication is already the target of many antiviral drugs, and viral recombinases are an attractive target for drug design, particularly for combination therapy with replication inhibitors, due to their important supporting role in viral growth. To dissect the molecular mechanisms of viral recombination, we and others previously identified a family of viral nucleases that comprise one component of a conserved, two-component viral recombination system. The nuclease component is related to the exonuclease of phage lambda and is common to viruses with linear double-stranded DNA genomes. To test the idea that these viruses have a common strategy for recombination and genome concatemerization, we isolated the previously uncharacterized 34.1 gene from Bacillus subtilis phage SPP1, expressed it in Escherichia coli, purified the protein, and determined its enzymatic properties. Like lambda exonuclease, Chu (the product of 34.1) forms an oligomer, is a processive alkaline exonuclease that digests linear double-stranded DNA in a Mg(2+)-dependent reaction, and shows a preference for 5'-phosphorylated DNA ends. A model for viral recombination, based on the phage lambda Red recombination system, is proposed.
Collapse
Affiliation(s)
- Trina S Vellani
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | |
Collapse
|
10
|
Tarkowski TA, Mooney D, Thomason LC, Stahl FW. Gene products encoded in the ninR region of phage lambda participate in Red-mediated recombination. Genes Cells 2002; 7:351-63. [PMID: 11952832 DOI: 10.1046/j.1365-2443.2002.00531.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The ninR region of phage lambda contains two recombination genes, orf (ninB) and rap (ninG), that were previously shown to have roles when the RecF and RecBCD recombination pathways of E. coli, respectively, operate on phage lambda. RESULTS When lambda DNA replication is blocked, recombination is focused at the termini of the virion chromosome. Deletion of the ninR region of lambda decreases the sharpness of the focusing without diminishing the overall rate of recombination. The phenotype is accounted for in large part by the deletion of rap and of orf. Mutation of the recJ gene of the host partially suppresses the Rap- phenotype. CONCLUSION ninR functions Orf and Rap participate in Red recombination, the primary pathway operating when wild-type lambda grows lytically in rec+ cells. The ability of recJ mutation to suppress the Rap- phenotype indicates that RecJ exonuclease can participate in Red-mediated recombination, at least in the absence of Rap function. A model is presented for Red-mediated RecA-dependent recombination that includes these newly identified participants.
Collapse
Affiliation(s)
- Trudee A Tarkowski
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | | | |
Collapse
|
11
|
Huang YJ, Parker MM, Belfort M. Role of exonucleolytic degradation in group I intron homing in phage T4. Genetics 1999; 153:1501-12. [PMID: 10581261 PMCID: PMC1460841 DOI: 10.1093/genetics/153.4.1501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homing of the phage T4 td intron is initiated by the intron-encoded endonuclease I-TevI, which cleaves the intronless allele 23 and 25 nucleotides upstream of the intron insertion site (IS). The distance between the I-TevI cleavage site (CS) and IS implicates endo- and/or exonuclease activities to resect the DNA segment between the IS and CS. Furthermore, 3' tails must presumably be generated for strand invasion by 5'-3' exonuclease activity. Three experimental approaches were used to probe for phage nucleases involved in homing: a comparative analysis of in vivo homing levels of nuclease-deficient phage, an in vitro assay of nuclease activity and specificity, and a coconversion analysis of flanking exon markers. It was thereby demonstrated that T4 RNase H, a 5'-3' exonuclease, T4 DNA exonuclease A (DexA) and the exonuclease activity of T4 DNA polymerase (43Exo), 3'-5' exonucleases, play a role in intron homing. The absence of these functions impacts not only homing efficiency but also the extent of degradation and flanking marker coconversion. These results underscore the critical importance of the 3' tail in intron homing, and they provide the first direct evidence of a role for 3' single-stranded DNA ends as intermediates in T4 recombination. Also, the involvement of RNase H, DexA, and 43Exo in homing provides a clear example of the harnessing of functions variously involved in phage nucleic acid metabolism for intron propagation.
Collapse
Affiliation(s)
- Y J Huang
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
12
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 719] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
13
|
Hill SA. Cell to cell transmission of donor DNA overcomes differential incorporation of non-homologous and homologous markers in Neisseria gonorrhoeae. Gene 1999; 240:175-82. [PMID: 10564824 DOI: 10.1016/s0378-1119(99)00414-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neisseriae are naturally competent for DNA transformation. This genetic study examines whether the modification status of chromosomal donor DNA affects transformation of Neisseria gonorrhoeae to drug resistance. When a single modification system was inactivated, unmodified chromosomal donor DNA was not restricted when used to transform the cognate restriction+ host, irrespective of whether the donor DNA carried a point mutation (homologous marker) or a drug-resistance gene cassette (non-homologous marker). These observations contrasted transformations performed with unmodified plasmid donor DNAs, where the incoming DNA was excluded. However, during the study, it became apparent that certain strains of gonococci showed differential incorporation of non-homologous markers when compared with the incorporation of the homologous marker, even when the donor DNAs were prepared from parental strains. Differential incorporation of markers could be rescued either through cell to cell transmission of donor DNA, or by performing in vitro transformations with donor DNA preparations that were obtained from spent culture supernatants. Overall, the data indicate that, in addition to the exclusion of foreign DNA through the requirement for a genus-specific uptake sequence, gonococci appear capable of excluding DNA on the basis of homology.
