1
|
Cheng WX, Wang J, Mao ML, Lu YB, Zou JX. The mitochondrial genome of Bottapotamon fukienense (Brachiura: Potamidae) is fragmented into two chromosomes. BMC Genomics 2024; 25:755. [PMID: 39095713 PMCID: PMC11295360 DOI: 10.1186/s12864-024-10657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND China is the hotspot of global freshwater crab diversity, but their wild populations are facing severe pressures associated with anthropogenic factors, necessitating the need to map their taxonomic and genetic diversity and design conservation policies. RESULTS Herein, we sequenced the mitochondrial genome of a Chinese freshwater crab species Bottapotamon fukienense, and found that it is fragmented into two chromosomes. We confirmed that fragmentation was not limited to a single specimen or population. Chromosome 1 comprised 15,111 base pairs (bp) and there were 26 genes and one pseudogene (pseudo-nad1) encoded on it. Chromosome 2 comprised 8,173 bp and there were 12 genes and two pseudogenes (pseudo-trnL2 and pseudo-rrnL) encoded on it. Combined, they comprise the largest mitogenome (23,284 bp) among the Potamidae. Bottapotamon was the only genus in the Potamidae dataset exhibiting rearrangements of protein-coding genes. Bottapotamon fukienense exhibited average rates of sequence evolution in the dataset and did not differ in selection pressures from the remaining Potamidae. CONCLUSIONS This is the first experimentally confirmed fragmentation of a mitogenome in crustaceans. While the mitogenome of B. fukienense exhibited multiple signs of elevated mitogenomic architecture evolution rates, including the exceptionally large size, duplicated genes, pseudogenisation, rearrangements of protein-coding genes, and fragmentation, there is no evidence that this is matched by elevated sequence evolutionary rates or changes in selection pressures.
Collapse
Affiliation(s)
- Wang-Xinjun Cheng
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Jun Wang
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Mei-Lin Mao
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Yuan-Biao Lu
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China
| | - Jie-Xin Zou
- Research Laboratory of Freshwater Crustacean Decapoda & Paragonimus, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330031, China.
- Provincial Key Laboratory for Drug Targeting and Drug Screening, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
2
|
Xu T, Bravo H, van der Meij SE. Phylomitogenomics elucidates the evolution of symbiosis in Thoracotremata (Decapoda: Cryptochiridae, Pinnotheridae, Varunidae). PeerJ 2023; 11:e16217. [PMID: 37868050 PMCID: PMC10586294 DOI: 10.7717/peerj.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Background Thoracotremata belong to the large group of "true" crabs (infraorder Brachyura), and they exhibit a wide range of physiological and morphological adaptations to living in terrestrial, freshwater and marine habitats. Moreover, the clade comprises various symbiotic taxa (Aphanodactylidae, Cryptochiridae, Pinnotheridae, some Varunidae) that are specialised in living with invertebrate hosts, but the evolutionary history of these symbiotic crabs is still partially unresolved. Methods Here we assembled and characterised the complete mitochondrial genomes (hereafter mitogenomes) of three gall crab species (Cryptochiridae): Kroppcarcinus siderastreicola, Opecarcinus hypostegus and Troglocarcinus corallicola. A phylogenetic tree of the Thoracotremata was reconstructed using 13 protein-coding genes and two ribosomal RNA genes retrieved from three new gall crab mitogenomes and a further 72 available thoracotreme mitogenomes. Furthermore, we applied a comparative analysis to characterise mitochondrial gene order arrangement, and performed a selection analysis to test for selective pressure of the protein-coding genes in symbiotic Cryptochiridae, Pinnotheridae, and Varunidae (Asthenognathus inaequipes and Tritodynamia horvathi). Results The results of the phylogenetic reconstruction confirm the monophyly of Cryptochiridae, which clustered separately from the Pinnotheridae. The latter clustered at the base of the tree with robust branch values. The symbiotic varunids A. inaequipes and T. horvathi clustered together in a clade with free-living Varunidae species, highlighting that symbiosis in the Thoracotremata evolved independently on multiple occasions. Different gene orders were detected in symbionts and free-living species when compared with the ancestral brachyuran gene order. Lastly, the selective pressure analysis detected two positively selected sites in the nad6 gene of Cryptochiridae, but the evidence for positive selection in Pinnotheridae and A. inaequipes and T. horvathi was weak. Adaptive evolution of mitochondrial protein-coding genes is perhaps related to the presumably higher energetic demands of a symbiotic lifestyle.
Collapse
Affiliation(s)
- Tao Xu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Henrique Bravo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Sancia E.T. van der Meij
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, Netherlands
| |
Collapse
|
3
|
Bai G, Yuan Q, Guo Q, Duan Y. Identification and phylogenetic analysis in Pterorhinuschinensis (Aves, Passeriformes, Leiothrichidae) based on complete mitogenome. Zookeys 2023; 1172:15-30. [PMID: 38312436 PMCID: PMC10838554 DOI: 10.3897/zookeys.1172.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/05/2023] [Indexed: 02/06/2024] Open
Abstract
The Black-throated Laughingthrush (Pterorhinuschinensis) is a bird belonging to the order Passeriformes and the family Leiothrichidae, and is found in Cambodia, China, Laos, Myanmar, Thailand and Vietnam. Pterorhinuschinensis was once classified as belonging to the genus Garrulax. However, recent research has reclassified it in the genus Pterorhinus. In this study, we sequenced and characterized the complete mitogenome of P.chinensis. The complete mitochondrial genome of P.chinensis is 17,827 bp in length. It consists of 13 PCGs, 22 tRNAs, two rRNAs, and two control regions. All genes are coded on the H-strand, except for one PCG (nad6) and eight tRNAs. All PCGs are initiated with ATG and stopped by five types of stop codons. Our comparative analyses show irregular gene rearrangement between trnT and trnP genes with another similar control region emerging between trnE and trnF genes compared with the ancestral mitochondrial gene order, called "duplicate CR gene order". The phylogenetic position of P.chinensis and phylogenetic relationships among members of Leiothrichidae are assessed based on complete mitogenomes. Phylogenetic relationships based on Bayesian inference and maximum likelihood methods showed that Garrulax and (Pterorhinus + Ianthocincla) formed a clade. Leiothrix and Liocichla also formed a clade. Our study provides support for the transfer of P.chinensis from Garrulax to Pterorhinus. Our results provide mitochondrial genome data to further understand the mitochondrial genome characteristics and taxonomic status of Leiothrichidae.
Collapse
Affiliation(s)
- Guirong Bai
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
| | - Qingmiao Yuan
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
| | - Qiang Guo
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
| | - Yubao Duan
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Southwest Forestry University, Kunming 650224, ChinaSouthwest Forestry UniversityKunmingChina
| |
Collapse
|
4
|
Zhang L, Xia T, Gao X, Yang X, Sun G, Zhao C, Liu G, Zhang H. Characterization and Phylogenetic Analysis of the Complete Mitochondrial Genome of Aythya marila. Genes (Basel) 2023; 14:1205. [PMID: 37372385 DOI: 10.3390/genes14061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Aythya marila is a large diving duck belonging to the family Anatidae. However, the phylogenetic relationship among these Aythya species remains unclear due to the presence of extensive interspecific hybridization events within the Aythya genus. Here, we sequenced and annotated the complete mitochondrial genome of A. marila, which contained 22 tRNAs, 13 protein-coding genes (PCGs), 2 ribosomal RNAs, and 1 D-loop, with a length of 16,617 bp. The sizes of the PCGs ranged from 297 to 1824 bp and were all, except for ND6, located on the heavy chain (H). ATG and TAA were the most common start and termination codons of the 13 PCGs, respectively. The fastest- and slowest-evolving genes were ATP8 and COI, respectively. Codon usage analysis indicated that CUA, AUC, GCC, UUC, CUC, and ACC were the six most frequent codons. The nucleotide diversity values indicated a high level of genetic diversity in A. marila. FST analysis suggested a widespread gene exchange between A. baeri and A. nyroca. Moreover, phylogenetic reconstructions using the mitochondrial genomes of all available Anatidae species showed that, in addition to A. marila, four major clades among the Anatidae (Dendrocygninae, Oxyurinae, Anserinae, and Anatinae) were closely related to A. fuligula. Overall, this study provides valuable information on the evolution of A. marila and new insights into the phylogeny of Anatidae.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Tian Xia
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xiaodong Gao
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xiufeng Yang
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Guolei Sun
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Chao Zhao
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Guangshuai Liu
- College of Life Science, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
5
|
Françoso E, Zuntini AR, Ricardo PC, Santos PKF, de Souza Araujo N, Silva JPN, Gonçalves LT, Brito R, Gloag R, Taylor BA, Harpur B, Oldroyd BP, Brown MJF, Arias MC. Rapid evolution, rearrangements and whole mitogenome duplication in the Australian stingless bees Tetragonula (Hymenoptera: Apidae): A steppingstone towards understanding mitochondrial function and evolution. Int J Biol Macromol 2023; 242:124568. [PMID: 37100315 DOI: 10.1016/j.ijbiomac.2023.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The extreme conservation of mitochondrial genomes in metazoans poses a significant challenge to understanding mitogenome evolution. However, the presence of variation in gene order or genome structure, found in a small number of taxa, can provide unique insights into this evolution. Previous work on two stingless bees in the genus Tetragonula (T. carbonaria and T. hockingsi) revealed highly divergent CO1 regions between them and when compared to the bees from the same tribe (Meliponini), indicating rapid evolution. Using mtDNA isolation and Illumina sequencing, we elucidated the mitogenomes of both species. In both species, there has been a duplication of the whole mitogenome to give a total genome size of 30,666 bp in T. carbonaria; and 30,662 bp in T. hockingsi. These duplicated genomes present a circular structure with two identical and mirrored copies of all 13 protein coding genes and 22 tRNAs, with the exception of a few tRNAs that are present as single copies. In addition, the mitogenomes are characterized by rearrangements of two block of genes. We believe that rapid evolution is present in the whole Indo-Malay/Australasian group of Meliponini but is extraordinarily elevated in T. carbonaria and T. hockingsi, probably due to founder effect, low effective population size and the mitogenome duplication. All these features - rapid evolution, rearrangements, and duplication - deviate significantly from the vast majority of the mitogenomes described so far, making the mitogenomes of Tetragonula unique opportunities to address fundamental questions of mitogenome function and evolution.
