1
|
Alkhatabi HA, Alhashmi M, Alkhatabi HA, Altayb HN. In Silico Analysis of Temperature-Induced Structural, Stability, and Flexibility Modulations in Camel Cytochrome c. Animals (Basel) 2025; 15:381. [PMID: 39943151 PMCID: PMC11815751 DOI: 10.3390/ani15030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cytochrome c is a critical protein in energy metabolism, and its structural adaptations to different temperatures play a key role in enabling species like the wild Bactrian camel (Camelus ferus) and the Arabian camel (Camelus dromedarius) to thrive in their respective cold and hot environments. This study investigates the structural, thermodynamic, and dynamic properties of cytochrome c at different temperatures. Thermal Titration Molecular Dynamics (TTMD) simulations, which involve analyzing protein behaviour across a range of temperatures, were carried out using GROMACS, with each simulation running for 100 nanoseconds, at 245 K, 280 K, 303 K, 308 K, and 320 K, to evaluate stability and flexibility. Structural alterations were indicated by an increase in root mean square deviations (RMSDs) to 0.4 nm at 320 K, as opposed to lower RMSD values (0.1-0.2 nm) at 245 K and 280 K. Root mean square fluctuation (RMSF) analyses revealed modest flexibility at 245 K and 280 K (0.1-0.2 nm) but considerable flexibility (0.3-0.4 nm) at 303 K and 320 K. Principal component analysis (PCA) found that the formational space was constrained at lower temperatures but expanded at higher temperatures. Entropy peaked at 280 K (13,816 J/mol) and then fell substantially at 320 K (451.765 J/mol), indicating diminished stability. These findings highlight cytochrome c adaptations for cold stability in Camelus ferus and thermal resilience in Camelus dromedarius, showing evolutionary strategies for harsh conditions.
Collapse
Affiliation(s)
- Heba A. Alkhatabi
- Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Alhashmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Hind Ali Alkhatabi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Hisham N. Altayb
- Center of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
McCormick JW, Dinan JC, Russo MA, Reynolds KA. Local disorder is associated with enhanced catalysis in an engineered photoswitch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625553. [PMID: 39651153 PMCID: PMC11623596 DOI: 10.1101/2024.11.26.625553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The A. sativa LOV2 domain is commonly harnessed as a source of light-based regulation in engineered optogenetic switches. In prior work, we used LOV2 to create a light-regulated Dihydrofolate Reductase (DHFR) enzyme and showed that structurally disperse mutations in DHFR were able to tune the allosteric response to light. However, it remained unclear how light allosterically activates DHFR, and how disperse mutations modulate the allosteric effect. A mechanistic understanding of these phenomena would improve our ability to rationally design new light-regulated enzymes. We used a combination of Eyring analysis and CD spectroscopy to quantify the relationship between allostery, catalytic activity, and global thermal stability. We found that the DHFR/LOV2 fusion was marginally stable at physiological temperatures. LOV2 photoactivation simultaneously: (1) thermally destabilized the fusion and (2) lowered the catalytic transition free energy of the lit state relative to the dark state. The energetic effect of light activation on the transition state free energy was composed of two opposing forces: a favorable reduction in the enthalpic transition state barrier offset by an entropic penalty. Allostery-tuning mutations in DHFR acted through this tradeoff, either accentuating the enthalpic benefit or minimizing the entropic penalty but never improving both. Many of the allostery tuning mutations showed a negative correlation between the light induced change in thermal stability and catalytic activity, suggesting an activity-stability tradeoff.
Collapse
|
3
|
Wang W, Zhang X, Ran W, Ma C, Sun J, Zhao M, Pan W, Liu J, Liu R, Jiang G. Improving the Chemical Utilization Efficiency of Pd Hydrodechlorination Catalysts through Hydrogen-Spillover Empowered Synergy between Pd and TiNiN Support. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39568214 DOI: 10.1021/acs.est.4c05860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The sustainable and affordable environmental application of Pd catalysis needs further improvement of Pd mass activity. Besides the well-recognized importance of physical utilization efficiency─the ratio of surface atoms forming reactant-accessible reactive sites─a lesser-known fact is that the congestion of these reactive sites, which we term as the chemical utilization efficiency, also influences the mass activity. Herein, by leveraging the 100% physical utilization efficiency of a fully exposed Pd cluster (Pdn) and the hydrogenation activity of TiNiN, we developed Pdn/TiNiN as a high physical and chemical utilization efficiency catalyst. During the catalytic hydrodechlorination of 4-chlorophenol and the subsequent hydrogenation of phenol, Pdn focuses on H2 dissociation and C-Cl cleavage, while TiNiN facilitates the subsequent hydrogenation of phenol into less toxic cyclohexanone via H-spillover. This synergy results in a 20-40-fold increase in the hydrodechlorination rate. The enhanced chemical utilization efficiency of Pd informs the design of Pdn/TiNiN microspheres for the conversion of halogenated organics from pharmaceutical wastewater and the design of a fixed-bed reactor to transfer trace amounts of 4-CP from river water. Ultimately, this approach decentralizes the use of Pd in environmental catalysis and reduction processes.
