1
|
Yoon JH, Bae E, Nagafuchi Y, Sudo K, Han JS, Park SH, Nakae S, Yamashita T, Ju JH, Matsumoto I, Sumida T, Miyazawa K, Kato M, Kuroda M, Lee IK, Fujio K, Mamura M. Repression of SMAD3 by STAT3 and c-Ski induces conventional dendritic cell differentiation. Life Sci Alliance 2024; 7:e201900581. [PMID: 38960622 PMCID: PMC11222659 DOI: 10.26508/lsa.201900581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
A pleiotropic immunoregulatory cytokine, TGF-β, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.
Collapse
Affiliation(s)
- Jeong-Hwan Yoon
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- Shin-Young Medical Institute, Chiba, Japan
- https://ror.org/025h1m602 Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eunjin Bae
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- https://ror.org/03mc8zn46 Department of Companion Health, Yeonsung University, Anyang, Republic of Korea
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Nagafuchi
- https://ror.org/057zh3y96 Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuko Sudo
- https://ror.org/00k5j5c86 Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Jin Soo Han
- https://ror.org/025h1m602 Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Susumu Nakae
- https://ror.org/03t78wx29 Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Yamashita
- Laboratory of Veterinary Biochemistry, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Ji Hyeon Ju
- Department of Rheumatology, Catholic University of Korea, Seoul St. Mary Hospital, Seoul, Republic of Korea
| | - Isao Matsumoto
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keiji Miyazawa
- https://ror.org/059x21724 Departments of Biochemistry, University of Yamanashi, Yamanashi, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiko Kuroda
- https://ror.org/00k5j5c86 Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - In-Kyu Lee
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Keishi Fujio
- https://ror.org/057zh3y96 Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mizuko Mamura
- https://ror.org/04qn0xg47 Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- Shin-Young Medical Institute, Chiba, Japan
- https://ror.org/00k5j5c86 Department of Advanced Nucleic Acid Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Hess L, Moos V, Lauber AA, Reiter W, Schuster M, Hartl N, Lackner D, Boenke T, Koren A, Guzzardo PM, Gundacker B, Riegler A, Vician P, Miccolo C, Leiter S, Chandrasekharan MB, Vcelkova T, Tanzer A, Jun JQ, Bradner J, Brosch G, Hartl M, Bock C, Bürckstümmer T, Kubicek S, Chiocca S, Bhaskara S, Seiser C. A toolbox for class I HDACs reveals isoform specific roles in gene regulation and protein acetylation. PLoS Genet 2022; 18:e1010376. [PMID: 35994477 PMCID: PMC9436093 DOI: 10.1371/journal.pgen.1010376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/01/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023] Open
Abstract
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lena Hess
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Verena Moos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Arnel A. Lauber
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Natascha Hartl
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | | | - Thorina Boenke
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Brigitte Gundacker
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Anna Riegler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Claudia Miccolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Leiter
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Mahesh B. Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Terezia Vcelkova
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Andrea Tanzer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Jun Qi Jun
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - James Bradner
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Gerald Brosch
- Institute of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Markus Hartl
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Srividya Bhaskara
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Feld C, Sahu P, Frech M, Finkernagel F, Nist A, Stiewe T, Bauer UM, Neubauer A. Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1. Nucleic Acids Res 2019; 46:3412-3428. [PMID: 29471413 PMCID: PMC5909421 DOI: 10.1093/nar/gky119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
Abstract
SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially expressed genes are up-regulated upon SKI deletion, of which >40% harbor SKI binding sites in their proximity, primarily in enhancer regions. Gene ontology analysis reveals that many of the differentially expressed genes are annotated to hematopoietic cell differentiation and inflammatory response, corroborating our finding that SKI contributes to a myeloid differentiation block in HL60 cells. We find that SKI peaks are enriched for RUNX1 consensus motifs, particularly in up-regulated SKI targets upon SKI deletion. RUNX1 ChIP-seq displays that nearly 70% of RUNX1 binding sites overlap with SKI peaks, mainly at enhancer regions. SKI and RUNX1 occupy the same genomic sites and cooperate in gene silencing. Our work demonstrates for the first time the predominant co-repressive function of SKI in AML cells on a genome-wide scale and uncovers the transcription factor RUNX1 as an important mediator of SKI-dependent transcriptional repression.
Collapse
Affiliation(s)
- Christine Feld
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.,Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Peeyush Sahu
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.,Institute of Molecular Oncology, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| |
Collapse
|
4
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
5
|
MiR-21 inhibits c-Ski signaling to promote the proliferation of rat vascular smooth muscle cells. Cell Signal 2014; 26:724-9. [DOI: 10.1016/j.cellsig.2013.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
|
6
|
Melling MA, Friendship CRC, Shepherd TG, Drysdale TA. Expression of Ski can act as a negative feedback mechanism on retinoic acid signaling. Dev Dyn 2013; 242:604-13. [PMID: 23441061 DOI: 10.1002/dvdy.23954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/23/2013] [Accepted: 02/08/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Retinoic acid signaling is essential for many aspects of early development in vertebrates. To control the levels of signaling, several retinoic acid target genes have been identified that act to suppress retinoic acid signaling in a negative feedback loop. The nuclear protein Ski has been extensively studied for its ability to suppress transforming growth factor-beta (TGF-β) signaling but has also been implicated in the repression of retinoic acid signaling. RESULTS We demonstrate that ski expression is up-regulated in response to retinoic acid in both early Xenopus embryos and in human cell lines. Blocking retinoic acid signaling using a retinoic acid antagonist results in a corresponding decrease in the levels of ski mRNA. Finally, overexpression of SKI in human cells results in reduced levels of CYP26A1 mRNA, a known target of retinoic acid signaling. CONCLUSIONS Our results, coupled with the known ability of Ski to repress retinoic acid signaling, demonstrate that Ski expression is a novel negative feedback mechanism acting on retinoic acid signaling.
