1
|
Herbein G, El Baba R. Polyploid Giant Cancer Cells: A Distinctive Feature in the Transformation of Epithelial Cells by High-Risk Oncogenic HCMV Strains. Viruses 2024; 16:1225. [PMID: 39205199 PMCID: PMC11360263 DOI: 10.3390/v16081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection is common in tumor tissues across different types of cancer. While HCMV has not been recognized as a cancer-causing virus, numerous studies hint at its potential role in cancer development where its presence in various cancers corresponds with the hallmarks of cancer. Herein, we discuss and demonstrate that high-risk HCMV-DB and BL strains have the potential to trigger transformation in epithelial cells, including human mammary epithelial cells (HMECs), ovarian epithelial cells (OECs), and prostate epithelial cells (PECs), through the generation of polyploid giant cancer cells (PGCCs). A discussion is provided on how HCMV infection creates a cellular environment that promotes oncogenesis, supporting the continuous growth of CMV-transformed cells. The aforementioned transformed cells, named CTH, CTO, and CTP cells, underwent giant cell cycling with PGCC generation parallel to dedifferentiation, displaying stem-like characteristics and an epithelial-mesenchymal transition (EMT) phenotype. Furthermore, we propose that giant cell cycling through PGCCs, increased EZH2 expression, EMT, and the acquisition of malignant traits represent a deleterious response to the cellular stress induced by high-risk oncogenic HCMV strains, the latter being the origin of the transformation process in epithelial cells upon HCMV infection and leading to adenocarcinoma of poor prognosis.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
- Department of Virology, CHU Besançon, 250000 Besancon, France
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
| |
Collapse
|
2
|
Guimarães ACS, Raposo Vedovi JV, de Almeida Ribeiro CR, Martinelli KG, Pelajo Machado M, de Abreu Manso PP, Euzebio Pereira Dias de Oliveira BC, Bergamini ML, de Rosa CS, Tozetto-Mendoza TR, Fernandes de Souza ACM, Martins MT, Braz-Silva PH, de Paula VS. Cytomegalovirus in Adenoma and Carcinoma Lesions: Detecting Mono-Infection and Co-Infection in Salivary Glands. Int J Mol Sci 2024; 25:7502. [PMID: 39062747 PMCID: PMC11276870 DOI: 10.3390/ijms25147502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 07/28/2024] Open
Abstract
Salivary glands' neoplasms are hard to diagnose and present a complex etiology. However, several viruses have been detected in these neoplasms, such as HCMV, which can play a role in certain cancers through oncomodulation. The co-infections between HCMV with betaherpesviruses (HHV-6 and HHV-7) and polyomaviruses (JCV and BKV) has been investigated. The aim of the current study is to describe the frequency of HCMV and co-infections in patients presenting neoplastic and non-neoplastic lesions, including in the salivary gland. Multiplex quantitative polymerase chain reaction was used for betaherpesvirus and polyomavirus quantification purposes after DNA extraction. In total, 50.7% of the 67 analyzed samples were mucocele, 40.3% were adenoma pleomorphic, and 8.9% were mucoepidermoid carcinoma. Overall, 20.9% of samples presented triple-infections with HCMV/HHV-6/HHV-7, whereas 9.0% were co-infections with HCMV/HHV-6 and HCMV/HHV-7. The largest number of co-infections was detected in pleomorphic adenoma cases. All samples tested negative for polyomaviruses, such as BKV and JCV. It was possible to conclude that HCMV can be abundant in salivary gland lesions. A high viral load can be useful to help better understand the etiological role played by viruses in these lesions. A lack of JCV and BKV in the samples analyzed herein does not rule out the involvement of these viruses in one or more salivary gland lesion subtypes.
Collapse
Affiliation(s)
- Ana Carolina Silva Guimarães
- Molecular Virology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (A.C.S.G.); (J.V.R.V.); (C.R.d.A.R.)
| | - Jéssica Vasques Raposo Vedovi
- Molecular Virology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (A.C.S.G.); (J.V.R.V.); (C.R.d.A.R.)
| | - Camilla Rodrigues de Almeida Ribeiro
- Molecular Virology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (A.C.S.G.); (J.V.R.V.); (C.R.d.A.R.)
| | | | - Marcelo Pelajo Machado
- Pathology Laboratory, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (M.P.M.); (P.P.d.A.M.); (B.C.E.P.D.d.O.)
| | - Pedro Paulo de Abreu Manso
- Pathology Laboratory, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (M.P.M.); (P.P.d.A.M.); (B.C.E.P.D.d.O.)
| | | | - Mariana Lobo Bergamini
- Stomatology Department, Dentistry School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (M.L.B.); (C.S.d.R.); (M.T.M.); (P.H.B.-S.)
| | - Catharina Simioni de Rosa
- Stomatology Department, Dentistry School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (M.L.B.); (C.S.d.R.); (M.T.M.); (P.H.B.-S.)
| | - Tania Regina Tozetto-Mendoza
- Virology Laboratory, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (T.R.T.-M.); (A.C.M.F.d.S.)
| | - Ana Carolina Mamana Fernandes de Souza
- Virology Laboratory, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (T.R.T.-M.); (A.C.M.F.d.S.)
| | - Marília Trierveiler Martins
- Stomatology Department, Dentistry School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (M.L.B.); (C.S.d.R.); (M.T.M.); (P.H.B.-S.)
| | - Paulo Henrique Braz-Silva
- Stomatology Department, Dentistry School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (M.L.B.); (C.S.d.R.); (M.T.M.); (P.H.B.-S.)
- Virology Laboratory, Tropical Medicine Institute of São Paulo, Medical School, University of São Paulo, São Paulo CEP 05508-000, Brazil; (T.R.T.-M.); (A.C.M.F.d.S.)
| | - Vanessa Salete de Paula
- Molecular Virology and Parasitology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365 Brasil Ave., Manguinhos, Rio de Janeiro CEP 21040-360, Brazil; (A.C.S.G.); (J.V.R.V.); (C.R.d.A.R.)
| |
Collapse
|
3
|
Herbein G. Cellular Transformation by Human Cytomegalovirus. Cancers (Basel) 2024; 16:1970. [PMID: 38893091 PMCID: PMC11171319 DOI: 10.3390/cancers16111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Epstein-Barr virus (EBV), Kaposi sarcoma human virus (KSHV), human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV) are the seven human oncoviruses reported so far. While traditionally viewed as a benign virus causing mild symptoms in healthy individuals, human cytomegalovirus (HCMV) has been recently implicated in the pathogenesis of various cancers, spanning a wide range of tissue types and malignancies. This perspective article defines the biological criteria that characterize the oncogenic role of HCMV and based on new findings underlines a critical role for HCMV in cellular transformation and modeling the tumor microenvironment as already reported for the other human oncoviruses.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté (UFC), 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25000 Besançon, France
| |
Collapse
|
4
|
Wu X, Zhou X, Wang S, Mao G. DNA damage response(DDR): a link between cellular senescence and human cytomegalovirus. Virol J 2023; 20:250. [PMID: 37915066 PMCID: PMC10621139 DOI: 10.1186/s12985-023-02203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
The DNA damage response (DDR) is a signaling cascade that is triggered by DNA damage, involving the halting of cell cycle progression and repair. It is a key event leading to senescence, which is characterized by irreversible cell cycle arrest and the senescence-associated secretory phenotype (SASP) that includes the expression of inflammatory cytokines. Human cytomegalovirus (HCMV) is a ubiquitous pathogen that plays an important role in the senescence process. It has been established that DDR is necessary for HCMV to replicate effectively. This paper reviews the relationship between DDR, cellular senescence, and HCMV, providing new sights for virus-induced senescence (VIS).
Collapse
Affiliation(s)
- Xinna Wu
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Xuqiang Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| | - Genxiang Mao
- Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China.
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030, China.
| |
Collapse
|
5
|
Yu C, He S, Zhu W, Ru P, Ge X, Govindasamy K. Human cytomegalovirus in cancer: the mechanism of HCMV-induced carcinogenesis and its therapeutic potential. Front Cell Infect Microbiol 2023; 13:1202138. [PMID: 37424781 PMCID: PMC10327488 DOI: 10.3389/fcimb.2023.1202138] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Human cytomegalovirus (HCMV), a well-studied herpesvirus, has been implicated in malignancies derived from breast, colorectal muscle, brain, and other cancers. Intricate host-virus interactions are responsible for the cascade of events that have the potential to result in the transformed phenotype of normal cells. The HCMV genome contains oncogenes that may initiate these types of cancers, and although the primary HCMV infection is usually asymptomatic, the virus remains in the body in a latent or persistent form. Viral reactivation causes severe health issues in immune-compromised individuals, including cancer patients, organ transplants, and AIDS patients. This review focuses on the immunologic mechanisms and molecular mechanisms of HCMV-induced carcinogenesis, methods of HCMV treatment, and other studies. Studies show that HCMV DNA and virus-specific antibodies are present in many types of cancers, implicating HCMV as an important player in cancer progression. Importantly, many clinical trials have been initiated to exploit HCMV as a therapeutic target for the treatment of cancer, particularly in immunotherapy strategies in the treatment of breast cancer and glioblastoma patients. Taken together, these findings support a link between HCMV infections and cellular growth that develops into cancer. More importantly, HCMV is the leading cause of birth defects in newborns, and infection with HCMV is responsible for abortions in pregnant women.
Collapse
Affiliation(s)
- Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Suna He
- Department of Pharmaceutical Sciences, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Penghui Ru
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kavitha Govindasamy
- School of Arts and Science, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
6
|
High-Risk Oncogenic Human Cytomegalovirus. Viruses 2022; 14:v14112462. [PMID: 36366560 PMCID: PMC9695668 DOI: 10.3390/v14112462] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects between 40% and 95% of the population worldwide, usually without symptoms. The host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in HCMV genomic diversity in humans. The high level of HCMV intra-host genomic variability could participate in the oncomodulatory role of HCMV where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells; such HCMV strains are named high-risk (HR) HCMV strains. In light of these new findings, this review defines the criteria that characterize HR-HCMV strains and their molecular as well as the phenotypic impact on the infected cell and its tumor microenvironment.
