1
|
Zoolkefli FIRM, Moriguchi K, Cho Y, Kiyokawa K, Yamamoto S, Suzuki K. Isolation and Analysis of Donor Chromosomal Genes Whose Deficiency Is Responsible for Accelerating Bacterial and Trans-Kingdom Conjugations by IncP1 T4SS Machinery. Front Microbiol 2021; 12:620535. [PMID: 34093458 PMCID: PMC8174662 DOI: 10.3389/fmicb.2021.620535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Conjugal transfer is a major driving force of genetic exchange in eubacteria, and the system in IncP1-type broad-host-range plasmids transfers DNA even to eukaryotes and archaea in a process known as trans-kingdom conjugation (TKC). Although conjugation factors encoded on plasmids have been extensively analyzed, those on the donor chromosome have not. To identify the potential conjugation factor(s), a genome-wide survey on a comprehensive collection of Escherichia coli gene knockout mutants (Keio collection) as donors to Saccharomyces cerevisiae recipients was performed using a conjugal transfer system mediated by the type IV secretion system (T4SS) of the IncP1α plasmid. Out of 3,884 mutants, three mutants (ΔfrmR, ΔsufA, and ΔiscA) were isolated, which showed an increase by one order of magnitude in both E. coli-E. coli and E. coli-yeast conjugations without an increase in the mRNA accumulation level for the conjugation related genes examined. The double-knockout mutants for these genes (ΔfrmRΔsufA and ΔiscAΔfrmR) did not show synergistic effects on the conjugation efficiency, suggesting that these factors affect a common step in the conjugation machinery. The three mutants demonstrated increased conjugation efficiency in IncP1β-type but not in IncN- and IncW-type broad-host-range plasmid transfers, and the homologous gene knockout mutants against the three genes in Agrobacterium tumefaciens also showed increased TKC efficiency. These results suggest the existence of a specific regulatory system in IncP1 plasmids that enables the control of conjugation efficiency in different hosts, which could be utilized for the development of donor strains as gene introduction tools into bacteria, eukaryotes, and archaea.
Collapse
Affiliation(s)
| | - Kazuki Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yunjae Cho
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashihiroshima, Japan
| | - Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
2
|
Kiyokawa K, Ohmine Y, Yunoki K, Yamamoto S, Moriguchi K, Suzuki K. Enhanced Agrobacterium-mediated transformation revealed attenuation of exogenous plasmid DNA installation in recipient bacteria by exonuclease VII and SbcCD. Genes Cells 2020; 25:663-674. [PMID: 32799424 DOI: 10.1111/gtc.12802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
In DNA transfer via type IV secretion system (T4SS), relaxase enzyme releases linear ssDNA in donor cells and recircularizes in recipient cells. Using VirB/D4 T4SS, Agrobacterium cells can transfer an IncQ-type plasmid depending on Mob relaxase and a model T-DNA plasmid depending on VirD2 relaxase. Mobilization to Escherichia coli of the former plasmid is much more efficient than that of the latter, whereas an entirely reverse relationship is observed in transfer to yeast. These data suggest that either plasmid recircularization or conversion of ssDNA to dsDNA in the recipient bacterial cells is a rate-limiting step of the transfer. In this study, we examined involvement of exonuclease genes in the plasmid acceptability. By the VirD2-dependent T-DNA plasmid, E. coli sbcDΔ and sbcCΔ mutant strains produced threefold more exconjugants, and a sbcDΔ xseAΔ mutant strain yielded eightfold more exconjugants than their wild-type strain. In contrast to the enhancing effect on the VirD2-mediated transfer, the mutations exhibited a subtle effect on the Mob-mediated transfer. These results support our working hypothesis that VirD2 can transport its substrate ssDNA efficiently to recipient cells and that recipient nucleases degrade the ssDNA because VirD2 has some defect(s) in the circularization and completion of complementary DNA synthesis.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Yuta Ohmine
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuya Yunoki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuki Moriguchi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Katsunori Suzuki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Das A. Identification of a Carboxy-Terminal Glutamine-Rich Domain in Agrobacterium tumefaciens Coupling Protein VirD4 Required for Recognition of T-Strand DNA and Not VirE2 as a Substrate for Transfer to Plant Cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:166-172. [PMID: 31855496 DOI: 10.1094/mpmi-04-19-0099-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Agrobacterium tumefaciens transfers DNA and proteins to a plant cell inciting crown gall tumor disease on most plants. VirD4 targets the DNA and protein substrates to a type IV secretion (T4S) apparatus for translocation into the plant cell. Several bacteria with VirD4 homologs use T4S for intercellular export of microbial macromolecules to eukaryotic and prokaryotic hosts. How the VirD4 proteins recognize the diverse substrates is not well understood. To identify functional domains of A. tumefaciens pTiA6 VirD4, we introduced random 19-codon and targeted 10-codon insertions throughout the coding region. Analysis of 21 mutants showed that only the carboxy-terminal end of VirD4 is tolerant of an insertion. Sequence comparison of VirD4 proteins of Agrobacterium spp. and their close relative, Rhizobium etli, showed that these proteins contain a highly conserved C-terminal end, but the immediate upstream regions share no discernible sequence similarity. The conserved region sequence is rich in the amino acid glutamine (6/13 Q). Using site-specific and deletion mutagenesis, we demonstrated that the conserved Q-rich region is required for VirD4 function and for the specific recognition of VirD2-linked T-strand DNA as a substrate for translocation to plants. The Q-rich region is not required for the transfer of a second A. tumefaciens substrate, VirE2, to plants or a promiscuous Escherichia coli IncQ plasmid to another A. tumefaciens strain. We identified Q-rich sequences at or near the C terminus of several VirD4 homologs, including the E. coli F plasmid TraD. In F TraD, the Q-rich sequence maps to a region required specifically for the conjugative transfer of the F plasmid.
Collapse
Affiliation(s)
- Anath Das
- Department of Biochemistry, Molecular Biology and Biophysics, and Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN 55455, U.S.A
| |
Collapse
|
4
|
Ohmine Y, Kiyokawa K, Yunoki K, Yamamoto S, Moriguchi K, Suzuki K. Successful Transfer of a Model T-DNA Plasmid to E. coli Revealed Its Dependence on Recipient RecA and the Preference of VirD2 Relaxase for Eukaryotes Rather Than Bacteria as Recipients. Front Microbiol 2018; 9:895. [PMID: 29892270 PMCID: PMC5985610 DOI: 10.3389/fmicb.2018.00895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
In Agrobacterium-mediated transformation (AMT) of plants, a single-strand (ss) T-DNA covalently linked with a VirD2 protein moves through a bacterial type IV secretion channel called VirB/D4. This transport system originates from conjugal plasmid transfer systems of bacteria. The relaxase VirD2 and its equivalent protein Mob play essential roles in T-DNA transfer and mobilizable plasmid transfer, respectively. In this study, we attempted to transfer a model T-DNA plasmid, which contained no left border but had a right border sequence as an origin of transfer, and a mobilizable plasmid through the VirB/D4 apparatus to Escherichia coli, Agrobacterium and yeast to compare VirD2-driven transfer with Mob-driven one. AMT was successfully achieved by both types of transfer to the three recipient organisms. VirD2-driven AMT of the two bacteria was less efficient than Mob-driven AMT. In contrast, AMT of yeast guided by VirD2 was more efficient than that by Mob. Plasmid DNAs recovered from the VirD2-driven AMT colonies showed the original plasmid structure. These data indicate that VirD2 retains most of its important functions in recipient bacterial cells, but has largely adapted to eukaryotes rather than bacteria. The high AMT efficiency of yeast suggests that VirD2 can also efficiently bring ssDNA to recipient bacterial cells but is inferior to Mob in some process leading to the formation of double-stranded circular DNA in bacteria. This study also revealed that the recipient recA gene was significantly involved in VirD2-dependent AMT, but only partially involved in Mob-dependent AMT. The apparent difference in the recA gene requirement between the two types of AMT suggests that VirD2 is worse at re-circularization to complete complementary DNA synthesis than Mob in bacteria.