Collapse
Affiliation(s)
- Elaine Françoso
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil.
| | | | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | - Natalia de Souza Araujo
- Unit of Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - João Paulo Naldi Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | | | - Rosalyn Gloag
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Benjamin A Taylor
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Brock Harpur
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Benjamin P Oldroyd
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
6
|
Shtolz N, Mishmar D. The metazoan landscape of mitochondrial DNA gene order and content is shaped by selection and affects mitochondrial transcription. Commun Biol 2023; 6:93. [PMID: 36690686 PMCID: PMC9871016 DOI: 10.1038/s42003-023-04471-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) harbors essential genes in most metazoans, yet the regulatory impact of the multiple evolutionary mtDNA rearrangements has been overlooked. Here, by analyzing mtDNAs from ~8000 metazoans we found high gene content conservation (especially of protein and rRNA genes), and codon preferences for mtDNA-encoded tRNAs across most metazoans. In contrast, mtDNA gene order (MGO) was selectively constrained within but not between phyla, yet certain gene stretches (ATP8-ATP6, ND4-ND4L) were highly conserved across metazoans. Since certain metazoans with different MGOs diverge in mtDNA transcription, we hypothesized that evolutionary mtDNA rearrangements affected mtDNA transcriptional patterns. As a first step to test this hypothesis, we analyzed available RNA-seq data from 53 metazoans. Since polycistron mtDNA transcripts constitute a small fraction of the steady-state RNA, we enriched for polycistronic boundaries by calculating RNA-seq read densities across junctions between gene couples encoded either by the same strand (SSJ) or by different strands (DSJ). We found that organisms whose mtDNA is organized in alternating reverse-strand/forward-strand gene blocks (mostly arthropods), displayed significantly reduced DSJ read counts, in contrast to organisms whose mtDNA genes are preferentially encoded by one strand (all chordates). Our findings suggest that mtDNA rearrangements are selectively constrained and likely impact mtDNA regulation.
Collapse
Affiliation(s)
- Noam Shtolz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
7
|
Mitogenomic Codon Usage Patterns of Superfamily Certhioidea (Aves, Passeriformes): Insights into Asymmetrical Bias and Phylogenetic Implications. Animals (Basel) 2022; 13:ani13010096. [PMID: 36611705 PMCID: PMC9817927 DOI: 10.3390/ani13010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
The superfamily Certhioidea currently comprises five families. Due to the rapid diversification, the phylogeny of Certhioidea is still controversial. The advent of next generation sequencing provides a unique opportunity for a mitogenome-wide study. Here, we first provided six new complete mitogenomes of Certhioidea (Certhia americana, C. familiaris, Salpornis spilonota, Cantorchilus leucotis, Pheugopedius coraya, and Pheugopedius genibarbis). We further paid attention to the genomic characteristics, codon usages, evolutionary rates, and phylogeny of the Certhioidea mitogenomes. All mitogenomes we analyzed displayed typical ancestral avian gene order with 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and one control region (CR). Our study indicated the strand-biased compositional asymmetry might shape codon usage preferences in mitochondrial genes. In addition, natural selection might be the main factor in shaping the codon usages of genes. Additionally, evolutionary rate analyses indicated all mitochondrial genes were under purifying selection. Moreover, MT-ATP8 and MT-CO1 were the most rapidly evolving gene and conserved genes, respectively. According to our mitophylogenetic analyses, the monophylies of Troglodytidae and Sittidae were strongly supported. Importantly, we suggest that Salpornis should be separated from Certhiidae and put into Salpornithidae to maintain the monophyly of Certhiidae. Our findings are useful for further evolutionary studies within Certhioidea.
Collapse
|
8
|
Cui L, Huang A, He Z, Ao L, Ge F, Fan X, Zeng B, Yang M, Yang D, Ni Q, Li Y, Yao Y, Xu H, Yang J, Wei Z, Li T, Yan T, Zhang M. Complete Mitogenomes of Polypedates Tree Frogs Unveil Gene Rearrangement and Concerted Evolution within Rhacophoridae. Animals (Basel) 2022; 12:2449. [PMID: 36139309 PMCID: PMC9494961 DOI: 10.3390/ani12182449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
New developments in sequencing technology and nucleotide analysis have allowed us to make great advances in reconstructing anuran phylogeny. As a clade of representative amphibians that have radiated from aquatic to arboreal habitats, our understanding of the systematic status and molecular biology of rhacophorid tree frogs is still limited. We determined two new mitogenomes for the genus Polypedates (Rhacophoridae): P. impresus and P. mutus. We conducted comparative and phylogenetic analyses using our data and seven other rhacophorid mitogenomes. The mitogenomes of the genera Polypedates, Buergeria, and Zhangixalus were almost identical, except that the ATP8 gene in Polypedates had become a non-coding region; Buergeria maintained the legacy "LTPF" tRNA gene cluster compared to the novel "TLPF" order in the other two genera; and B. buergeri and Z. dennysi had no control region (CR) duplication. The resulting phylogenetic relationship supporting the above gene rearrangement pathway suggested parallel evolution of ATP8 gene loss of function (LoF) in Polypedates and CR duplication with concerted evolution of paralogous CRs in rhacophorids. Finally, conflicting topologies in the phylograms of 185 species reflected the advantages of phylogenetic analyses using multiple loci.
Collapse
Affiliation(s)
- Lin Cui
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - An Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lisha Ao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Ge
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zeng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Ni
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Jiandong Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhimin Wei
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Tongqing Li
- Hebei Fisheries Technology Extension Center, Shijiazhuang 050051, China
| | - Taiming Yan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingwang Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. Mol Phylogenet Evol 2022; 175:107565. [PMID: 35787457 DOI: 10.1016/j.ympev.2022.107565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
Molecularly, the family Caryophylliidae is polyphyletic and different sets of genetic data converge towards a consensus that a taxonomic review of this family is necessary. Overall, the order of genes in the mitochondrial genome (mitogenome) together with DNA sequences have been used to successfully untangle evolutionary relationships in several groups of organisms. Published mitogenomes of two caryophylliid genera (Desmophyllum and Solenosmilia) present a transposition of the gene block containing cob, nad2, and nad6, which is located between nad5 5' exon and trnW, while that of Polycyathus chaishanensis presents the same gene order as the majority of scleractinian corals. In molecular-based evolutionary reconstructions, caryophylliids that have the mitochondrial gene rearrangement were recovered as a monophyletic lineage ("true" caryophylliids), while members of the genus Polycyathus were placed in a different position. In this study, additional mitogenomes of this family were assembled and included in evolutionary reconstructions of Scleractinia in order to improve our understanding on whether the mitogenome gene rearrangement is limited to and, therefore, could be a synapomorphy of the actual members of Caryophylliidae. Specimens of Caryophyllia scobinosa, Premocyathus sp., Heterocyathus sulcatus, and Trochocyathus caryophylloides, as well as Desmophyllum pertusum and Solenosmilia variabilis from the Southwest Atlantic were sequenced using Illumina platforms. Then, mitochondrial genomes were assembled and annotated, and nuclear datasets were recovered in-silico from assembled contigs using a previously published set of baits. Evolutionary reconstructions were performed using mitochondrial and nuclear datasets and based on Maximum Likelihood and Bayesian Inference. Obtained mitogenomes are circular and range between 15,816 and 18,225 bp in size and from 30.76% to 36.63% in GC content. The gene rearrangement is only seen in C. scobinosa, D. pertusum, Premocyathus sp., and S. variabilis, which were recovered as a monophyletic clade in both mitochondrial and nuclear phylogenies. On the other hand, the "caryophylliids" with the canonical mitogenome gene order were not recovered within this clade. Differences in features of the skeleton of "true" caryophylliids in comparison to traditional members of the family were observed and offer further support that the gene rearrangement might be seen as a synapomorphy of family Caryophylliidae.
Collapse
Affiliation(s)
- I G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.
| | - C F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - K C C Capel
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818 Warsaw, Poland
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - M V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil.
| |
Collapse
|
10
|
Montaña-Lozano P, Moreno-Carmona M, Ochoa-Capera M, Medina NS, Boore JL, Prada CF. Comparative genomic analysis of vertebrate mitochondrial reveals a differential of rearrangements rate between taxonomic class. Sci Rep 2022; 12:5479. [PMID: 35361853 PMCID: PMC8971445 DOI: 10.1038/s41598-022-09512-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Vertebrate mitochondrial genomes have been extensively studied for genetic and evolutionary purposes, these are normally believed to be extremely conserved, however, different cases of gene rearrangements have been reported. To verify the level of rearrangement and the mitogenome evolution, we performed a comparative genomic analysis of the 2831 vertebrate mitochondrial genomes representing 12 classes available in the NCBI database. Using a combination of bioinformatics methods, we determined there is a high number of errors in the annotation of mitochondrial genes, especially in tRNAs. We determined there is a large variation in the proportion of rearrangements per gene and per taxonomic class, with higher values observed in Actinopteri, Amphibia and Reptilia. We highlight that these are results for currently available vertebrate sequences, so an increase in sequence representativeness in some groups may alter the rearrangement rates, so in a few years it would be interesting to see if these rates are maintained or altered with the new mitogenome sequences. In addition, within each vertebrate class, different patterns in rearrangement proportion with distinct hotspots in the mitochondrial genome were found. We also determined that there are eleven convergence events in gene rearrangement, nine of which are new reports to the scientific community.
Collapse
Affiliation(s)
- Paula Montaña-Lozano
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia
| | - Manuela Moreno-Carmona
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia
| | - Mauricio Ochoa-Capera
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia
| | - Natalia S Medina
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia
| | - Jeffrey L Boore
- Providence St. Joseph Health and Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA, 98109, USA
| | - Carlos F Prada
- Grupo de Investigación de Biología y Ecología de Artrópodos, Facultad de Ciencias, Universidad del Tolima, Ibague, Colombia.
| |
Collapse
|
11
|
Castellucci F, Luchetti A, Mantovani B. Exploring mitogenome evolution in Branchiopoda (Crustacea) lineages reveals gene order rearrangements in Cladocera. Sci Rep 2022; 12:4931. [PMID: 35322086 PMCID: PMC8942981 DOI: 10.1038/s41598-022-08873-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
The class Branchiopoda, whose origin dates back to Cambrian, includes ~ 1200 species which mainly occupy freshwater habitats. The phylogeny and systematics of the class have been debated for long time, until recent phylogenomic analyses allowed to better clarify the relationships among major clades. Based on these data, the clade Anostraca (fairy and brine shrimps) is sister to all other branchiopods, and the Notostraca (tadpole shrimps) results as sister group to Diplostraca, which includes Laevicaudata + Spinicaudata (clam shrimps) and Cladoceromorpha (water fleas + Cyclestherida). In the present analysis, thanks to an increased taxon sampling, a complex picture emerges. Most of the analyzed mitogenomes show the Pancrustacea gene order while in several other taxa they are found rearranged. These rearrangements, though, occur unevenly among taxa, most of them being found in Cladocera, and their taxonomic distribution does not agree with the phylogeny. Our data also seems to suggest the possibility of potentially homoplastic, alternative gene order within Daphniidae.