Collapse
|
7
|
Janković M, Knežević A, Todorović M, Đunić I, Mihaljević B, Soldatović I, Protić J, Miković N, Stoiljković V, Jovanović T. Cytomegalovirus infection may be oncoprotective against neoplasms of B-lymphocyte lineage: single-institution experience and survey of global evidence. Virol J 2022; 19:155. [PMID: 36171605 PMCID: PMC9520857 DOI: 10.1186/s12985-022-01884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Although cytomegalovirus (CMV) is not considered tumorigenic, there is evidence for its oncomodulatory effects and association with hematological neoplasms. Conversely, a number of experimental and clinical studies suggest its putative anti-tumour effect. We investigated the potential connection between chronic CMV infection in patients with B-lymphocyte (B-cell) malignancies in a retrospective single-center study and extracted relevant data on CMV prevalences and the incidences of B-cell cancers the world over. Methods In the clinical single-center study, prevalence of chronic CMV infection was compared between patients with B-cell leukemia/lymphoma and the healthy controls. Also, global data on CMV seroprevalences and the corresponding country-specific incidences of B- lineage neoplasms worldwide were investigated for potential correlations. Results Significantly higher CMV seropositivity was observed in control subjects than in patients with B-cell malignancies (p = 0.035). Moreover, an unexpected seroepidemiological evidence of highly significant inverse relationship between country-specific CMV prevalence and the annual incidence of B-cell neoplasms was noted across the populations worldwide (ρ = −0.625, p < 0.001). Conclusions We try to draw attention to an unreported interplay between CMV infection and B-cell lymphomagenesis in adults. A large-scale survey across > 70 countries disclosed a link between CMV and B-cell neoplasms. Our evidence hints at an antagonistic effect of chronic CMV infection against B-lymphoproliferation.
Collapse
Affiliation(s)
- Marko Janković
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia.
| | - Aleksandra Knežević
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia
| | - Milena Todorović
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Irena Đunić
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Biljana Mihaljević
- Clinic for Hematology, Faculty of Medicine, University Clinical Centre of Serbia, University of Belgrade, dr Koste Todorovića 2, Belgrade, 11000, Republic of Serbia
| | - Ivan Soldatović
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, dr Subotića 15, Belgrade, 11000, Republic of Serbia
| | - Jelena Protić
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Nevenka Miković
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines, and Sera "Torlak",, Vojvode Stepe 458, Belgrade, 11152, Republic of Serbia
| | - Tanja Jovanović
- Institute of Microbiology and Immunology, Department of Virology, Faculty of Medicine, University of Belgrade, dr Subotića 1, Belgrade, 11000, Republic of Serbia
| |
Collapse
|
8
|
Yang T, Liu D, Fang S, Ma W, Wang Y. Cytomegalovirus and Glioblastoma: A Review of the Biological Associations and Therapeutic Strategies. J Clin Med 2022; 11:jcm11175221. [PMID: 36079151 PMCID: PMC9457369 DOI: 10.3390/jcm11175221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma is the most common and aggressive malignancy in the adult central nervous system. Cytomegalovirus (CMV) plays a crucial role in the pathogenesis and treatment of glioblastoma. We reviewed the epidemiology of CMV in gliomas, the mechanism of CMV-related carcinogenesis, and its therapeutic strategies, offering further clinical practice insights. To date, the CMV infection rate in glioblastoma is controversial, while mounting studies have suggested a high infection rate. The carcinogenesis mechanism of CMV has been investigated in relation to various aspects, including oncomodulation, oncogenic features, tumor microenvironment regulation, epithelial–mesenchymal transition, and overall immune system regulation. In clinical practice, the incidence of CMV-associated encephalopathy is high, and CMV-targeting treatment bears both anti-CMV and anti-tumor effects. As the major anti-CMV treatment, valganciclovir has demonstrated a promising survival benefit in both newly diagnosed and recurrent glioblastoma as an adjuvant therapy, regardless of surgery and the MGMT promoter methylation state. Immunotherapy, including DC vaccines and adoptive CMV-specific T cells, is also under investigation, and preliminary results have been promising. There are still questions regarding the significance of CMV infection and the carcinogenic mechanism of CMV. Meanwhile, studies have demonstrated the clinical benefits of anti-CMV therapy in glioblastoma. Therefore, anti-CMV therapies are worthy of further recognition and investigation.
Collapse
Affiliation(s)
- Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shiyuan Fang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (W.M.); (Y.W.); Tel.: +86-137-0136-4566 (W.M.); +86-153-1186-0318 (Y.W.)
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (W.M.); (Y.W.); Tel.: +86-137-0136-4566 (W.M.); +86-153-1186-0318 (Y.W.)
| |
Collapse
|
9
|
Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death Differ 2022; 29:1639-1653. [PMID: 35194187 PMCID: PMC9346009 DOI: 10.1038/s41418-022-00953-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 01/01/2023] Open
Abstract
Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.
Collapse
|
10
|
Daei Sorkhabi A, Sarkesh A, Saeedi H, Marofi F, Ghaebi M, Silvestris N, Baradaran B, Brunetti O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front Oncol 2022; 12:818447. [PMID: 35515137 PMCID: PMC9062077 DOI: 10.3389/fonc.2022.818447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/28/2023] Open
Abstract
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| |
Collapse
|
11
|
Tumors and Cytomegalovirus: An Intimate Interplay. Viruses 2022; 14:v14040812. [PMID: 35458542 PMCID: PMC9028007 DOI: 10.3390/v14040812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that alternates lytic and latent infection, infecting between 40 and 95% of the population worldwide, usually without symptoms. During its lytic cycle, HCMV can result in fever, asthenia, and, in some cases, can lead to severe symptoms such as hepatitis, pneumonitis, meningitis, retinitis, and severe cytomegalovirus disease, especially in immunocompromised individuals. Usually, the host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in the HCMV genomic diversity in humans and the high level of HCMV intrahost genomic variability. The oncomodulatory role of HCMV has been reported, where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells and might therefore be defined as the eighth human oncovirus. In light of these new findings, it is critical to understand the role of the immune landscape, including the tumor microenvironment present in HCMV-harboring tumors. Finally, the oncomodulatory/oncogenic potential of HCMV could lead to the development of novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies and new therapeutic approaches are actively needed, particularly to fight tumors of poor prognosis.
Collapse
|
12
|
El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From "Canonical" Diseases Toward Virus-Elicited Oncomodulation. Front Immunol 2021; 12:730765. [PMID: 34566995 PMCID: PMC8456041 DOI: 10.3389/fimmu.2021.730765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is an immensely pervasive herpesvirus, persistently infecting high percentages of the world population. Despite the apparent robust host immune responses, HCMV is capable of replicating, evading host defenses, and establishing latency throughout life by developing multiple immune-modulatory strategies. HCMV has coexisted with humans mounting various mechanisms to evade immune cells and effectively win the HCMV-immune system battle mainly through maintaining its viral genome, impairing HLA Class I and II molecule expression, evading from natural killer (NK) cell-mediated cytotoxicity, interfering with cellular signaling, inhibiting apoptosis, escaping complement attack, and stimulating immunosuppressive cytokines (immune tolerance). HCMV expresses several gene products that modulate the host immune response and promote modifications in non-coding RNA and regulatory proteins. These changes are linked to several complications, such as immunosenescence and malignant phenotypes leading to immunosuppressive tumor microenvironment (TME) and oncomodulation. Hence, tumor survival is promoted by affecting cellular proliferation and survival, invasion, immune evasion, immunosuppression, and giving rise to angiogenic factors. Viewing HCMV-induced evasion mechanisms will play a principal role in developing novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies. Since tumors acquire immune evasion strategies, anti-tumor immunity could be prominently triggered by multimodal strategies to induce, on one side, immunogenic tumor apoptosis and to actively oppose the immune suppressive microenvironment, on the other side.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
- Department of Virology, Centre hospitalier régional universitaire de Besançon (CHRU) Besançon, Besancon, France
| |
Collapse
|
13
|
Cimolai N. Preliminary concerns with vaccine vectors. Mutagenesis 2021; 35:359-360. [PMID: 32785590 DOI: 10.1093/mutage/geaa020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.,Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Ghadicolaee SO, Pazhoohan M, Hasanzadeh A, Nematolahi M, Yahyapour Y, Ranaee M, Ghorbani H, Yazdani S, Sadeghi F. Low frequency of human cytomegalovirus in cancerous and precancerous cervical samples of Iranian women. Future Virol 2021. [DOI: 10.2217/fvl-2020-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: HPV-16 has a significant role in cervical cancers; co-infection with human cytomegalovirus (HCMV) as an oncomodulatory pathogen may increase the risk of carcinogenesis. This study aimed to investigate the frequencies of HCMV and HPV-16 in cervical samples. Materials & methods: A total of 102 cancerous and precancerous cervical samples were examined by real-time PCR targeting the HPV-16 E6 gene, and HCMV immediate-early gene. Results: In total, 65 samples (63.7%) were positive for HPV-16. HCMV was found in seven samples (6.9%). Both HPV-16 and HCMV were present in four samples (cervical intraepithelial neoplasia-3 and squamous cell carcinoma groups with two samples each). Conclusion: HCMV can infect cervical tissues at a low frequency, suggesting that HCMV is unlikely to play a role in the cervical carcinogenesis.