Collapse
Affiliation(s)
- Yuta Ohmine
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuya Kiyokawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuya Yunoki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuki Moriguchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Katsunori Suzuki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
TraG encoded by the pIP501 type IV secretion system is a two-domain peptidoglycan-degrading enzyme essential for conjugative transfer. J Bacteriol 2013; 195:4436-44. [PMID: 23913323 DOI: 10.1128/jb.02263-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
pIP501 is a conjugative broad-host-range plasmid frequently present in nosocomial Enterococcus faecalis and Enterococcus faecium isolates. We focus here on the functional analysis of the type IV secretion gene traG, which was found to be essential for pIP501 conjugative transfer between Gram-positive bacteria. The TraG protein, which localizes to the cell envelope of E. faecalis harboring pIP501, was expressed and purified without its N-terminal transmembrane helix (TraGΔTMH) and shown to possess peptidoglycan-degrading activity. TraGΔTMH was inhibited by specific lytic transglycosylase inhibitors hexa-N-acetylchitohexaose and bulgecin A. Analysis of the TraG sequence suggested the presence of two domains which both could contribute to the observed cell wall-degrading activity: an N-terminal soluble lytic transglycosylase domain (SLT) and a C-terminal cysteine-, histidine-dependent amidohydrolases/peptidases (CHAP) domain. The protein domains were expressed separately, and both degraded peptidoglycan. A change of the conserved glutamate residue in the putative catalytic center of the SLT domain (E87) to glycine resulted in almost complete inactivity, which is consistent with this part of TraG being a predicted lytic transglycosylase. Based on our findings, we propose that TraG locally opens the peptidoglycan to facilitate insertion of the Gram-positive bacterial type IV secretion machinery into the cell envelope.
Collapse
|
6
|
A putative transmembrane leucine zipper of agrobacterium VirB10 is essential for t-pilus biogenesis but not type IV secretion. J Bacteriol 2013; 195:3022-34. [PMID: 23625845 DOI: 10.1128/jb.00287-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the "core complex" that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10's TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.
Collapse
|
7
|
Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc Natl Acad Sci U S A 2012; 109:19804-9. [PMID: 23150540 DOI: 10.1073/pnas.1213963109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interbacterial interaction pathways play an important role in defining the structure and complexity of bacterial associations. A quantitative description of such pathways offers promise for understanding the forces that contribute to community composition. We developed time-lapse fluorescence microscopy methods for quantitation of interbacterial interactions and applied these to the characterization of type VI secretion (T6S) in Pseudomonas aeruginosa. Our analyses allowed a direct determination of the efficiency of recipient cell lysis catalyzed by this intercellular toxin delivery pathway and provided evidence that its arsenal extends beyond known effector proteins. Measurement of T6S apparatus localization revealed correlated activation among neighboring cells, which, taken together with genetic data, implicate the elaboration of a functional T6S apparatus with a marked increase in susceptibility to intoxication. This possibility was supported by the identification of T6S-inactivating mutations in a genome-wide screen for resistance to T6S-mediated intoxication and by time-lapse fluorescence microscopy analyses showing a decreased lysis rate of recipient cells lacking T6S function. Our discoveries highlight the utility of single-cell approaches for measuring interbacterial phenomena and provide a foundation for studying the contribution of a widespread bacterial interaction pathway to community structure.
Collapse
|
8
|
Buschmann H, Green P, Sambade A, Doonan JH, Lloyd CW. Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells. THE NEW PHYTOLOGIST 2011; 190:258-267. [PMID: 21182528 DOI: 10.1111/j.1469-8137.2010.03587.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transient transformation with Agrobacterium is a widespread tool allowing rapid expression analyses in plants. However, the available methods generate expression in interphase and do not allow the routine analysis of dividing cells. Here, we present a transient transformation method (termed 'TAMBY2') to enable cell biological studies in interphase and cell division. Agrobacterium-mediated transient gene expression in tobacco BY-2 was analysed by Western blotting and quantitative fluorescence microscopy. Time-lapse microscopy of cytoskeletal markers was employed to monitor cell division. Double-labelling in interphase and mitosis enabled localization studies. We found that the transient transformation efficiency was highest when BY-2/Agrobacterium co-cultivation was performed on solid medium. Transformants produced in this way divided at high frequency. We demonstrated the utility of the method by defining the behaviour of a previously uncharacterized microtubule motor, KinG, throughout the cell cycle. Our analyses demonstrated that TAMBY2 provides a flexible tool for the transient transformation of BY-2 with Agrobacterium. Fluorescence double-labelling showed that KinG localizes to microtubules and to F-actin. In interphase, KinG accumulates on microtubule lagging ends, suggesting a minus-end-directed function in vivo. Time-lapse studies of cell division showed that GFP-KinG strongly labels preprophase band and phragmoplast, but not the metaphase spindle.
Collapse
Affiliation(s)
- H Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - P Green
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - A Sambade
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - J H Doonan
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - C W Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
9
|
An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J Bacteriol 2011; 193:2566-74. [PMID: 21421757 DOI: 10.1128/jb.00038-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium VirB7, VirB9, and VirB10 form a "core complex" during biogenesis of the VirB/VirD4 type IV secretion system (T4SS). VirB10 spans the cell envelope and, in response to sensing of ATP energy consumption by the VirB/D4 ATPases, undergoes a conformational change required for DNA transfer across the outer membrane (OM). Here, we tested a model in which VirB10 regulates substrate passage by screening for mutations that allow for unregulated release of the VirE2 secretion substrate to the cell surface independently of target cell contact. One mutation, G272R, conferred VirE2 release and also rendered VirB10 conformationally insensitive to cellular ATP depletion. Strikingly, G272R did not affect substrate transfer to target cells (Tra(+)) but did block pilus production (Pil(-)). The G272R mutant strain displayed enhanced sensitivity to vancomycin and SDS but did not nonspecifically release periplasmic proteins or VirE2 truncated of its secretion signal. G272 is highly conserved among VirB10 homologs, including pKM101 TraF, and in the TraF X-ray structure the corresponding Gly residue is positioned near an α-helical domain termed the antenna projection (AP), which is implicated in formation of the OM pore. A partial AP deletion mutation (ΔAP) also confers a Tra(+) Pil(-) phenotype; however, this mutation did not allow VirE2 surface exposure but instead allowed the release of pilin monomers or short oligomers to the milieu. We propose that (i) G272R disrupts a gating mechanism in the core chamber that regulates substrate passage across the OM and (ii) the G272R and ΔAP mutations block pilus production at distinct steps of the pilus biogenesis pathway.
Collapse
|
10
|
The dimer interface of Agrobacterium tumefaciens VirB8 is important for type IV secretion system function, stability, and association of VirB2 with the core complex. J Bacteriol 2011; 193:2097-106. [PMID: 21398549 DOI: 10.1128/jb.00907-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Type IV secretion systems are virulence factors used by many gram-negative bacteria to translocate macromolecules across the cell envelope. VirB8 is an essential inner membrane component of type IV secretion systems, and it is believed to form a homodimer. In the absence of VirB8, the levels of several other VirB proteins were reduced (VirB1, VirB3, VirB4, VirB5, VirB6, VirB7, and VirB11) in Agrobacterium tumefaciens, underlining its importance for complex stability. To assess the importance of dimerization, we changed residues at the predicted dimer interface (V97, A100, Q93, and E94) in order to strengthen or to abolish dimerization. We verified the impact of the changes on dimerization in vitro with purified V97 variants, followed by analysis of the in vivo consequences in a complemented virB8 deletion strain. Dimer formation was observed in vivo after the introduction of a cysteine residue at the predicted interface (V97C), and this variant supported DNA transfer, but the formation of elongated T pili was not detected by the standard pilus isolation technique. Variants with changes at V97 and A100 that weaken dimerization did not support type IV secretion system functions. The T-pilus component VirB2 cofractionated with high-molecular-mass core protein complexes extracted from the membranes, and the presence of VirB8 as well as its dimer interface were important for this association. We conclude that the VirB8 dimer interface is required for T4SS function, for the stabilization of many VirB proteins, and for targeting of VirB2 to the T-pilus assembly site.