Collapse
|
7
|
Li J, Li P, Zhang Y, Li GB, Zhou YG, Yang K, Dai SS. c-Ski inhibits the proliferation of vascular smooth muscle cells via suppressing Smad3 signaling but stimulating p38 pathway. Cell Signal 2012; 25:159-67. [PMID: 22986000 DOI: 10.1016/j.cellsig.2012.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/17/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) plays key roles in the progression of intimal hyperplasia, but the molecular mechanisms that trigger VSMC proliferation after vascular injury remain unclear. c-Ski, a co-repressor of transforming growth factor β (TGF-β)/Smad signaling, was detected to express in VSMC of rat artery. During the course of arterial VSMC proliferation induced by balloon injury in rat, the endogenous protein expressions of c-Ski decreased markedly in a time-dependent manner. In vivo c-Ski gene delivery was found to significantly suppress balloon injury-induced VSMC proliferation and neointima formation. Further investigation in A10 rat aortic smooth muscle cells demonstrated that overexpression of c-Ski gene inhibited TGF-β1 (1 ng/ml)-induced A10 cell proliferation while knockdown of c-Ski by RNAi enhanced the stimulatory effect of TGF-β1 on A10 cell growth. Western blot for signaling detection showed that suppression of Smad3 phosphorylation while stimulating p38 signaling associated with upregulation of cyclin-dependent kinase inhibitors p21 and p27 was responsible for the inhibitory effect of c-Ski on TGF-β1-induced VSMC proliferation. These data suggest that the decrease of endogenous c-Ski expression is implicated in the progression of VSMC proliferation after arterial injury and c-Ski administration represents a promising role for treating intimal hyperplasia via inhibiting the proliferation of VSMC.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Mukhopadhyay P, Brock G, Webb C, Pisano MM, Greene RM. Strain-specific modifier genes governing craniofacial phenotypes. ACTA ACUST UNITED AC 2012; 94:162-75. [PMID: 22371338 DOI: 10.1002/bdra.22890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND The presence of strain-specific modifier genes is known to modulate the phenotype and pathophysiology of mice harboring genetically engineered mutations. Thus, identification of genetic modifier genes is requisite to understanding control of phenotypic expression. c-Ski is a transcriptional regulator. Ski(-/-) mice on a C57BL6J (B6) background exhibit facial clefting, while Ski(-/-) mice on a 129P3 (129) background present with exencephaly. METHODS In the present study, oligonucleotide-based gene expression profiling was used to identify potential strain-specific modifier gene candidates present in wild type mice of B6 and 129 genetic backgrounds. Changes in gene expression were verified by TaqMan quantitative real-time PCR. RESULTS Steady-state levels of 89 genes demonstrated a significantly higher level of expression, and those of 68 genes demonstrated a significantly lower level of expression in the developing neural tubes from embryonic day (E) 8.5, B6 embryos when compared to expression levels in neural tubes derived from E 8.5, 129 embryos. CONCLUSIONS Based on the results from the current comparative microarray study, and taking into consideration a number of relevant published reports, several potential strain-specific gene candidates, likely to modify the craniofacial phenotypes in various knockout mouse models have been identified.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
9
|
Schweighofer CD, Coombes KR, Barron LL, Diao L, Newman RJ, Ferrajoli A, O'Brien S, Wierda WG, Luthra R, Medeiros LJ, Keating MJ, Abruzzo LV. A two-gene signature, SKI and SLAMF1, predicts time-to-treatment in previously untreated patients with chronic lymphocytic leukemia. PLoS One 2011; 6:e28277. [PMID: 22194822 PMCID: PMC3237436 DOI: 10.1371/journal.pone.0028277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022] Open
Abstract
We developed and validated a two-gene signature that predicts prognosis in previously-untreated chronic lymphocytic leukemia (CLL) patients. Using a 65 sample training set, from a cohort of 131 patients, we identified the best clinical models to predict time-to-treatment (TTT) and overall survival (OS). To identify individual genes or combinations in the training set with expression related to prognosis, we cross-validated univariate and multivariate models to predict TTT. We identified four gene sets (5, 6, 12, or 13 genes) to construct multivariate prognostic models. By optimizing each gene set on the training set, we constructed 11 models to predict the time from diagnosis to treatment. Each model also predicted OS and added value to the best clinical models. To determine which contributed the most value when added to clinical variables, we applied the Akaike Information Criterion. Two genes were consistently retained in the models with clinical variables: SKI (v-SKI avian sarcoma viral oncogene homolog) and SLAMF1 (signaling lymphocytic activation molecule family member 1; CD150). We optimized a two-gene model and validated it on an independent test set of 66 samples. This two-gene model predicted prognosis better on the test set than any of the known predictors, including ZAP70 and serum β2-microglobulin.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genes, Neoplasm/genetics
- Humans
- Kaplan-Meier Estimate
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Models, Biological
- Multivariate Analysis
- Prognosis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reproducibility of Results
- Signaling Lymphocytic Activation Molecule Family Member 1
- Time Factors
Collapse
Affiliation(s)
- Carmen D. Schweighofer
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kevin R. Coombes
- Department of Biostatistics and Applied Mathematics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lynn L. Barron
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lixia Diao
- Department of Biostatistics and Applied Mathematics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Rachel J. Newman
- Department of Biostatistics and Applied Mathematics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Susan O'Brien
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - William G. Wierda
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael J. Keating
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lynne V. Abruzzo
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Marcelain K, Armisen R, Aguirre A, Ueki N, Toro J, Colmenares C, Hayman MJ. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski. J Cell Physiol 2011; 227:278-87. [PMID: 21412778 DOI: 10.1002/jcp.22733] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ski is a transcriptional regulator that has been considered an oncoprotein given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski-/- mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei (MN) formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, spindle assembly checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of MN-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein.
Collapse
Affiliation(s)
- Katherine Marcelain
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ye F, Lemieux H, Hoppel CL, Hanson RW, Hakimi P, Croniger CM, Puchowicz M, Anderson VE, Fujioka H, Stavnezer E. Peroxisome proliferator-activated receptor γ (PPARγ) mediates a Ski oncogene-induced shift from glycolysis to oxidative energy metabolism. J Biol Chem 2011; 286:40013-24. [PMID: 21917928 DOI: 10.1074/jbc.m111.292029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through β-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.
Collapse
Affiliation(s)
- Fang Ye
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bonnon C, Atanasoski S. c-Ski in health and disease. Cell Tissue Res 2011; 347:51-64. [DOI: 10.1007/s00441-011-1180-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 01/28/2023]
|
13
|
Nyman T, Trésaugues L, Welin M, Lehtiö L, Flodin S, Persson C, Johansson I, Hammarström M, Nordlund P. The crystal structure of the Dachshund domain of human SnoN reveals flexibility in the putative protein interaction surface. PLoS One 2010; 5:e12907. [PMID: 20957027 PMCID: PMC2944819 DOI: 10.1371/journal.pone.0012907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/30/2010] [Indexed: 11/18/2022] Open
Abstract
The human SnoN is an oncoprotein that interacts with several transcription-regulatory proteins such as the histone-deacetylase, N-CoR containing co-repressor complex and Smad proteins. This study presents the crystal structure of the Dachshund homology domain of human SnoN. The structure reveals a groove composed of conserved residues with characteristic properties of a protein-interaction surface. A comparison of the 12 monomers in the asymmetric unit reveals the presence of two major conformations: an open conformation with a well accessible groove and a tight conformation with a less accessible groove. The variability in the backbone between the open and the tight conformations matches the differences seen in previously determined structures of individual Dachshund homology domains, suggesting a general plasticity within this fold family. The flexibility observed in the putative protein binding groove may enable SnoN to recognize multiple interaction partners.
Collapse
Affiliation(s)
- Tomas Nyman
- Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (TN); (PN)
| | - Lionel Trésaugues
- Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | - Martin Welin
- Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | - Lari Lehtiö
- Pharmaceutical Sciences, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Susanne Flodin
- Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Persson
- Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | - Ida Johansson
- Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hammarström
- Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
| | - Pär Nordlund
- Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (TN); (PN)
| |
Collapse
|
14
|
Zhao HL, Ueki N, Hayman MJ. The Ski protein negatively regulates Siah2-mediated HDAC3 degradation. Biochem Biophys Res Commun 2010; 399:623-8. [PMID: 20691163 DOI: 10.1016/j.bbrc.2010.07.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/17/2022]
Abstract
Ski acts as a transcriptional co-repressor by multiple direct and indirect interactions with several distinct repression complexes. Ski represses retinoic acid (RA) signaling by interacting with, and stabilizing, key components of the co-repressor complex, namely, HDAC3. However, little is known as to how the Ski protein can stabilize HDAC3. In the present study, we identified the Siah2 protein as a potential E3 ubiquitin ligase that mediated proteasomal degradation of HDAC3. Reciprocal co-immunoprecipitation assays further revealed that Ski interacts with Siah2. Furthermore, co-expression of the Ski protein stabilized the level of Siah2 protein. Since Siah2 regulates its own level of expression by self-degradation, the stabilization of Siah2 by Ski is an indication that Ski association leads to inhibition of Siah2 E3 ubiquitin ligase activity. Only wild-type Ski and Ski truncation mutants that were in the same complex with Siah2 could stabilize HDAC3 levels. Taken together, the results suggest that association with Ski leads to inhibition of Siah2 E3 ubiquitin ligase activity and in this way, the Ski protein inhibits Siah2-mediated proteasomal degradation of HDAC3.