Collapse
Affiliation(s)
- Wenxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
| | - Xiaoling Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Ran
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiefang Sun
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Muyao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute of Advanced Study, UCAS, Hangzhou 310024, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Dowd WW, Kültz D. Lost in translation? Evidence for a muted proteomic response to thermal stress in a stenothermal Antarctic fish and possible evolutionary mechanisms. Physiol Genomics 2024; 56:721-740. [PMID: 39250150 DOI: 10.1152/physiolgenomics.00051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Stenothermal Antarctic notothenioid fishes are noteworthy for their history of isolation in extreme cold and their corresponding lack of the canonical heat shock response. Despite extensive transcriptomic studies, the mechanistic basis for stenothermy has not been fully elucidated. Given that the proteome better represents an organism's physiology, the possibility exists that some aspects of stenothermy arise posttranscriptionally. Here, Antarctic emerald rockcod (Trematomus bernacchii) were sampled after exposure to chronic and/or acute high temperatures, followed by a thorough assessment of proteomic responses in the brain, gill, and kidney. Few cellular stress response proteins were induced, and overall responses were modest in terms of the numbers of differentially expressed proteins and their fold changes. Inconsistencies in protein induction across treatments and tissues are suggestive of dysregulation, rather than an adaptive response. Changes in regulation of the translational machinery in Antarctic notothenioids could explain these patterns. Some components of translational regulatory pathways are highly conserved [e.g., Ser-52, eukaryotic translation initiation factor 2α (eIF2α)], but other proteins comprising the cellular "integrated stress response," specifically, the eIF2α kinases general control nonderepressible 2 (GCN2) and PKR-like endoplasmic reticulum kinase (PERK), may have evolved along different trajectories in Antarctic fishes. Taken together, these observations suggest a novel hypothesis for stenothermy and the absence of a coordinated cellular stress response in Antarctic fishes.NEW & NOTEWORTHY Antarctic fishes have some of the lowest known heat tolerances among vertebrates, but the molecular mechanisms underlying this pattern are not fully understood. By combining detailed analyses of protein expression patterns in several tissues under various heat treatments with a broader evolutionary perspective, this study offers a novel hypothesis to explain the narrow range of temperature tolerance in this extraordinary group of fishes.
Collapse
Affiliation(s)
- W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Dietmar Kültz
- Physiological Genomics Group, Department of Animal Science and Genome Center, University of California, Davis, California, United States
| |
Collapse
|
5
|
Muir DF, Asper GPR, Notin P, Posner JA, Marks DS, Keiser MJ, Pinney MM. Evolutionary-Scale Enzymology Enables Biochemical Constant Prediction Across a Multi-Peaked Catalytic Landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619915. [PMID: 39484523 PMCID: PMC11526920 DOI: 10.1101/2024.10.23.619915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Quantitatively mapping enzyme sequence-catalysis landscapes remains a critical challenge in understanding enzyme function, evolution, and design. Here, we expand an emerging microfluidic platform to measure catalytic constants-k cat and K M-for hundreds of diverse naturally occurring sequences and mutants of the model enzyme Adenylate Kinase (ADK). This enables us to dissect the sequence-catalysis landscape's topology, navigability, and mechanistic underpinnings, revealing distinct catalytic peaks organized by structural motifs. These results challenge long-standing hypotheses in enzyme adaptation, demonstrating that thermophilic enzymes are not slower than their mesophilic counterparts. Combining the rich representations of protein sequences provided by deep-learning models with our custom high-throughput kinetic data yields semi-supervised models that significantly outperform existing models at predicting catalytic parameters of naturally occurring ADK sequences. Our work demonstrates a promising strategy for dissecting sequence-catalysis landscapes across enzymatic evolution and building family-specific models capable of accurately predicting catalytic constants, opening new avenues for enzyme engineering and functional prediction.