Collapse
|
11
|
Li M, Shen X, Yan J, Han H, Zheng B, Liu D, Cheng H, Zhao Y, Rao X, Wang C, Tang J, Hu F, Gao GF. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Mol Microbiol 2011; 79:1670-83. [PMID: 21244532 PMCID: PMC3132442 DOI: 10.1111/j.1365-2958.2011.07553.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pathogenicity islands (PAIs), a distinct type of genomic island (GI), play important roles in the rapid adaptation and increased virulence of pathogens. 89K is a newly identified PAI in epidemic Streptococcus suis isolates that are related to the two recent large-scale outbreaks of human infection in China. However, its mechanism of evolution and contribution to the epidemic spread of S. suis 2 remain unknown. In this study, the potential for mobilization of 89K was evaluated, and its putative transfer mechanism was investigated. We report that 89K can spontaneously excise to form an extrachromosomal circular product. The precise excision is mediated by an 89K-borne integrase through site-specific recombination, with help from an excisionase. The 89K excision intermediate acts as a substrate for lateral transfer to non-89K S. suis 2 recipients, where it reintegrates site-specifically into the target site. The conjugal transfer of 89K occurred via a GI type IV secretion system (T4SS) encoded in 89K, at a frequency of 10(-6) transconjugants per donor. This is the first demonstration of horizontal transfer of a Gram-positive PAI mediated by a GI-type T4SS. We propose that these genetic events are important in the emergence, pathogenesis and persistence of epidemic S. suis 2 strains.
Collapse
Affiliation(s)
- Ming Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stentz R, Wegmann U, Parker M, Bongaerts R, Lesaint L, Gasson M, Shearman C. CsiA is a bacterial cell wall synthesis inhibitor contributing to DNA translocation through the cell envelope. Mol Microbiol 2010; 72:779-94. [PMID: 19400771 DOI: 10.1111/j.1365-2958.2009.06683.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conjugation is a widely spread mechanism allowing bacteria to adapt and evolve by acquiring foreign DNA. The chromosome of Lactococcus lactis MG 1363 contains a 60 kb conjugative element called the sex factor capable of high-frequency DNA transfer. Yet, little is known about the proteins involved in this process. Comparative genomics revealed a close relationship between the sex factor and elements found in Gram-positive pathogenic cocci. Among the conserved gene products, CsiA is a large protein that contains a highly conserved domain (HCD) and a C-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) domain in its C-terminal moiety. Here, we show that CsiA is required for DNA transfer. Surprisingly, increased expression of CsiA affects cell viability and the cells become susceptible to lysis. Point mutagenesis of HCD reveals that this domain is responsible for the observed phenotypes. Growth studies and electron microscope observations suggest that CsiA is acting as a cell wall synthesis inhibitor. In vitro experiments reveal the capacity of CsiA to bind d-Ala-d-Ala analogues and to prevent the action of penicillin binding proteins. Our results strongly suggest that CsiA sequesters the peptidoglycan precursor and prevents the final stage of cell wall biosynthesis to enable the localized assembly of the DNA transfer machinery through the cell wall.
Collapse
Affiliation(s)
- Régis Stentz
- Commensals and Microflora (G2), Institute of Food Research, Norwich, UK.
| | | | | | | | | | | | | |
Collapse
|
13
|
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775-808. [PMID: 19946141 PMCID: PMC2786583 DOI: 10.1128/mmbr.00023-09] [Citation(s) in RCA: 532] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.
Collapse
Affiliation(s)
- Cristina E. Alvarez-Martinez
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, Texas 77030
| |
Collapse
|
14
|
Saier MH, Ma CH, Rodgers L, Tamang DG, Yen MR. Protein secretion and membrane insertion systems in bacteria and eukaryotic organelles. ADVANCES IN APPLIED MICROBIOLOGY 2009; 65:141-97. [PMID: 19026865 DOI: 10.1016/s0065-2164(08)00606-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | |
Collapse
|
15
|
Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ, Setubal JC, Sobral BS, Azad AF. An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS One 2009; 4:e4833. [PMID: 19279686 PMCID: PMC2653234 DOI: 10.1371/journal.pone.0004833] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/28/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bacterial type IV secretion systems (T4SSs) comprise a diverse transporter family functioning in conjugation, competence, and effector molecule (DNA and/or protein) translocation. Thirteen genome sequences from Rickettsia, obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the Agrobacterium tumefaciens archetype (vir). However, the Rickettsia T4SS has not been functionally characterized for its role in symbiosis/virulence, and none of its substrates are known. RESULTS Superimposition of T4SS structural/functional information over previously identified Rickettsia components implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/VirB9 to ComB7/ComB9 proteins of epsilon-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host. Modern modifications of these systems likely reflect diversification with various eukaryotic host cells. CONCLUSION We present the rvh (Rickettsiales vir homolog) T4SS, an evolutionary conserved transporter with an unknown role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also identifies the Legionella lvh T4SS as a suitable genetic model.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Backert S, Fronzes R, Waksman G. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol 2008; 16:409-13. [PMID: 18706815 DOI: 10.1016/j.tim.2008.07.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/27/2008] [Accepted: 07/03/2008] [Indexed: 12/16/2022]
Abstract
Many type-IV secretion systems (T4SSs) of plant and human pathogens assemble a pilus used to inject virulence molecules (effectors) into host target cells. The T4SS of Agrobacterium tumefaciens consists of VirB1-VirB11 and VirD4 proteins. Whether targeting of T4SSs to the host requires a T4SS-adhesin that specifically engages host receptors for delivery of effectors has, until recently, remained unclear. Recent data of Agrobacterium and Helicobacter indicate that two classes of T4SS components, VirB2 and VirB5, might function as adhesins that mediate host-cell targeting through binding to specific host receptors. Here, we discuss this important issue and recent progress in the field.
Collapse
Affiliation(s)
- Steffen Backert
- Otto-von-Guericke-Universität Magdeburg, Institut für Medizinische Mikrobiologie, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
17
|
Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P. VirB1* promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 2007; 189:6551-63. [PMID: 17631630 PMCID: PMC2045169 DOI: 10.1128/jb.00480-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vir-type IV secretion system of Agrobacterium is assembled from 12 proteins encoded by the virB operon and virD4. VirB1 is one of the least-studied proteins encoded by the virB operon. Its N terminus is a lytic transglycosylase. The C-terminal third of the protein, VirB1*, is cleaved from VirB1 and secreted to the outside of the bacterial cell, suggesting an additional function. We show that both nopaline and octopine strains produce abundant amounts of VirB1* and perform detailed studies on nopaline VirB1*. Both domains are required for wild-type virulence. We show here that the nopaline type VirB1* is essential for the formation of the T pilus, a subassembly of the vir-T4SS composed of processed and cyclized VirB2 (major subunit) and VirB5 (minor subunit). A nopaline virB1 deletion strain does not produce T pili. Complementation with full-length VirB1 or C-terminal VirB1*, but not the N-terminal lytic transglycosylase domain, restores T pili containing VirB2 and VirB5. T-pilus preparations also contain extracellular VirB1*. Protein-protein interactions between VirB1* and VirB2 and VirB5 were detected in the yeast two-hybrid assay. We propose that VirB1 is a bifunctional protein required for virT4SS assembly. The N-terminal lytic transglycosylase domain provides localized lysis of the peptidoglycan cell wall to allow insertion of the T4SS. The C-terminal VirB1* promotes T-pilus assembly through protein-protein interactions with T-pilus subunits.