Collapse
Affiliation(s)
- Hong-Ling Zhao
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
15
|
Abstract
OBJECTIVE The Ski gene regulates skeletal muscle differentiation in vitro and and in vivo. In the c-Ski overexpression mouse model there occurs marked skeletal muscle hypertrophy with decreased adipose tissue mass. In this study, we have investigated the underlying molecular mechanisms responsible for the increased skeletal muscle and decreased adipose tissue mass in the c-Ski mouse. APPROACH Growth and body composition analysis (tissue weights and dual energy X-ray absorptiometry) coupled with skeletal muscle and white adipose gene expression and metabolic phenotyping in c-Ski mice and wild-type (WT) littermate controls was performed. RESULTS The growth and body composition studies confirmed the early onset of accelerated body growth, with increased lean mass and decreased fat mass in the c-Ski mice. Gene expression analysis in skeletal muscle from c-Ski mice compared with WT mice showed significant differences in myogenic and lipogenic gene expressions that are consistent with the body composition phenotype. Skeletal muscle of c-Ski mice had significantly repressed Smad1, 4, 7 and myostatin gene expression and elevated myogenin, myocyte enhancer factor 2, insulin-like growth factor-1 receptor and insulin-like growth factor-2 expression. Strikingly, expression of the mRNAs encoding the master lipogenic regulators, sterol-regulatory enhancer binding protein 1c (SREBP1c), and the nuclear receptor liver X-receptor-alpha, and their downstream target genes, SCD-1 and FAS, were suppressed in skeletal muscle of c-Ski mice, as were the expressions of other nuclear receptors involved in adipogenesis and metabolism, such as peroxisome proliferator-activated receptor-gamma, glucocorticoid receptor and retinoic acid receptor-related orphan receptor-alpha. Transfection analysis demonstrated Ski repressed the SREBP1c promoter. Moreover, palmitate oxidation and oxidative enzyme activity was increased in skeletal muscle of c-Ski mice. These results suggest that the Ski phenotype involves attenuated lipogenesis, decreased myostatin signalling, coupled to increased myogenesis and fatty acid oxidation. CONCLUSION Ski regulates several genetic programs and signalling pathways that regulate skeletal muscle and adipose mass to influence body composition development, suggesting that Ski may have a role in risk for obesity and metabolic disease.
Collapse
|
16
|
Zhao HL, Ueki N, Marcelain K, Hayman MJ. The Ski protein can inhibit ligand induced RARalpha and HDAC3 degradation in the retinoic acid signaling pathway. Biochem Biophys Res Commun 2009; 383:119-24. [PMID: 19341714 DOI: 10.1016/j.bbrc.2009.03.141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 03/22/2009] [Indexed: 01/31/2023]
Abstract
Recent data has implicated the Ski protein as being a physiologically relevant negative regulator of signaling by retinoic acid (RA). The mechanism by which Ski represses RA signaling is unknown. Co-immunoprecipitation and immunofluorescence assay showed that Ski and RARalpha are in the same complex in both the absence and presence of RA, which makes Ski different from other corepressors. We determined that Ski can stabilize RARalpha and HDAC3. These results suggest that Ski represses RA signaling by stabilizing corepressor complex.
Collapse
Affiliation(s)
- Hong-Ling Zhao
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, NY 11794-5222, USA
| | | | | | | |
Collapse
|
17
|
Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 2009; 19:47-57. [PMID: 19114989 DOI: 10.1038/cr.2008.324] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ski and the closely related SnoN were discovered as oncogenes by their ability to transform chicken embryo fibroblasts upon overexpression. While elevated expressions of Ski and SnoN have also been reported in many human cancer cells and tissues, consistent with their pro-oncogenic activity, emerging evidence also suggests a potential anti-oncogenic activity for both. In addition, Ski and SnoN have been implicated in regulation of cell differentiation, especially in the muscle and neuronal lineages. Multiple cellular partners of Ski and SnoN have been identified in an effort to understand the molecular mechanisms underlying the complex roles of Ski and SnoN. In this review, we summarize recent findings on the biological functions of Ski and SnoN, their mechanisms of action and how their levels of expression are regulated.
Collapse
Affiliation(s)
- Julien Deheuninck
- UC Berkeley, Department of Molecular and Cellular Biology, 16 Barker Hall, MC3204, Berkeley, CA 94720, USA
| | | |
Collapse
|
18
|
White T, Lu T, Metlapally R, Katowitz J, Kherani F, Wang TY, Tran-Viet KN, Young TL. Identification of STRA6 and SKI sequence variants in patients with anophthalmia/microphthalmia. Mol Vis 2008; 14:2458-65. [PMID: 19112531 PMCID: PMC2610290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/18/2008] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Anophthalmia and microphthalmia (A/M) are rare congenital ocular malformations presenting with the absence of eye components or small eyes with or without structural abnormalities. A/M can be isolated or syndromic. The stimulated by retinoic acid gene 6 (STRA6) and Sloan-Kettering viral oncogene homolog (SKI) genes are involved in vitamin A metabolism, and are implicated with A/M developmental abnormalities in human and animal studies. Vitamin A metabolism is vital to normal eye development and growth. This study explores the association of these genes in a cohort of subjects with A/M. METHODS STRA6 and SKI were screened for sequence variants by direct sequencing of genomic DNA samples from 18 affected subjects with A/M. The DNA samples of 4 external, unrelated controls were initially screened. Eighty-nine additional unrelated controls were screened to confirm that any sequence variants found in the affected subject DNA samples were related to the phenotype. Coding regions, intron-exon boundaries, and untranslated regions were sequenced by standard techniques. Derived DNA sequences were compared to known reference sequences from public genomic databases. RESULTS For STRA6, a novel coding non-synonymous sequence variant was found in one subject, resulting in an amino acid change from glycine to glutamic acid in residue 217. One novel nonsense sequence variant found in the same subject changed the STRA6 amino acid residue 592 from cytosine to thymine resulting in a premature stop codon. For SKI, a known coding non-synonymous sequence variant (rs28384811) was found in 3 subject DNA samples and 11/89 control DNA samples. Four novel coding-synonymous sequence variants were observed in SKI. CONCLUSIONS The STRA6 sequence variants reported in this study could play a role in the pathogenesis of A/M by structural changes to the STRA6 protein. We can attribute 4% A/M incidence in this cohort to these sequence variants. Although no SKI sequence variants were found in this cohort, SKI should not be ruled out as a candidate gene for A/M due to the small cohort size.
Collapse
Affiliation(s)
- Tristan White
- The Center for Human Genetics, Duke University Medical Center, Durham, NC,Department of Ophthalmology, Duke University Medical Center, Durham, NC
| | - Tianyi Lu
- The Center for Human Genetics, Duke University Medical Center, Durham, NC
| | - Ravikanth Metlapally
- The Center for Human Genetics, Duke University Medical Center, Durham, NC,Department of Ophthalmology, Duke University Medical Center, Durham, NC
| | - James Katowitz
- Children’s Hospital of Philadelphia, Division of Ophthalmology, Philadelphia, PA
| | - Femida Kherani
- Children’s Hospital of Philadelphia, Division of Ophthalmology, Philadelphia, PA
| | - Tian-Yuan Wang
- The Center for Human Genetics, Duke University Medical Center, Durham, NC
| | | | - Terri L. Young
- The Center for Human Genetics, Duke University Medical Center, Durham, NC,Department of Ophthalmology, Duke University Medical Center, Durham, NC
| |
Collapse
|
19
|
Zhang H, Stavnezer E. Ski regulates muscle terminal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3. J Biol Chem 2008; 284:2867-2879. [PMID: 19008232 DOI: 10.1074/jbc.m807526200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Overexpression of the Ski pro-oncogene has been shown to induce myogenesis in non-muscle cells, to promote muscle hypertrophy in postnatal mice, and to activate transcription of muscle-specific genes. However, the precise role of Ski in muscle cell differentiation and its underlying molecular mechanism are not fully understood. To elucidate the involvement of Ski in muscle terminal differentiation, two retroviral systems were used to achieve conditional overexpression or knockdown of Ski in satellite cell-derived C2C12 myoblasts. We found that enforced expression of Ski promoted differentiation, whereas loss of Ski severely impaired it. Compromised terminal differentiation in the absence of Ski was likely because of the failure to induce myogenin (Myog) and p21 despite normal expression of MyoD. Chromatin immunoprecipitation and transcriptional reporter experiments showed that Ski occupied the endogenous Myog regulatory region and activated transcription from the Myog regulatory region upon differentiation. Transactivation of Myog was largely dependent on a MEF3 site bound by Six1, not on the binding site of MyoD or MEF2. Activation of the MEF3 site required direct interaction of Ski with Six1 and Eya3 mediated by the evolutionarily conserved Dachshund homology domain of Ski. Our results indicate that Ski is necessary for muscle terminal differentiation and that it exerts this role, at least in part, through its association with Six1 and Eya3 to regulate the Myog transcription.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ed Stavnezer
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
20
|
Boone B, Haspeslagh M, Brochez L. Clinical significance of the expression of c-Ski and SnoN, possible mediators in TGF-beta resistance, in primary cutaneous melanoma. J Dermatol Sci 2008; 53:26-33. [PMID: 18782659 DOI: 10.1016/j.jdermsci.2008.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 01/10/2023]
Abstract
BACKGROUND Loss of TGF-beta growth control is considered as a hallmark of several human neoplasms including melanoma. Resistance of cancer cells to TGF-beta has been linked to mutations in proteins involved in the TGF-beta pathway. In melanoma such mutations have not been observed. C-Ski and SnoN, two structurally and functionally highly homologous proteins, are known as negative regulators in the TGF-beta signaling pathway. C-Ski and SnoN expression levels and subcellular localization have been associated with clinicopathological parameters and tumour progression in several human malignancies. In melanoma cell lines, high c-Ski and SnoN expression levels have been described. OBJECTIVE The objective of this study was to evaluate the clinical value of c-Ski and SnoN expression in primary cutaneous melanoma. METHODS We evaluated c-Ski and SnoN expression by immunohistochemical staining in 120 primary melanomas. Possible associations between c-Ski and SnoN staining patterns and clinicopathological parameters were analyzed. RESULTS Nuclear c-Ski expression was significantly associated with thicker and ulcerated tumours. The percentage of SnoN positivity was higher in ulcerated tumours and in the sentinel node positive group. CONCLUSION These results suggest that c-Ski and SnoN, mediators in TGF-beta resistance, might be implicated in melanoma growth and progression.