Collapse
Affiliation(s)
- Duncan F Muir
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Garrison P R Asper
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Jacob A Posner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Margaux M Pinney
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Valhalla Fellow, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Mikucki EE, O’Leary TS, Lockwood BL. Heat tolerance, oxidative stress response tuning and robust gene activation in early-stage Drosophila melanogaster embryos. Proc Biol Sci 2024; 291:20240973. [PMID: 39163981 PMCID: PMC11335408 DOI: 10.1098/rspb.2024.0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos of Drosophila melanogaster are particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance. The transcriptomes of tropical and temperate embryos differed in both constitutive and heat-stress-induced responses of the expression of relatively few genes, including genes involved in oxidative stress. Most of the transcriptomic response to heat stress was shared among all embryos. Embryos shifted the expression of thousands of genes, including increases in the expression of heat shock genes, suggesting robust zygotic gene activation and demonstrating that, contrary to previous reports, early embryos are not transcriptionally silent. The involvement of oxidative stress genes corroborates recent reports on the critical role of redox homeostasis in coordinating developmental transitions. By characterizing adaptive variation in the transcriptomic basis of embryonic heat tolerance, this study is a novel contribution to the literature on developmental physiology and developmental genetics.
Collapse
Affiliation(s)
- Emily E. Mikucki
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
7
|
Yusof NY, Quay DHX, Kamaruddin S, Jonet MA, Md Illias R, Mahadi NM, Firdaus-Raih M, Abu Bakar FD, Abdul Murad AM. Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12. Extremophiles 2024; 28:15. [PMID: 38300354 DOI: 10.1007/s00792-024-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Doris Huai Xia Quay
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Shazilah Kamaruddin
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome and Vaccine Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Nor Muhammad Mahadi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
Galarza-Muñoz G, Soto-Morales SI, Jiao S, Holmgren M, Rosenthal JJC. Molecular determinants for cold adaptation in an Antarctic Na +/K +-ATPase. Proc Natl Acad Sci U S A 2023; 120:e2301207120. [PMID: 37782798 PMCID: PMC10576127 DOI: 10.1073/pnas.2301207120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023] Open
Abstract
Enzymes from ectotherms living in chronically cold environments have evolved structural innovations to overcome the effects of temperature on catalysis. Cold adaptation of soluble enzymes is driven by changes within their primary structure or the aqueous milieu. For membrane-embedded enzymes, like the Na+/K+-ATPase, the situation is different because changes to the lipid bilayer in which they operate may also be relevant. Although much attention has been focused on thermal adaptation within lipid bilayers, relatively little is known about the contribution of structural changes within membrane-bound enzymes themselves. The identification of specific mutations that confer temperature compensation is complicated by the presence of neutral mutations, which can be more numerous. In the present study, we identified specific amino acids in a Na+/K+-ATPase from an Antarctic octopus that underlie cold resistance. Our approach was to generate chimeras between an Antarctic clone and a temperate ortholog and then study their temperature sensitivities in Xenopus oocytes using an electrophysiological approach. We identified 12 positions in the Antarctic Na+/K+-ATPase that, when transferred to the temperate ortholog, were sufficient to confer cold tolerance. Furthermore, although all 12 Antarctic mutations were required for the full phenotype, a single leucine in the third transmembrane segment (M3) imparted most of it. Mutations that confer cold resistance are mostly in transmembrane segments, at positions that face the lipid bilayer. We propose that the interface between a transmembrane enzyme and the lipid bilayer is a critical determinant of temperature sensitivity and, accordingly, has been a prime evolutionary target for thermal adaptation.
Collapse
Affiliation(s)
- Gaddiel Galarza-Muñoz
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR00901
| | - Sonia I. Soto-Morales
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR00901
| | - Song Jiao
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Miguel Holmgren
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Joshua J. C. Rosenthal
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR00901
| |
Collapse
|
9
|
Collins T, Feller G. Psychrophilic enzymes: strategies for cold-adaptation. Essays Biochem 2023; 67:701-713. [PMID: 37021674 DOI: 10.1042/ebc20220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Psychrophilic organisms thriving at near-zero temperatures synthesize cold-adapted enzymes to sustain cell metabolism. These enzymes have overcome the reduced molecular kinetic energy and increased viscosity inherent to their environment and maintained high catalytic rates by development of a diverse range of structural solutions. Most commonly, they are characterized by a high flexibility coupled with an intrinsic structural instability and reduced substrate affinity. However, this paradigm for cold-adaptation is not universal as some cold-active enzymes with high stability and/or high substrate affinity and/or even an unaltered flexibility have been reported, pointing to alternative adaptation strategies. Indeed, cold-adaptation can involve any of a number of a diverse range of structural modifications, or combinations of modifications, depending on the enzyme involved, its function, structure, stability, and evolutionary history. This paper presents the challenges, properties, and adaptation strategies of these enzymes.