Collapse
Affiliation(s)
- John Zupan
- Department of Plant and Microbial Biology, Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | | | |
Collapse
|
18
|
Saier MH. Protein Secretion and Membrane Insertion Systems in Gram-Negative Bacteria. J Membr Biol 2007; 214:75-90. [PMID: 17546510 DOI: 10.1007/s00232-006-0049-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 11/07/2006] [Indexed: 12/30/2022]
Abstract
In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
19
|
Abajy MY, Kopeć J, Schiwon K, Burzynski M, Döring M, Bohn C, Grohmann E. A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J Bacteriol 2007; 189:2487-96. [PMID: 17209024 PMCID: PMC1899387 DOI: 10.1128/jb.01491-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 12/24/2006] [Indexed: 11/20/2022] Open
Abstract
Plasmid pIP501 has a very broad host range for conjugative transfer among a wide variety of gram-positive bacteria and gram-negative Escherichia coli. Functionality of the pIP501 transfer (tra) genes in E. coli was proven by pIP501 retrotransfer to Enterococcus faecalis (B. Kurenbach, C. Bohn, J. Prabhu, M. Abudukerim, U. Szewzyk, and E. Grohmann, Plasmid 50:86-93, 2003). The 15 pIP501 tra genes are organized in a single operon (B. Kurenbach, J. Kopeć, M. Mägdefrau, K. Andreas, W. Keller, C. Bohn, M. Y. Abajy, and E. Grohmann, Microbiology 152:637-645, 2006). The pIP501 tra operon is negatively autoregulated at the transcriptional level by the conjugative DNA relaxase TraA. Three of the 15 pIP501-encoded Tra proteins show significant sequence similarity to the Agrobacterium type IV secretion system proteins VirB1, VirB4, and VirD4. Here we report a comprehensive protein-protein interaction map of all of the pIP501-encoded Tra proteins determined by the yeast two-hybrid assay. Most of the interactions were verified in vitro by isolation of the protein complexes with pull-down assays. In conjunction with known or postulated functions of the pIP501-encoded Tra proteins and computer-assisted prediction of their cellular location, we propose a model for the first type IV-secretion-like system encoded by a conjugative plasmid from gram-positive bacteria.
Collapse
Affiliation(s)
- Mohammad Y Abajy
- Department of Environmental Microbiology/Genetics, FR1-2, Franklinstrasse 28/29, University of Technology Berlin, D-10587 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
McCullen CA, Binns AN. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 2006; 22:101-27. [PMID: 16709150 DOI: 10.1146/annurev.cellbio.22.011105.102022] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Host recognition and macromolecular transfer of virulence-mediating effectors represent critical steps in the successful transformation of plant cells by Agrobacterium tumefaciens. This review focuses on bacterial and plant-encoded components that interact to mediate these two processes. First, we examine the means by which Agrobacterium recognizes the host, via both diffusible plant-derived chemicals and cell-cell contact, with emphasis on the mechanisms by which multiple host signals are recognized and activate the virulence process. Second, we characterize the recognition and transfer of protein and protein-DNA complexes through the bacterial and plant cell membrane and wall barriers, emphasizing the central role of a type IV secretion system-the VirB complex-in this process.
Collapse
Affiliation(s)
- Colleen A McCullen
- Department of Biology and Plant Sciences Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
21
|
Paschos A, Patey G, Sivanesan D, Gao C, Bayliss R, Waksman G, O'Callaghan D, Baron C. Dimerization and interactions of Brucella suis VirB8 with VirB4 and VirB10 are required for its biological activity. Proc Natl Acad Sci U S A 2006; 103:7252-7. [PMID: 16648257 PMCID: PMC1464329 DOI: 10.1073/pnas.0600862103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
VirB8-like proteins are essential components of type IV secretion systems, bacterial virulence factors that mediate the translocation of effector molecules from many bacterial pathogens into eukaryotic cells. Based on cell biological, genetic, and x-ray crystallographic data, VirB8 was proposed to undergo multiple protein-protein interactions to mediate assembly of the translocation machinery. Here we report the results of a structure-function analysis of the periplasmic domain of VirB8 from the mammalian pathogen Brucella suis, which identifies amino acid residues required for three protein-protein interactions. VirB8 variants changed at residues proposed to be involved in dimerization, and protein-protein interactions were purified and characterized in vitro and in vivo. Changes at M102, Y105, and E214 affected the self-association as measured by analytical ultracentrifugation and gel filtration. The interaction with B. suis VirB10 was reduced by changes at T201, and change at R230 inhibited the interaction with VirB4 in vitro. The in vivo functionality of VirB8 variants was determined by complementation of growth in macrophages by a B. suis virB8 mutant and by using a heterologous assay of type IV secretion system assembly in Agrobacterium tumefaciens. Changes at Y105, T201, R230, and at several other residues impaired the in vivo function of VirB8, suggesting that we have identified interaction sites of relevance in the natural biological context.
Collapse
Affiliation(s)
- Athanasios Paschos
- *Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Gilles Patey
- Institut National de la Santé et de la Recherche Médicale U431, Faculté de Médecine, Avenue Kennedy, F-30900 Nîmes, France
| | - Durga Sivanesan
- *Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Chan Gao
- *Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Richard Bayliss
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
- Institute of Structural Molecular Biology, University College London/Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| | - Gabriel Waksman
- School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; and
- Institute of Structural Molecular Biology, University College London/Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| | - David O'Callaghan
- Institut National de la Santé et de la Recherche Médicale U431, Faculté de Médecine, Avenue Kennedy, F-30900 Nîmes, France
| | - Christian Baron
- *Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Karnholz A, Hoefler C, Odenbreit S, Fischer W, Hofreuter D, Haas R. Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J Bacteriol 2006; 188:882-93. [PMID: 16428391 PMCID: PMC1347336 DOI: 10.1128/jb.188.3.882-893.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Helicobacter pylori is one of the most diverse bacterial species known. A rational basis for this genetic variation may be provided by its natural competence for genetic transformation and high-frequency recombination. Many bacterial competence systems have homology with proteins that are involved in the assembly of type IV pili and type II secretion systems. In H. pylori, DNA uptake relies on a transport system related to type IV secretion systems (T4SS) designated the comB system. The prototype of a T4SS in Agrobacterium tumefaciens consists of 11 VirB proteins and VirD4, which form the core unit necessary for the delivery of single proteins or large nucleoprotein complexes into target cells. In the past we identified proteins ComB4 and ComB7 through ComB10 as being involved in the process of DNA uptake in H. pylori. In this study we identified and functionally characterized further (T4SS-homologous) components of the comB transformation competence system. By combining computer prediction modeling, experimental topology determination, generation of knockout strains, and genetic complementation studies we identified ComB2, ComB3, and ComB6 as essential components of the transformation apparatus, structurally and functionally homologous to VirB2, VirB3, and VirB6, respectively. comB2, comB3, and comB4 are organized as a separate operon. Thus, for the H. pylori comB system, all T4SS core components have been identified except for homologues to VirB1, VirD4, VirB5, and VirB11.
Collapse
Affiliation(s)
- Arno Karnholz
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, Pettenkoferstr. 9a, D-80336 München, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Carle A, Höppner C, Ahmed Aly K, Yuan Q, den Dulk-Ras A, Vergunst A, O'Callaghan D, Baron C. The Brucella suis type IV secretion system assembles in the cell envelope of the heterologous host Agrobacterium tumefaciens and increases IncQ plasmid pLS1 recipient competence. Infect Immun 2006; 74:108-17. [PMID: 16368963 PMCID: PMC1346655 DOI: 10.1128/iai.74.1.108-117.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Brucella species replicate within mammalian cells, and their type IV secretion system is essential for intracellular survival and replication. The options for biochemical studies on the Brucella secretion system are limited due to the rigidity of the cells and biosafety concerns, which preclude large-scale cell culture and fractionation. To overcome these problems, we heterologously expressed the Brucella suis virB operon in the closely related alpha(2)-proteobacterium Agrobacterium tumefaciens and showed that the VirB proteins assembled into a complex. Eight of the twelve VirB proteins were detected in the membranes of the heterologous host with specific antisera. Cross-linking indicated protein-protein interactions similar to those in other type IV secretion systems, and the results of immunofluorescence analysis supported the formation of VirB protein complexes in the cell envelope. Production of a subset of the B. suis VirB proteins (VirB3-VirB12) in A. tumefaciens strongly increased its ability to receive IncQ plasmid pLS1 in conjugation experiments, and production of VirB1 further enhanced the conjugation efficiency. Plasmid recipient competence correlated with periplasmic leakage and the detergent sensitivity of A. tumefaciens, suggesting a weakening of the cell envelope. Heterologous expression thus permits biochemical characterization of B. suis type IV secretion system assembly.