Collapse
Affiliation(s)
- Filippo Castellucci
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy.,Zoology Section, Natural History Museum of Denmark-University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| | - Barbara Mantovani
- Department of Biological, Geological and Environmental Sciences-University of Bologna, via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
12
|
Noll D, Leon F, Brandt D, Pistorius P, Le Bohec C, Bonadonna F, Trathan PN, Barbosa A, Rey AR, Dantas GPM, Bowie RCK, Poulin E, Vianna JA. Positive selection over the mitochondrial genome and its role in the diversification of gentoo penguins in response to adaptation in isolation. Sci Rep 2022; 12:3767. [PMID: 35260629 PMCID: PMC8904570 DOI: 10.1038/s41598-022-07562-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Although mitochondrial DNA has been widely used in phylogeography, evidence has emerged that factors such as climate, food availability, and environmental pressures that produce high levels of stress can exert a strong influence on mitochondrial genomes, to the point of promoting the persistence of certain genotypes in order to compensate for the metabolic requirements of the local environment. As recently discovered, the gentoo penguins (Pygoscelis papua) comprise four highly divergent lineages across their distribution spanning the Antarctic and sub-Antarctic regions. Gentoo penguins therefore represent a suitable animal model to study adaptive processes across divergent environments. Based on 62 mitogenomes that we obtained from nine locations spanning all four gentoo penguin lineages, we demonstrated lineage-specific nucleotide substitutions for various genes, but only lineage-specific amino acid replacements for the ND1 and ND5 protein-coding genes. Purifying selection (dN/dS < 1) is the main driving force in the protein-coding genes that shape the diversity of mitogenomes in gentoo penguins. Positive selection (dN/dS > 1) was mostly present in codons of the Complex I (NADH genes), supported by two different codon-based methods at the ND1 and ND4 in the most divergent lineages, the eastern gentoo penguin from Crozet and Marion Islands and the southern gentoo penguin from Antarctica respectively. Additionally, ND5 and ATP6 were under selection in the branches of the phylogeny involving all gentoo penguins except the eastern lineage. Our study suggests that local adaptation of gentoo penguins has emerged as a response to environmental variability promoting the fixation of mitochondrial haplotypes in a non-random manner. Mitogenome adaptation is thus likely to have been associated with gentoo penguin diversification across the Southern Ocean and to have promoted their survival in extreme environments such as Antarctica. Such selective processes on the mitochondrial genome may also be responsible for the discordance detected between nuclear- and mitochondrial-based phylogenies of gentoo penguin lineages.
Collapse
Affiliation(s)
- D Noll
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.,Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - F Leon
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - D Brandt
- Department of Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, CA, 94720, USA
| | - P Pistorius
- Department of Zoology, 11DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Nelson Mandela University, Port Elizabeth, South Africa
| | - C Le Bohec
- CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France.,Département de Biologie Polaire, Centre Scientifique de Monaco, 98000, Monaco City, Monaco
| | - F Bonadonna
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier Cedex 5, France
| | | | - A Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - A Raya Rey
- Centro Austral de Investigaciones Científicas - Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Ushuaia, Argentina.,Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina.,Wildlife Conservation Society, Buenos Aires, Argentina
| | - G P M Dantas
- PPG in Vertebrate Biology, Pontificia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | - R C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, 3101 Valley Life Science Building, Berkeley, CA, 94720, USA
| | - E Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile.,Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - J A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile. .,Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile. .,Fondo de Desarrollo de Áreas Prioritarias (FONDAP), Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
13
|
Mitochondrial genome of the critically endangered Baer's Pochard, Aythya baeri, and its phylogenetic relationship with other Anatidae species. Sci Rep 2021; 11:24302. [PMID: 34934156 PMCID: PMC8692624 DOI: 10.1038/s41598-021-03868-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022] Open
Abstract
Historically, the diving duck, Baer’s Pochard (Aythya baeri) was widely distributed in East and South Asia, but according to a recent estimate, its global population is now less than 1000 individuals. To date, the mitochondrial genome of A. baeri has not been deposited and is not available in GenBank. Therefore, we aimed to sequence the complete mitochondrial genome of this species. The genome was 16,623 bp in length, double stranded, circular in shape, and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one non-coding control region. Many structural and compositional similarities were discovered between A. baeri and the other three Aythya mitochondrial genomes. Among 13 protein-coding genes of the four Aythya species, the fastest-evolving gene was ATP8 while the slowest-evolving gene was COII. Furthermore, the phylogenetic tree of Anatidae based on Bayesian inference and maximum likelihood methods showed that the relationships among 15 genera of the Anatidae family were as follows: Dendrocygna was an early diverging lineage that was fairly distant from the other ingroup taxa; Cygnus, Branta, and Anser were clustered into one branch that corresponded to the Anserinae subfamily; and Aythya, Asarcornis, Netta, Anas, Mareca, Mergus, Lophodytes, Bucephala, Tadorna, Cairina, and Aix were clustered into another branch that corresponded to the Anatinae subfamily. Our target species and three other Aythya species formed a monophyletic group. These results provide new mitogenomic information to support further phylogenetic and taxonomic studies and genetic conservation of Anatidae species.
Collapse
|
14
|
Zhang XL, Liu P, Xu SL, Rizo EZ, Zhang Q, Dumont HJ, Han BP. Geographic Variation of Phyllodiaptomus tunguidus Mitogenomes: Genetic Differentiation and Phylogeny. Front Genet 2021; 12:711992. [PMID: 34531896 PMCID: PMC8439380 DOI: 10.3389/fgene.2021.711992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/03/2021] [Indexed: 12/04/2022] Open
Abstract
Phyllodiaptomus tunguidus (Copepoda: Calanoida) is largely endemic to and widespread in freshwater in southern China, where it inhabits a complex landscape from lowland to highland across an elevation gradient of 2000m. A deep genetic differentiation can be expected between its most distant geographic populations. Here, we sequenced nine mitogenomes from diverse populations. All mitogenomes contained 37 genes, including 13 protein-coding genes (PCG), two rRNA genes, 22 tRNA genes and one control region. Their base composition, genetic distance and tRNA structure indeed revealed a wide differentiation between mitogenomes. Two P. tunguidus from Guangxi near Vietnam differed from the other seven by up to 10.1%. Their tRNA-Arg had a complete clover-leaf structure, whereas that of the others did not contain an entire dihydrouridine arm. The nine mitogenomes also differed in the length of rRNA. NJ, ML, and Bayesian analyses all split them into two clades, viz. the two P. tunguidus from Guangxi (Clade 1), and the other seven (Clade 2). Both the structure and phylogeny of the mitogenomes suggest that P. tunguidus has complex geographic origin, and its populations in Clade 1 have long lived in isolation from those in Clade 2. They currently reach the level of subspecies or cryptic species. An extensive phylogenetic analysis of Copepoda further verified that Diaptomidae is the most recently diverging family in Calanoida and that P. tunguidus is at the evolutionary apex of the family.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Department of Ecology, Jinan University, Guangzhou, China
| | - Ping Liu
- Department of Ecology, Jinan University, Guangzhou, China
| | - Shao-Lin Xu
- Department of Ecology, Jinan University, Guangzhou, China
| | - Eric Zeus Rizo
- Department of Ecology, Jinan University, Guangzhou, China.,Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, Iloilo, Philippines
| | - Qun Zhang
- Department of Ecology, Jinan University, Guangzhou, China
| | - Henri J Dumont
- Department of Ecology, Jinan University, Guangzhou, China.,Department of Biology, Ghent University, Ghent, Belgium
| | - Bo-Ping Han
- Department of Ecology, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Urantówka AD, Kroczak A, Strzała T, Zaniewicz G, Kurkowski M, Mackiewicz P. Mitogenomes of Accipitriformes and Cathartiformes Were Subjected to Ancestral and Recent Duplications Followed by Gradual Degeneration. Genome Biol Evol 2021; 13:evab193. [PMID: 34432018 PMCID: PMC8435663 DOI: 10.1093/gbe/evab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
The rearrangement of 37 genes with one control region, firstly identified in Gallus gallus mitogenome, is believed to be ancestral for all Aves. However, mitogenomic sequences obtained in recent years revealed that many avian mitogenomes contain duplicated regions that were omitted in previous genomic versions. Their evolution and mechanism of duplication are still poorly understood. The order of Accipitriformes is especially interesting in this context because its representatives contain a duplicated control region in various stages of degeneration. Therefore, we applied an appropriate PCR strategy to look for duplications within the mitogenomes of the early diverged species Sagittarius serpentarius and Cathartiformes, which is a sister order to Accipitriformes. The analyses revealed the same duplicated gene order in all examined taxa and the common ancestor of these groups. The duplicated regions were subjected to gradual degeneration and homogenization during concerted evolution. The latter process occurred recently in the species of Cathartiformes as well as in the early diverged lineages of Accipitriformes, that is, Sagittarius serpentarius and Pandion haliaetus. However, in other lineages, that is, Pernis ptilorhynchus, as well as representatives of Aegypiinae, Aquilinae, and five related subfamilies of Accipitriformes (Accipitrinae, Circinae, Buteoninae, Haliaeetinae, and Milvinae), the duplications were evolving independently for at least 14-47 Myr. Different portions of control regions in Cathartiformes showed conflicting phylogenetic signals indicating that some sections of these regions were homogenized at a frequency higher than the rate of speciation, whereas others have still evolved separately.
Collapse
Affiliation(s)
- Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, Wrocław University, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Grzegorz Zaniewicz
- Department of Vertebrate Ecology and Zoology, Avian Ecophysiology Unit, University of Gdańsk, Poland
| | - Marcin Kurkowski
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, Wrocław University, Poland
| |
Collapse
|
16
|
The queen conch mitogenome: intra- and interspecific mitogenomic variability in Strombidae and phylogenetic considerations within the Hypsogastropoda. Sci Rep 2021; 11:11972. [PMID: 34099752 PMCID: PMC8184947 DOI: 10.1038/s41598-021-91224-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Aliger gigas is an economically important and vulnerable marine species. We present a new mitogenome of A. gigas from the Mexican Caribbean and use the eight publicly available Strombidae mitogenomes to analyze intra- and interspecific variation. We present the most complete phylogenomic understanding of Hypsogastropoda to date (17 superfamilies, 39 families, 85 genera, 109 species) to revisit the phylogenetic position of the Stromboidea and evaluate divergence times throughout the phylogeny. The A. gigas mitogenome comprises 15,460 bp including 13 PCGs, 22 tRNAs, and two rRNAs. Nucleotide diversity suggested divergence between the Mexican and Colombian lineages of A. gigas. Interspecific divergence showed high differentiation among Strombidae species and demonstrated a close relationship between A. gigas and Strombus pugilis, between Lambis lambis and Harpago chiragra, and among Tridentarius dentatus/Laevistrombus canarium/Ministrombus variabilis. At the intraspecific level, the gene showing the highest differentiation is ATP8 and the lowest is NAD4L, whereas at the interspecific level the NAD genes show the highest variation and the COX genes the lowest. Phylogenomic analyses confirm that Stromboidea belongs in the non-Latrogastropoda clade and includes Xenophoridea. The phylogenomic position of other superfamilies, including those of previously uncertain affiliation, is also discussed. Finally, our data indicated that Stromboidea diverged into two principal clades in the early Cretaceous while Strombidae diversified in the Paleocene, and lineage diversification within A. gigas took place in the Pleistocene.