Collapse
Affiliation(s)
- Tony Collins
- Department of Biology, Center of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Georges Feller
- Department of Life Sciences, Laboratory of Biochemistry, Center for Protein Engineering-InBioS, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
10
|
Rummel AD, Swartz SM, Marsh RL. Thermal Stability of Contractile Proteins in Bat Wing Muscles Explains Differences in Temperature Dependence of Whole-Muscle Shortening Velocity. Physiol Biochem Zool 2023; 96:100-105. [PMID: 36921272 DOI: 10.1086/722449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractMuscle contractile properties are dependent on temperature: cooler temperatures generally slow contractile rates. Contraction and relaxation are driven by underlying biochemical systems, which are inherently sensitive to temperature. Carollia perspicillata, a small Neotropical bat, experiences large temperature differentials among body regions, resulting in a steep gradient in temperature along the wing. Although the bats maintain high core body temperatures during flight, the wing muscles may operate at more than 10°C below body temperature. Partially compensating for these colder operating temperatures, distal wing muscles have lower temperature sensitivities in their contractile properties, including shortening velocity, relative to the proximal pectoralis. Shortening velocity is correlated with the activity of myosin ATPase, an enzyme that drives the cross-bridge cycle. We hypothesized that the thermal properties of myofibrillar ATPase from the pectoralis and forearm muscles of the bat wing would correlate with the temperature sensitivity of those muscles. Using myofibrillar ATPases from the proximal and distal muscles, we measured enzyme activity across a range of temperatures and enzyme thermal stability after heat incubation across a range of time points. We found that forearm muscle myofibrillar ATPase was significantly less thermally stable than pectoralis myofibrillar ATPase but that there was no significant difference in the acute temperature dependence of enzyme activity between the two muscles.
Collapse
|
11
|
Li ZL, Buck M. A proteome-scale analysis of vertebrate protein amino acid occurrence: Thermoadaptation shows a correlation with protein solvation but less so with dynamics. Proteins 2023; 91:3-15. [PMID: 36053994 PMCID: PMC10087973 DOI: 10.1002/prot.26404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Despite differences in behaviors and living conditions, vertebrate organisms share the great majority of proteins, often with subtle differences in amino acid sequence. Here, we present a simple way to analyze the difference in amino acid occurrence by comparing highly homologous proteins on a subproteome level between several vertebrate model organisms. Specifically, we use this method to identify a pattern of amino acid conservation as well as a shift in amino acid occurrence between homeotherms (warm-blooded species) and poikilotherms (cold-blooded species). Importantly, this general analysis and a specific example further establish a broad correlation, if not likely connection between the thermal adaptation of protein sequences and two of their physical features: on average a change in their protein dynamics and, even more strongly, in their solvation. For poikilotherms, such as frog and fish, the lower body temperature is expected to increase the protein-protein interaction due to a decrease in protein internal dynamics. In order to counteract the tendency for enhanced binding caused by low temperatures, poikilotherms enhance the solvation of their proteins by favoring polar amino acids. This feature appears to dominate over possible changes in dynamics for some proteins. The results suggest that a general trend for amino acid choice is part of the mechanism for thermoadaptation of vertebrate organisms at the molecular level.