Collapse
Affiliation(s)
- Barbara Boone
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.
| | | | | |
Collapse
|
21
|
Villanacci V, Bellone G, Battaglia E, Rossi E, Carbone A, Prati A, Verna C, Niola P, Morelli A, Grassini M, Bassotti G. Ski/SnoN expression in the sequence metaplasia-dysplasia-adenocarcinoma of Barrett's esophagus. Hum Pathol 2008; 39:403-9. [PMID: 18261624 DOI: 10.1016/j.humpath.2007.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 07/12/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Barrett's esophagus (BE) is a precancerous condition. However, the mechanisms underlying the transformation from metaplastic to dysplastic to adenocarcinomatous epithelium are still poorly understood. As loss of transforming growth factor-beta growth inhibition is considered a hallmark of several human neoplasms, we evaluated the expression of Ski and SnoN (proteins that antagonize transforming growth factor-beta signaling through physical interaction with Smad complex and by recruiting histone deacetylases), as markers of the transforming growth factor-beta signaling pathway, in BE with and without dysplasia. Biopsy samples from 37 patients (26 men, aged 60 +/- 8 years) with histologically proven BE were evaluated; 10 patients had concomitant low-grade dysplasia, 7 high-grade dysplasia (HGD), and 6 HGD associated with adenocarcinoma. Ski and SnoN expression was assessed immunohistochemically. Neither Ski nor SnoN was expressed in normal esophageal epithelium, but both were strongly expressed in BE tissue, with intense cytoplasmic positivity. Expression of these proteins decreased markedly in dysplastic areas in patients with low-grade dysplasia and was absent in those with HGD or HGD/adenocarcinoma. Ski and SnoN proteins are overexpressed in BE and may be involved in abnormal signaling elicited by transforming growth factor-beta in this epithelium, enhancing the tumorigenesis process. These observations might help to elucidate the molecular mechanisms involved in the BE tumorigenesis process.
Collapse
|
22
|
Ueki N, Zhang L, Hayman MJ, Haymann MJ. Ski can negatively regulates macrophage differentiation through its interaction with PU.1. Oncogene 2007; 27:300-7. [PMID: 17621263 PMCID: PMC2850268 DOI: 10.1038/sj.onc.1210654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the hematopoietic cell system, the oncoprotein Ski dramatically affects growth and differentiation programs, in some cases leading to malignant leukemia. However, little is known about the interaction partners or signaling pathways involved in the Ski-mediated block of differentiation in hematopoietic cells. Here we show that Ski interacts with PU.1, a lineage-specific transcription factor essential for terminal myeloid differentiation, and thereby represses PU.1-dependent transcriptional activation. Consistent with this, Ski inhibits the biological function of PU.1 to promote myeloid cells to differentiate into macrophage colony-stimulating factor receptor (M-CSFR)-positive macrophages. Using a Ski mutant deficient in PU.1 binding, we demonstrate that Ski-PU.1 interaction is critical for Ski's ability to repress PU.1-dependent transcription and block macrophage differentiation. Furthermore, we provide evidence that Ski-mediated repression of PU.1 is due to Ski's ability to recruit histone deacetylase 3 to PU.1 bound to DNA. Since inactivation of PU.1 is closely related to the development of myeloid leukemia and Ski strongly inhibits PU.1 function, we propose that aberrant Ski expression in certain types of myeloid cell lineages might contribute to leukemogenesis.
Collapse
Affiliation(s)
- N Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | | | | | | |
Collapse
|
23
|
Ritter M, Kattmann D, Teichler S, Hartmann O, Samuelsson MKR, Burchert A, Bach JP, Kim TD, Berwanger B, Thiede C, Jäger R, Ehninger G, Schäfer H, Ueki N, Hayman MJ, Eilers M, Neubauer A. Inhibition of retinoic acid receptor signaling by Ski in acute myeloid leukemia. Leukemia 2006; 20:437-43. [PMID: 16424870 DOI: 10.1038/sj.leu.2404093] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with multiple different cytogenetic and molecular aberrations contributing to leukemic transformation. We compared gene expression profiles of 4608 genes using cDNA-arrays from 20 AML patients (nine with -7/del7q and 11 with normal karyotype) with 23 CD34+ preparations from healthy bone marrow donors. SKI, a nuclear oncogene, was highly up regulated. In a second set of 183 AML patients analyzed with real-time PCR, the highest expression level of SKI in AML with -7/del7q could be confirmed. As previously described, Ski associates with the retinoic acid receptor (RAR) complex and can repress transcription. We wanted to investigate the interference of Ski with RARalpha signaling in AML. Ski was co-immunoprecipitated and colocalized with RARalpha. We also found that overexpression of wild-type Ski inhibited the prodifferentiating effects of retinoic acid in U937 leukemia cells. Mutant Ski, lacking the N-CoR binding, was no more capable of repressing RARalpha signaling. The inhibition by wild-type Ski could partially be reverted by the histone deacetylase blocking agent valproic acid. In conclusion, Ski seems to be involved in the blocking of differentiation in AML via inhibition of RARalpha signaling.
Collapse
Affiliation(s)
- M Ritter
- Klinik für Innere Medizin mit SP Hämatologie, Onkologie und Immunologie, Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cellular homeostasis is tightly controlled by the various pathways that regulate cell proliferation and cell death. Breaking this balance is often associated with cancer development. The transforming growth factor-beta (TGF-beta) pathway plays an important role in cellular homeostasis by regulating cell growth inhibition, cellular senescence, differentiation and apoptosis. Deregulated TGF-beta signaling is known to be involved in a variety of human cancers, including those of the colon, pancreas, breast and prostate. While TGF-beta is a potent negative regulator of hematopoiesis, the role of aberrant TGF-beta signaling in leukemogenesis remains largely unknown. Recently, evidence demonstrating deregulated TGF-beta signaling in leukemogenesis, particularly in acute promyelocytic leukemia (APL), has started to emerge. In this review, we summarize the current progress towards the understanding of the molecular mechanisms by which aberrant TGF-beta signaling may participate in leukemogenesis.