Collapse
Affiliation(s)
- Anna Carle
- McMaster University, Department of Biology, 1280 Main Street West, Hamilton, Ontario LS8 4K1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 2006; 59:451-85. [PMID: 16153176 PMCID: PMC3872966 DOI: 10.1146/annurev.micro.58.030603.123630] [Citation(s) in RCA: 480] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type IV secretion (T4S) systems are ancestrally related to bacterial conjugation machines. These systems assemble as a translocation channel, and often also as a surface filament or protein adhesin, at the envelopes of Gram-negative and Gram-positive bacteria. These organelles mediate the transfer of DNA and protein substrates to phylogenetically diverse prokaryotic and eukaryotic target cells. Many basic features of T4S are known, including structures of machine subunits, steps of machine assembly, substrates and substrate recognition mechanisms, and cellular consequences of substrate translocation. A recent advancement also has enabled definition of the translocation route for a DNA substrate through a T4S system of a Gram-negative bacterium. This review emphasizes the dynamics of assembly and function of model conjugation systems and the Agrobacterium tumefaciens VirB/D4 T4S system. We also summarize salient features of the increasingly studied effector translocator systems of mammalian pathogens.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, UT-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
25
|
Schröder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 2005; 54:1-25. [PMID: 15907535 DOI: 10.1016/j.plasmid.2005.02.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The mating pair formation (Mpf) system functions as a secretion machinery for intercellular DNA transfer during bacterial conjugation. The components of the Mpf system, comprising a minimal set of 10 conserved proteins, form a membrane-spanning protein complex and a surface-exposed sex pilus, which both serve to establish intimate physical contacts with a recipient bacterium. To function as a DNA secretion apparatus the Mpf complex additionally requires the coupling protein (CP). The CP interacts with the DNA substrate and couples it to the secretion pore formed by the Mpf system. Mpf/CP conjugation systems belong to the family of type IV secretion systems (T4SS), which also includes DNA-uptake and -release systems, as well as effector protein translocation systems of bacterial pathogens such as Agrobacterium tumefaciens (VirB/VirD4) and Helicobacter pylori (Cag). The increased efforts to unravel the molecular mechanisms of type IV secretion have largely advanced our current understanding of the Mpf/CP system of bacterial conjugation systems. It has become apparent that proteins coupled to DNA rather than DNA itself are the actively transported substrates during bacterial conjugation. We here present a unified and updated view of the functioning and the molecular architecture of the Mpf/CP machinery.
Collapse
Affiliation(s)
- Gunnar Schröder
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
26
|
Yuan Q, Carle A, Gao C, Sivanesan D, Aly KA, Höppner C, Krall L, Domke N, Baron C. Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 2005; 280:26349-59. [PMID: 15901731 DOI: 10.1074/jbc.m502347200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Type IV secretion systems mediate the translocation of virulence factors (proteins and/or DNA) from Gram-negative bacteria into eukaryotic cells. A complex of 11 conserved proteins (VirB1-VirB11) spans the inner and the outer membrane and assembles extracellular T-pili in Agrobacterium tumefaciens. Here we report a sequence of protein interactions required for the formation of complexes between VirB2 and VirB5, which precedes their incorporation into pili. The NTPase Walker A active site of the inner membrane protein VirB4 is required for virulence, but an active site VirB4 variant stabilized VirB3 and VirB8 and enabled T-pilus formation. Analysis of VirB protein complexes extracted from the membranes with mild detergent revealed that VirB2-VirB5 complex formation depended on VirB4, which identified a novel T-pilus assembly step. Bicistron expression demonstrated direct interaction of VirB4 with VirB8, and analyses with purified proteins showed that VirB5 bound to VirB8 and VirB10. VirB4 therefore localizes at the basis of a trans-envelope interaction sequence, and by stabilization of VirB8 it mediates the incorporation of VirB5 and VirB2 into extracellular pili.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Biology, McMaster University, Hamilton, Ontario LS8 4K1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:219-34. [PMID: 15546668 DOI: 10.1016/j.bbamcr.2004.02.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/03/2004] [Accepted: 02/03/2004] [Indexed: 11/27/2022]
Abstract
The translocation of DNA across biological membranes is an essential process for many living organisms. In bacteria, type IV secretion systems (T4SS) are used to deliver DNA as well as protein substrates from donor to target cells. The T4SS are structurally complex machines assembled from a dozen or more membrane proteins in response to environmental signals. In Gram-negative bacteria, the conjugation machines are composed of a cell envelope-spanning secretion channel and an extracellular pilus. These dynamic structures (i) direct formation of stable contacts-the mating junction-between donor and recipient cell membranes, (ii) transmit single-stranded DNA as a nucleoprotein particle, as well as protein substrates, across donor and recipient cell membranes, and (iii) mediate disassembly of the mating junction following substrate transfer. This review summarizes recent progress in our understanding of the mechanistic details of DNA trafficking with a focus on the paradigmatic Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation systems.
Collapse
|
28
|
Lee LY, Gelvin SB. Osa protein constitutes a strong oncogenic suppression system that can block vir-dependent transfer of IncQ plasmids between Agrobacterium cells and the establishment of IncQ plasmids in plant cells. J Bacteriol 2004; 186:7254-61. [PMID: 15489437 PMCID: PMC523227 DOI: 10.1128/jb.186.21.7254-7261.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 08/02/2004] [Indexed: 11/20/2022] Open
Abstract
The osa (oncogenic suppressive activity) gene of the IncW group plasmid pSa is sufficient to suppress tumorigenesis by Agrobacterium tumefaciens. osa confers oncogenic suppression by inhibiting VirE2 protein export. This result is similar, but not identical, to that of oncogenic suppression by the IncQ plasmid RSF1010. We conducted a series of experiments to compare oncogenic suppression by these two systems. Agrobacterium strains harboring plasmids containing osa are more able to effect oncogenic suppression than are similar strains containing various RSF1010 derivatives. When osa is present within a donor Agrobacterium strain that also carries a derivative of RSF1010, the transfer of RSF1010 derivatives to recipient bacteria and their establishment in plants are blocked. Oncogenic suppression is still effected when the osa gene is integrated into the Agrobacterium chromosome, suggesting that it is the osa gene product that is active in suppression and that suppression does not require a protein-nucleic acid intermediate like that described for IncQ plasmids. Extracellular complementation experiments with tobacco leaf disks indicated that Osa blocks stable transfer of RSF1010 to plant cells by inhibiting transfer of VirE2, which is essential for the transfer of RSF1010 into plant cells, and not by inhibiting the actual transfer of RSF1010 itself. Our results suggest that Osa and RSF1010 cause oncogenic suppression by using different mechanisms.
Collapse
Affiliation(s)
- Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | |
Collapse
|
29
|
Höppner C, Liu Z, Domke N, Binns AN, Baron C. VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J Bacteriol 2004; 186:1415-22. [PMID: 14973016 PMCID: PMC344403 DOI: 10.1128/jb.186.5.1415-1422.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/13/2003] [Indexed: 01/01/2023] Open
Abstract
Type IV secretion systems mediate conjugative plasmid transfer as well as the translocation of virulence factors from various gram-negative pathogens to eukaryotic host cells. The translocation apparatus consists of 9 to 12 components, and the components from different organisms are believed to have similar functions. However, orthologs to proteins of the prototypical type IV system, VirB of Agrobacterium tumefaciens, typically share only 15 to 30% identical amino acids, and functional complementation between components of different type IV secretion systems has not been achieved. We here report a heterologous complementation in the case of A. tumefaciens virB1 defects with its orthologs from Brucella suis (VirB1s) and the IncN plasmid pKM101 (TraL). In contrast, expression of the genes encoding the VirB1 orthologs from the IncF plasmid (open reading frame 169) and from the Helicobacter pylori cag pathogenicity island (HP0523) did not complement VirB1 functions. The complementation of VirB1 activity was assessed by T-pilus formation, by tumor formation on wounded plants, by IncQ plasmid transfer, and by IncQ plasmid recipient assay. Replacement of the key active-site Glu residue by Ala abolished the complementation by VirB1 from B. suis and by TraL, demonstrating that heterologous complementation requires an intact lytic transglycosylase active site. In contrast, the VirB1 active-site mutant from A. tumefaciens retained considerable residual activity in various activity assays, implying that this protein exerts additional effects during the type IV secretion process.