Collapse
|
17
|
Formenti G, Rhie A, Balacco J, Haase B, Mountcastle J, Fedrigo O, Brown S, Capodiferro MR, Al-Ajli FO, Ambrosini R, Houde P, Koren S, Oliver K, Smith M, Skelton J, Betteridge E, Dolucan J, Corton C, Bista I, Torrance J, Tracey A, Wood J, Uliano-Silva M, Howe K, McCarthy S, Winkler S, Kwak W, Korlach J, Fungtammasan A, Fordham D, Costa V, Mayes S, Chiara M, Horner DS, Myers E, Durbin R, Achilli A, Braun EL, Phillippy AM, Jarvis ED. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol 2021; 22:120. [PMID: 33910595 PMCID: PMC8082918 DOI: 10.1186/s13059-021-02336-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/31/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Modern sequencing technologies should make the assembly of the relatively small mitochondrial genomes an easy undertaking. However, few tools exist that address mitochondrial assembly directly. RESULTS As part of the Vertebrate Genomes Project (VGP) we develop mitoVGP, a fully automated pipeline for similarity-based identification of mitochondrial reads and de novo assembly of mitochondrial genomes that incorporates both long (> 10 kbp, PacBio or Nanopore) and short (100-300 bp, Illumina) reads. Our pipeline leads to successful complete mitogenome assemblies of 100 vertebrate species of the VGP. We observe that tissue type and library size selection have considerable impact on mitogenome sequencing and assembly. Comparing our assemblies to purportedly complete reference mitogenomes based on short-read sequencing, we identify errors, missing sequences, and incomplete genes in those references, particularly in repetitive regions. Our assemblies also identify novel gene region duplications. The presence of repeats and duplications in over half of the species herein assembled indicates that their occurrence is a principle of mitochondrial structure rather than an exception, shedding new light on mitochondrial genome evolution and organization. CONCLUSIONS Our results indicate that even in the "simple" case of vertebrate mitogenomes the completeness of many currently available reference sequences can be further improved, and caution should be exercised before claiming the complete assembly of a mitogenome, particularly from short reads alone.
Collapse
Affiliation(s)
- Giulio Formenti
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA.
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA.
- The Howards Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Balacco
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
| | - Bettina Haase
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
| | | | - Olivier Fedrigo
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA
| | - Samara Brown
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA
- The Howards Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Farooq O Al-Ajli
- Monash University Malaysia Genomics Facility, School of Science, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Qatar Falcon Genome Project, Doha, State of Qatar
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Iliana Bista
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Shane McCarthy
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology & Genetics, Dresden, Germany
| | | | | | | | - Daniel Fordham
- Oxford Nanopore Technologies Ltd, Oxford Science Park, Oxford, UK
| | - Vania Costa
- Oxford Nanopore Technologies Ltd, Oxford Science Park, Oxford, UK
| | - Simon Mayes
- Oxford Nanopore Technologies Ltd, Oxford Science Park, Oxford, UK
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, Milan, Italy
| | - Eugene Myers
- Max Planck Institute of Molecular Cell Biology & Genetics, Dresden, Germany
| | - Richard Durbin
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erich D Jarvis
- The Vertebrate Genome Lab, Rockefeller University, New York, NY, USA.
- Laboratory of Neurogenetics of Language, Rockefeller University, New York, NY, USA.
- The Howards Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Dey P, Sharma SK, Sarkar I, Ray SD, Pramod P, Kochiganti VHS, Quadros G, Rathore SS, Singh V, Singh RP. Complete mitogenome of endemic plum-headed parakeet Psittacula cyanocephala - characterization and phylogenetic analysis. PLoS One 2021; 16:e0241098. [PMID: 33836001 PMCID: PMC8034733 DOI: 10.1371/journal.pone.0241098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022] Open
Abstract
Psittacula cyanocephala is an endemic parakeet from the Indian sub-continent that is widespread in the illegal bird trade. Previous studies on Psittacula parakeets have highlighted taxonomic ambiguities, warranting studies to resolve the issues. Since the mitochondrial genome provides useful information concerning the species evolution and phylogenetics, we sequenced the complete mitogenome of P. cyanocephala using NGS, validated 38.86% of the mitogenome using Sanger Sequencing and compared it with other available whole mitogenomes of Psittacula. The complete mitogenome of the species was 16814 bp in length with 54.08% AT composition. P. cyanocephala mitogenome comprises of 13 protein-coding genes, 2 rRNAs and 22 tRNAs. P. cyanocephala mitogenome organization was consistent with other Psittacula mitogenomes. Comparative codon usage analysis indicated the role of natural selection on Psittacula mitogenomes. Strong purifying selection pressure was observed maximum on nad1 and nad4l genes. The mitochondrial control region of all Psittacula species displayed the ancestral avian CR gene order. Phylogenetic analyses revealed the Psittacula genus as paraphyletic nature, containing at least 4 groups of species within the same genus, suggesting its taxonomic reconsideration. Our results provide useful information for developing forensic tests to control the illegal trade of the species and scientific basis for phylogenetic revision of the genus Psittacula.
Collapse
Affiliation(s)
- Prateek Dey
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Sanjeev Kumar Sharma
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Indrani Sarkar
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Swapna Devi Ray
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | - Padmanabhan Pramod
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | | | - Goldin Quadros
- Wetland Ecology Division, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
| | | | - Vikram Singh
- Central University of Himachal Pradesh, Dharamshala, India
| | - Ram Pratap Singh
- National Avian Forensic Laboratory, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, Tamil Nadu, India
- Department of Life Science, Central University of South Bihar, Gaya, India
| |
Collapse
|
19
|
Valdes J, Samoluk SS, Abdala CS, Baldo D, Seijo G. Structure and comparative analysis of the mitochondrial genomes of Liolaemus lizards with different modes of reproduction and ploidy levels. PeerJ 2021; 9:e10677. [PMID: 33828904 PMCID: PMC7996074 DOI: 10.7717/peerj.10677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 11/20/2022] Open
Abstract
Liolaemus is the most specious genus of the Squamata lizards in South America, presenting exceptional evolutionary radiation and speciation patterns. This recent diversification complicates the formal taxonomic treatment and the phylogenetic analyses of this group, causing relationships among species to remain controversial. Here we used Next-Generation Sequencing to do a comparative analysis of the structure and organization of the complete mitochondrial genomes of three differently related species of Liolaemus and with different reproductive strategies and ploidy levels. The annotated mitochondrial genomes of ca. 17 kb are the first for the Liolaemidae family. Despite the high levels of sequence similarity among the three mitochondrial genomes over most of their lengths, the comparative analyses revealed variations at the stop codons of the protein coding genes and the structure of the tRNAs among species. The presence of a non-canonical dihydrouridine loop is a novelty for the pleurodonts iguanians. But the highest level of variability was observed in two repetitive sequences of the control region, which were responsible for most of the length heterogeneity of the mitochondrial genomes. These tandem repeats may be useful markers to analyze relationships of closely related species of Liolaemus and related genera and to conduct population and phylogenetic studies.
Collapse
Affiliation(s)
- Julian Valdes
- Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes Capital, Corrientes, Argentina
| | | | - Cristian Simón Abdala
- Unidad ejecutora Lillo (CONICET), Facultad de Ciencias Naturales e Instituto Miguel Lillo (IML), Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Diego Baldo
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Guillermo Seijo
- Instituto de Botánica del Nordeste (UNNE-CONICET), Corrientes Capital, Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, FaCENA-UNNE, Corrientes Capital, Corrientes, Argentina
| |
Collapse
|
20
|
Zhang J, Miao G, Hu S, Sun Q, Ding H, Ji Z, Guo P, Yan S, Wang C, Kan X, Nie L. Quantification and evolution of mitochondrial genome rearrangement in Amphibians. BMC Ecol Evol 2021; 21:19. [PMID: 33563214 PMCID: PMC7871395 DOI: 10.1186/s12862-021-01755-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rearrangement is an important topic in the research of amphibian mitochondrial genomes ("mitogenomes" hereafter), whose causes and mechanisms remain enigmatic. Globally examining mitogenome rearrangements and uncovering their characteristics can contribute to a better understanding of mitogenome evolution. RESULTS Here we systematically investigated mitogenome arrangements of 232 amphibians including four newly sequenced Dicroglossidae mitogenomes. The results showed that our new sequenced mitogenomes all possessed a trnM tandem duplication, which was not exclusive to Dicroglossidae. By merging the same arrangements, the mitogenomes of ~ 80% species belonged to the four major patterns, the major two of which were typical vertebrate arrangement and typical neobatrachian arrangement. Using qMGR for calculating rearrangement frequency (RF) (%), we found that the control region (CR) (RF = 45.04) and trnL2 (RF = 38.79) were the two most frequently rearranged components. Forty-seven point eight percentage of amphibians possessed rearranged mitogenomes including all neobatrachians and their distribution was significantly clustered in the phylogenetic trees (p < 0.001). In addition, we argued that the typical neobatrachian arrangement may have appeared in the Late Jurassic according to possible occurrence time estimation. CONCLUSION It was the first global census of amphibian mitogenome arrangements from the perspective of quantity statistics, which helped us to systematically understand the type, distribution, frequency and phylogenetic characteristics of these rearrangements.
Collapse
Affiliation(s)
- Jifeng Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China.
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
- Anhui Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, 232001, People's Republic of China.
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Health and Safety, Ministry of Education, Huainan, 232001, People's Republic of China.
- Anhui Shanhe Pharmaceutical Excipients Co., Ltd., Huainan, 232001, People's Republic of China.
| | - Guopen Miao
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Shunjie Hu
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Qi Sun
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Hengwu Ding
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China
| | - Zhicheng Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Pen Guo
- Life Science and Food Engineering College, Yibin University, Yibin, Sichuan, 644000, People's Republic of China
| | - Shoubao Yan
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui, 232001, People's Republic of China
| | - Xianzhao Kan
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Liuwang Nie
- College of Life Science, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
21
|
Urantówka AD, Kroczak A, Mackiewicz P. New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. BMC Genomics 2020; 21:874. [PMID: 33287726 PMCID: PMC7720580 DOI: 10.1186/s12864-020-07284-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bird mitogenomes differ from other vertebrates in gene rearrangement. The most common avian gene order, identified first in Gallus gallus, is considered ancestral for all Aves. However, other rearrangements including a duplicated control region and neighboring genes have been reported in many representatives of avian orders. The repeated regions can be easily overlooked due to inappropriate DNA amplification or genome sequencing. This raises a question about the actual prevalence of mitogenomic duplications and the validity of the current view on the avian mitogenome evolution. In this context, Palaeognathae is especially interesting because is sister to all other living birds, i.e. Neognathae. So far, a unique duplicated region has been found in one palaeognath mitogenome, that of Eudromia elegans. RESULTS Therefore, we applied an appropriate PCR strategy to look for omitted duplications in other palaeognaths. The analyses revealed the duplicated control regions with adjacent genes in Crypturellus, Rhea and Struthio as well as ND6 pseudogene in three moas. The copies are very similar and were subjected to concerted evolution. Mapping the presence and absence of duplication onto the Palaeognathae phylogeny indicates that the duplication was an ancestral state for this avian group. This feature was inherited by early diverged lineages and lost two times in others. Comparison of incongruent phylogenetic trees based on mitochondrial and nuclear sequences showed that two variants of mitogenomes could exist in the evolution of palaeognaths. Data collected for other avian mitogenomes revealed that the last common ancestor of all birds and early diverging lineages of Neoaves could also possess the mitogenomic duplication. CONCLUSIONS The duplicated control regions with adjacent genes are more common in avian mitochondrial genomes than it was previously thought. These two regions could increase effectiveness of replication and transcription as well as the number of replicating mitogenomes per organelle. In consequence, energy production by mitochondria may be also more efficient. However, further physiological and molecular analyses are necessary to assess the potential selective advantages of the mitogenome duplications.