Collapse
Affiliation(s)
- Hui-Kuan Lin
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
25
|
Kronenwett R, Butterweck U, Steidl U, Kliszewski S, Neumann F, Bork S, Blanco ED, Roes N, Gräf T, Brors B, Eils R, Maercker C, Kobbe G, Gattermann N, Haas R. Distinct molecular phenotype of malignant CD34(+) hematopoietic stem and progenitor cells in chronic myelogenous leukemia. Oncogene 2005; 24:5313-24. [PMID: 15806158 DOI: 10.1038/sj.onc.1208596] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML) is a malignant disorder of the hematopoietic stem cell characterized by the BCR-ABL oncogene. We examined gene expression profiles of highly enriched CD34(+) hematopoietic stem and progenitor cells from patients with CML in chronic phase using cDNA arrays covering 1.185 genes. Comparing CML CD34(+) cells with normal CD34(+) cells, we found 158 genes which were significantly differentially expressed. Gene expression patterns reflected BCR-ABL-induced functional alterations such as increased cell-cycle and proteasome activity. Detoxification enzymes and DNA repair proteins were downregulated in CML CD34(+) cells, which might contribute to genetic instability. Decreased expression of junction plakoglobulin and CXC chemokine receptor 4 (CXCR-4) might facilitate the release of immature precursors from bone marrow in CML. GATA-2 was upregulated in CML CD34(+) cells, suggesting an increased self-renewal in comparison with normal CD34(+) cells. Moreover, we found upregulation of the proto-oncogene SKI and of receptors for neuromediators such as opioid mu1 receptor, GABA B receptor, adenosine A1 receptor, orexin 1 and 2 receptors and corticotropine-releasing hormone receptor. Treatment of CML progenitor cells with the selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) resulted in a dose-dependent significant inhibition of clonogenic growth by 40% at a concentration of 10(-5) M, which could be reversed by the equimolar addition of the receptor agonist 2-chloro-N6-cyclopentyladenosine (P<0.05). The incubation of normal progenitor cells with DPCPX resulted in an inhibition of clonogenic growth to a significantly lesser extent in comparison with CML cells (P<0.05), suggesting that the adenosine A1 receptor is of functional relevance in CML hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Ralf Kronenwett
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marcelain K, Hayman MJ. The Ski oncoprotein is upregulated and localized at the centrosomes and mitotic spindle during mitosis. Oncogene 2005; 24:4321-9. [PMID: 15806149 DOI: 10.1038/sj.onc.1208631] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ski is an oncoprotein that represses transforming growth factor-beta and nuclear receptor signaling. Despite evidence that relates increased Ski protein levels directly with tumor progression in human cells, the signaling pathways that regulate Ski expression are mostly unidentified. Here we show that the Ski protein levels vary throughout the cell cycle, being lowest at G0/G1. This reduction in Ski protein levels results from proteosomal degradation as suggested by in vivo ubiquitination of Ski and the effects of proteosomal inhibitors. In contrast, an upregulation of the Ski protein was observed in cells going through mitosis. At this stage, we also found that Ski is phosphorylated. In vitro and in vivo data suggest that the phosphorylation of Ski in mitosis is carried out by the main kinase controlling the progression of mitosis, namely cdc2/cyclinB. Interestingly, immunofluorescence experiments, supported by biochemical data, show not only an increase in the Ski protein levels, but also a dramatic redistribution of Ski to the centrosomes and mitotic spindle throughout mitosis. Studies to date on Ski have focused on its role as a transcriptional regulator. However, Ski's increased level and specific relocalization during mitosis suggest that Ski might play a distinct role during this particular phase of the cell cycle.
Collapse
Affiliation(s)
- Katherine Marcelain
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | |
Collapse
|
27
|
Wilson JJ, Malakhova M, Zhang R, Joachimiak A, Hegde RS. Crystal structure of the dachshund homology domain of human SKI. Structure 2005; 12:785-92. [PMID: 15130471 DOI: 10.1016/j.str.2004.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/11/2004] [Accepted: 02/11/2004] [Indexed: 11/28/2022]
Abstract
The nuclear protooncoprotein SKI negatively regulates transforming growth factor-beta (TGF-beta) signaling in cell growth and differentiation. It directly interacts with the Smads and, by various mechanisms, represses the transcription of TGF-beta-responsive genes. SKI is a multidomain protein that includes a domain bearing high sequence similarity with the retinal determination protein Dachshund (the Dachshund homology domain, DHD). The SKI-DHD has been implicated in SMAD-2/3, N-CoR, SKIP, and PML-RARalpha binding. The 1.65 A crystal structure of the Dachshund homology domain of human SKI is reported here. The SKI-DHD adopts a mixed alpha/beta structure which includes features found in the forkhead/winged-helix family of DNA binding proteins, although SKI-DHD is not a DNA binding domain. Residues that form a contiguous surface patch on SKI-DHD are conserved within the Ski/Sno family and with Dachshund, suggesting that this domain may mediate intermolecular interactions common to these proteins.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
28
|
Ueki N, Zhang L, Hayman MJ. Ski negatively regulates erythroid differentiation through its interaction with GATA1. Mol Cell Biol 2005; 24:10118-25. [PMID: 15542823 PMCID: PMC529047 DOI: 10.1128/mcb.24.23.10118-10125.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ski oncoprotein dramatically affects cell growth, differentiation, and/or survival. Recently, Ski was shown to act in distinct signaling pathways including those involving nuclear receptors, transforming growth factor beta, and tumor suppressors. These divergent roles of Ski are probably dependent on Ski's capacity to bind multiple partners with disparate functions. In particular, Ski alters the growth and differentiation program of erythroid progenitor cells, leading to malignant leukemia. However, the mechanism underlying this important effect has remained elusive. Here we show that Ski interacts with GATA1, a transcription factor essential in erythropoiesis. Using a Ski mutant deficient in GATA1 binding, we show that this Ski-GATA1 interaction is critical for Ski's ability to repress GATA1-mediated transcription and block erythroid differentiation. Furthermore, the repression of GATA1-mediated transcription involves Ski's ability to block DNA binding of GATA1. This finding is in marked contrast to those in previous reports on the mechanism of repression by Ski, which have described a model involving the recruitment of corepressors into DNA-bound transcription complexes. We propose that Ski cooperates in the process of transformation in erythroid cells by interfering with GATA1 function, thereby contributing to erythroleukemia.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
29
|
Atanasoski S, Notterpek L, Lee HY, Castagner F, Young P, Ehrengruber MU, Meijer D, Sommer L, Stavnezer E, Colmenares C, Suter U. The Protooncogene Ski Controls Schwann Cell Proliferation and Myelination. Neuron 2004; 43:499-511. [PMID: 15312649 DOI: 10.1016/j.neuron.2004.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/29/2004] [Accepted: 07/28/2004] [Indexed: 01/11/2023]
Abstract
Schwann cell proliferation and subsequent differentiation to nonmyelinating and myelinating cells are closely linked processes. Elucidating the molecular mechanisms that control these events is key to the understanding of nerve development, regeneration, nerve-sheath tumors, and neuropathies. We define the protooncogene Ski, an inhibitor of TGF-beta signaling, as an essential component of the machinery that controls Schwann cell proliferation and myelination. Functional Ski overexpression inhibits TGF-beta-mediated proliferation and prevents growth-arrested Schwann cells from reentering the cell cycle. Consistent with these findings, myelinating Schwann cells upregulate Ski during development and remyelination after injury. Myelination is blocked in myelin-competent cultures derived from Ski-deficient animals, and genes encoding myelin components are downregulated in Ski-deficient nerves. Conversely, overexpression of Ski in Schwann cells causes an upregulation of myelin-related genes. The myelination-regulating transcription factor Oct6 is involved in a complex modulatory relationship with Ski. We conclude that Ski is a crucial signal in Schwann cell development and myelination.
Collapse
Affiliation(s)
- Suzana Atanasoski
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Ski and SnoN are unique proto-oncoproteins in that they can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Recent studies using in vitro and in vivo approaches have begun to unravel the complex roles of Ski and SnoN in tumorigenesis and embryonic development. The identification of Ski and SnoN as important negative regulators of signal transduction by the transforming growth factor-beta superfamily of cytokines provides a valuable molecular basis for the complex functions of Ski and SnoN.