Collapse
Affiliation(s)
- Christoph Höppner
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, D-80638 Munich, Germany
| | | | | | | | | |
Collapse
|
30
|
Lawley TD, Klimke WA, Gubbins MJ, Frost LS. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 2003; 224:1-15. [PMID: 12855161 DOI: 10.1016/s0378-1097(03)00430-0] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The F sex factor of Escherichia coli is a paradigm for bacterial conjugation and its transfer (tra) region represents a subset of the type IV secretion system (T4SS) family. The F tra region encodes eight of the 10 highly conserved (core) gene products of T4SS including TraAF (pilin), the TraBF, -KF (secretin-like), -VF (lipoprotein) and TraCF (NTPase), -EF, -LF and TraGF (N-terminal region) which correspond to TrbCP, -IP, -GP, -HP, -EP, -JP, DP and TrbLP, respectively, of the P-type T4SS exemplified by the IncP plasmid RP4. F lacks homologs of TrbBP (NTPase) and TrbFP but contains a cluster of genes encoding proteins essential for F conjugation (TraFF, -HF, -UF, -WF, the C-terminal region of TraGF, and TrbCF) that are hallmarks of F-like T4SS. These extra genes have been implicated in phenotypes that are characteristic of F-like systems including pilus retraction and mating pair stabilization. F-like T4SS systems have been found on many conjugative plasmids and in genetic islands on bacterial chromosomes. Although few systems have been studied in detail, F-like T4SS appear to be involved in the transfer of DNA only whereas P- and I-type systems appear to transport protein or nucleoprotein complexes. This review examines the similarities and differences among the T4SS, especially F- and P-like systems, and summarizes the properties of the F transfer region gene products.
Collapse
Affiliation(s)
- T D Lawley
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | | | | | |
Collapse
|
31
|
Liu Z, Binns AN. Functional subsets of the virB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J Bacteriol 2003; 185:3259-69. [PMID: 12754223 PMCID: PMC155385 DOI: 10.1128/jb.185.11.3259-3269.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The virB-encoded type IV transport complex of Agrobacterium tumefaciens mediates the transfer of DNA and proteins into plant cells, as well as the conjugal transfer of IncQ plasmids, such as RSF1010, between Agrobacterium strains. While several studies have indicated that there are physical interactions among the 11 VirB proteins, the functional significance of the interactions has been difficult to establish since all of the proteins are required for substrate transfer. Our previous studies, however, indicated that although all of the VirB proteins are required for the capacity of a strain to serve as an RSF1010 donor, only a subset of these proteins in the recipient is necessary to increase the conjugal frequency by 3 to 4 logs. The roles of particular groups of VirB proteins in this increased recipient activity were examined in the study reported here. Examination of the expression of subgroups of virB genes revealed that translation of virB6 is necessary for expression of downstream open reading frames. Expression of limited subsets of the VirB proteins in a recipient strain lacking the Ti plasmid revealed that the VirB7 to VirB10 proteins yield a subcomplex that is functional in the recipient assay but that the VirB1 to VirB4 proteins, as a group, dramatically increase this activity in strains expressing VirB7 to VirB10. Finally, the membrane distribution and cross-linking patterns of VirB10, but not of VirB8 or VirB9, in a strain expressing only VirB7 to VirB10 are significantly altered compared to the patterns of the wild type. These characteristics are, however, restored to the wild-type status by coexpression of VirB1 to VirB3. Taken together, these results define subsets of type IV transport complex proteins that are critical in allowing a strain to participate as a recipient in virB-mediated conjugal RSF1010 transfer.
Collapse
Affiliation(s)
- Zhenying Liu
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
32
|
Jakubowski SJ, Krishnamoorthy V, Christie PJ. Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 2003; 185:2867-78. [PMID: 12700266 PMCID: PMC154386 DOI: 10.1128/jb.185.9.2867-2878.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study characterized the contribution of Agrobacterium tumefaciens VirB6, a polytopic inner membrane protein, to the formation of outer membrane VirB7 lipoprotein and VirB9 protein multimers required for type IV secretion. VirB7 assembles as a disulfide cross-linked homodimer that associates with the T pilus and a VirB7-VirB9 heterodimer that stabilizes other VirB proteins during biogenesis of the secretion machine. Two presumptive VirB protein complexes, composed of VirB6, VirB7, and VirB9 and of VirB7, VirB9, and VirB10, were isolated by immunoprecipitation or glutathione S-transferase pulldown assays from detergent-solubilized membrane extracts of wild-type A348 and a strain producing only VirB6 through VirB10 among the VirB proteins. To examine the biological importance of VirB6 complex formation for type IV secretion, we monitored the effects of nonstoichiometric VirB6 production and the synthesis of VirB6 derivatives with 4-residue insertions (VirB6.i4) on VirB7 and VirB9 multimerization, T-pilus assembly, and substrate transfer. A virB6 gene deletion mutant accumulated VirB7 dimers at diminished steady-state levels, whereas complementation with a plasmid bearing wild-type virB6 partially restored accumulation of the dimers. VirB6 overproduction was correlated with formation of higher-order VirB9 complexes or aggregates and also blocked substrate transfer without a detectable disruption of T-pilus production; these phenotypes were displayed by cells grown at 28 degrees C, a temperature that favors VirB protein turnover, but not by cells grown at 20 degrees C. Strains producing several VirB6.i4 mutant proteins assembled novel VirB7 and VirB9 complexes detectable by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two strains producing the D60.i4 and L191.i4 mutant proteins translocated IncQ plasmid and VirE2 effector protein substrates in the absence of a detectable T pilus. Our findings support a model that VirB6 mediates formation of VirB7 and VirB9 complexes required for biogenesis of the T pilus and the secretion channel.
Collapse
Affiliation(s)
- Simon J Jakubowski
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
33
|
Fischer W, Haas R, Odenbreit S. Type IV secretion systems in pathogenic bacteria. Int J Med Microbiol 2002; 292:159-68. [PMID: 12398207 DOI: 10.1078/1438-4221-00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Mikrobiologie, Ludwig-Maximilians-Universität München, Germany.
| | | | | |
Collapse
|
34
|
Ward DV, Draper O, Zupan JR, Zambryski PC. Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 2002; 99:11493-500. [PMID: 12177441 PMCID: PMC123284 DOI: 10.1073/pnas.172390299] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Numerous bacterial pathogens use type IV secretion systems (T4SS) to deliver virulence factors directly to the cytoplasm of plant, animal, and human host cells. Here, evidence for interactions among components of the Agrobacterium tumefaciens vir-encoded T4SS is presented. The results derive from a high-resolution yeast two-hybrid assay, in which a library of small peptide domains of T4SS components was screened for interactions. The use of small peptides overcomes problems associated with assaying for interactions involving membrane-associated proteins. We established interactions between VirB11 (an inner membrane pore-forming protein), VirB9 (a periplasmic protein), and VirB7 (an outer membrane-associated lipoprotein and putative pilus component). We provide evidence for an interaction pathway, among conserved members of a T4SS, spanning the A. tumefaciens envelope and including a potential pore protein. In addition, we have determined interactions between VirB1 (a lytic transglycosylase likely involved in the local remodeling of the peptidoglycan) and primarily VirB8, but also VirB4, VirB10, and VirB11 (proteins likely to assemble the core structure of the T4SS). VirB4 interacts with VirB8, VirB10, and VirB11, also establishing a connection to the core components. The identification of these interactions suggests a model for assembly of the T4SS.