Collapse
Affiliation(s)
- Somayeh Oladi Ghadicolaee
- Clinical Research Development Center, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Pazhoohan
- Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hasanzadeh
- Department of Virology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahvash Nematolahi
- Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yousef Yahyapour
- Infectious Diseases & Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ranaee
- Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Ghorbani
- Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Shahla Yazdani
- Department of Obstetrics & Gynecology, Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
15
|
Habibi Z, Hajizadeh M, Nozarian Z, Safavi M, Monajemzadeh M, Meybodi KT, Nejat F, Vasei M. Cytomegalovirus DNA in non-glioblastoma multiforme brain tumors of infants. Childs Nerv Syst 2021; 37:1581-1586. [PMID: 33409619 DOI: 10.1007/s00381-021-05038-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE CMV antigens have been detected in some brain tumors specially glioblastoma multiforme (GBM). As brain tumors in the first years of life are among the most aggressive neoplasms with poor prognosis, novel therapeutic options like targeted therapy against virus antigens are demanded. Infantile central nervous system tumors, other than GBM, have not been so far studied for CMV. To our best knowledge, this is the first study in which the presence of CMV-DNA, as a potential viral target for therapy, in non-GBM infantile brain tumors has been investigated. METHODS The paraffin blocks of non-GBM brain neoplasms of 36 infants (age < 24 months) who were operated on between 2006 and 2016 were examined for CMV-DNA, using real-time polymerase chain reaction (PCR). Paraffin blocks of CMV infected lung tissue were used as positive control. Extraction and amplification of β2 microglobulin gene from each tumor tissue were carried as positive internal control. We also assayed 25 paraffin blocks of meningomyelocele for CMV DNA as negative tissue controls. RESULTS Histopathological diagnoses consisted of 13 glial/neuroglial tumors (36.1%), 8 ependymomas (22.2%), 7 medulloblastomas (19.4%), 3 choroid plexus tumors (8.3%), 2 atypical teratoid rhabdoid tumors (5.6%), 2 embryonal CNS tumors (5.6%), and 1 germ cell tumor (2.8%). We could not detect CMV DNA in all samples examined. CONCLUSION Although CMV may be associated with GBM, no role could be proposed for this virus in development of non-GBM infantile brain tumors. Further investigations on larger series of brain tumors should be conducted to confirm or rule out our conclusion.
Collapse
Affiliation(s)
- Zohreh Habibi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Hajizadeh
- Department of Pediatric Pathology, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Nozarian
- Department of Pediatric Pathology, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Moeinadin Safavi
- Department of Pediatric Pathology, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Monajemzadeh
- Department of Pediatric Pathology, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Tayebi Meybodi
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Nejat
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vasei
- Cell-based Therapies Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
16
|
Çağlar Ö, Çobanoğlu H, Uslu A, Çayır A. Evaluation of DNA damages in congenital hearing loss patients. Mutat Res 2021; 822:111744. [PMID: 33934048 DOI: 10.1016/j.mrfmmm.2021.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
In the current study, we aimed to compare the level of genetic damages measured as micronucleus (MN), nucleoplasmic bridge (NPB), and nuclear bud formation (NBUD) in congenital hearing loss patients (n = 17) and control group (n = 24). The cytokinesis-blocked micronucleus assay (CBMN) was applied to the blood samples to measure the frequency of the markers in both groups. The frequencies of MN of hearing loss patients were found to be consistently significantly higher than those obtained for the control group (p < 0.0001). Similarly, we found significantly higher frequency of NPB in patients was obtained for the patient group (p < 0.0001). Finally, the frequencies of NBUD in patients is significantly higher than the level measured in the control group (p < 0.0001). Furthermore, the age-adjusted MNL, BNMN, NPB, and NBUD frequencies in the patients were significantly higher than those obtained in the control group. We observed that the frequency of MN in patients was positively correlated with NBUD frequency which may indicate a common mechanism for these biomarkers in the patient group. We found, for the first time, that there were statistically significant higher levels of MN, NPB, and NBUD in sensorineural hearing loss patients. Since the markers we evaluated were linked with crucial diseases, our findings might suggest that sensorineural hearing loss patients are susceptible to several crucial diseases, especially cancer. Furthermore, the results demonstrated the significance of the MN, NPB, and NBUD level and thus provides a potential marker for the diagnosis of congenital hearing loss patients.
Collapse
Affiliation(s)
- Özge Çağlar
- Otorhinolaryngology-Department of Head and Neck Surgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Turkey
| | - Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Atilla Uslu
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093, Capa, Istanbul, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
17
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
18
|
Fulkerson HL, Nogalski MT, Collins-McMillen D, Yurochko AD. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol Biol 2021; 2244:1-18. [PMID: 33555579 DOI: 10.1007/978-1-0716-1111-1_1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus with a global seroprevalence of 60-90%. HCMV is the leading cause of congenital infections and poses a great health risk to immunocompromised individuals. Although HCMV infection is typically asymptomatic in the immunocompetent population, infection can result in mononucleosis and has also been associated with the development of certain cancers, as well as chronic inflammatory diseases such as various cardiovascular diseases. In immunocompromised patients, including AIDS patients, transplant recipients, and developing fetuses, HCMV infection is associated with increased rates of morbidity and mortality. Currently there is no vaccine for HCMV and there is a need for new pharmacological treatments. Ongoing research seeks to further define the complex aspects of HCMV pathogenesis, which could potentially lead to the generation of new therapeutics to mitigate the disease states associated with HCMV infection. The following chapter reviews the advancements in our understanding of HCMV pathogenesis in the immunocompetent and immunocompromised hosts.
Collapse
Affiliation(s)
- Heather L Fulkerson
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
19
|
Human alpha and beta herpesviruses and cancer: passengers or foes? Folia Microbiol (Praha) 2020; 65:439-449. [PMID: 32072398 DOI: 10.1007/s12223-020-00780-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Based on seroepidemiological studies, human herpes simplex virus types 1 and 2 (HSV-1, HSV-2) are put in relation with a number of cancer diseases; however, they do not appear to play a direct role, being only considered cofactors. Their ability to transform the cells in vitro could be demonstrated experimentally by removing their high lytic ability by a certain dose of UV radiation or by photoinactivation in the presence of photosensitizers, such as neutral red or methylene blue, or culturing under conditions suppressing their lytic activity. However, recent studies indicate that UV irradiated or photoinactivated HSV-1 and HSV-2, able to transform non-transformed cells, behave differently in transformed cells suppressing their transformed phenotype. Furthermore, both transforming and transformed phenotype suppressing activities are pertaining only to non-syncytial virus strains. There are some proposed mechanisms explaining their transforming activity. According to the "hit and run" mechanism, viral DNA induces only initiation of transformation by interacting with cellular DNA bringing about mutations and epigenetic changes and is no longer involved in other processes of neoplastic progression. According to the "hijacking" mechanism, virus products in infected cells may activate signalling pathways and thus induce uncontrolled proliferation. Such a product is e.g. a product of HSV-2 gene designated ICP10 that encodes an oncoprotein RR1PK that activates the Ras pathway. In two cases of cancer, in the case of serous ovarian carcinoma and in some prostate tumours, virus-encoded microRNAs (miRNAs) were detected as a possible cofactor in tumorigenesis. And, recently described herpes virus-associated growth factors with transforming and transformation repressing activity might be considered important factors playing a role in tumour formation. And finally, there is a number of evidence that HSV-2 may increase the risk of cervical cancer after infection with human papillomaviruses. A similar situation is with human cytomegalovirus; however, here, a novel mechanism named oncomodulation has been proposed. Oncomodulation means that HCMV infects tumour cells and modulates their malignant properties without having a direct effect on cell transformation.
Collapse
|
20
|
Geisler J, Touma J, Rahbar A, Söderberg-Nauclér C, Vetvik K. A Review of the Potential Role of Human Cytomegalovirus (HCMV) Infections in Breast Cancer Carcinogenesis and Abnormal Immunity. Cancers (Basel) 2019; 11:cancers11121842. [PMID: 31766600 PMCID: PMC6966479 DOI: 10.3390/cancers11121842] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Previously recognized classical human onco-viruses can regulate complex neoplastic events, and are estimated to play a role during carcinogenesis in 15-20% of cancer cases. Although the DNA and gene products of several viruses have been found in breast tumors, none of the classical onco-viruses have definitely been linked to the initiation of breast cancer. However, recent evidence shows that human cytomegalovirus (HCMV) gene products are found in >90% of tumors and metastases of breast cancers, and their increased expression can be correlated to a more aggressive breast cancer phenotype. Supporting the active role of HCMV in breast cancer, a specific HCMV strain, HCMV-DB, was recently shown to exert oncogenic transformational activity in breast epithelial cells in vitro, and to give rise to fast-growing, triple-negative breast tumors when injected into immune deficient mice. The same observation holds true for clinical studies implying increased HCMV protein expression in triple negative breast cancer biopsies. In addition to functionally being able to hijack tumor-promoting cellular events, HCMV is known to exhibit a wide range of immunosuppressive effects, which can have radical impact on the tumor microenvironment. HCMV infected cells can avoid recognition and elimination by the immune system by orchestrating polarization of immunosuppressive type II macrophages, preventing antigen presentation, by expressing T cell inhibitory molecules, and possibly, by the induction of regulatory T (Treg) cell responses. These actions would be especially deleterious for the antigenic activation and proliferation of tumor specific CD8+ cytotoxic T lymphocytes (CTLs), whose effector functions have recently been targeted by successful, experimental immunotherapy protocols. The recognition of alternative causes and drivers of breast cancer is a pivotal research topic for the development of diagnostics and novel, effective preventive and therapeutic strategies targeting both tumor cells and their microenvironments.
Collapse
Affiliation(s)
- Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway; (J.G.); (J.T.)
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Joel Touma
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway; (J.G.); (J.T.)
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Department of Breast and Endocrine Surgery at Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Afsar Rahbar
- Department of Medicine, Division of Microbial Pathogenesis, Bioclinicum, Karolinska Institutet, 17176 Stockholm, Sweden; (A.R.); (C.S.-N.)
- Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Division of Microbial Pathogenesis, Bioclinicum, Karolinska Institutet, 17176 Stockholm, Sweden; (A.R.); (C.S.-N.)
- Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Department of Breast and Endocrine Surgery at Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Correspondence: ; Tel.: +47-95796638
| |
Collapse
|
21
|
Cytomegalovirus is a tumor-associated virus: armed and dangerous. Curr Opin Virol 2019; 39:49-59. [PMID: 31525538 DOI: 10.1016/j.coviro.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) gene products are present in multiple human malignancies, often in specific association with tumor cells and tumor vasculature. Emerging evidence from human and mouse models of CMV infection in cancer indicate that CMV can transform epithelial cells, promote epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial (MET) in tumor cells, promote tumor angiogenesis and proliferation and incapacitate the host anti-CMV immune response. This review will discuss the increasing role of HCMV in human cancer by demonstrating how HCMV is well suited for impacting major themes in oncogenesis including initiation, promotion, progression, metastasis and immune evasion. What emerges is a picture of an extremely versatile pathogen that may play a significant role in human cancer progression and death.
Collapse
|
22
|
Nauclér CS, Geisler J, Vetvik K. The emerging role of human cytomegalovirus infection in human carcinogenesis: a review of current evidence and potential therapeutic implications. Oncotarget 2019; 10:4333-4347. [PMID: 31303966 PMCID: PMC6611507 DOI: 10.18632/oncotarget.27016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
It is well-established that infections with viruses harboring oncogenic potential increase the cancer risk. Virus induced oncogenic processes are influenced by a complex and unique combination of host and environmental risk factors that are currently not fully understood. Many of the oncogenic viruses exhibit a prolonged, asymptomatic latency after a primary infection, and cause cancer in only a minority of carriers. From an epidemiologic point of view, it is therefore difficult to determine their role in cancer development. However, recent evidence suggests a neoplastic potential of one additional ubiquitous virus; human Cytomegalovirus (HCMV). Emerging data presents HCMV as a plausible cancer-causing virus by demonstrating its presence in >90% of common tumor types, while being absent in normal tissue surrounding the tumor. HCMV targets many cell types in tumor tissues, and can cause all the ten proposed hallmarks of cancer. This virus exhibits cellular tumor-promoting and immune-evasive strategies, hijacks proangiogenic and anti-apoptotic mechanisms and induces immunosuppressive effects in the tumor micro-environment. Recognizing new cancer-causing mechanisms may increase the therapeutic potential and prophylactic options for virus associated cancer forms. Such approaches could limit viral spread, and promote anti-viral and immune controlling strategies if given as add on to standard therapy to potentially improve the prognosis of cancer patients. This review will focus on HCMV-related onco-viral mechanisms and the potential of HCMV as a new therapeutic target in HCMV positive cancer forms.
Collapse
Affiliation(s)
- Cecilia Söderberg Nauclér
- Department of Medicine, Unit of Microbial Pathogenesis, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Breast and Endocrine Surgery, AHUS, Lørenskog, Norway
| |
Collapse
|
23
|
Piper K, Foster H, Gabel B, Nabors B, Cobbs C. Glioblastoma Mimicking Viral Encephalitis Responds to Acyclovir: A Case Series and Literature Review. Front Oncol 2019; 9:8. [PMID: 30723703 PMCID: PMC6350341 DOI: 10.3389/fonc.2019.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Viral encephalitis and glioblastoma are both relatively rare conditions with poor prognoses. While the clinical and radiographic presentations of these diseases are often distinctly different, viral encephalitis can sometimes masquerade as glioblastoma. Rarely, glioblastoma can also be misdiagnosed as viral encephalitis. In some cases where a high-grade glioma was initially diagnosed as viral encephalitis, antiviral administration has proven effective for relieving early symptoms. We present three cases in which patients presented with symptoms and radiographic findings suggestive of viral encephalitis and experienced dramatic clinical improvement following treatment with acyclovir, only to later be diagnosed with glioblastoma in the region of suspected encephalitis and ultimately succumb to tumor progression.
Collapse
Affiliation(s)
- Keenan Piper
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| | - Haidn Foster
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brandon Gabel
- Department of Neurological Surgery, University of California San Diego Medical Center, San Diego, CA, United States
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Charles Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| |
Collapse
|
24
|
Garolla A, Vitagliano A, Muscianisi F, Valente U, Ghezzi M, Andrisani A, Ambrosini G, Foresta C. Role of Viral Infections in Testicular Cancer Etiology: Evidence From a Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2019; 10:355. [PMID: 31263452 PMCID: PMC6584824 DOI: 10.3389/fendo.2019.00355] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023] Open
Abstract
The most represented histotype of testicular cancer is the testicular germ-cell tumor (TGCT), both seminoma and non-seminoma. The pathogenesis of this cancer is poorly known. A possible causal relationship between viral infections and TGCTs was firstly evoked almost 40 years ago and is still a subject of debate. In the recent past, different authors have argued about a possible role of specific viruses in the development of TGCTs including human papillomavirus (HPV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), Parvovirus B-19, and human immunodeficiency virus (HIV). The aim of this present review was to summarize, for each virus considered, the available evidence on the impact of viral infections on the risk of developing TGCTs. The review was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We included all observational studies reported in English evaluating the correlations between viral infections (HPV, CMV, EBV, Parvovirus B19, and HIV) and TGCTs. The methodological quality of studies included in the meta-analysis was evaluated using a modified version of the "Newcastle-Ottawa Scale." Meta-analyses were conducted using the "Generic inverse variance" method, where a pooled odds ratio (OR) was determined from the natural logarithm (LN) of the studies' individual OR [LN (OR)] and the 95% CI. A total of 20 studies (on 265,057 patients) were included in the review. Meta-analysis showed an association with TGCTs only for some of the explored viruses. In particular, no association was found for HPV, CMV, and Parvovirus B-19 infection (p = ns). Conversely, EBV and HIV infections were significantly associated with higher risk of developing TGCTs (OR 7.38, 95% CI 1.89-28.75, p = 0.004; OR 1.71, 95% CI 1.51-1.93, p < 0.00001). In conclusion, we found adequate evidence supporting an oncogenic effect of HIV and EBV on the human testis. Conversely, available data on HPV and TGCTs risk are conflicting and further studies are needed to draw firm conclusions. Finally, current evidence does not support an effect of CMV and Parvovirus B-19 on testicular carcinogenesis.
Collapse
Affiliation(s)
- Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Section of Endocrinology, Department of Medicine, Centre for Male Gamete Cryopreservation, University of Padova, Padova, Italy
- *Correspondence: Andrea Garolla
| | - Amerigo Vitagliano
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padova, Padova, Italy
| | - Francesco Muscianisi
- Unit of Andrology and Reproductive Medicine, Section of Endocrinology, Department of Medicine, Centre for Male Gamete Cryopreservation, University of Padova, Padova, Italy
| | - Umberto Valente
- Unit of Andrology and Reproductive Medicine, Section of Endocrinology, Department of Medicine, Centre for Male Gamete Cryopreservation, University of Padova, Padova, Italy
| | - Marco Ghezzi
- Unit of Andrology and Reproductive Medicine, Section of Endocrinology, Department of Medicine, Centre for Male Gamete Cryopreservation, University of Padova, Padova, Italy
| | - Alessandra Andrisani
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padova, Padova, Italy
| | - Guido Ambrosini
- Unit of Gynecology and Obstetrics, Department of Women and Children's Health, University of Padova, Padova, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Section of Endocrinology, Department of Medicine, Centre for Male Gamete Cryopreservation, University of Padova, Padova, Italy
| |
Collapse
|
25
|
Kienka T, Varga MG, Caves J, Smith JS, Sivaraman V. Epstein-Barr virus, but not human cytomegalovirus, is associated with a high-grade human papillomavirus-associated cervical lesions among women in North Carolina. J Med Virol 2018; 91:450-456. [PMID: 30307626 DOI: 10.1002/jmv.25336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/29/2018] [Indexed: 02/02/2023]
Abstract
STATEMENT OF THE PROBLEM Human papillomavirus (HPV) infection is known to contribute to cervical carcinogenesis, yet other cofactors that may contribute to oncogenesis are poorly understood. Herein, we examine whether the Epstein-Barr virus (EBV) and human cytomegalovirus (CMV), two oncomodulatory viruses, are associated with HPV-mediated cervical neoplastic progression. METHODS Sixty patient cervical brush samples from a study of North Carolina women were obtained. HPV RNA positivity was determined by Aptima testing (Hologic Corporation, Marlborough, MA). The level of viral transcripts for EBV and CMV was quantified (reverse transcription polymerase chain reaction analysis), and the coinfection status with HPV was then compared with the patient's cervical cytology grade. RESULTS Over one-third (38.3%) of the study population was CMV positive, whereas 43.3% was EBV positive. When sample data were stratified by the cytology grade, 36.5% (19/52) of normal patients, 75% (3/4) of low-grade squamous intraepithelial lesions (LSIL), and 100% (4/4) of patients with high-grade SIL (HSIL) were EBV positive. Conversely, 35.2% (18/52) of normal patients, 25% (1/4) of patients with LSIL, and 50% (2/4) of patients with HSIL were CMV positive. When examining only HPV positive-associated HSIL, 100% (4/4) were positive for both HPV and EBV detection. This suggests that co-viral detection with HPV and EBV is associated with more advanced HSIL cervical lesions, while CMV displayed no clear association with a higher grade of cervical cytology. CONCLUSIONS Co-viral detection with EBV may increase the oncogenicity and/or serve as a viral marker of progression to HPV-associated high-grade cervical dysplasia.
Collapse
Affiliation(s)
- Tamina Kienka
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina
| | - Matthew G Varga
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Josie Caves
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Jennifer S Smith
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina
| |
Collapse
|
26
|
More than just oncogenes: mechanisms of tumorigenesis by human viruses. Curr Opin Virol 2018; 32:48-59. [PMID: 30268926 DOI: 10.1016/j.coviro.2018.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022]
Abstract
Most humans are infected with at least one of the known human cancer viruses during their lifetimes. While the initial infection with these viruses does not cause major disease, infected cells can acquire cancer hallmarks, particularly upon immunosuppression or exposure to co-carcinogenic stimuli. Even though cancer formation represents a rare outcome of a viral infection, approximately one out of eight human cancers has a viral etiology. Viral cancers present unique opportunities for prophylaxis, diagnosis, and therapy, as demonstrated by the success of HBV and HPV vaccines and HCV antivirals in decreasing the incidence of tumors that are caused by these viruses. Here we review common characteristics and mechanisms of action of the human oncogenic viruses.