Collapse
Affiliation(s)
- Kunxin Luo
- Life Sciences Division, Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 237 Hildebrand Hall, Mail code 3206, Berkeley, CA 94720-3206, USA.
| |
Collapse
|
31
|
Schedlich LJ, O'Han MK, Leong GM, Baxter RC. Insulin-like growth factor binding protein-3 prevents retinoid receptor heterodimerization: implications for retinoic acid-sensitivity in human breast cancer cells. Biochem Biophys Res Commun 2004; 314:83-8. [PMID: 14715249 DOI: 10.1016/j.bbrc.2003.12.049] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) has both IGF-dependent and -independent effects on cell growth, which are frequently growth-inhibitory. Interestingly, the development of a more aggressive phenotype in breast cancer cells (BCCs) correlates positively with elevated expression of IGFBP-3 and is often associated with all-trans-retinoic acid (atRA)-resistance. IGFBP-3 was previously demonstrated to interact directly with retinoid X receptor (RXR). In this study we have shown that IGFBP-5 also interacts with RXR and that both IGFBPs interact with retinoic acid receptor (RAR). To investigate whether the presence of IGFBP-3 regulates breast cancer cell responsiveness to atRA, we immuno-neutralized the IGFBP-3 expressed by the atRA-resistant Hs578T and MDA-MB-231 BCCs (which express IGFBP-3 constitutively) and showed that they become more sensitive to the growth-inhibitory effects of atRA. Similarly, in Hs578T cells expressing a reporter gene under the control of an RAR response element (RARE), depletion of IGFBP-3 resulted in the induction of reporter gene expression in response to atRA. In investigating possible mechanisms for IGFBP-3 regulation of atRA-sensitivity, we found that IGFBP-3 blocked the formation of RAR:RXR heterodimers and disrupted the ligand-inducible receptor complex. Thus, IGFBP-3 has the potential to reduce the RARE-mediated transactivation of target genes and modulate the atRA-response in BCCs.
Collapse
Affiliation(s)
- Lynette J Schedlich
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, NSW, Australia.
| | | | | | | |
Collapse
|
32
|
da Graca LS, Zimmerman KK, Mitchell MC, Kozhan-Gorodetska M, Sekiewicz K, Morales Y, Patterson GI. DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGF beta pathway to regulate C. elegans dauer development. Development 2003; 131:435-46. [PMID: 14681186 DOI: 10.1242/dev.00922] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unconventional TGF beta superfamily pathway plays a crucial role in the decision between dauer diapause and reproductive growth. We have studied the daf-5 gene, which, along with the daf-3 Smad gene, is antagonized by upstream receptors and receptor-regulated Smads. We show that DAF-5 is a novel member of the Sno/Ski superfamily that binds to DAF-3 Smad, suggesting that DAF-5, like Sno/Ski, is a regulator of transcription in a TGF beta superfamily signaling pathway. However, we present evidence that DAF-5 is an unconventional Sno/Ski protein, because DAF-5 acts as a co-factor, rather than an antagonist, of a Smad protein. We show that expressing DAF-5 in the nervous system rescues a daf-5 mutant, whereas muscle or hypodermal expression does not. Previous work suggested that DAF-5 and DAF-3 function in pharyngeal muscle to regulate gene expression, but our analysis of regulation of a pharynx specific promoter suggests otherwise. We present a model in which DAF-5 and DAF-3 control the production or release of a hormone from the nervous system by either regulating the expression of biosynthetic genes or by altering the connectivity or the differentiated state of neurons.
Collapse
Affiliation(s)
- Li S da Graca
- Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ueki N, Hayman MJ. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling. J Biol Chem 2003; 278:32489-92. [PMID: 12857746 DOI: 10.1074/jbc.c300276200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncoprotein Ski represses transforming growth factor (TGF)-beta signaling in an N-CoR-independent manner. However, the molecular mechanism(s) underlying this event has not been elucidated. Here, we identify an additional domain in Ski that mediates interaction with Smad3 which is important for this repression. This domain is distinct from the previously reported N-terminal Smad3 binding domain in Ski. Individual alanine substitution of several residues in the domain significantly affected Ski-Smad3 interaction. Furthermore, combined mutations within this domain, together with those in the previously identified Smad3 binding domain, can completely abolish the interaction of Ski with Smad3, while mutation in each domain alone retained partial interaction. By introducing those mutations that abolish direct interaction with Smad3 or Smad4 individually, or in combination, we show that interaction of Ski with either Smad3 or Smad4 is sufficient for Ski-mediated repression of TGF-beta signaling. Furthermore our results clearly demonstrate that Ski does not disrupt Smad3-Smad4 heteromer formation, and recruitment of Ski to the Smad3/4 complex through binding to either Smad3 or Smad4 is both necessary and sufficient for repression.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5222, USA
| | | |
Collapse
|
34
|
He J, Tegen SB, Krawitz AR, Martin GS, Luo K. The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem 2003; 278:30540-7. [PMID: 12764135 DOI: 10.1074/jbc.m304016200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The regulation of cell growth and differentiation by transforming growth factor-beta (TGF-beta) is mediated by the Smad proteins. In the nucleus, the Smad proteins are negatively regulated by two closely related nuclear proto-oncoproteins, Ski and SnoN. When overexpressed, Ski and SnoN induce oncogenic transformation of chicken embryo fibroblasts. However, the mechanism of transformation by Ski and SnoN has not been defined. We have previously reported that Ski and SnoN interact directly with Smad2, Smad3, and Smad4 and repress their ability to activate TGF-beta target genes through multiple mechanisms. Because Smad proteins are tumor suppressors, we hypothesized that the ability of Ski and SnoN to inactivate Smad function may be responsible for their transforming activity. Here, we show that the receptor regulated Smad proteins (Smad2 and Smad3) and common mediator Smad (Smad4) bind to different regions in Ski and SnoN. Mutation of both regions, but not each region alone, markedly impaired the ability of Ski and SnoN to repress TGF-beta-induced transcriptional activation and cell cycle arrest. Moreover, when expressed in chicken embryo fibroblasts, mutant Ski or SnoN defective in binding to the Smad proteins failed to induce oncogenic transformation. These results suggest that the ability of Ski and SnoN to repress the growth inhibitory function of the Smad proteins is required for their transforming activity. This may account for the resistance to TGF-beta-induced growth arrest in some human cancer cell lines that express high levels of Ski or SnoN.
Collapse
Affiliation(s)
- Jun He
- Life Sciences Division, Lawrence Berkeley National Laboratory, CA 94720-3206, USA
| | | | | | | | | |
Collapse
|
35
|
Ueki N, Hayman MJ. Signal-dependent N-CoR requirement for repression by the Ski oncoprotein. J Biol Chem 2003; 278:24858-64. [PMID: 12716897 DOI: 10.1074/jbc.m303447200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncoprotein Ski represses transforming growth factor-beta (TGF-beta) and nuclear receptor signaling. To achieve this, Ski has been proposed to recruit the corepressor N-CoR to either the TGF-beta-regulated Smad transcription factors or nuclear receptors. Here we define the role of the Ski/N-CoR interaction in Ski-mediated repression of TGF-beta and vitamin D signaling. We show that Ski can negatively regulate vitamin D-mediated transcription by directly interacting with the vitamin D receptor. More importantly, a Ski single point mutant lacking N-CoR binding revealed that the Ski/N-CoR interaction is essential for repression of vitamin D signaling, but, surprisingly, not TGF-beta signaling. Thus, Ski modulates transcription in either an N-CoR-dependent or -independent manner depending on the signaling pathways targeted.
Collapse
Affiliation(s)
- Nobuhide Ueki
- Department of Molecular Genetics and Microbiology, Stony Brook University, New York 11794-5222, USA.
| | | |
Collapse
|
36
|
Medrano EE. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 2003; 22:3123-9. [PMID: 12793438 DOI: 10.1038/sj.onc.1206452] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.
Collapse
Affiliation(s)
- Estela E Medrano
- Departments of Molecural and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 2002; 21:3422-44. [PMID: 12032780 DOI: 10.1038/sj.onc.1205315] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The leukemia-associated fusion proteins share several structural or functional similarities, suggesting that they may impart a leukemic phenotype through common modes of transcriptional dysregulation. The fusion proteins generated by these translocations usually contain a DNA-binding domain, domains responsible for homo- or hetero-dimerization, and domains that interact with proteins involved in chromatin remodeling (e.g., co-repressor molecules or co-activator molecules). It is these shared features that constitute the 'variations on the theme' that underling the aberrant growth and differentiation that is the hallmark of acute leukemia cells.