Collapse
Affiliation(s)
- Doyle V Ward
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
35
|
Hofreuter D, Haas R. Natural transformation in Helicobacter pylori: DNA transport in an unexpected way. Trends Microbiol 2002. [DOI: 10.1016/s0966-842x(02)02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Baron C, OCallaghan D, Lanka E. Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes. Mol Microbiol 2002; 43:1359-65. [PMID: 11918819 DOI: 10.1046/j.1365-2958.2002.02816.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Type IV secretion systems (TFSS) mediate secretion or direct cell-to-cell transfer of virulence factors (proteins or protein-DNA complexes) from many Gram-negative animal, human and plant pathogens, such as Agrobacterium tumefaciens, Bartonella tribocorum, Bordetella pertussis, Brucella suis, Helicobacter pylori, Legionella pneumophila and Rickettsia prowazekii, into eukaryotic cells. Bacterial conjugation is also classified as a TFSS-like process mediating the spread of broad-host-range plasmids between Gram-negative bacteria such as RP4 and R388, which carry antibiotic resistance genes. Genetic, biochemical, cell biological and structural biology experiments led to significant progress in the understanding of several aspects of TFSS processes. X-ray crystallography revealed that homologues of the A. tumefaciens inner membrane-associated proteins VirB11 and VirD4 from H. pylori and R388, respectively, may form channels for substrate translocation or assembly of the transmembrane TFSS machinery. Biochemical and cell biological experiments revealed interactions between components of the periplasmic core components VirB8, VirB9 and VirB10, which may form the translocation channel. Analysis of A. tumefaciens virulence proteins VirE2 and VirF suggested that the periplasmic translocation route of the pertussis toxin from B. pertussis may be more generally valid than previously anticipated. Secretion and modification of toxins from H. pylori and L. pneumophila profoundly affect host cell metabolism, thus entering the discipline of cellular microbiology. Finally, results from genome sequencing projects revealed the presence of up to three TFSS in a single organism, and the analysis of their interplay and adaptation to different functions will be a future challenge. TFSS-carrying plasmids were discovered in different ecosystems, suggesting that genetic exchange may speed up their evolution and adaptation to different cell-cell interactions.
Collapse
Affiliation(s)
- Christian Baron
- Ludwig-Maximilians-Universität, Department Biologie I, Bereich Genetik und Mikrobiologie, Maria-Ward-Str. 1a, D-80638 München, Germany.
| | | | | |
Collapse
|
37
|
Cao TB, Saier MH. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3201-14. [PMID: 11739753 DOI: 10.1099/00221287-147-12-3201] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- T B Cao
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
38
|
Sagulenko E, Sagulenko V, Chen J, Christie PJ. Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 2001; 183:5813-25. [PMID: 11566978 PMCID: PMC99657 DOI: 10.1128/jb.183.20.5813-5825.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The VirB11 ATPase is a subunit of the Agrobacterium tumefaciens transfer DNA (T-DNA) transfer system, a type IV secretion pathway required for delivery of T-DNA and effector proteins to plant cells during infection. In this study, we examined the effects of virB11 mutations on VirB protein accumulation, T-pilus production, and substrate translocation. Strains synthesizing VirB11 derivatives with mutations in the nucleoside triphosphate binding site (Walker A motif) accumulated wild-type levels of VirB proteins but failed to produce the T-pilus or export substrates at detectable levels, establishing the importance of nucleoside triphosphate binding or hydrolysis for T-pilus biogenesis. Similar findings were obtained for VirB4, a second ATPase of this transfer system. Analyses of strains expressing virB11 dominant alleles in general showed that T-pilus production is correlated with substrate translocation. Notably, strains expressing dominant alleles previously designated class II (dominant and nonfunctional) neither transferred T-DNA nor elaborated detectable levels of the T-pilus. By contrast, strains expressing most dominant alleles designated class III (dominant and functional) efficiently translocated T-DNA and synthesized abundant levels of T pilus. We did, however, identify four types of virB11 mutations or strain genotypes that selectively disrupted substrate translocation or T-pilus production: (i) virB11/virB11* merodiploid strains expressing all class II and III dominant alleles were strongly suppressed for T-DNA translocation but efficiently mobilized an IncQ plasmid to agrobacterial recipients and also elaborated abundant levels of T pilus; (ii) strains synthesizing two class III mutant proteins, VirB11, V258G and VirB11.I265T, efficiently transferred both DNA substrates but produced low and undetectable levels of T pilus, respectively; (iii) a strain synthesizing the class II mutant protein VirB11.I103T/M301L efficiently exported VirE2 but produced undetectable levels of T pilus; (iv) strains synthesizing three VirB11 derivatives with a four-residue (HMVD) insertion (L75.i4, C168.i4, and L302.i4) neither transferred T-DNA nor produced detectable levels of T pilus but efficiently transferred VirE2 to plants and the IncQ plasmid to agrobacterial recipient cells. Together, our findings support a model in which the VirB11 ATPase contributes at two levels to type IV secretion, T-pilus morphogenesis, and substrate selection. Furthermore, the contributions of VirB11 to machine assembly and substrate transfer can be uncoupled by mutagenesis.
Collapse
Affiliation(s)
- E Sagulenko
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
39
|
Hofreuter D, Odenbreit S, Haas R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 2001; 41:379-91. [PMID: 11489125 DOI: 10.1046/j.1365-2958.2001.02502.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Helicobacter pylori (Hp), a Gram-negative bacterial pathogen and aetiologic agent of gastroduodenal disease in humans, is naturally competent for genetic transformation. Natural competence in bacteria is usually correlated with the presence of type IV pili or type IV pilin-like proteins, which are absent in Hp. Instead, we recently identified the comB operon in Hp, carrying four genes tentatively designated as orf2, comB1, comB2 and comB3. We show here that all ComB proteins and the 37-amino-acid Orf2 peptide display significant primary sequence and structural homology/identity to the basic components of a type IV secretion apparatus. ComB1, ComB2 and ComB3, now renamed ComB8, ComB9 and ComB10, correspond to the Agrobacterium tumefaciens VirB8, VirB9 and VirB10 proteins respectively. The peptide Orf2 carries a lipoprotein motif and a second cysteine residue homologous to VirB7, and was thus designated ComB7. The putative ATPase ComB4, encoded by the open reading frame hp0017 of strain 26695, corresponds to virB4 of the A. tumefaciens type IV secretion system. A Hp comB4 transposon insertion mutant was totally defective in natural transformation. By complementation of a Hp DeltacomB deletion mutant, we demonstrate that each of the proteins from ComB8 to ComB10 is absolutely essential for the development of natural transformation competence. The putative lipoprotein ComB7 is not essential, but apparently stabilizes the apparatus and modulates the transformation efficiency. Thus, pathogenic type I Hp strains contain two functional independent type IV transport systems, one for protein translocation encoded by the cag pathogenicity island and one for uptake of DNA by natural transformation. The latter system indicates a possible novel mechanism for natural DNA transformation in bacteria.
Collapse
Affiliation(s)
- D Hofreuter
- Max von Pettenkofer Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstr. 9a, D-80336 München, Germany
| | | | | |
Collapse
|
40
|
Hapfelmeier S, Domke N, Zambryski PC, Baron C. VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 2000; 182:4505-11. [PMID: 10913084 PMCID: PMC94622 DOI: 10.1128/jb.182.16.4505-4511.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VirB6 from Agrobacterium tumefaciens is an essential component of the type IV secretion machinery for T pilus formation and genetic transformation of plants. Due to its predicted topology as a polytopic inner membrane protein, it was proposed to form the transport pore for cell-to-cell transfer of genetic material and proteinaceous virulence factors. Here, we show that the absence of VirB6 leads to reduced cellular levels of VirB5 and VirB3, which were proposed to assist T pilus formation as minor component(s) or assembly factor(s), respectively. Overexpression of virB6 in trans restored levels of cell-bound and T pilus-associated VirB5 to wild type but did not restore VirB3 levels. Thus, VirB6 has a stabilizing effect on VirB5 accumulation, thereby regulating T pilus assembly. In the absence of VirB6, cell-bound VirB7 monomers and VirB7-VirB9 heterodimers were reduced and VirB7 homodimer formation was abolished. This effect could not be restored by expression of VirB6 in trans. Expression of TraD, a component of the transfer machinery of the IncN plasmid pKM101, with significant sequence similarity to VirB6, restored neither protein levels nor bacterial virulence but partly permitted T pilus formation in a virB6 deletion strain. VirB6 may therefore regulate T pilus formation by direct interaction with VirB5, and wild-type levels of VirB3 and VirB7 homodimers are not required.
Collapse
Affiliation(s)
- S Hapfelmeier
- Institut für Genetik und Mikrobiologie der Universität München, Lehrstuhl für Mikrobiologie, D-80638 Munich, Germany
| | | | | | | |
Collapse
|
41
|
Thanassi DG, Hultgren SJ. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 2000; 12:420-30. [PMID: 10873830 DOI: 10.1016/s0955-0674(00)00111-3] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretion of proteins across the bacterial outer membrane takes place via a variety of mechanisms from simple one-component systems to complex multicomponent pathways. Secretion pathways can be organized into evolutionarily and functionally related groups, which highlight their relationship with organelle biogenesis. Recent work is beginning to reveal the structure and function of various secretion components and the molecular mechanisms of secretion.