Collapse
Affiliation(s)
- S A Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.
| |
Collapse
|
14
|
Abstract
The Rap protein of phage lambda is an endonuclease that nicks branched DNA structures. It has been proposed that Rap can nick D-loops formed during phage recombination to generate splice products without the need for the formation of a 4-strand (Holliday) junction. The structure specificity of Rap was investigated using a variety of branched DNA molecules made by annealing partially complementary oligo-nucleotides. On Holliday junctions, Rap endonuclease shows a requirement for magnesium or manganese ions, with Mn(2+)supporting 5-fold more cleavage than Mg(2+). The location of endonuclease incisions was determined on 3'-tailed D-loop, bubble, flayed duplex, 5'-flap and Y junction DNA substrates. In all cases, Rap preferentially cleaves at the branch point of these molecules. With a flayed duplex, incisions are made in the duplex adjacent to the single-strand arms. Comparison of binding and cleavage specificities revealed that Rap is highly structure-specific and exhibits a clear preference for 4- and 3-stranded DNA over Y and flayed duplex DNA. Almost no binding or cleavage was detected with duplex, partial duplex and single-stranded DNA. Thus Rap endonuclease shows a bias for structures that resemble D-loop and Holliday junction recombination intermediates.
Collapse
Affiliation(s)
- G J Sharples
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK.
| | | | | |
Collapse
|
15
|
Francia MV, Zabala JC, de la Cruz F, García Lobo JM. The IntI1 integron integrase preferentially binds single-stranded DNA of the attC site. J Bacteriol 1999; 181:6844-9. [PMID: 10542191 PMCID: PMC94154 DOI: 10.1128/jb.181.21.6844-6849.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IntI1 integrase is a member of the prokaryotic DNA integrase superfamily. It is responsible for mobility of antibiotic resistance cassettes found in integrons. IntI1 protein, as well as IntI1-COOH, a truncated form containing its carboxy-terminal domain, has been purified. Electrophoretic mobility shift assays were carried out to study the ability of IntI1 to bind the integrase primary target sites attI and aadA1 attC. When using double-stranded DNA as a substrate, we observed IntI1 binding to attI but not to attC. IntI1-COOH did not bind either attI or attC, indicating that the N-terminal domain of IntI1 was required for binding to double-stranded attI. On the other hand, when we used single-stranded (ss) DNA substrates, IntI1 bound strongly and specifically to ss attC DNA. Binding was strand specific, since only the bottom DNA strand was bound. Protein IntI1-COOH bound ss attC as well as did the complete integrase, indicating that the ability of the protein to bind ss aadA1 attC was contained in the region between amino acids 109 and 337 of IntI1. Binding to ss attI DNA by the integrase, but not by IntI1-COOH, was also observed and was specific for the attI bottom strand, indicating similar capabilities of IntI1 for binding attI DNA in either double-stranded or ss conformation. Footprinting analysis showed that IntI1 protected at least 40 bases of aadA1 attC against DNase I attack. The protected sequence contained two of the four previously proposed IntI1 DNA binding sites, including the crossover site. Preferential ssDNA binding can be a significant activity of IntI1 integrase, which suggests the utilization of extruded cruciforms in the reaction mechanisms leading to cassette excision and integration.
Collapse
Affiliation(s)
- M V Francia
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | | | | | | |
Collapse
|
16
|
Abstract
The recombination properties of Escherichia coli strains expressing the red genes of bacteriophage lambda and lacking recBCD function either by mutation or by expression of lambda gam were examined. The substrates for recombination were nonreplicating lambda chromosomes, introduced by infection; Red-mediated recombination was initiated by a double-strand break created by the action of a restriction endonuclease in the infected cell. In one type of experiment, two phages marked with restriction site polymorphisms were crossed. Efficient formation of recombinant DNA molecules was observed in ruvC+ recG+, ruvC recG+, ruvC+ recG, and ruvC recG hosts. In a second type of experiment, a 1-kb nonhomology was inserted between the double-strand break and the donor chromosome's restriction site marker. In this case, recombinant formation was found to be partially dependent upon ruvC function, especially in a recG mutant background. In a third type of experiment, the recombining partners were the host cell chromosome and a 4-kb linear DNA fragment containing the cat gene, with flanking lac sequences, released from the infecting phage chromosome by restriction enzyme cleavage in the cell; the formation of chloramphenicol-resistant bacterial progeny was measured. Dependence on RuvC varied considerably among the three types of cross. However, in all cases, the frequency of Red-mediated recombination was higher in recG than in recG+. These observations favor models in which RecG tends to push invading 3'-ended strands back out of recombination intermediates.