Collapse
Affiliation(s)
- Zhen-Lu Li
- School of Life Science, Tianjin University, Tianjin, China.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Departments of Pharmacology and of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Molecular and thermodynamic mechanisms for protein adaptation. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:519-534. [DOI: 10.1007/s00249-022-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
|
13
|
Masnoddin M, Ling CMWV, Yusof NA. Functional Analysis of Conserved Hypothetical Proteins from the Antarctic Bacterium, Pedobacter cryoconitis Strain BG5 Reveals Protein Cold Adaptation and Thermal Tolerance Strategies. Microorganisms 2022; 10:microorganisms10081654. [PMID: 36014072 PMCID: PMC9415557 DOI: 10.3390/microorganisms10081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Pedobacter cryoconitis BG5 is an obligate psychrophilic bacterium that was first isolated on King George Island, Antarctica. Over the last 50 years, the West Antarctic, including King George Island, has been one of the most rapidly warming places on Earth, hence making it an excellent area to measure the resilience of living species in warmed areas exposed to the constantly changing environment due to climate change. This bacterium encodes a genome of approximately 5694 protein-coding genes. However, 35% of the gene models for this species are found to be hypothetical proteins (HP). In this study, three conserved HP genes of P. cryoconitis, designated pcbg5hp1, pcbg5hp2 and pcbg5hp12, were cloned and the proteins were expressed, purified and their functions and structures were evaluated. Real-time quantitative PCR analysis revealed that these genes were expressed constitutively, suggesting a potentially important role where the expression of these genes under an almost constant demand might have some regulatory functions in thermal stress tolerance. Functional analysis showed that these proteins maintained their activities at low and moderate temperatures. Meanwhile, a low citrate synthase aggregation at 43 °C in the presence of PCBG5HP1 suggested the characteristics of chaperone activity. Furthermore, our comparative structural analysis demonstrated that the HPs exhibited cold-adapted traits, most notably increased flexibility in their 3D structures compared to their counterparts. Concurrently, the presence of a disulphide bridge and aromatic clusters was attributed to PCBG5HP1’s unusual protein stability and chaperone activity. Thus, this suggested that the HPs examined in this study acquired strategies to maintain a balance between molecular stability and structural flexibility. Conclusively, this study has established the structure–function relationships of the HPs produced by P. cryoconitis and provided crucial experimental evidence indicating their importance in thermal stress response.
Collapse
Affiliation(s)
- Makdi Masnoddin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Preparatory Centre for Science and Technology, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | | | - Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
14
|
Cold-active enzymes in the dairy industry: Insight into cold adaption mechanisms and their applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
van der Ent F, Lund BA, Svalberg L, Purg M, Chukwu G, Widersten M, Isaksen GV, Brandsdal BO, Åqvist J. Structure and Mechanism of a Cold-Adapted Bacterial Lipase. Biochemistry 2022; 61:933-942. [PMID: 35503728 PMCID: PMC9118546 DOI: 10.1021/acs.biochem.2c00087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural origin of enzyme cold-adaptation has been the subject of considerable research efforts in recent years. Comparative studies of orthologous mesophilic-psychrophilic enzyme pairs found in nature are an obvious strategy for solving this problem, but they often suffer from relatively low sequence identity of the enzyme pairs. Small bacterial lipases adapted to distinctly different temperatures appear to provide an excellent model system for these types of studies, as they may show a very high degree of sequence conservation. Here, we report the first crystal structures of lipase A from the psychrophilic bacterium Bacillus pumilus, which confirm the high structural similarity to the mesophilic Bacillus subtilis enzyme, as indicated by their 81% sequence identity. We further employ extensive QM/MM calculations to delineate the catalytic reaction path and its energetics. The computational prediction of a rate-limiting deacylation step of the enzymatic ester hydrolysis reaction is verified by stopped-flow experiments, and steady-state kinetics confirms the psychrophilic nature of the B. pumilus enzyme. These results provide a useful benchmark for examining the structural basis of cold-adaptation and should now make it possible to disentangle the effects of the 34 mutations between the two enzymes on catalytic properties and thermal stability.