Collapse
Affiliation(s)
- D G Thanassi
- Department of Molecular Genetics and Microbiology, 130 Life Sciences Building, Center for Infectious Diseases, State University of New York at Stony Brook, Stony Brook, 11794-5222, USA.
| | | |
Collapse
|
42
|
Zupan J, Muth TR, Draper O, Zambryski P. The transfer of DNA from agrobacterium tumefaciens into plants: a feast of fundamental insights. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:11-28. [PMID: 10929098 DOI: 10.1046/j.1365-313x.2000.00808.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- J Zupan
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | |
Collapse
|
43
|
Campbell AM, Tok JB, Zhang J, Wang Y, Stein M, Lynn DG, Binns AN. Xenognosin sensing in virulence: is there a phenol receptor in Agrobacterium tumefaciens? CHEMISTRY & BIOLOGY 2000; 7:65-76. [PMID: 10662683 DOI: 10.1016/s1074-5521(00)00065-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The mechanisms of signal perception and transmission in the 'two-component' autokinase transmitters/response regulators are poorly understood, especially considering the vast number of such systems now known. Virulence induction from the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens represents one of the best understood systems with regard to the chemistry of the activating signal, and yet the existing data does not support a receptor-mediated perception event for the xenognostic phenols. RESULTS Here we provide the first conclusive evidence that a specific receptor must be involved in xenognostic phenol perception, detail structural requirements of the xenognosins necessary for perception by this receptor, and develop a genetic strategy that demonstrates critical components of the phenol recognition system are not encoded on the Ti plasmid. CONCLUSIONS Although the basic elements of the two-component system required for phenol-mediated induction of virulence gene expression are encoded on the Ti plasmid, they are dependent on the chromosomal background for even the very first stage of signal perception. This discovery suggests a curious evolutionary history, and also provides functional insight into the mechanisms of two-component signal detection and transmission in general.
Collapse
Affiliation(s)
- A M Campbell
- Plant Sciences Institute, University of Pennsylvania, Philadelphia, PA 19104-1018, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Dang TA, Zhou XR, Graf B, Christie PJ. Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 1999; 32:1239-53. [PMID: 10383764 PMCID: PMC3918219 DOI: 10.1046/j.1365-2958.1999.01436.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Agrobacterium tumefaciens VirB4 ATPase functions with other VirB proteins to export T-DNA to susceptible plant cells and other DNA substrates to a variety of prokaryotic and eukaryotic cells. Previous studies have demonstrated that VirB4 mutants with defects in the Walker A nucleotide-binding motif are non-functional and exert a dominant negative phenotype when synthesized in wild-type cells. This study characterized the oligomeric structure of VirB4 and examined the effects of Walker A sequence mutations on complex formation and transporter activity. VirB4 directed dimer formation when fused to the amino-terminal portion of cI repressor protein, as shown by immunity of Escherichia coli cells to lambda phage infection. VirB4 also dimerized in Agrobacterium tumefaciens, as demonstrated by the recovery of a detergent-resistant complex of native protein and a functional, histidine-tagged derivative by precipitation with anti-His6 antibodies and by Co2+ affinity chromatography. Walker A sequence mutants directed repressor dimerization in E. coli and interacted with His-VirB4 in A. tumefaciens, indicating that ATP binding is not required for self-association. A dimerization domain was localized to a proposed N-terminal membrane-spanning region of VirB4, as shown by the dominance of an allele coding for the N-terminal 312 residues and phage immunity of host cells expressing cI repressor fusions to alleles for the first 237 or 312 residues. A recent study reported that the synthesis of a subset of VirB proteins, including VirB4, in agrobacterial recipients has a pronounced stimulatory effect on the virB-dependent conjugal transfer of plasmid RSF1010 by agrobacterial donors. VirB4'312 suppressed the stimulatory effect of VirB proteins for DNA uptake when synthesized in recipient cells. In striking contrast, Walker A sequence mutants contributed to the stimulatory effect of VirB proteins to the same extent as native VirB4. These findings indicate that the oligomeric structure of VirB4, but not its capacity to bind ATP, is important for the assembly of VirB proteins as a DNA uptake system. The results of these studies support a model in which VirB4 dimers or homomultimers contribute structural information for the assembly of a transenvelope channel competent for bidirectional DNA transfer, whereas an ATP-dependent activity is required for configuring this channel as a dedicated export machine.
Collapse
|
45
|
Deng W, Chen L, Peng WT, Liang X, Sekiguchi S, Gordon MP, Comai L, Nester EW. VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 1999; 31:1795-807. [PMID: 10209751 DOI: 10.1046/j.1365-2958.1999.01316.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens induces tumours on plants by transferring a nucleoprotein complex, the T-complex, from the bacterium to the plant cell. The T-complex consists of a single-stranded DNA (ssDNA) segment, the T-DNA, and VirD2, an endonuclease covalently attached to the 5' end of the T-DNA. A type IV secretion system encoded by the virB operon and virD4 is required for the entry of the T-complex and VirE2, a ssDNA-binding protein, into plant cells. The VirE1 protein is specifically required for the export of the VirE2 protein, as demonstrated by extracellular complementation and tumour formation. In this report, using a yeast two-hybrid system, we demonstrated that the VirE1 and VirE2 proteins interact and confirmed this interaction by in vitro binding assays. Although VirE2 is a ssDNA-binding protein, addition of ssDNA into the binding buffer did not interfere with the interaction of VirE1 and VirE2. VirE2 also interacts with itself, but the interaction between VirE1 and VirE2 is stronger than the VirE2 self-interaction, as measured in a lacZ reporter gene assay. In addition, the interaction of VirE2 with itself is inhibited by VirE1, indicating that VirE2 binds VirE1 preferentially. Analysis of various virE2 deletions indicated that the VirE1 interaction domain of VirE2 overlaps the VirE2 self-interaction domain. Incubation of extracts from Escherichia coli overexpressing His-VirE1 with the extracts of E. coli overexpressing His-VirE2 increased the yield of His-VirE2 in the soluble fraction. In a similar purified protein solubility assay, His-VirE1 increased the amount of His-VirE2 partitioning into the soluble fraction. In Agrobacterium, VirE2 was undetectable in the soluble protein fraction unless VirE1 was co-expressed. When urea was added to solubilize any large protein aggregates, a low level of VirE2 was detected. These results indicate that VirE1 prevents VirE2 from aggregating, enhances the stability of VirE2 and, perhaps, maintains VirE2 in an export-competent state. Analysis of the deduced amino acid sequence of the VirE1 protein revealed that the VirE1 protein shares a number of properties with molecular chaperones that are involved in the transport of specific proteins into animal and plant cells using type III secretion systems. We suggest that VirE1 functions as a specific molecular chaperone for VirE2, the first such chaperone linked to the presumed type IV secretion system.
Collapse
Affiliation(s)
- W Deng
- Department of Microbiology, University of Washington, Seattle 98195-7242, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In the past year, our knowledge of type IV transporters of Gram-negative bacteria has further expanded. Advances include the discovery of additional members of this family of proteins, increased knowledge of the morphologies of type IV transporters, and a better understanding of the mechanisms by which macromolecules are exported by these systems.
Collapse
Affiliation(s)
- D L Burns
- CBER, US Food and Drug Administration HFM-434, Building 29 Room 418 8800 Rockville Pike Bethesda MD 20892 USA.
| |
Collapse
|
47
|
Zupan JR, Ward D, Zambryski P. Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr Opin Microbiol 1998; 1:649-55. [PMID: 10066547 DOI: 10.1016/s1369-5274(98)80110-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The VirB transporter is a type IV secretion system that mediates the genetic transformation of plant cells by Agrobacterium tumefaciens. Assembly of this transporter depends on, first, formation of a VirB7/B9 complex that stabilizes many of the VirB proteins, second, formation of a virulence-specific pilus composed primarily of VirB2 and VirB5, and, third, post-translational processing of VirB1 and VirB2.
Collapse
Affiliation(s)
- J R Zupan
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA. jzupan@nature. berkeley.edu
| | | | | |
Collapse
|