Collapse
Affiliation(s)
- A R Poteete
- Department of Molecular Genetics & Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
17
|
Abstract
Several features of bacteriophage lambda suit it for the study of genetic recombination. Central among them are those that make it possible to correlate inheritance of DNA with the inheritance of information encoded by DNA through density-label equilibrium centrifugation. Such studies have revealed relationships between DNA replication and recombination, have identified roles for double-strand breaks in the initiation of recombination, and have elucidated the role of the recombination-stimulating sequence, chi.
Collapse
Affiliation(s)
- F W Stahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229,
| |
Collapse
|
18
|
Sharples GJ, Corbett LM, Graham IR. lambda Rap protein is a structure-specific endonuclease involved in phage recombination. Proc Natl Acad Sci U S A 1998; 95:13507-12. [PMID: 9811830 PMCID: PMC24849 DOI: 10.1073/pnas.95.23.13507] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage lambda encodes a number of genes involved in the recombinational repair of DNA double-strand breaks. The product of one of these genes, rap, has been purified. Truncated Rap proteins that copurify with the full-length form are derived, at least in part, from a rho-dependent transcription terminator located within its coding sequence. Full-length and certain truncated Rap polypeptides bind preferentially to branched DNA substrates, including synthetic Holliday junctions and D-loops. In the presence of manganese ions, Rap acts as an endonuclease that cleaves at the branch point of Holliday and D-loop substrates. It shows no obvious sequence preference or symmetry of cleavage on a Holliday junction. The biochemical analysis of Rap gives an insight into how recombinants could be generated by the nicking of a D-loop without the formation of a classical Holliday junction.
Collapse
Affiliation(s)
- G J Sharples
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | |
Collapse
|
19
|
Chaussee MS, Hill SA. Formation of single-stranded DNA during DNA transformation of Neisseria gonorrhoeae. J Bacteriol 1998; 180:5117-22. [PMID: 9748444 PMCID: PMC107547 DOI: 10.1128/jb.180.19.5117-5122.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is naturally competent for DNA transformation. In contrast to other natural prokaryotic DNA transformation systems, single-stranded donor DNA (ssDNA) has not previously been detected during transformation of N. gonorrhoeae. We have reassessed the physical nature of gonococcal transforming DNA by using a sensitive nondenaturing native blotting technique that detects ssDNA. Consistent with previous analyses, we found that the majority of donor DNA remained in the double-stranded form, and only plasmid DNAs that carried the genus-specific DNA uptake sequence were sequestered in a DNase I-resistant state. However, when the DNA was examined under native conditions, S1 nuclease-sensitive ssDNA was identified in all strains tested except for those bacteria that carried the dud-1 mutation. Surprisingly, ssDNA was also found during transformation of N. gonorrhoeae comA mutants, which suggested that ssDNA was initially formed within the periplasm.
Collapse
Affiliation(s)
- M S Chaussee
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | |
Collapse
|
20
|
Li Z, Karakousis G, Chiu SK, Reddy G, Radding CM. The beta protein of phage lambda promotes strand exchange. J Mol Biol 1998; 276:733-44. [PMID: 9500923 DOI: 10.1006/jmbi.1997.1572] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage lambda encodes a 28 kDa protein called beta that binds to single-stranded DNA and promotes the renaturation of complementary single strands. beta Protein fails to bind directly to duplex DNA but remains bound to the DNA product of renaturation that beta itself catalyzes. These observations led to an examination of the ability of beta protein to promote strand exchange. beta Protein caused the replacement of a 43-mer oligonucleotide annealed to M13 circular single-stranded DNA by a homologous 63-mer whose 20 extra nucleotide residues were complementary to the adjacent 3' region of M13 DNA. The role of beta protein in this reaction was manifested in several ways: beta protein pushed the exchange through four to eight mismatches, which blocked exchange mediated by spontaneous renaturation and branch migration; beta imposed a polarity on the strand exchange that was lacking in the spontaneous reaction; and beta remained bound to the heteroduplex product of strand exchange. These observations reveal a mechanism by which a protein can drive strand exchange in one direction without using ATP or any other exogenous source of energy.
Collapse
Affiliation(s)
- Z Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
21
|
Stahl MM, Thomason L, Poteete AR, Tarkowski T, Kuzminov A, Stahl FW. Annealing vs. invasion in phage lambda recombination. Genetics 1997; 147:961-77. [PMID: 9383045 PMCID: PMC1208271 DOI: 10.1093/genetics/147.3.961] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genetic recombination catalyzed by lambda's Red pathway was studied in rec+ and recA mutant bacteria by examining both intracellular lambda DNA and mature progeny particles. Recombination of nonreplicating phage chromosomes was induced by double-strand breaks delivered at unique sites in vivo. In rec+ cells, cutting only one chromosome gave nearly maximal stimulation of recombination; the recombinants formed contained relatively short hybrid regions, suggesting strand invasion. In contrast, in recA mutant cells, cutting the two parental chromosomes at non-allelic sites was required for maximal stimulation; the recombinants formed tended to be hybrid over the entire region between the two cuts, implying strand annealing. We conclude that, in the absence of RecA and the presence of non-allelic DNA ends, the Red pathway of lambda catalyzes recombination primarily by annealing.
Collapse
Affiliation(s)
- M M Stahl
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | | | | | | | | | |
Collapse
|