Collapse
Affiliation(s)
- Florian van der Ent
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Bjarte A Lund
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø─The Arctic University of Norway, N9037 Tromsø, Norway
| | - Linn Svalberg
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Miha Purg
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ghislean Chukwu
- Department of Chemistry─BMC, Uppsala University, Biomedical Center, SE-751 23 Uppsala, Sweden
| | - Mikael Widersten
- Department of Chemistry─BMC, Uppsala University, Biomedical Center, SE-751 23 Uppsala, Sweden
| | - Geir V Isaksen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø─The Arctic University of Norway, N9037 Tromsø, Norway
| | - Bjørn O Brandsdal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø─The Arctic University of Norway, N9037 Tromsø, Norway
| | - Johan Åqvist
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø─The Arctic University of Norway, N9037 Tromsø, Norway
| |
Collapse
|
16
|
The Activation Parameters of a Cold-Adapted Short Chain Dehydrogenase Are Insensitive to Enzyme Oligomerization. Biochemistry 2022; 61:514-522. [PMID: 35229609 PMCID: PMC8988307 DOI: 10.1021/acs.biochem.2c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The structural principles
of enzyme cold adaptation are of fundamental
interest both for understanding protein evolution and for biotechnological
applications. It has become clear in recent years that structural
flexibility plays a major role in tuning enzyme activity at low temperatures,
which is reflected by characteristic changes in the thermodynamic
activation parameters for psychrophilic enzymes, compared to those
of mesophilic and thermophilic ones. Hence, increased flexibility
of the enzyme surface has been shown to lead to a lower enthalpy and
a more negative entropy of activation, which leads to higher activity
in the cold. This immediately raises the question of how enzyme oligomerization
affects the temperature dependence of catalysis. Here, we address
this issue by computer simulations of the catalytic reaction of a
cold-adapted bacterial short chain dehydrogenase in different oligomeric
states. Reaction free energy profiles are calculated at different
temperatures for the tetrameric, dimeric, and monomeric states of
the enzyme, and activation parameters are obtained from the corresponding
computational Arrhenius plots. The results show that the activation
free energy, enthalpy, and entropy are remarkably insensitive to the
oligomeric state, leading to the conclusion that assembly of the subunit
interfaces does not compromise cold adaptation, even though the mobilities
of interfacial residues are indeed affected.
Collapse
|
17
|
Miri S, Davoodi SM, Robert T, Brar SK, Martel R, Rouissi T. Enzymatic biodegradation of highly p-xylene contaminated soil using cold-active enzymes: A soil column study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127099. [PMID: 34523486 DOI: 10.1016/j.jhazmat.2021.127099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Enzymatic bioremediation is a sustainable and environment-friendly method for the clean-up of contaminated soil and water. In the present study, enzymatic bioremediation was designed using cold-active enzymes (psychrozymes) which catalyze oxidation steps of p-xylene biodegradation in highly contaminated soil (initial concentration of 13,000 mg/kg). The enzymes were obtained via co-culture of two psychrophilic Pseudomonas strains and characterized by kinetic studies and tandem LC-MS/MS. To mimic in situ application of enzyme mixture, bioremediation of p-xylene contaminated soil was carried out in soil column (140 mL) tests with the injection (3 pore volume) of different concentrations of enzyme cocktails (X, X/5, and X/10). Enzyme cocktail in X concentration contained about 10 U/mL of xylene monooxygenase (XMO) and 20 U/mL of catechol 2, 3 dioxygenases (C2,3D). X/5 and X/10 correspond to 5x and 10x dilution of enzyme cocktail respectively. The results showed that around 92-94% p-xylene removal was achieved in the treated soil column with enzyme concentration X, X/5 after second enzyme injection. While the p-xylene removal rate obtained by X/10 concentration of enzyme was less than 30% and near to untreated soil column (22.2%). The analysis of microbial diversity and biotoxicity assay (root elongation and seed germination) confirmed the advantage of using enzymes as a green and environmentally friendly approach for decontamination of pollutants with minimal or even positive effects on microbial community and also enrichment of soil after treatment.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Thomas Robert
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
18
|