Collapse
|
27
|
Kumar A, Tripathy MK, Pasquereau S, Al Moussawi F, Abbas W, Coquard L, Khan KA, Russo L, Algros MP, Valmary-Degano S, Adotevi O, Morot-Bizot S, Herbein G. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018; 30:167-183. [PMID: 29628341 PMCID: PMC5952350 DOI: 10.1016/j.ebiom.2018.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods The infectivity of primary human mammary epithelial cells (HMECs) was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3) was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs) were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG) mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9) gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma (NSG) mice resulted in the development of tumors. We detected in CTH cells the presence of a HCMV signature corresponding to a sequence of the long noncoding RNA4.9 (lncRNA4.9) gene. We also found the presence of the HCMV lncRNA4.9 sequence in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer using qualitative and quantitative PCR. Conclusions Our data indicate that key molecular pathways involved in oncogenesis are activated in HCMV-DB-infected HMECs that ultimately results in the transformation of HMECs in vitro with the appearance of CMV-transformed HMECs (CTH cells) in culture. CTH cells display a HCMV signature corresponding to a lncRNA4.9 genomic sequence and give rise to fast growing triple-negative tumors in NSG mice. A similar lncRNA4.9 genomic sequence was detected in tumor biopsies of patients with breast cancer. The infection of primary human mammary epithelial cells (HMECs) with the HCMV-DB strain results in a pro-oncogenic cellular environment. HCMV-DB transforms primary HMECs in vitro as measured by a soft agar assay. Prolonged culture of HMECs infected with HCMV-DB results in the appearance of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma mice resulted in the development of breast tumor. The HCMV lncRNA4.9 sequence was detected in CTH cells, in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer.
Research in Context: Worldwide breast cancer is the most common cancer diagnosed among women. Etiological factors involved in breast cancer include genetic and environmental risk factors and among these latter viruses could be involved with close to one-fifth of all cancers in the world caused by infectious agents. We found that the cytomegalovirus strain DB, a member of the herpesvirus family, activates oncogenic pathways in infected mammary epithelial cells, transforms these cells in culture and favors the appearance of tumors in xenografted mice. Our findings might lead to a better understanding of the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Manoj Kumar Tripathy
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France.
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Lebanese University, Beyrouth, Lebanon
| | | | - Laurie Coquard
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Kashif Aziz Khan
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon, F-25030 Besançon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, University of Bourgogne Franche-Comté, Besançon, France; Department of Medical Oncology, CHRU Besancon, F-25030 Besancon, France.
| | | | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Department of Virology, CHRU Besancon, F-25030 Besancon, France.
| |
Collapse
|
28
|
Vasou A, Paulus C, Narloch J, Gage ZO, Rameix-Welti MA, Eléouët JF, Nevels M, Randall RE, Adamson CS. Modular cell-based platform for high throughput identification of compounds that inhibit a viral interferon antagonist of choice. Antiviral Res 2018; 150:79-92. [PMID: 29037975 PMCID: PMC5800491 DOI: 10.1016/j.antiviral.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
Viral interferon (IFN) antagonists are a diverse class of viral proteins that counteract the host IFN response, which is important for controlling viral infections. Viral IFN antagonists are often multifunctional proteins that perform vital roles in virus replication beyond IFN antagonism. The critical importance of viral IFN antagonists is highlighted by the fact that almost all viruses encode one of these proteins. Inhibition of viral IFN antagonists has the potential to exert pleiotropic antiviral effects and thus this important protein class represents a diverse plethora of novel therapeutic targets. To exploit this, we have successfully developed and executed a novel modular cell-based platform that facilitates the safe and rapid screening for inhibitors of a viral IFN antagonist of choice. The platform is based on two reporter cell-lines that provide a simple method to detect activation of IFN induction or signaling via an eGFP gene placed under the control of the IFNβ or an ISRE-containing promoter, respectively. Expression of a target IFN antagonist in the appropriate reporter cell-line will block the IFN response and hence eGFP expression. We hypothesized that addition of a compound that inhibits IFN antagonist function will release the block imposed on the IFN response and hence restore eGFP expression, providing a measurable parameter for high throughput screening (HTS). We demonstrate assay proof-of-concept by (i) exploiting hepatitis C virus (HCV) protease inhibitors to inhibit NS3-4A's capacity to block IFN induction and (ii) successfully executing two HTS targeting viral IFN antagonists that block IFN signaling; NS2 and IE1 from human respiratory syncytial virus (RSV) and cytomegalovirus (CMV) respectively, two clinically important viruses for which vaccine development has thus far been unsuccessful and new antivirals are required. Both screens performed robustly and Z' Factor scores of >0.6 were achieved. We identified (i) four hit compounds that specifically inhibit RSV NS2's ability to block IFN signaling by mediating STAT2 degradation and exhibit modest antiviral activity and (ii) two hit compounds that interfere with IE1 transcription and significantly impair CMV replication. Overall, we demonstrate assay proof-of-concept as we target viral IFN antagonists from unrelated viruses and demonstrate its suitability for HTS.
Collapse
Affiliation(s)
- Andri Vasou
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Christina Paulus
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Janina Narloch
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Zoe O Gage
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Marie-Anne Rameix-Welti
- UMR INSERM U1173 2I, UFR des Sciences de la Santé Simone Veil-UVSQ, 78180, Montigny-Le-Bretonneux, France; AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, 92104, Boulogne-Billancourt, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, 78352, Jouy-en-Josas, France
| | - Michael Nevels
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Richard E Randall
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom
| | - Catherine S Adamson
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom.
| |
Collapse
|
29
|
Identification and comparison of RCMV ALL 03 open reading frame (ORF) among several different strains of cytomegalovirus worldwide. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Cellular responses to human cytomegalovirus infection: Induction of a mesenchymal-to-epithelial transition (MET) phenotype. Proc Natl Acad Sci U S A 2017; 114:E8244-E8253. [PMID: 28874566 DOI: 10.1073/pnas.1710799114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the prototypical human β-herpes virus. Here we perform a systems analysis of the HCMV host-cell transcriptome, using gene set enrichment analysis (GSEA) as an engine to globally map the host-pathogen interaction across two cell types. Our analysis identified several previously unknown signatures of infection, such as induction of potassium channels and amino acid transporters, derepression of genes marked with histone H3 lysine 27 trimethylation (H3K27me3), and inhibition of genes related to epithelial-to-mesenchymal transition (EMT). The repression of EMT genes was dependent on early viral gene expression and correlated with induction E-cadherin (CDH1) and mesenchymal-to-epithelial transition (MET) genes. Infection of transformed breast carcinoma and glioma stem cells similarly inhibited EMT and induced MET, arguing that HCMV induces an epithelium-like cellular environment during infection.
Collapse
|
31
|
Jain A, Prakash G, Khadwal A, Malhotra P, Bal A, Ahluwalia J, Varma S. Bloody Diarrhea in a Patient of Aggressive Lymphoma: a Diagnostic and Therapeutic Challenge. Indian J Hematol Blood Transfus 2017; 33:423-426. [PMID: 28824250 PMCID: PMC5544639 DOI: 10.1007/s12288-016-0748-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/15/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ankur Jain
- Department of Internal Medicine, PGIMER, 4th floor, Nehru Hospital, Chandigarh, 160012 India
| | - Gaurav Prakash
- Department of Internal Medicine, PGIMER, 4th floor, Nehru Hospital, Chandigarh, 160012 India
| | - Alka Khadwal
- Department of Internal Medicine, PGIMER, 4th floor, Nehru Hospital, Chandigarh, 160012 India
| | - Pankaj Malhotra
- Department of Internal Medicine, PGIMER, 4th floor, Nehru Hospital, Chandigarh, 160012 India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh, 160012 India
| | | | - Subhash Varma
- Department of Internal Medicine, PGIMER, 4th floor, Nehru Hospital, Chandigarh, 160012 India
| |
Collapse
|
32
|
Ingerslev K, Hogdall E, Schnack TH, Skovrider-Ruminski W, Hogdall C, Blaakaer J. The potential role of infectious agents and pelvic inflammatory disease in ovarian carcinogenesis. Infect Agent Cancer 2017; 12:25. [PMID: 28529540 PMCID: PMC5437405 DOI: 10.1186/s13027-017-0134-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022] Open
Abstract
Background The etiological cause of ovarian cancer is poorly understood. It has been theorized that bacterial or viral infection as well as pelvic inflammatory disease could play a role in ovarian carcinogenesis. Aim To review the literature on studies examining the association between ovarian cancer and bacterial or viral infection or pelvic inflammatory disease. Methods Database search through MEDLINE, applying the medical subject headings: “Ovarian neoplasms”, AND “Chlamydia infections”, “Neisseria gonorrhoeae”, “Mycoplasma genitalium”, “Papillomaviridae”, or “pelvic inflammatory disease”. Corresponding searches were performed in EMBASE, and Web of Science. The literature search identified 935 articles of which 40 were eligible for inclusion in this review. Results Seven studies examined the association between bacterial infection and ovarian cancer. A single study found a significant association between chlamydial infection and ovarian cancer, while another study identified Mycoplasma genitalium in a large proportion of ovarian cancer cases. The remaining studies found no association. Human papillomavirus detection rates varied from 0 to 67% and were generally higher in the Asian studies than in studies from Western countries. Cytomegalovirus was the only other virus to be detected and was found in 50% of cases in a case-control study. The association between ovarian cancer and pelvic inflammatory disease was examined in seven epidemiological studies, two of which, reported a statistically significant association. Conclusions Data indicate a potential association between pelvic inflammatory disease and ovarian cancer. An association between ovarian cancer and high-risk human papillomavirus genotypes may exist in Asia, whereas an association in Western countries seems unlikely due to the low reported prevalence. Potential carcinogenic bacteria were found, but results were inconsistent, and further research is warranted. Electronic supplementary material The online version of this article (doi:10.1186/s13027-017-0134-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kasper Ingerslev
- Department of Gynaecology and Obstetrics, Odense University Hospital, Denmark, Soendre Blvd. 29, 5000 Odense C, Denmark
| | - Estrid Hogdall
- Department of Pathology, Herlev and Gentofte Hospital, Denmark, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Tine Henrichsen Schnack
- Gynaecologic Clinic, Copenhagen University Hospital, Denmark, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Claus Hogdall
- Gynaecologic Clinic, Copenhagen University Hospital, Denmark, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jan Blaakaer
- Department of Gynaecology and Obstetrics, Odense University Hospital, Denmark, Soendre Blvd. 29, 5000 Odense C, Denmark
| |
Collapse
|
33
|
Rahbar A, Touma J, Costa H, Davoudi B, Bukholm IR, Sauer T, Vetvik K, Geisler J, Söderberg-Naucler C. Low Expression of Estrogen Receptor-α and Progesterone Receptor in Human Breast Cancer Tissues Is Associated With High-Grade Human Cytomegalovirus Protein Expression. Clin Breast Cancer 2017; 17:526-535.e1. [PMID: 28595965 DOI: 10.1016/j.clbc.2017.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/21/2017] [Accepted: 04/29/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND The underlying mechanisms for breast cancer (BC) are largely unknown. We investigated possible correlations between the expression levels of human cytomegalovirus (HCMV) proteins and established histopathological markers of BC, including expression of estrogen receptor (ER)-α, the progesterone receptor (PgR), and HER2. MATERIALS AND METHODS We retrospectively examined paraffin-embedded biopsy specimens of BC (n = 62), ductal carcinoma in situ (n = 19), and adjacent normal breast tissue (n = 42) for HCMV immediate-early protein (IE), HCMV late antigen, HCMV DNA and RNA, and investigated possible correlations between them and expression of ER-α, PgR, and HER2. RESULTS HCMV DNA and RNA were detected in all examined infiltrating BCs. High-grade positivity for HCMV-IE was detected in 77% of infiltrating BCs, 39% of ductal carcinomas in situ, and 7% of tumor-free breast tissue samples. HCMV expression correlated inversely with ER-α (P = .02) and PgR (P = .003) expression. HER2 expression was also reduced in HCMV-positive samples without reaching a level of statistical significance (P = .09). CONCLUSION The negative correlation between high-grade expression HCMV-IE and hormone receptor expression suggests a role for HCMV in hormone receptor-negative BC tumors, possibly by forcing BC cells into a more aggressive phenotype.