Collapse
Affiliation(s)
- Joseph M Scandura
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
38
|
Colmenares C, Heilstedt HA, Shaffer LG, Schwartz S, Berk M, Murray JC, Stavnezer E. Loss of the SKI proto-oncogene in individuals affected with 1p36 deletion syndrome is predicted by strain-dependent defects in Ski-/- mice. Nat Genet 2002; 30:106-9. [PMID: 11731796 DOI: 10.1038/ng770] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Experiments involving overexpression of Ski have suggested that this gene is involved in neural tube development and muscle differentiation. In agreement with these findings, Ski-/- mice display a cranial neural tube defect that results in exencephaly and a marked reduction in skeletal muscle mass. Here we show that the penetrance and expressivity of the phenotype changes when the null mutation is backcrossed into the C57BL6/J background, with the principal change involving a switch from a neural tube defect to midline facial clefting. Other defects, including depressed nasal bridge, eye abnormalities, skeletal muscle defects and digit abnormalities, show increased penetrance in the C57BL6/J background. These phenotypes are interesting because they resemble some of the features observed in individuals diagnosed with 1p36 deletion syndrome, a disorder caused by monosomy of the short arm of human chromosome 1p (refs. 6-9). These similarities prompted us to re-examine the chromosomal location of human SKI and to determine whether SKI is included in the deletions of 1p36. We found that human SKI is located at distal 1p36.3 and is deleted in all of the individuals tested so far who have this syndrome. Thus, SKI may contribute to some of the phenotypes common in 1p36 deletion syndrome, and particularly to facial clefting.
Collapse
Affiliation(s)
- Clemencia Colmenares
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shinagawa T, Nomura T, Colmenares C, Ohira M, Nakagawara A, Ishii S. Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice. Oncogene 2001; 20:8100-8. [PMID: 11781823 DOI: 10.1038/sj.onc.1204987] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 09/12/2001] [Accepted: 09/18/2001] [Indexed: 01/07/2023]
Abstract
The c-ski proto-oncogene product (c-Ski) acts as a co-repressor and binds to other co-repressors N-CoR/SMRT and mSin3A which form a complex with histone deacetylase (HDAC). c-Ski mediates the transcriptional repression by a number of repressors, including nuclear hormone receptors and Mad. c-Ski also directly binds to, and recruits the HDAC complex to Smads, leading to inhibition of tumor growth factor-beta (TGF-beta) signaling. This is consistent with the function of ski as an oncogene. Here we show that loss of one copy of c-ski increases susceptibility to tumorigenesis in mice. When challenged with a chemical carcinogen, c-ski heterozygous mice showed an increased level of tumor formation relative to wild-type mice. In addition, c-ski-deficient mouse embryonic fibroblasts (MEFs) had increased proliferative capacity, whereas overexpression of c-Ski suppressed the proliferation. Furthermore, the introduction of activated Ki-ras into c-ski-deficient MEFs resulted in neoplastic transformation. These findings demonstrate that c-ski acts as a tumor suppressor in some types of cells. The level of cdc25A mRNA, which is down regulated by two tumor suppressor gene products, Rb and Mad, was upregulated in c-ski-deficient MEFs, whereas it decreased by overexpressing c-Ski in MEFs. This is consistent with the fact that c-Ski acts as a co-repressor of Mad and Rb. These results support the view that the decreased activities of Mad and Rb in ski-deficient cells at least partly contribute to enhanced proliferation and susceptibility to tumorigenesis. Human c-ski gene was mapped to a region close to the p73 tumor suppressor gene at the 1p36.3 locus, which is already known to contain multiple uncharacterized tumor suppressor genes.
Collapse
Affiliation(s)
- T Shinagawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, and CREST (Core Research for Evolutionary Science and Technology) Research Project of JST (Japan Science & Technology Corporation), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Zhang C, Baudino TA, Dowd DR, Tokumaru H, Wang W, MacDonald PN. Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription. J Biol Chem 2001; 276:40614-20. [PMID: 11514567 DOI: 10.1074/jbc.m106263200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vitamin D receptor (VDR) is a ligand-dependent transcriptional factor that binds to vitamin D-responsive elements as a heterodimer with retinoid X receptor (RXR) to regulate target gene transcription. The steroid receptor coactivator (SRC) proteins are coactivators that interact with the AF-2 domain of VDR to augment 1,25-dihydroxyvitamin D3-dependent transcription. In contrast, NCoA-62/Ski-interacting protein (SKIP) is a distinct, activation function-2-independent coactivator for VDR. The current study examined whether these two distinct classes of coactivators impact functionally on VDR-mediated transcription. Using a ternary complex binding assay, we observed a marked preference for the direct interaction of NCoA-62/SKIP with the VDR-RXR heterodimer as compared with the VDR-VDR homodimer or VDR monomer. The liganded VDR also formed a ternary complex with NCoA-62/SKIP and SRC proteins in vitro. Competition experiments using LXXLL peptides showed that NCoA-62/SKIP and SRC coactivators contact different domains of the VDR-RXR heterodimer. Synergistic interplays were observed between NCoA-62/SKIP and SRC coactivators in VDR-mediated transcriptional assays, and protein interference assays indicated a requirement for both NCoA-62/SKIP and SRCs in VDR- mediated transcription. These studies suggest that the ligand-dependent and simultaneous interaction of NCoA-62/SKIP and SRC coactivators with distinct interaction domains within the VDR-RXR heterodimer results in cooperative interplays between coactivators in VDR-mediated transcription.
Collapse
Affiliation(s)
- C Zhang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
41
|
Leong GM, Subramaniam N, Figueroa J, Flanagan JL, Hayman MJ, Eisman JA, Kouzmenko AP. Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-beta-dependent transcription. J Biol Chem 2001; 276:18243-8. [PMID: 11278756 DOI: 10.1074/jbc.m010815200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) signaling requires the action of Smad proteins in association with other DNA-binding factors and coactivator and corepressor proteins to modulate target gene transcription. Smad2 and Smad3 both associate with the c-Ski and Sno oncoproteins to repress transcription of Smad target genes via recruitment of a nuclear corepressor complex. Ski-interacting protein (SKIP), a nuclear hormone receptor coactivator, was examined as a possible modulator of transcriptional regulation of the TGF-beta-responsive promoter from the plasminogen activator inhibitor gene-1. SKIP augmented TGF-beta-dependent transactivation in contrast to Ski/Sno-dependent repression of this reporter. SKIP interacted with Smad2 and Smad3 proteins in vivo in yeast and in mammalian cells through a region of SKIP between amino acids 201-333. In vitro, deletion of the Mad homology domain 2 (MH2) domain of Smad3 abrogated SKIP binding, like Ski/Sno, but the MH2 domain of Smad3 alone was not sufficient for protein-protein interaction. Overexpression of SKIP partially overcame Ski/Sno-dependent repression, whereas Ski/Sno overexpression attenuated SKIP augmentation of TGF-beta-dependent transcription. Our results suggest a potential mechanism for transcriptional control of TGF-beta signaling that involves the opposing and competitive actions of SKIP and Smad MH2-interacting factors, such as Ski and/or Sno. Thus, SKIP appears to modulate both TGF-beta and nuclear hormone receptor signaling pathways.
Collapse
Affiliation(s)
- G M Leong
- Bone & Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Transforming growth factor-beta is a potent inhibitor of epithelial cell proliferation. Proteins involved in TGF-beta signaling are bona fide tumor suppressors and many tumor cells acquire the ability to escape TGF-beta growth inhibition through the loss of key signaling transducers in the pathway or through the activation of oncogenes. Recent studies indicate that there is a specific connection between the TGF-beta signaling pathway and the Ski/SnoN family of oncoproteins. We summarize evidence that Ski and SnoN directly associate with Smad proteins and block the ability of the Smads to activate expression of many if not all TGF-beta-responsive genes. This appears to cause abrogation of TGF-beta growth inhibition in epithelial cells.
Collapse
Affiliation(s)
- X Liu
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
43
|
Abstract
A key event in the regulation of eukaryotic gene expression is the posttranslational modification of nucleosomal histones, which converts regions of chromosomes into transcriptionally active or inactive chromatin. The most well studied posttranslational modification of histones is the acetylation of epsilon-amino groups on conserved lysine residues in the histones' amino-terminal tail domains. Significant advances have been made in the past few years toward the identification of histone acetyltransferases and histone deacetylases. Currently, there are over a dozen cloned histone acetyltransferases and at least eight cloned human histone deacetylases. Interestingly, many histone deacetylases can function as transcriptional corepressors and, often, they are present in multi-subunit complexes. More intriguing, at least some histone deacetylases are associated with chromatin-remodeling machines. In addition, several studies have pointed to the possible involvement of histone deacetylases in human cancer. The availability of the cloned histone deacetylase genes has provided swift progress in the understanding of the mechanisms of deacetylases, their role in transcription, and their possible role in health and disease.