Collapse
Affiliation(s)
- Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, 7 Kozuchowska Street, 51-631 Wroclaw, Poland
| | - Aleksandra Kroczak
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, 7 Kozuchowska Street, 51-631 Wroclaw, Poland
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, 14a Fryderyka Joliot-Curie Street, 50-383 Wrocław, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, 14a Fryderyka Joliot-Curie Street, 50-383 Wrocław, Poland
| |
Collapse
|
22
|
Jing M, Yang H, Li K, Huang L. Characterization of three new mitochondrial genomes of Coraciiformes (Megaceryle lugubris, Alcedo atthis, Halcyon smyrnensis) and insights into their phylogenetics. Genet Mol Biol 2020; 43:e20190392. [PMID: 33026411 PMCID: PMC7539371 DOI: 10.1590/1678-4685-gmb-2019-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
Coraciiformes contains more than 200 species with great differences on external
morphology and life-style. The evolutionary relationships within Coraciiformes
and the phylogenetic placement of Coraciiformes in Aves are still questioned.
Mitochondrial genome (mitogenome) sequences are popular markers in molecular
phylogenetic studies of birds. This study presented the genome characteristics
of three new mitogenomes in Coraciiformes and explored the phylogenetic
relationships among Coraciiformes and other five related orders with mitogenome
data of 30 species. The sizes of three mitogenomes were 17,383 bp
(Alcedo atthis), 17,892 bp (Halcyon
smyrnensis) and 17,223 bp (Megaceryle lugubris).
Each mitogenome contained one control region and 37 genes that were common in
vertebrate mitogenomes. The organization of three mitogenomes was identical to
the putative ancestral gene order in Aves. Among 13 available Coraciiform
mitogenomes, 12 protein coding genes showed indications of negative selection,
while the MT-ND6 presented sign of positive selection or relaxed purifying
selection. The phylogenetic results supported that Upupidae and Bucerotidae
should be separated from Coraciiformes, and that Coraciiformes is more closely
related to Piciformes than to Strigiformes, Trogoniformes and Cuculiformes. Our
study provide valuable data for further phylogenetic investigation of
Coraciiformes.
Collapse
Affiliation(s)
- Meidong Jing
- Nantong University, School of Life Sciences, Nantong, Jiangsu, P. R. China
| | - Huanhuan Yang
- Ludong University, School of Life Sciences, Yantai, Shandong, P. R. China
| | - Kai Li
- Nantong Xingdong International Airport, Nantong, Jiangsu, P. R. China
| | - Ling Huang
- Nantong University, School of Life Sciences, Nantong, Jiangsu, P. R. China
| |
Collapse
|
23
|
Wiley G, Miller MJ. A Highly Contiguous Genome for the Golden-Fronted Woodpecker ( Melanerpes aurifrons) via Hybrid Oxford Nanopore and Short Read Assembly. G3 (BETHESDA, MD.) 2020; 10:1829-1836. [PMID: 32317270 PMCID: PMC7263694 DOI: 10.1534/g3.120.401059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
Woodpeckers are found in nearly every part of the world and have been important for studies of biogeography, phylogeography, and macroecology. Woodpecker hybrid zones are often studied to understand the dynamics of introgression between bird species. Notably, woodpeckers are gaining attention for their enriched levels of transposable elements (TEs) relative to most other birds. This enrichment of TEs may have substantial effects on molecular evolution. However, comparative studies of woodpecker genomes are hindered by the fact that no high-contiguity genome exists for any woodpecker species. Using hybrid assembly methods combining long-read Oxford Nanopore and short-read Illumina sequencing data, we generated a highly contiguous genome assembly for the Golden-fronted Woodpecker (Melanerpes aurifrons). The final assembly is 1.31 Gb and comprises 441 contigs plus a full mitochondrial genome. Half of the assembly is represented by 28 contigs (contig L50), each of these contigs is at least 16 Mb in size (contig N50). High recovery (92.6%) of bird-specific BUSCO genes suggests our assembly is both relatively complete and relatively accurate. Over a quarter (25.8%) of the genome consists of repetitive elements, with 287 Mb (21.9%) of those elements assignable to the CR1 superfamily of transposable elements, the highest proportion of CR1 repeats reported for any bird genome to date. Our assembly should improve comparative studies of molecular evolution and genomics in woodpeckers and allies. Additionally, the sequencing and bioinformatic resources used to generate this assembly were relatively low-cost and should provide a direction for development of high-quality genomes for studies of animal biodiversity.
Collapse
Affiliation(s)
- Graham Wiley
- Clinical Genomics Center, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma and
| | - Matthew J Miller
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
24
|
Kundu S, Kumar V, Tyagi K, Chandra K. The complete mitochondrial genome of the endangered Assam Roofed Turtle, Pangshura sylhetensis (Testudines: Geoemydidae): Genomic features and phylogeny. PLoS One 2020; 15:e0225233. [PMID: 32324729 PMCID: PMC7179895 DOI: 10.1371/journal.pone.0225233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/08/2020] [Indexed: 12/02/2022] Open
Abstract
The Assam Roofed Turtle, Pangshura sylhetensis is an endangered and least studied species endemic to India and Bangladesh. The present study decodes the first complete mitochondrial genome of P. sylhetensis (16,568 bp) by using next-generation sequencing. The assembly encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one control region (CR). Most of the genes were encoded on the majority strand, except NADH dehydrogenase subunit 6 (nad6) and eight tRNAs. All PCGs start with an ATG initiation codon, except for Cytochrome oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 5 (nad5), which both start with GTG codon. The study also found the typical cloverleaf secondary structures in most of the predicted tRNA structures, except for serine (trnS1) which lacks of conventional DHU arm and loop. Both Bayesian and maximum-likelihood phylogenetic inference using 13 concatenated PCGs demonstrated strong support for the monophyly of all 52 Testudines species within their respective families and revealed Batagur trivittata as the nearest neighbor of P. sylhetensis. The mitogenomic phylogeny with other amniotes is congruent with previous research, supporting the sister relationship of Testudines and Archosaurians (birds and crocodilians). Additionally, the mitochondrial Gene Order (GO) analysis indicated plesiomorphy with the typical vertebrate GO in most of the Testudines species.
Collapse
Affiliation(s)
- Shantanu Kundu
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Vikas Kumar
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Kaomud Tyagi
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| | - Kailash Chandra
- Molecular Systematics Division, Centre for DNA Taxonomy, Zoological Survey of India, Kolkata, India
| |
Collapse
|
25
|
Liu HY, Sun CH, Zhu Y, Zhang QZ. Complete mitogenomic and phylogenetic characteristics of the speckled wood-pigeon (Columba hodgsonii). Mol Biol Rep 2020; 47:3567-3576. [PMID: 32307661 DOI: 10.1007/s11033-020-05448-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
The speckled wood-pigeon, Columba hodgsonii, is mainly distributed in Bhutan, China, India, Laos, Myanmar, Nepal, Pakistan, and Thailand. Although there are several studies on birds in the family Columbidae, no study has focused on C. hodgsonii, a member of this family. Therefore, this study aimed to clarify the phylogenetic status of C. hodgsonii. The complete mitochondrial genome (mitogenome) of C. hodgsonii was sequenced and characterized and compared with those of other Columba species. The C. hodgsonii mitogenome was found to be 17,477 bp in size and contained 13 PCGs, two rRNAs, 22 tRNAs, and one CR. Of the 37 genes encoded by the C. hodgsonii mitogenome, 28 were on the heavy strand and nine were on the light strand. Twelve PCGs were initiated by ATN codons and one PCG harbored an incomplete termination codon (T-). The base composition of C. hodgsonii PCGs was A = 29.44%, T = 24.37%, G = 12.43%, and C = 33.76%. For the whole mitogenome, including PCGs, rRNAs, tRNAs, and the control region, the AT-skew was positive, and the GC-skew was negative. Phylogenetic analysis based on the base sequences of 13 PCGs from 28 Columbidae species and one outgroup using maximum likelihood and Bayesian inference indicated that C. hodgsonii belongs to the genus Columba and that the family Columbidae is monophyletic.
Collapse
Affiliation(s)
- Hong-Yi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Cheng-He Sun
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ying Zhu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610015, China
| | - Qing-Zheng Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
26
|
Sun CH, Liu HY, Lu CH. Five new mitogenomes of Phylloscopus (Passeriformes, Phylloscopidae): Sequence, structure, and phylogenetic analyses. Int J Biol Macromol 2020; 146:638-647. [DOI: 10.1016/j.ijbiomac.2019.12.253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/09/2019] [Accepted: 12/28/2019] [Indexed: 11/30/2022]
|
27
|
Sun CH, Liu HY, Min X, Lu CH. Mitogenome of the little owl Athene noctua and phylogenetic analysis of Strigidae. Int J Biol Macromol 2020; 151:924-931. [PMID: 32097733 DOI: 10.1016/j.ijbiomac.2020.02.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 02/03/2023]
Abstract
New advances in molecular approaches for DNA analysis have enhanced our understanding of the phylogenetic relationship of birds. The Little Owl (Athene noctua) is of great significance for the integrated management of forest diseases and control of regional pests. Here, we sequenced and annotated the 17,772 bp complete mitogenome of A. noctua. The mitogenome encoded 37 typical mitochondrial genes: 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA, and one non-coding control region (D-loop). The organization and location of genes in the A. noctua mitogenome were consistent with those reported for other Strigidae birds. Phylogenetic relationships based on Bayesian inference and Maximum likelihood methods showed that A. noctua has close relationships with Athene brama and Glaucidium cuculoides, confirming that A. noctua belongs to the Strigidae family. The phylogenetic relationships among seven genera of the Strigidae family used in this study were: Ninox and the other six genera were far apart, Otus and the clade ((Bubo + Strix) + Asio) were clustered into one branch, and Athene and Glaucidium were clustered into one branch. This phylogenetic classification is consistent with prior taxonomic studies on the Strigidae family. Our results provide new mitogenomic data to support further phylogenetic and taxonomic studies of Strigidae.