Collapse
Affiliation(s)
- Afsar Rahbar
- Department of Medicine Solna, Experimental Cardiovascular Research Unit and Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Joel Touma
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Helena Costa
- Department of Medicine Solna, Experimental Cardiovascular Research Unit and Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Belghis Davoudi
- Department of Medicine Solna, Experimental Cardiovascular Research Unit and Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ida Rashid Bukholm
- Norwegian System of Compensation for Patient Claimes, Oslo, Norway; Norwegian University of Life Sciences, Oslo, Norway
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, Lørenskog, Oslo, Norway
| | - Katja Vetvik
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, Lørenskog, Oslo, Norway; Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Experimental Cardiovascular Research Unit and Departments of Medicine and Neurology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
34
|
The cytomegalovirus protein UL138 induces apoptosis of gastric cancer cells by binding to heat shock protein 70. Oncotarget 2016; 7:5630-45. [PMID: 26735338 PMCID: PMC4868710 DOI: 10.18632/oncotarget.6800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/05/2015] [Indexed: 01/16/2023] Open
Abstract
It has been hypothesized that human cytomegalovirus (HCMV) could act as a tumor promoter and play an “oncomodulatory” role in the neoplastic process of several human malignancies. However, we demonstrate for the first time that UL138, a HCMV latency-associated gene, could act as a tumor inhibitor in gastric cancer (GC). The expression of UL138 is down-regulated in HCMV positive gastric adenocarcinoma tissues, especially in poorly or none differentiated tumors. Overexpression of UL138 in several human GC cell lines inhibits cell viability and induces apoptosis, in association with the reduction of an anti-apoptotic Bcl-2 protein and the induction of cleaved caspase-3 and caspase-9. Moreover, protein array analysis reveals that UL138 interacts with a chaperone protein, heat shock protein 70 (HSP70). This interaction is confirmed by immunoprecipitation and immunostaining in situ in GC cell lines. In addition, this UL138-mediated cancer cell death could efficiently lead to suppression of human tumor growth in a xenograft animal model of GC. In conclusion, these results uncover a previously unknown role of the cytomegalovirus protein UL138 in inducing GC cells apoptosis, which might imply a general mechanism that viral proteins inhibit cancer growth in interactions with both chaperones and apoptosis-related proteins. Our findings might provide a potential target for new therapeutic strategies of GC treatment.
Collapse
|
35
|
Guidry JT, Scott RS. The interaction between human papillomavirus and other viruses. Virus Res 2016; 231:139-147. [PMID: 27826043 DOI: 10.1016/j.virusres.2016.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The etiological role of human papillomavirus (HPV) in anogenital tract and head and neck cancers is well established. However, only a low percentage of HPV-positive women develop cancer, indicating that HPV is necessary but not sufficient in carcinogenesis. Several biological and environmental cofactors have been implicated in the development of HPV-associated carcinoma that include immune status, hormonal changes, parity, dietary habits, tobacco usage, and co-infection with other sexually transmissible agents. Such cofactors likely contribute to HPV persistent infection through diverse mechanisms related to immune control, efficiency of HPV infection, and influences on tumor initiation and progression. Conversely, HPV co-infection with other factors may also harbor anti-tumor effects. Here, we review epidemiological and experimental studies investigating human immunodeficiency virus (HIV), herpes simplex virus (HSV) 1 and 2, human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), BK virus (BKV), JC virus (JCV), and adeno-associated virus (AAV) as viral cofactors in or therapeutic factors against the development of genital and oral HPV-associated carcinomas.
Collapse
Affiliation(s)
- J T Guidry
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103, USA
| | - R S Scott
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103, USA.
| |
Collapse
|
36
|
The human immune system’s response to carcinogenic and other infectious agents transmitted by mosquito vectors. Parasitol Res 2016; 116:1-9. [DOI: 10.1007/s00436-016-5272-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
|
37
|
Stangherlin LM, Castro FLF, Medeiros RSS, Guerra JM, Kimura LM, Shirata NK, Nonogaki S, dos Santos CJ, Carlan Silva MC. Human Cytomegalovirus DNA Quantification and Gene Expression in Gliomas of Different Grades. PLoS One 2016; 11:e0159604. [PMID: 27458810 PMCID: PMC4961403 DOI: 10.1371/journal.pone.0159604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/05/2016] [Indexed: 01/04/2023] Open
Abstract
Gliomas are the most common type of primary brain tumors. The most aggressive type, Glioblastoma multiforme (GBM), is one of the deadliest human diseases, with an average survival at diagnosis of about 1 year. Previous evidence suggests a link between human cytomegalovirus (HCMV) and gliomas. HCMV has been shown to be present in these tumors and several viral proteins can have oncogenic properties in glioma cells. Here we have investigated the presence of HCMV DNA, RNA and proteins in fifty-two gliomas of different grades of malignancy. The UL83 viral region, the early beta 2.7 RNA and viral protein were detected in 73%, 36% and 57% by qPCR, ISH and IHC, respectively. Positivity of the viral targets and viral load was independent of tumor type or grade suggesting no correlation between viral presence and tumor progression. Our results demonstrate high prevalence of the virus in gliomas from Brazilian patients, contributing to a better understanding of the association between HCMV infection and gliomas worldwide and supporting further investigations of the virus oncomodulatory properties.
Collapse
Affiliation(s)
- Lucas Matheus Stangherlin
- Laboratório de Biologia Molecular de Patógenos, Virologia Molecular, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | - Fabiane Lucy Ferreira Castro
- Laboratório de Biologia Molecular de Patógenos, Virologia Molecular, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | | | - Juliana Mariotti Guerra
- Núcleo de Patologia Quantitativa (NPQ) do Centro de Patologia do Instituto Adolfo Lutz (IAL), São Paulo, Brazil
| | - Lidia Midori Kimura
- Núcleo de Patologia Quantitativa (NPQ) do Centro de Patologia do Instituto Adolfo Lutz (IAL), São Paulo, Brazil
| | - Neuza Kazumi Shirata
- Núcleo de Patologia Quantitativa (NPQ) do Centro de Patologia do Instituto Adolfo Lutz (IAL), São Paulo, Brazil
| | - Suely Nonogaki
- Núcleo de Patologia Quantitativa (NPQ) do Centro de Patologia do Instituto Adolfo Lutz (IAL), São Paulo, Brazil
| | - Claudia Januário dos Santos
- Laboratório de Biologia Molecular de Patógenos, Virologia Molecular, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | - Maria Cristina Carlan Silva
- Laboratório de Biologia Molecular de Patógenos, Virologia Molecular, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
38
|
Expression of Oncogenic Alleles Induces Multiple Blocks to Human Cytomegalovirus Infection. J Virol 2016; 90:4346-4356. [PMID: 26889030 DOI: 10.1128/jvi.00179-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/08/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED In contrast to many viruses, human cytomegalovirus (HCMV) is unable to productively infect most cancer-derived cell lines. The mechanisms of this restriction are unclear. To explore this issue, we tested whether defined oncogenic alleles, including the simian virus 40 (SV40) T antigen (TAg) and oncogenic H-Ras, inhibit HCMV infection. We found that expression of SV40 TAg blocks HCMV infection in human fibroblasts, whereas the replication of a related herpesvirus, herpes simplex virus 1 (HSV-1), was not impacted. The earliest restriction of HCMV infection involves a block of viral entry, as TAg expression prevented the nuclear delivery of viral DNA and pp65. Subsequently, we found that TAg expression reduces the abundance of platelet-derived growth factor receptor α (PDGFRα), a host protein important for HCMV entry. Viral entry into TAg-immortalized fibroblasts could largely be rescued by PDGFRα overexpression. Similarly, PDGFRα overexpression in HeLa cells markedly increased the levels of HCMV gene expression and DNA replication. However, the robust production of viral progeny was not restored by PDGFRα overexpression in either HeLa cells or TAg-immortalized fibroblasts, suggesting additional restrictions associated with transformation and TAg expression. In TAg-expressing fibroblasts, expression of the immediate early 2 (IE2) protein was not rescued to the same extent as that of the immediate early 1 (IE1) protein, suggesting that TAg expression impacts the accumulation of major immediate early (MIE) transcripts. Transduction of IE2 largely rescued HCMV gene expression in TAg-expressing fibroblasts but did not rescue the production of infectious virions. Collectively, our data indicate that oncogenic alleles induce multiple restrictions to HCMV replication. IMPORTANCE HCMV cannot replicate in most cancerous cells, yet the causes of this restriction are not clear. The mechanisms that restrict viral replication in cancerous cells represent viral vulnerabilities that can potentially be exploited therapeutically in other contexts. Here we found that SV40 T antigen-mediated transformation inhibits HCMV infection at multiple points in the viral life cycle, including through inhibition of proper viral entry, normal expression of immediate early genes, and viral DNA replication. Our results suggest that the SV40 T antigen could be a valuable tool to dissect cellular activities that are important for successful infection, thereby potentially informing novel antiviral development strategies. This is an important consideration, given that HCMV is a leading cause of birth defects and causes severe infection in immunocompromised individuals.