Somero GN. The Goldilocks Principle: A Unifying Perspective on Biochemical Adaptation to Abiotic Stressors in the Sea. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:1-23. [PMID: 34102065 DOI: 10.1146/annurev-marine-022521-102228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability of marine organisms to thrive over wide ranges of environmental stressors that perturb structures of proteins, nucleic acids, and lipids illustrates the effectiveness of adaptation at the biochemical level. A critical role of these adaptations is to achieve a proper balance between structural rigidity, which is necessary for maintaining three-dimensional conformation, and flexibility, which is required to allow changes in conformation during function. The Goldilocks principle refers to this balancing act, wherein structural stability and functional properties are poised at values that are just right for the environment the organism faces. Achieving this balance involves changes in macromolecular sequence and adaptive change in the composition of the aqueous or lipid milieu in which macromolecules function. This article traces the development of the field of biochemical adaptation throughout my career and shows how comparative studies of marine animals from diverse habitats have shed light on fundamental properties of life common to all organisms.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| |
Collapse
|
19
|
Feng J, Xu S, Feng R, Kovalevsky A, Zhang X, Liu D, Wan Q. Identification and structural analysis of a thermophilic β-1,3-glucanase from compost. BIORESOUR BIOPROCESS 2021; 8:102. [PMID: 38650272 PMCID: PMC10992293 DOI: 10.1186/s40643-021-00449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
β-1,3-glucanase can specifically hydrolyze glucans to oligosaccharides and has potential applications in biotechnology. We used the metatranscriptomic technology to discover a thermophilic β-1,3-glucanase from compost. The phylogenetic study shows that it belongs to the family 16 glycoside hydrolase (GH16) and is most homologous with an enzyme from Streptomyces sioyaensis, an actinobacterium. It has the activity of 146.9 U/mg in the optimal reaction condition (75 °C and pH 5.5). Its catalytic domain was crystallized and diffracted to 1.14 Å resolution. The crystal structure shows a sandwich-like β-jelly-roll fold with two disulfide bonds. After analyzing the occurring frequencies of these cysteine residues, we designed two mutants (C160G and C180I) to study the role of these disulfide bonds. Both mutants have decreased their optimal temperature from 75 to 70 °C, which indicate that the disulfide bonds are important to maintain thermostability. Interestingly, the activity of C160G has increased ~ 17% to reach 171.4 U/mg. We speculate that the increased activity of C160G mutant is due to increased dynamics near the active site. Our studies give a good example of balancing the rigidity and flexibility for enzyme activity, which is helpful for protein engineering.
Collapse
Affiliation(s)
- Jianwei Feng
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shenyuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ruirui Feng
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Group Inc., Qingdao, Shandong, 266000, People's Republic of China
| | - Dongyang Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qun Wan
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
20
|
Rollwitz E, Jastroch M. Plate-Based Respirometry to Assess Thermal Sensitivity of Zebrafish Embryo Bioenergetics in situ. Front Physiol 2021; 12:746367. [PMID: 34621190 PMCID: PMC8491625 DOI: 10.3389/fphys.2021.746367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Oxygen consumption allows measuring the metabolic activity of organisms. Here, we adopted the multi-well plate-based respirometry of the extracellular flux analyzer (Seahorse XF96) to investigate the effect of temperature on the bioenergetics of zebrafish embryos (Danio rerio) in situ. We show that the removal of the embryonic chorion is beneficial for oxygen consumption rates (OCR) and penetration of various mitochondrial inhibitors, and confirm that sedation reduces the variability of OCR. At 48h post-fertilization, embryos (maintained at a routine temperature of 28°C) were exposed to different medium temperatures ranging from 18°C to 37°C for 20h prior OCR measurement. Measurement temperatures from 18°C to 45°C in the XF96 were achieved by lowering the room temperature and active in-built heating. At 18°C assay temperature, basal OCR was low due to decreased ATP-linked respiration, which was not limited by mitochondrial power, as seen in substantial spare respiratory capacity. Basal OCR of the embryos increased with assay temperature and were stable up to 37°C assay temperature, with pre-exposure of 37°C resulting in more thermo-resistant basal OCR measured at 41°C. Adverse effects of the mitochondrial inhibitor oligomycin were seen at 37°C and chemical uncouplers disrupted substrate oxidation gradually with increasing assay temperature. Proton leak respiration increased at assay temperatures above 28°C and compromised the efficiency of ATP production, calculated as coupling efficiency. Thus, temperature impacts mitochondrial respiration by reduced cellular ATP turnover at lower temperatures and by increased proton leak at higher temperatures. This conclusion is coherent with the assessment of heart rate, an independent indicator of systemic metabolic rate, which increased with exposure temperature, peaking at 28°C, and decreased at higher temperatures. Collectively, plate-based respirometry allows assessing distinct parts of mitochondrial energy transduction in zebrafish embryos and investigating the effect of temperature and temperature acclimation on mitochondrial bioenergetics in situ.