Collapse
Affiliation(s)
- Cheng-He Sun
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Yi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao Min
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chang-Hu Lu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
28
|
Xiao M, Brugler MR, Broe MB, Gusmão LC, Daly M, Rodríguez E. Mitogenomics suggests a sister relationship of Relicanthus daphneae (Cnidaria: Anthozoa: Hexacorallia: incerti ordinis) with Actiniaria. Sci Rep 2019; 9:18182. [PMID: 31796816 PMCID: PMC6890759 DOI: 10.1038/s41598-019-54637-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
Relicanthus daphneae (formerly Boloceroides daphneae) was first described in 2006 as a giant sea anemone based on morphology. In 2014, its classification was challenged based on molecular data: using five genes, Relicanthus was resolved sister to zoanthideans, but with mixed support. To better understand the evolutionary relationship of Relicanthus with other early-branching metazoans, we present 15 newly-sequenced sea anemone mitochondrial genomes and a mitogenome-based phylogeny including all major cnidarian groups, sponges, and placozoans. Our phylogenetic reconstruction reveals a moderately supported sister relationship between Relicanthus and the Actiniaria. Morphologically, the cnidae of Relicanthus has apical flaps, the only existing synapomorphy for sea anemones. Based on both molecular and morphological results, we propose a third suborder (Helenmonae) within the Actiniaria to accommodate Relicanthus. Although Relicanthus shares the same gene order and content with other available actiniarian mitogenomes, it is clearly distinct at the nucleotide level from anemones within the existing suborders. The phylogenetic position of Relicanthus could reflect its association with the periphery of isolated hydrothermal vents, which, although patchy and ephemeral, harbor unique chemosynthetic communities that provide a relatively stable food source to higher trophic levels over long evolutionary timescales. The ability to colonize the deep sea and the periphery of new vent systems may be facilitated by Relicanthus’ large and extremely yolky eggs.
Collapse
Affiliation(s)
- Madelyne Xiao
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Mercer R Brugler
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.,Biological Sciences Department, NYC College of Technology (CUNY), 285 Jay Street, Brooklyn, NY, 11201, USA
| | - Michael B Broe
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 300 Aronoff Laboratory, Columbus, OH, 43210, USA
| | - Luciana C Gusmão
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 300 Aronoff Laboratory, Columbus, OH, 43210, USA.
| | - Estefanía Rodríguez
- Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.
| |
Collapse
|
29
|
Mackiewicz P, Urantówka AD, Kroczak A, Mackiewicz D. Resolving Phylogenetic Relationships within Passeriformes Based on Mitochondrial Genes and Inferring the Evolution of Their Mitogenomes in Terms of Duplications. Genome Biol Evol 2019; 11:2824-2849. [PMID: 31580435 PMCID: PMC6795242 DOI: 10.1093/gbe/evz209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| | - Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Aleksandra Kroczak
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Poland
| | - Dorota Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Poland
| |
Collapse
|
30
|
Zhang D, Li WX, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang G. Homoplasy or plesiomorphy? Reconstruction of the evolutionary history of mitochondrial gene order rearrangements in the subphylum Neodermata. Int J Parasitol 2019; 49:819-829. [PMID: 31401064 DOI: 10.1016/j.ijpara.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Recent mitogenomic studies have exposed a gene order (GO) shared by two classes, four orders and 31 species ('common GO') within the flatworm subphylum Neodermata. There are two possible hypotheses for this phenomenon: convergent evolution (homoplasy) or shared ancestry (plesiomorphy). To test those, we conducted a meta-analysis on all available mitogenomes to infer the evolutionary history of GO in Neodermata. To improve the resolution, we added a newly sequenced mitogenome that exhibited the common GO, Euryhaliotrema johni (Ancyrocephalinae), to the dataset. Phylogenetic analyses conducted on two datasets (nucleotides of all 36 genes and amino acid sequences of 12 protein coding genes) and four algorithms (MrBayes, RAxML, IQ-TREE and PhyloBayes) produced topology instability towards the tips, so ancestral GO reconstructions were conducted using TreeREx and MLGO programs using all eight obtained topologies, plus three unique topologies from previous studies. The results consistently supported the second hypothesis, resolving the common GO as a plesiomorphic ancestral GO for Neodermata, Cestoda, Monopisthocotylea, Cestoda + Trematoda and Cestoda + Trematoda + Monopisthocotylea. This allowed us to trace the evolutionary GO scenarios from each common ancestor to its descendants amongst the Monogenea and Cestoda classes, and propose that the common GO was most likely retained throughout all of the common ancestors, leading to the extant species possessing the common GO. Neodermatan phylogeny inferred from GOs was largely incongruent with all 11 topologies described above, but it did support the mitogenomic dataset in resolving Polyopisthocotylea as the earliest neodermatan branch. Although highly derived GOs might be of some use in resolving isolated taxonomic and phylogenetic uncertainties, we conclude that, due to the discontinuous nature of their evolution, they tend to produce artefactual phylogenetic relationships, which makes them unsuitable for phylogenetic reconstruction in Neodermata. Wider and denser sampling of neodermatan mitogenomic sequences will be needed to infer the evolutionary pathways leading to the observed diversity of GOs with confidence.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Wen X Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Shan G Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | | | - Jin Zhang
- Bio-Transduction Lab, Wuhan 430075, PR China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan 430075, PR China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
31
|
Jiang L, Peng L, Tang M, You Z, Zhang M, West A, Ruan Q, Chen W, Merilä J. Complete mitochondrial genome sequence of the Himalayan Griffon, Gyps himalayensis (Accipitriformes: Accipitridae): Sequence, structure, and phylogenetic analyses. Ecol Evol 2019; 9:8813-8828. [PMID: 31410282 PMCID: PMC6686361 DOI: 10.1002/ece3.5433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/12/2022] Open
Abstract
This is the first study to describe the mitochondrial genome of the Himalayan Griffon, Gyps himalayensis, which is an Old World vulture belonging to the family Accipitridae and occurring along the Himalayas and the adjoining Tibetan Plateau. Its mitogenome is a closed circular molecule 17,381 bp in size containing 13 protein-coding genes, 22 tRNA coding genes, two rRNA-coding genes, a control region (CR), and an extra pseudo-control region (CCR) that are conserved in most Accipitridae mitogenomes. The overall base composition of the G. himalayensis mitogenome is 24.55% A, 29.49% T, 31.59% C, and 14.37% G, which is typical for bird mitochondrial genomes. The alignment of the Accipitridae species control regions showed high levels of genetic variation and abundant AT content. At the 5' end of the domain I region, a long continuous poly-C sequence was found. Two tandem repeats were found in the pseudo-control regions. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 13 protein-coding genes indicated that the relationships at the family level were (Falconidae + (Cathartidae + (Sagittariidae + (Accipitridae + Pandionidae))). In the Accipitridae clade, G. himalayensis is more closely related to Aegypius monachus than to Spilornis cheela. The complete mitogenome of G. himalayensis provides a potentially useful resource for further exploration of the taxonomic status and phylogenetic history of Gyps species.
Collapse
Affiliation(s)
- Lichun Jiang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Liqing Peng
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Min Tang
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Zhangqiang You
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Min Zhang
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
| | - Andrea West
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVicAustralia
| | - Qiping Ruan
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
| | - Wei Chen
- Key Laboratory for Molecular Biology and Biopharmaceutics, School of Life Science and TechnologyMianyang Normal UniversityMianyangSichuanChina
- Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal UniversityMianyangSichuanChina
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty Biological & Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
32
|
Tan MH, Gan HM, Lee YP, Bracken-Grissom H, Chan TY, Miller AD, Austin CM. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition. Sci Rep 2019; 9:10756. [PMID: 31341205 PMCID: PMC6656734 DOI: 10.1038/s41598-019-47145-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The emergence of cost-effective and rapid sequencing approaches has resulted in an exponential rise in the number of mitogenomes on public databases in recent years, providing greater opportunity for undertaking large-scale comparative genomic and systematic research. Nonetheless, current datasets predominately come from small and disconnected studies on a limited number of related species, introducing sampling biases and impeding research of broad taxonomic relevance. This study contributes 21 crustacean mitogenomes from several under-represented decapod infraorders including Polychelida and Stenopodidea, which are used in combination with 225 mitogenomes available on NCBI to investigate decapod mitogenome diversity and phylogeny. An overview of mitochondrial gene orders (MGOs) reveals a high level of genomic variability within the Decapoda, with a large number of MGOs deviating from the ancestral arthropod ground pattern and unevenly distributed among infraorders. Despite the substantial morphological and ecological variation among decapods, there was limited evidence for correlations between gene rearrangement events and species ecology or lineage specific nucleotide substitution rates. Within a phylogenetic context, predicted scenarios of rearrangements show some MGOs to be informative synapomorphies for some taxonomic groups providing strong independent support for phylogenetic relationships. Additional comparisons for a range of mitogenomic features including nucleotide composition, strand asymmetry, unassigned regions and codon usage indicate several clade-specific trends that are of evolutionary and ecological interest.
Collapse
Affiliation(s)
- Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia.
- Deakin Genomics Centre, Deakin University, Geelong, Australia.
| | - Han Ming Gan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Yin Peng Lee
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Heather Bracken-Grissom
- Department of Biological Sciences, Florida International University, North Miami, Florida, 33181, USA
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, Taiwan
| | - Adam D Miller
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Christopher M Austin
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Australia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
33
|
Two new mitogenomes of Picidae (Aves, Piciformes): Sequence, structure and phylogenetic analyses. Int J Biol Macromol 2019; 133:683-692. [DOI: 10.1016/j.ijbiomac.2019.04.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
|
34
|
Unravelling population processes over the Late Pleistocene driving contemporary genetic divergence in Palearctic buzzards. Mol Phylogenet Evol 2019; 134:269-281. [PMID: 30763758 DOI: 10.1016/j.ympev.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 11/20/2022]
Abstract
Population range expansions and contractions as a response to climate and habitat change throughout the Quaternary are known to have contributed to complex phylogenetic and population genetic events. Speciation patterns and processes in Palearctic buzzards (genus Buteo) are a long-standing example of morphological and genetic data incongruence, attributed to panmixia, habitat range shifts, contact zones, and climate change. Here we assess the systematics, phylogeography and population genetic structure of three nominal species of Palearctic buzzards, Buteo buteo (including B. b. vulpinus), B. rufinus (including B. r. cirtensis) and B. hemilasius. Phylogenetic analyses inferred from mitochondrial data recover B. hemilasius as sister to the sister clades B. r. rufinus and B. buteo complex (B. b. buteo, B. b. vulpinus, but also including B. r. cirtensis). In contrast, we find an unresolved genetic delimitation inferred from four nuclear loci, suggesting an ancestral genetic pool for all species. Time-trees suggest population contractions and expansions throughout the Pleistocene, which likely reflect habitat change and contrasting ecological niche requirements between species. Microsatellite-based extended Bayesian skyline plots reveal relatively constant population sizes for B. hemilasius, B. r. rufinus, and B. b. vulpinus, in contrast to a dramatic population expansion in B. r. cirtensis within the last 3 kya. Overall, our study illustrates how complex population processes over the Late Pleistocene have shaped the patterns of genetic divergence in Palearctic buzzards, due to the joint effects of shared ancestral polymorphisms, population expansions and contractions, with hybridization at contact zones leading to admixture and introgression.