Collapse
|
39
|
Primary colorectal lymphoma comprising both components of diffuse large B-cell lymphoma and mucosa-associated lymphoid tissue lymphoma combined with cytomegalovirus colitis. Clin J Gastroenterol 2016; 9:59-62. [DOI: 10.1007/s12328-016-0642-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/17/2016] [Indexed: 12/15/2022]
|
40
|
Soroceanu L, Matlaf L, Khan S, Akhavan A, Singer E, Bezrookove V, Decker S, Ghanny S, Hadaczek P, Bengtsson H, Ohlfest J, Luciani-Torres MG, Harkins L, Perry A, Guo H, Soteropoulos P, Cobbs CS. Cytomegalovirus Immediate-Early Proteins Promote Stemness Properties in Glioblastoma. Cancer Res 2015; 75:3065-76. [PMID: 26239477 DOI: 10.1158/0008-5472.can-14-3307] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive human brain tumor. Human cytomegalovirus (HCMV) immediate-early (IE) proteins that are endogenously expressed in GBM cells are strong viral transactivators with oncogenic properties. Here, we show how HCMV IEs are preferentially expressed in glioma stem-like cells (GSC), where they colocalize with the other GBM stemness markers, CD133, Nestin, and Sox2. In patient-derived GSCs that are endogenously infected with HCMV, attenuating IE expression by an RNAi-based strategy was sufficient to inhibit tumorsphere formation, Sox2 expression, cell-cycle progression, and cell survival. Conversely, HCMV infection of HMCV-negative GSCs elicited robust self-renewal and proliferation of cells that could be partially reversed by IE attenuation. In HCMV-positive GSCs, IE attenuation induced a molecular program characterized by enhanced expression of mesenchymal markers and proinflammatory cytokines, resembling the therapeutically resistant GBM phenotype. Mechanistically, HCMV/IE regulation of Sox2 occurred via inhibition of miR-145, a negative regulator of Sox2 protein expression. In a spontaneous mouse model of glioma, ectopic expression of the IE1 gene (UL123) specifically increased Sox2 and Nestin levels in the IE1-positive tumors, upregulating stemness and proliferation markers in vivo. Similarly, human GSCs infected with the HCMV strain Towne but not the IE1-deficient strain CR208 showed enhanced growth as tumorspheres and intracranial tumor xenografts, compared with mock-infected human GSCs. Overall, our findings offer new mechanistic insights into how HCMV/IE control stemness properties in GBM cells.
Collapse
Affiliation(s)
- Liliana Soroceanu
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California.
| | - Lisa Matlaf
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Sabeena Khan
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Armin Akhavan
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Eric Singer
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Vladimir Bezrookove
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Stacy Decker
- Department of Pediatrics and Neurosurgery, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Saleena Ghanny
- Center for Applied Genomics, Institute of Genomic Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Piotr Hadaczek
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Henrik Bengtsson
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - John Ohlfest
- Department of Pediatrics and Neurosurgery, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Maria-Gloria Luciani-Torres
- Department of Neurosciences, California Pacific Medical Center Research Institute, San Francisco, California
| | - Lualhati Harkins
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, California
| | - Hong Guo
- Center for Applied Genomics, Institute of Genomic Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Patricia Soteropoulos
- Center for Applied Genomics, Institute of Genomic Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Charles S Cobbs
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California. Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, Washington.
| |
Collapse
|
41
|
Chen HP, Jiang JK, Lai PY, Teo WH, Yang CY, Chou TY, Lin CH, Chan YJ. Serological and viraemic status of human cytomegalovirus infection in patients with colorectal cancer is not correlated with viral replication and transcription in tumours. J Gen Virol 2015; 97:152-159. [PMID: 26474568 DOI: 10.1099/jgv.0.000315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer (CRC) is amongst the leading causes of cancer-related mortality worldwide. Emerging evidence suggests that human cytomegalovirus (HCMV) exists in the tumour tissue of CRC and is associated with disease outcome. To study whether tumoral HCMV is related to viral reactivation in blood, tumour specimens and pre- and post-operative blood samples from CRC patients were collected prospectively. PCR and quantitative PCR were performed to detect HCMV DNA. HCMV IgG and IgM antibodies were measured using a microparticle enzyme immunoassay. Transcription of a spliced HCMV UL73 gene transcript was analysed by quantitative reverse transcription PCR. HCMV was detected in 42.2% (35/83) of the tumour samples, with a low median viral load (30.08, range 2.33-5704 copies per 500 ng genomic DNA). The vast majority (80/81, 98.8%) of the CRC patients were seropositive for HCMV IgG. HCMV DNA was positive in 11.3% (22/194) of the pre-operative and 8.9% (15/168) of the post-operative blood samples. However, presence of HCMV and its viral load in tumours were not associated with the detection or viral loads in blood samples. About 26.67% (8/30) of the HCMV-positive tumours with available RNA had detectable viral UL73 transcripts, whilst none of the blood samples were positive for viral RNA (P < 0.0001). Therefore, presence of HCMV in tumours does not correlate with the serological or viraemic status of CRC patients. Active viral gene transcription occurred in the tumour but not in the blood of CRC patients. HCMV reactivation in CRC patients is possibly due to virus-cancer interactions in the CRC tumour microenvironment.
Collapse
Affiliation(s)
- Hsin-Pai Chen
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yu Lai
- Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Huai Teo
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Molecular Pathology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Jiun Chan
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
42
|
Abstract
In 1908, Oluf Bang and Vilhelm Ellerman laid the foundation for theory of oncoviruses by demonstrating that the avian erythroblastosis (a form of chicken leukaemia) could be transmitted by cell-free extracts. Since then, it has been shown very convincingly that viruses can directly cause several human cancers by various mechanisms. Epidemiological data imply that viruses are the second most important risk factor for cancer development in humans, exceeded only by tobacco consumption. Although the ability of certain viruses (hepatitis B and C, human papillomavirus, etc) to cause cancer has been time tested and proven scientifically, there are several other potential viral candidates whose role in oncogenesis is more controversial. One such controversial scenario involves the role of cytomegalovirus (CMV) in malignant gliomas, the most common form of primary brain tumour. CMV first attracted attention about a decade ago when CMV gene products were found in glioma tissue but not in normal brain. Since this initial observation, several different groups have shown an oncomodulatory effect of CMV; however, direct association between CMV infection and incidence of glioma is lacking. In this review, we will evaluate the evidence, both preclinical and clinical, regarding the possible role of CMV in gliomagenesis and maintenance. We will also critically evaluate the rationale for using antiviral drugs in the treatment of patients with glioma.
Collapse
Affiliation(s)
- Mahua Dey
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Atique U Ahmed
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Tafvizi F, Fard ZT. Detection of human cytomegalovirus in patients with colorectal cancer by nested-PCR. Asian Pac J Cancer Prev 2014; 15:1453-7. [PMID: 24606482 DOI: 10.7314/apjcp.2014.15.3.1453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The association of colorectal cancer with human cytomegalovirus (HCMV) is a controversial issue in cancer research. This study aimed to identify the HCMV virus in colorectal cancer tissues and to investigate the association of HCMV with colorectal cancer. In this study, 50 cancer tissue samples and 50 samples without colon cancer were studied in order to identify the HCMV virus through nested-polymerase chain reaction. The virus was identified in 15 cases of colorectal cancer tissues (15/50) and in 5 cases of normal tissues (5/50). Eight cases of adenocarcinoma tissues were in a moderately differentiated stage, and 7 cases had well-differentiated stage tissues that were positive for viral DNA. The findings were statistically evaluated at a significance level of p<0.05. The HCMV virus could play a role in creating malignancy and the progress of cancer through the process of oncomodulation.
Collapse
|
44
|
Smolarz B, Wilczyński J, Nowakowska D. DNA repair mechanisms and human cytomegalovirus (HCMV) infection. Folia Microbiol (Praha) 2014; 60:199-209. [PMID: 25366712 PMCID: PMC4429022 DOI: 10.1007/s12223-014-0359-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
Herpesvirus infections, such as those induced by human cytomegalovirus (HCMV), induce specific DNA damages. DNA damages can lead to cell mutation, death, apoptosis and immune system activation. Various types of DNA damage are repaired through multiple repair pathways, such as base excision, nucleotide excision, homologous recombination and nonhomologous end joining. Changes in the activity of DNA repair proteins during viral infection can cause disturbances in the DNA repair system and change its mechanisms. This report reviews results from studies, assaying a DNA repair system in HCMV infection.