Collapse
Affiliation(s)
- W D Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida
| | | |
Collapse
|
44
|
Kaufman CD, Martínez-Rodriguez G, Hackett PB. Ectopic expression of c-ski disrupts gastrulation and neural patterning in zebrafish. Mech Dev 2000; 95:147-62. [PMID: 10906458 DOI: 10.1016/s0925-4773(00)00351-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The c-ski proto-oncogene encodes a transcriptional regulator that has been implicated in the development of different tissues at different times during vertebrate development. We identified two novel paralogues of the c-ski gene family, skiA and skiB in zebrafish (Danio rerio). The skiA protein is maternal and ubiquitous while skiB is zygotic. Overexpression of SkiA or SkiB disrupted gastrulation and resulted in a dorsalized phenotype. In situ analyses suggested that overexpression of Ski leads to a slight expansion of dorsal-axial mesoderm, diminishment or loss of ventral mesoderm and radialization of dorsal neuroectoderm. The dorsalized phenotype could be rescued by the ventral specifying factor, BMP4. These results provide evidence that Ski proteins participate in dorsal-ventral specification of both neuroectoderm and mesoderm.
Collapse
Affiliation(s)
- C D Kaufman
- Department of Genetics, Cell Biology and Development, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108-1095, USA
| | | | | |
Collapse
|
45
|
Xu W, Angelis K, Danielpour D, Haddad MM, Bischof O, Campisi J, Stavnezer E, Medrano EE. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci U S A 2000; 97:5924-9. [PMID: 10811875 PMCID: PMC18535 DOI: 10.1073/pnas.090097797] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.
Collapse
Affiliation(s)
- W Xu
- Huffington Center on Aging and Departments of Molecular and Cellular Biology and Dermatology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shinagawa T, Dong HD, Xu M, Maekawa T, Ishii S. The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice. EMBO J 2000; 19:2280-91. [PMID: 10811619 PMCID: PMC384369 DOI: 10.1093/emboj/19.10.2280] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Ski and Sno oncoproteins are components of a macromolecular complex containing the co-repressor N-CoR/SMRT, mSin3 and histone deacetylase. This complex has been implicated in the transcriptional repression exerted by a number of repressors including nuclear hormone receptors and Mad. Further more, Ski and Sno negatively regulate transforming growth factor-beta (TGF-beta) signaling by recruiting this complex to Smads. Here we show that loss of one copy of sno increases susceptibility to tumorigenesis in mice. Mice lacking sno died at an early stage of embryogenesis, and sno was required for blastocyst formation. Heterozygous (sno(+/-)) mice developed spontaneous lymphomas at a low frequency and showed an increased level of tumor formation relative to wild-type mice when challenged with a chemical carcinogen. sno(+/-) embryonic fibroblasts had an increased proliferative capacity and the introduction of activated Ki-ras into these cells resulted in neoplastic transformation. The B cells, T cells and embryonic fibroblasts of sno(+/-) mice had a decreased sensitivity to apoptosis or cell cycle arrest. These findings demonstrate that sno acts as a tumor suppressor at least in some types of cells.
Collapse
Affiliation(s)
- T Shinagawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Life Sciences Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japa
| | | | | | | | | |
Collapse
|
47
|
Zhou S, Fujimuro M, Hsieh JJ, Chen L, Miyamoto A, Weinmaster G, Hayward SD. SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol Cell Biol 2000; 20:2400-10. [PMID: 10713164 PMCID: PMC85419 DOI: 10.1128/mcb.20.7.2400-2410.2000] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Notch proteins are transmembrane receptors that mediate intercell communication and direct individual cell fate decisions. The activated intracellular form of Notch, NotchIC, translocates to the nucleus, where it targets the DNA binding protein CBF1. CBF1 mediates transcriptional repression through the recruitment of an SMRT-histone deacetylase-containing corepressor complex. We have examined the mechanism whereby NotchIC overcomes CBF1-mediated transcriptional repression. We identified SKIP (Ski-interacting protein) as a CBF1 binding protein in a yeast two-hybrid screen. Both CBF1 and SKIP are highly conserved evolutionarily, and the SKIP-CBF1 interaction is also conserved in assays using the Caenorhabditis elegans and Drosophila melanogaster SKIP homologs. Protein-protein interaction assays demonstrated interaction between SKIP and the corepressor SMRT. More surprisingly, SKIP also interacted with NotchIC. The SMRT and NotchIC interactions were mutually exclusive. In competition binding experiments SMRT displaced NotchIC from CBF1 and from SKIP. Contact with SKIP is required for biological activity of NotchIC. A mutation in the fourth ankyrin repeat that abolished Notch signal transduction did not affect interaction with CBF1 but abolished interaction with SKIP. Further, NotchIC was unable to block muscle cell differentiation in myoblasts expressing antisense SKIP. The results suggest a model in which NotchIC activates responsive promoters by competing with the SMRT-corepressor complex for contacts on both CBF1 and SKIP.
Collapse
Affiliation(s)
- S Zhou
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 1999; 274:35269-77. [PMID: 10575014 DOI: 10.1074/jbc.274.49.35269] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Smads are intracellular signaling mediators of the transforming growth factor-beta (TGF-beta) superfamily that regulates a wide variety of biological processes. Among them, Smads 2 and 3 are activated specifically by TGF-beta. We identified c-Ski as a Smad2 interacting protein. c-Ski is the cellular homologue of the v-ski oncogene product and has been shown to repress transcription by recruiting histone deacetylase (HDAC). Smad2/3 interacts with c-Ski through its C-terminal MH2 domain in a TGF-beta-dependent manner. c-Ski contains two distinct Smad-binding sites with different binding properties. c-Ski strongly inhibits transactivation of various reporter genes by TGF-beta. c-Ski is incorporated in the Smad DNA binding complex, interferes with the interaction of Smad3 with a transcriptional co-activator, p300, and in turn recruits HDAC. c-Ski is thus a transcriptional co-repressor that links Smads to HDAC in TGF-beta signaling.
Collapse
Affiliation(s)
- S Akiyoshi
- Department of Biochemistry, The Cancer Institute of Japanese Foundation for Cancer Research, Research for the Future Program, Japan Society for Promotion of Science, 1-37-1, Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 1999; 286:771-4. [PMID: 10531062 DOI: 10.1126/science.286.5440.771] [Citation(s) in RCA: 394] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.
Collapse
Affiliation(s)
- S L Stroschein
- Life Sciences Division, Lawrence Berkeley National Laboratory, and Department of Molecular and Cell Biology, University of California, Berkeley, 229 Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
50
|
Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 1999; 13:2196-206. [PMID: 10485843 PMCID: PMC316985 DOI: 10.1101/gad.13.17.2196] [Citation(s) in RCA: 340] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smad proteins are critical signal transducers downstream of the receptors of the transforming growth factor-beta (TGFbeta) superfamily. On phosphorylation and activation by the active TGFbeta receptor complex, Smad2 and Smad3 form hetero-oligomers with Smad4 and translocate into the nucleus, where they interact with different cellular partners, bind to DNA, regulate transcription of various downstream response genes, and cross-talk with other signaling pathways. Here we show that a nuclear oncoprotein, Ski, can interact directly with Smad2, Smad3, and Smad4 on a TGFbeta-responsive promoter element and repress their abilities to activate transcription through recruitment of the nuclear transcriptional corepressor N-CoR and possibly its associated histone deacetylase complex. Overexpression of Ski in a TGFbeta-responsive cell line renders it resistant to TGFbeta-induced growth inhibition and defective in activation of JunB expression. This ability to overcome TGFbeta-induced growth arrest may be responsible for the transforming activity of Ski in human and avian cancer cells. Our studies suggest a new paradigm for inactivation of the Smad proteins by an oncoprotein through transcriptional repression.
Collapse
Affiliation(s)
- K Luo
- Life Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 USA.
| | | | | | | | | | | | | |
Collapse
|