Collapse
|
35
|
Poulsen JY, Sado T, Miya M. Unique mitochondrial gene order in Xenodermichthys copei (Alepocephalidae: Otocephala) – a first observation of a large-scale rearranged 16S–WANCY region in vertebrates. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1551082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jan Yde Poulsen
- Department of Fish and Shellfish, Pinngortitaleriffik (Greenland Institute of Natural Resources), Nuuk, Greenland
- Department of Ecology and Environmental Sciences, Natural History Museum and Institute, Chiba, Japan
| | - Tetsuya Sado
- Department of Ecology and Environmental Sciences, Natural History Museum and Institute, Chiba, Japan
| | - Masaki Miya
- Department of Ecology and Environmental Sciences, Natural History Museum and Institute, Chiba, Japan
| |
Collapse
|
36
|
What are the roles of taxon sampling and model fit in tests of cyto-nuclear discordance using avian mitogenomic data? Mol Phylogenet Evol 2019; 130:132-142. [DOI: 10.1016/j.ympev.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/11/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022]
|
37
|
Kim JA, Kang SG, Jeon HS, Jeon JH, Jang JH, Kim S, An J. Complete mitogenomes of two Accipitridae, Haliaeetus albicilla, and Pernis ptilorhynchus. MITOCHONDRIAL DNA PART B 2018. [DOI: 10.1080/23802359.2018.1547155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jung A. Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Seung-Gu Kang
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Hye Sook Jeon
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | | | - Jin-Ho Jang
- Chungnam Wild Animal Rescue Center, Yesan, Republic of Korea
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Junghwa An
- Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| |
Collapse
|
38
|
Urantówka AD, Kroczak A, Silva T, Padrón RZ, Gallardo NF, Blanch J, Blanch B, Mackiewicz P. New Insight into Parrots' Mitogenomes Indicates That Their Ancestor Contained a Duplicated Region. Mol Biol Evol 2018; 35:2989-3009. [PMID: 30304531 PMCID: PMC6278868 DOI: 10.1093/molbev/msy189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial genomes of vertebrates are generally thought to evolve under strong selection for size reduction and gene order conservation. Therefore, a growing number of mitogenomes with duplicated regions changes our view on the genome evolution. Among Aves, order Psittaciformes (parrots) is especially noteworthy because of its large morphological, ecological, and taxonomical diversity, which offers an opportunity to study genome evolution in various aspects. Former analyses showed that tandem duplications comprising the control region with adjacent genes are restricted to several lineages in which the duplication occurred independently. However, using an appropriate polymerase chain reaction strategy, we demonstrate that early diverged parrot groups contain mitogenomes with the duplicated region. These findings together with mapping duplication data from other mitogenomes onto parrot phylogeny indicate that the duplication was an ancestral state for Psittaciformes. The state was inherited by main parrot groups and was lost several times in some lineages. The duplicated regions were subjected to concerted evolution with a frequency higher than the rate of speciation. The duplicated control regions may provide a selective advantage due to a more efficient initiation of replication or transcription and a larger number of replicating genomes per organelle, which may lead to a more effective energy production by mitochondria. The mitogenomic duplications were associated with phenotypic features and parrots with the duplicated region can live longer, show larger body mass as well as predispositions to a more active flight. The results have wider implications on the presence of duplications and their evolution in mitogenomes of other avian groups.
Collapse
Affiliation(s)
- Adam Dawid Urantówka
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Aleksandra Kroczak
- Department of Genomics, Faculty of Biotechnology, Wrocław University, Wrocław, Poland
| | | | | | | | - Julie Blanch
- Rosewood Bird Gardens & Breeding Farm, Rosewood, QLD, Australia
| | - Barry Blanch
- Rosewood Bird Gardens & Breeding Farm, Rosewood, QLD, Australia
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, Wrocław University, Wrocław, Poland
| |
Collapse
|
39
|
Evolutionary progression of mitochondrial gene rearrangements and phylogenetic relationships in Strigidae (Strigiformes). Gene 2018; 674:8-14. [PMID: 29940272 DOI: 10.1016/j.gene.2018.06.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 01/09/2023]
Abstract
The bird mitogenome is generally considered to have a conservative genome size, consistent gene content, and similar gene order. As more mitogenomes are sequenced, mitochondrial (mt) gene rearrangements have been frequently identified among diverse birds. Within two genera (Bubo and Strix) of typical owls (Strigidae, Strigiformes), the rearrangement of the mt gene has been a subject of debate. In the current study, we first sequenced the whole mitogenomes of S. uralensis and B. scandiaca and resequenced the entire mitogenome of B. bubo. By combining our data with previously sequenced mitogenomes in Strigidae, we examined the mt gene rearrangements in the family and attempted to reconstruct the evolutionary progression of these rearrangements. The mitogenomes were then used to review the phylogenies of Strigidae. Most mitogenomes exhibited the ancestral gene order (A) in Strigidae. The ancestral gene order in the previously published mitogenome of B. bubo was found to be incorrect. We determined the mt gene order (the duplicate tRNAThr-CR, B) and discovered two additional mt gene orders (the duplicate tRNAGlu-L-CR and CR, C and D) in the Bubo and Strix genera. Gene order B was likely derived from A by a tandem duplication of the region spanning from tRNAThr to CR. The other two modified gene orders, C and D, were likely derived from B by further degenerations or deletions of one copy of specific duplicated genes. We also preliminarily reconstructed the evolutionary progression of mt gene rearrangements and discussed maintenance of the duplicated CR in the genera. Additionally, the phylogenetic trees based on the mitogenomes supported the division of Strigidae into three subfamilies: Ninoxinae + (Surniinae + Striginae). Within the Striginae clade, the four genera formed a phylogenetic relationship: Otus + (Asio + (Bubo + Strix)). This suggests that Otus firstly diverges in their evolutionary history, and Bubo and Strix show a close relationship. B. bubo, B. blakistoni and B. scandiaca form a clade should be considered members of the same genus. The well-supported topology obtained in our Bayesian inference (BI) and maximum likelihood (ML) analyses of Strigid mitogenomes suggests that these genomes are informative for constructing phylogenetic relationships.
Collapse
|
40
|
The complete mitochondrial genomes of Tarsiger cyanurus and Phoenicurus auroreus: a phylogenetic analysis of Passeriformes. Genes Genomics 2018; 40:151-165. [PMID: 29892923 DOI: 10.1007/s13258-017-0617-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
Passeriformes is the largest group within aves and the phylogenetic relationships between Passeriformes have caused major disagreement in ornithology. Particularly, the phylogenetic relationships between muscicapoidea and sylvioidea are complex, and their taxonomic boundaries have not been clearly defined. Our aim was to study the status of two bird species: Tarsiger cyanurus and Phoenicurus auroreus. Furthermore, we analyzed the phylogenetic relationships of Passeriformes. Complete mitochondrial DNA (mtDNA) sequences of both species were determined and the lengths were 16,803 (T. cyanurus) and 16,772 bp (P. auroreus), respectively. Thirteen protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region were identified in these mtDNAs. The contents of A and T at the base compositions was significantly higher than the content of G and C, and this AT skew was positive, while the GC skew was negative. The monophyly of Passeriformes is divided into four major clades: Corvoidea, Sylvioidea, Passeroidea, and Musicicapoidea. Paridae should be separated from the superfamily Sylvioidea and placed within the superfamily Muscicapoidea. The family Muscicapidae and Corvida were paraphyly, while Carduelis and Emberiza were grouped as a sister taxon. The relationships between some species of the order passeriformes may remain difficult to resolve despite an effort to collect additional characters for phylogenetic analysis. Current research of avian phylogeny should focus on adding characters and taxa and use both effectively to obtain a better resolution for deeper and shallow nodes.
Collapse
|
41
|
Qian L, Wang H, Yan J, Pan T, Jiang S, Rao D, Zhang B. Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes. BMC Genomics 2018; 19:354. [PMID: 29747572 PMCID: PMC5946542 DOI: 10.1186/s12864-018-4717-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention has been paid to the changes in gene arrangement patterns in the snake's mitogenome. Here, we analyzed the complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and possible rearrangement mechanisms of the mitogenome within snakes. RESULTS In total, eleven types of mitochondrial gene arrangement patterns were detected (Type I, II, III, III-A, III-B, III-B1, III-C, III-D, III-E, III-F, III-G), with mitochondrial genome rearrangements being a major trend in snakes, especially in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss, translocation and duplication. Within Scolecophidia, the OL was lost several times in Typhlopidae and Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and translocation of the tRNALeu gene are two visible features in Alethinophidian mitochondrial genomes. Independently and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three families, indicating that the presence of P* was a polytopic event in the mitogenome. CONCLUSIONS The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome structural diversity.
Collapse
Affiliation(s)
- Lifu Qian
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Hui Wang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Tao Pan
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Shanqun Jiang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Dingqi Rao
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Baowei Zhang
- Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
42
|
Caparroz R, Rocha AV, Cabanne GS, Tubaro P, Aleixo A, Lemmon EM, Lemmon AR. Mitogenomes of two neotropical bird species and the multiple independent origin of mitochondrial gene orders in Passeriformes. Mol Biol Rep 2018; 45:279-285. [PMID: 29455315 DOI: 10.1007/s11033-018-4160-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/06/2018] [Indexed: 11/27/2022]
Abstract
At least four mitogenome arrangements occur in Passeriformes and differences among them are derived from an initial tandem duplication involving a segment containing the control region (CR), followed by loss or reduction of some parts of this segment. However, it is still unclear how often duplication events have occurred in this bird order. In this study, the mitogenomes from two species of Neotropical passerines (Sicalis olivascens and Lepidocolaptes angustirostris) with different gene arrangements were first determined. We also estimated how often duplication events occurred in Passeriformes and if the two CR copies demonstrate a pattern of concerted evolution in Sylvioidea. One tissue sample for each species was used to obtain the mitogenomes as a byproduct using next generation sequencing. The evolutionary history of mitogenome rearrangements was reconstructed mapping these characters onto a mitogenome Bayesian phylogenetic tree of Passeriformes. Finally, we performed a Bayesian analysis for both CRs from some Sylvioidea species in order to evaluate the evolutionary process involving these two copies. Both mitogenomes described comprise 2 rRNAs, 22 tRNAs, 13 protein-codon genes and the CR. However, S. olivascens has 16,768 bp showing the ancestral avian arrangement, while L. angustirostris has 16,973 bp and the remnant CR2 arrangement. Both species showed the expected gene order compared to their closest relatives. The ancestral state reconstruction suggesting at least six independent duplication events followed by partial deletions or loss of one copy in some lineages. Our results also provide evidence that both CRs in some Sylvioidea species seem to be maintained in an apparently functional state, perhaps by concerted evolution, and that this mechanism may be important for the evolution of the bird mitogenome.