Collapse
Affiliation(s)
- Beata Smolarz
- Department of Fetal-Maternal Medicine and Gynaecology, Polish Mother's Memorial Hospital Research Institute, 281/289 Rzgowska Street, Lodz, 93-338, Poland,
| | | | | |
Collapse
|
45
|
Herbein G, Kumar A. The oncogenic potential of human cytomegalovirus and breast cancer. Front Oncol 2014; 4:230. [PMID: 25202681 PMCID: PMC4142708 DOI: 10.3389/fonc.2014.00230] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/08/2014] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the leading causes of cancer-related death among women. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. Numerous articles indicate that breast tumors exhibit diverse phenotypes depending on their distinct physiopathological signatures, clinical courses, and therapeutic possibilities. The human cytomegalovirus (HCMV) is a multifaceted highly host specific betaherpesvirus that is regarded as asymptomatic or mildly pathogenic virus in immunocompetent host. HCMV may cause serious in utero infections as well as acute and chronic complications in immunocompromised individual. The involvement of HCMV in late inflammatory complications underscores its possible role in inflammatory diseases and cancer. HCMV targets a variety of cell types in vivo, including macrophages, epithelial cells, endothelial cells, fibroblasts, stromal cells, neuronal cells, smooth muscle cells, and hepatocytes. HCMV can be detected in the milk after delivery and thereby HCMV could spread to adjacent mammary epithelial cells. HCMV also infects macrophages and induces an atypical M1/M2 phenotype, close to the tumor-associated macrophage phenotype, which is associated with the release of cytokines involved in cancer initiation or promotion and breast cancer of poor prognosis. HCMV antigens and DNA have been detected in tissue biopsies of breast cancers and elevation in serum HCMV IgG antibody levels has been reported to precede the development of breast cancer in some women. In this review, we will discuss the potential role of HCMV in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology and Department of Pathogens & Inflammation, UPRES EA4266, SFR FED 4234, CHRU Besançon, University of Franche-Comté , Besançon , France
| | - Amit Kumar
- Department of Virology and Department of Pathogens & Inflammation, UPRES EA4266, SFR FED 4234, CHRU Besançon, University of Franche-Comté , Besançon , France
| |
Collapse
|
46
|
JIN JINJI, HU CHANGYUAN, WANG PENGFEI, CHEN JING, WU TIANTIAN, CHEN WENJING, YE LULU, ZHU GUANGBAO, ZHANG LIFANG, XUE XIANGYANG, SHEN XIAN. Latent infection of human cytomegalovirus is associated with the development of gastric cancer. Oncol Lett 2014; 8:898-904. [PMID: 25009664 PMCID: PMC4081426 DOI: 10.3892/ol.2014.2148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/29/2014] [Indexed: 12/14/2022] Open
Abstract
The worldwide contagion, human cytomegalovirus (HCMV), may cause a series of disorders in infected individuals. The aim of the present study was to investigate whether HCMV infection is associated with the development of gastric cancer. In this study, the positive expression of unique long (UL)133-UL138 and immediate-early (IE)1 genes, which are associated with viral latency and replication, respectively, were detected using nested polymerase chain reaction. A χ2 test and logistic regression analysis were performed to further investigate the preliminary data. The data indicated that the positive rate of UL133, UL135 and UL136 expression in cancer tissues was higher than that in paired normal tissues (P=0.01, 0.027 and 0.013, respectively). However, no significant differences were identified in the UL133-138 locus and IE1 gene when associated with clinicopathological features. Furthermore, seven infection patterns were identified, with the UL133 + UL138 infection pattern representing the largest proportion in the cancer (60.34%) and normal tissues (42.11%). In conclusion, it is possible that the UL133-UL138 locus is important in the occurrence of gastric cancer. The mechanism by which UL133-UL138 locus expression differs in human gastric cancer requires further investigation.
Collapse
Affiliation(s)
- JINJI JIN
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - CHANGYUAN HU
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - PENGFEI WANG
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - JING CHEN
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - TIANTIAN WU
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - WENJING CHEN
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - LULU YE
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - GUANGBAO ZHU
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - LIFANG ZHANG
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - XIANGYANG XUE
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - XIAN SHEN
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
47
|
Abstract
Human cytomegalovirus (HCMV) is a human pathogen that infects greater than 50 % of the human population. HCMV infection is usually asymptomatic in most individuals. That is, primary infection or reactivation of latent virus is generally clinically silent. HCMV infection, however, is associated with significant morbidity and mortality in the immunocompromised and chronic inflammatory diseases in the immunocompetent. In immunocompromised individuals (acquired immune deficiency syndrome and transplant patients, developing children (in utero), and cancer patients undergoing chemotherapy), HCMV infection increases morbidity and mortality. In those individuals with a normal immune system, HCMV infection is also associated with a risk of serious disease, as viral infection is now considered to be a strong risk factor for the development of various vascular diseases and to be associated with some types of tumor development. Intense research is currently being undertaken to better understand the mechanisms of viral pathogenesis that are briefly discussed in this chapter.
Collapse
Affiliation(s)
- Maciej T Nogalski
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | |
Collapse
|
48
|
Wolmer-Solberg N, Baryawno N, Rahbar A, Fuchs D, Odeberg J, Taher C, Wilhelmi V, Milosevic J, Mohammad AA, Martinsson T, Sveinbjörnsson B, Johnsen JI, Kogner P, Söderberg-Nauclér C. Frequent detection of human cytomegalovirus in neuroblastoma: a novel therapeutic target? Int J Cancer 2013; 133:2351-61. [PMID: 23661597 DOI: 10.1002/ijc.28265] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/24/2013] [Indexed: 01/27/2023]
Abstract
Neuroblastoma is the most common and deadly tumor of childhood, where new therapy options for patients with high-risk disease are highly warranted. Human cytomegalovirus (HCMV) is prevalent in the human population and has recently been implicated in different cancer forms where it may provide mechanisms for oncogenic transformation, oncomodulation and tumor cell immune evasion. Here we show that the majority of primary neuroblastomas and neuroblastoma cell lines are infected with HCMV. Our analysis show that HCMV immediate-early protein was expressed in 100% of 36 primary neuroblastoma samples, and HCMV late protein was expressed in 92%. However, no infectious virus was detected in primary neuroblastoma tissue extracts. Remarkably, all six human neuroblastoma cell lines investigated contained CMV DNA and expressed HCMV proteins. HCMV proteins were expressed in neuroblastoma cells expressing the proposed stem cell markers CD133 and CD44. When engrafted into NMRI nu/nu mice, human neuroblastoma cells expressed HCMV DNA, RNA and proteins but did not produce infectious virus. The HCMV-specific antiviral drug valganciclovir significantly reduced viral protein expression and cell growth both in vitro and in vivo. These findings indicate that HCMV is important for the pathogenesis of neuroblastoma and that anti-viral therapy may be a novel adjuvant treatment option for children with neuroblastoma.
Collapse
Affiliation(s)
- Nina Wolmer-Solberg
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital in Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kofman AV, Letson C, Dupart E, Bao Y, Newcomb WW, Schiff D, Brown J, Abounader R. The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses. Med Hypotheses 2013; 81:62-7. [PMID: 23643704 DOI: 10.1016/j.mehy.2013.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
A growing number of reports indicate the frequent presence of DNA sequences and gene products of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain tumors being studied most intensely. The mechanisms underlying the tropism of human cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host's genetic background in virus-associated oncogenesis are not well understood. It is also not clear why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico prediction results indicate that microRNA-34a may be involved in replication of some human DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins, such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these surface molecules have one feature in common: they serve as cellular entry receptors for human DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses 1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies. MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53, and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We hypothesize that p53-microRNA-34a axis may alter susceptibility of cells to infection with some viruses that are detected in tumors and either proven or suspected to be associated with tumor initiation and progression.
Collapse
Affiliation(s)
- Alexander V Kofman
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Taher C, de Boniface J, Mohammad AA, Religa P, Hartman J, Yaiw KC, Frisell J, Rahbar A, Söderberg-Naucler C. High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes. PLoS One 2013; 8:e56795. [PMID: 23451089 PMCID: PMC3579924 DOI: 10.1371/journal.pone.0056795] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/15/2013] [Indexed: 01/27/2023] Open
Abstract
Background Breast cancer is a leading cause of death among women worldwide. Increasing evidence implies that human cytomegalovirus (HCMV) infection is associated with several malignancies. We aimed to examine whether HCMV is present in breast cancer and sentinel lymph node (SLN) metastases. Materials and Methods Formalin-fixed paraffin-embedded tissue specimens from breast cancer and paired sentinel lymph node (SLN) samples were obtained from patients with (n = 35) and without SLN metastasis (n = 38). HCMV immediate early (IE) and late (LA) proteins were detected using a sensitive immunohistochemistry (IHC) technique and HCMV DNA by real-time PCR. Results HCMV IE and LA proteins were abundantly expressed in 100% of breast cancer specimens. In SLN specimens, 94% of samples with metastases (n = 34) were positive for HCMV IE and LA proteins, mostly confined to neoplastic cells while some inflammatory cells were HCMV positive in 60% of lymph nodes without metastases (n = 35). The presence of HCMV DNA was confirmed in 12/12 (100%) of breast cancer and 10/11 (91%) SLN specimens from the metastatic group, but was not detected in 5/5 HCMV-negative, SLN-negative specimens. There was no statistically significant association between HCMV infection grades and progesterone receptor, estrogen receptor alpha and Elston grade status. Conclusions The role of HCMV in the pathogenesis of breast cancer is unclear. As HCMV proteins were mainly confined to neoplastic cells in primary breast cancer and SLN samples, our observations raise the question whether HCMV contributes to the tumorigenesis of breast cancer and its metastases.
Collapse
Affiliation(s)
- Chato Taher
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jana de Boniface
- Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
| | | | - Piotr Religa
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology; Karolinska University Hospital, Stockholm, Sweden
| | - Koon-Chu Yaiw
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Frisell
- Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|