Collapse
Affiliation(s)
- Renato Caparroz
- Departamento de Genética e Morfologia, Laboratório de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, Distrito Federal, CEP 70910-900, Brazil.
| | - Amanda V Rocha
- Departamento de Genética e Morfologia, Laboratório de Genética e Biodiversidade, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, Distrito Federal, CEP 70910-900, Brazil
| | - Gustavo S Cabanne
- División de Ornitología, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Ciudad de Buenos Aires, Argentina
| | - Pablo Tubaro
- División de Ornitología, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Ciudad de Buenos Aires, Argentina
| | - Alexandre Aleixo
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | - Emily M Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, PO Box 3064295, Tallahassee, FL, 32306-4295, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, 32306-4102, USA
| |
Collapse
|
43
|
Hanna ZR, Henderson JB, Sellas AB, Fuchs J, Bowie RCK, Dumbacher JP. Complete mitochondrial genome sequences of the northern spotted owl ( Strix occidentalis caurina) and the barred owl ( Strix varia; Aves: Strigiformes: Strigidae) confirm the presence of a duplicated control region. PeerJ 2017; 5:e3901. [PMID: 29038757 PMCID: PMC5639871 DOI: 10.7717/peerj.3901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022] Open
Abstract
We report here the successful assembly of the complete mitochondrial genomes of the northern spotted owl (Strix occidentalis caurina) and the barred owl (S. varia). We utilized sequence data from two sequencing methodologies, Illumina paired-end sequence data with insert lengths ranging from approximately 250 nucleotides (nt) to 9,600 nt and read lengths from 100–375 nt and Sanger-derived sequences. We employed multiple assemblers and alignment methods to generate the final assemblies. The circular genomes of S. o. caurina and S. varia are comprised of 19,948 nt and 18,975 nt, respectively. Both code for two rRNAs, twenty-two tRNAs, and thirteen polypeptides. They both have duplicated control region sequences with complex repeat structures. We were not able to assemble the control regions solely using Illumina paired-end sequence data. By fully spanning the control regions, Sanger-derived sequences enabled accurate and complete assembly of these mitochondrial genomes. These are the first complete mitochondrial genome sequences of owls (Aves: Strigiformes) possessing duplicated control regions. We searched the nuclear genome of S. o. caurina for copies of mitochondrial genes and found at least nine separate stretches of nuclear copies of gene sequences originating in the mitochondrial genome (Numts). The Numts ranged from 226–19,522 nt in length and included copies of all mitochondrial genes except tRNAPro, ND6, and tRNAGlu. Strix occidentalis caurina and S. varia exhibited an average of 10.74% (8.68% uncorrected p-distance) divergence across the non-tRNA mitochondrial genes.
Collapse
Affiliation(s)
- Zachary R Hanna
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, United States of America.,Department of Integrative Biology, University of California, Berkeley, CA, United States of America.,Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, CA, United States of America.,Center for Comparative Genomics, California Academy of Sciences, San Francisco, CA, United States of America
| | - James B Henderson
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, CA, United States of America.,Center for Comparative Genomics, California Academy of Sciences, San Francisco, CA, United States of America
| | - Anna B Sellas
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, CA, United States of America.,Chan Zuckerberg Biohub, San Francisco, CA, United States of America
| | - Jérôme Fuchs
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, CA, United States of America.,UMR 7205 Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Muséum National d'Histoire Naturelle, Paris, France
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, United States of America.,Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | - John P Dumbacher
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, CA, United States of America.,Center for Comparative Genomics, California Academy of Sciences, San Francisco, CA, United States of America
| |
Collapse
|
44
|
Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, Mindell DP, Bowie RCK, DeRisi JL, Dumbacher JP. Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes. Genome Biol Evol 2017; 9:2522-2545. [PMID: 28992302 PMCID: PMC5629816 DOI: 10.1093/gbe/evx158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates.
Collapse
Affiliation(s)
- Zachary R. Hanna
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - James B. Henderson
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - Jeffrey D. Wall
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Jérôme Fuchs
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- UMR 7205 Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, Muséum National d’Histoire Naturelle, Paris, France
| | - Charles Runckel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
- Runckel & Associates, Portland, Oregon, USA
| | - David P. Mindell
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| | - John P. Dumbacher
- Department of Ornithology & Mammalogy, California Academy of Sciences, San Francisco, California, USA
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| |
Collapse
|
45
|
Sun Z, Pan T, Hu C, Sun L, Ding H, Wang H, Zhang C, Jin H, Chang Q, Kan X, Zhang B. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses. PLoS One 2017; 12:e0184529. [PMID: 28892502 PMCID: PMC5593203 DOI: 10.1371/journal.pone.0184529] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/25/2017] [Indexed: 11/29/2022] Open
Abstract
The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes). Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma). Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma). Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.
Collapse
Affiliation(s)
- Zhonglou Sun
- School of Life Sciences, Anhui Key Laboratory of Eco-engineering and Bio-technique, Anhui University, Hefei, Anhui, China
| | - Tao Pan
- School of Life Sciences, Anhui Key Laboratory of Eco-engineering and Bio-technique, Anhui University, Hefei, Anhui, China
| | - Chaochao Hu
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Lu Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hengwu Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hui Wang
- School of Life Sciences, Anhui Key Laboratory of Eco-engineering and Bio-technique, Anhui University, Hefei, Anhui, China
| | - Chenling Zhang
- Faculty of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing, Jiangsu, China
| | - Hong Jin
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Qing Chang
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xianzhao Kan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Baowei Zhang
- School of Life Sciences, Anhui Key Laboratory of Eco-engineering and Bio-technique, Anhui University, Hefei, Anhui, China
| |
Collapse
|
46
|
Eo SH. Complete mitochondrial genome of white-backed woodpecker Dendrocopos leucotos (Piciformes: Picidae) and its phylogenetic position. MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:451-452. [PMID: 33473859 PMCID: PMC7799634 DOI: 10.1080/23802359.2017.1357454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The white-backed woodpecker (Dendrocopos leucotos) is an ecologically important bird in Eurasian forest ecosystems. In this study, the complete mitochondrial genome of the species was sequenced using next-generation sequencing technology. The genome was 16,838 bp in length, consisting of 13 protein coding genes, two rRNAs, 22 tRNAs, a non-coding control region and a repeat region. Phylogenetic analysis using available complete mitochondrial genomes of the Coraciimorphae supported the monophyly of the Piciformes. The complete mitochondrial genome of D. leucotos will be a useful genetic resource for population genetics, phylogenetic analysis and conservation of the species.
Collapse
Affiliation(s)
- Soo Hyung Eo
- Department of Forest Resources, Kongju National University, Yesan-eup, Chungnam, Republic of Korea
| |
Collapse
|
47
|
Striking pseudogenization in avian phylogenetics: Numts are large and common in falcons. Mol Phylogenet Evol 2017; 115:1-6. [PMID: 28690127 DOI: 10.1016/j.ympev.2017.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022]
Abstract
Nuclear copies of mitochondrial genes (numts) are a well-known feature of eukaryotic genomes and a concern in systematics, as they can mislead phylogenetic inferences when inadvertently used. Studies on avian numts initially based on the chicken genome suggest that numts may be uncommon and relatively short among birds. Here we ask how common numts are in falcons, based on recently sequenced genomes of the Saker falcon (Falco cherrug) and Peregrine falcon (F. peregrinus). We identified numts by BLASTN searches and then extracted CYTB, ND2 and COI sequences from them, which were then used for phylogeny inference along with several sequences from other species in Falconiformes. Our results indicate that avian numts may be much more frequent and longer than previously thought. Phylogenetic inferences revealed multiple independent nuclear insertions throughout the history of the Falconiformes, including cases of sequences available in public databases and wrongly identified as authentic mtDNA. New sequencing technologies and ongoing efforts for whole genome sequencing will provide exciting opportunities for avian numt research in the near future.
Collapse
|
48
|
Wen L, Liao F. Complete mitochondrial genome of Pycnonotus xanthorrhous (Passeriformes, Pycnonotidae) and phylogenetic consideration. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Xia Y, Zheng Y, Murphy RW, Zeng X. Intraspecific rearrangement of mitochondrial genome suggests the prevalence of the tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri. BMC Genomics 2016; 17:965. [PMID: 27881087 PMCID: PMC5122201 DOI: 10.1186/s12864-016-3309-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tandem duplication followed by random loss (TDRL) is the most frequently invoked model to explain the diversity of gene rearrangements in metazoan mitogenomes. The initial stages of gene rearrangement are difficult to observe in nature, which limits our understanding of incipient duplication events and the subsequent process of random loss. Intraspecific gene reorganizations may represent intermediate states, and if so they potentially shed light on the evolutionary dynamics of TDRL. RESULTS Nucleotide sequences in a hotspot of gene-rearrangement in 28 populations of a single species of frog, Quasipaa boulengeri, provide such predicted intermediate states. Gene order and phylogenetic analyses support a single tandem duplication event and a step-by-step process of random loss. Intraspecific gene rearrangements are not commonly found through comparison of all mitochondrial DNA records of amphibians and squamate reptiles in GenBank. CONCLUSIONS The intraspecific variation in Q. boulengeri provides insights into the rate of partial duplications and deletions within a mitogenome, and reveals that fixation and gene-distribution in mitogenomic reorganization is likely non-adaptive.
Collapse
Affiliation(s)
- Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Robert W Murphy
- Centre for Biodiversity, Royal Ontario Museum, 100 Queen's Park, Toronto, ON, M5S 2C6, Canada
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
50
|
Minton RL, Cruz MAM, Farman ML, Perez KE. Two complete mitochondrial genomes from Praticolella mexicana Perez, 2011 (Polygyridae) and gene order evolution in Helicoidea (Mollusca, Gastropoda). Zookeys 2016:137-154. [PMID: 27833437 PMCID: PMC5096375 DOI: 10.3897/zookeys.626.9633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/16/2016] [Indexed: 01/03/2023] Open
Abstract
Helicoidea is a diverse group of land snails with a global distribution. While much is known regarding the relationships of helicoid taxa, comparatively little is known about the evolution of the mitochondrial genome in the superfamily. We sequenced two complete mitochondrial genomes from Praticolellamexicana Perez, 2011 representing the first such data from the helicoid family Polygyridae, and used them in an evolutionary analysis of mitogenomic gene order. We found the mitochondrial genome of Praticolellamexicana to be 14,008 bp in size, possessing the typical 37 metazoan genes. Multiple alternate stop codons are used, as are incomplete stop codons. Mitogenome size and nucleotide content is consistent with other helicoid species. Our analysis of gene order suggested that Helicoidea has undergone four mitochondrial rearrangements in the past. Two rearrangements were limited to tRNA genes only, and two involved protein coding genes.
Collapse
Affiliation(s)
- Russell L Minton
- School of Science and Computer Engineering, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, Houston, Texas 77058 USA
| | - Marco A Martinez Cruz
- Department of Biology, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539 USA
| | - Mark L Farman
- UK Healthcare Genomics, 225 Plant Science Building, 1405 Veteran's Drive, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Kathryn E Perez
- Department of Biology, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539 USA
| |
Collapse
|