Collapse
Affiliation(s)
- Erik Rollwitz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Miri S, Perez JAE, Brar SK, Rouissi T, Martel R. Sustainable production and co-immobilization of cold-active enzymes from Pseudomonas sp. for BTEX biodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117678. [PMID: 34380234 DOI: 10.1016/j.envpol.2021.117678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/13/2021] [Accepted: 06/27/2021] [Indexed: 05/09/2023]
Abstract
Toluene/o-Xylene Monooxygenase (ToMO) is equipped with a broad spectrum of aromatic substrate specificity (such as BTEX; benzene, toluene, ethylbenzene, and isomers of xylenes). TOMO has can hydroxylate more than a single position of aromatic rings in two consecutive monooxygenation reactions. Catechol 1,2-dioxygenase (C1,2D) is an iron-containing enzyme able to cleave the ring of catechol (the converted product from ToMO) for complete detoxification of BTEX. In this study, cold-active ToMO and C1,2D were produced using newly isolated psychrophilic Pseudomonas S2TR-14 in the minimal salt medium supplemented with crustacean waste and different concentrations of used motor oil (0.2-2% (v/v)). Crude ToMO and C1,2D were immobilized into micro/nano biochar-chitosan matrices and used for BTEX biodegradation. The results showed that the highest enzyme production (12 U/mg for ToMO and 22 U/mg for C1,2D) was achieved at the presence of 0.5% v/v used motor oil compared to the control group without motor oil (0.07 and 0.06 U/mg). High immobilization yield was achieved due to covalent bonding of ToMO (92.26% for micro matrix and 77.20% for nano matrix) and C1,2D (87.57% for micro matrix and 74.79% for nano matrix) with matrices. FTIR spectra confirmed the immobilization of enzymes on the surface of microbiochar and nanobiochar-chitosan matrices as proper support. The immobilization increased the storage stability of the enzymes with more than 50% residual activity after 30 days at 4 ± 1 °C, while the free form of enzymes had less than 10% of its activity. Immobilized enzymes degraded more than 80% of BTEX (~200 mg/L in groundwater and ~10,000 mg/kg in soil) at 10 ± 1 °C in groundwater and soil. Therefore, integrated use of microbiochar and nanobiochar with chitosan for co-immobilization of ToMO and C1,2D can be a potential way to remove petroleum hydrocarbons with higher efficiency from contaminated groundwater and soil.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Jose Alberto Espejel Perez
- Department of Chemical Sciences, University La Salle Mexico, 45 Benjamin Franklin Cuauthmoc, Mexico City, ZP 06140, Mexico
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada.
| | - Tarek Rouissi
- Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Richard Martel
- Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| |
Collapse
|
22
|
Lipaeva P, Vereshchagina K, Drozdova P, Jakob L, Kondrateva E, Lucassen M, Bedulina D, Timofeyev M, Stadler P, Luckenbach T. Different ways to play it cool: Transcriptomic analysis sheds light on different activity patterns of three amphipod species under long-term cold exposure. Mol Ecol 2021; 30:5735-5751. [PMID: 34480774 DOI: 10.1111/mec.16164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
Species of littoral freshwater environments in regions with continental climate experience pronounced seasonal temperature changes. Coping with long cold winters and hot summers requires specific physiological and behavioural adaptations. Endemic amphipods of Lake Baikal, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, show high metabolic activity throughout the year; E. verrucosus even reproduces in winter. In contrast, the widespread Holarctic amphipod Gammarus lacustris overwinters in torpor. This study investigated the transcriptomic hallmarks of E. verrucosus, E. cyaneus and G. lacustris exposed to low water temperatures. Amphipods were exposed to 1.5°C and 12°C (corresponding to the mean winter and summer water temperatures, respectively, in the Baikal littoral) for one month. At 1.5°C, G. lacustris showed upregulation of ribosome biogenesis and mRNA processing genes, as well as downregulation of genes related to growth, reproduction and locomotor activity, indicating enhanced energy allocation to somatic maintenance. Our results suggest that the mitogen-activated protein kinase (MAPK) signalling pathway is involved in the preparation for hibernation; downregulation of the actin cytoskeleton pathway genes could relate to the observed low locomotor activity of G. lacustris at 1.5°C. The differences between the transcriptomes of E. verrucosus and E. cyaneus from the 1.5°C and 12°C exposures were considerably smaller than for G. lacustris. In E. verrucosus, cold-exposure triggered reproductive activity was indicated by upregulation of respective genes, whereas in E. cyaneus, genes related to mitochondria functioning were upregulated, indicating cold compensation in this species. Our data elucidate the molecular characteristics behind the different adaptations of amphipod species from the Lake Baikal area to winter conditions.
Collapse
Affiliation(s)
- Polina Lipaeva
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kseniya Vereshchagina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Polina Drozdova
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Lena Jakob
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Magnus Lucassen
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Daria Bedulina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia.,Baikal Research Centre, Irkutsk, Russia
| | - Peter Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Facultad de Ciencias, Universidad National de Colombia, Bogotá, Colombia.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
23
|
Gault S, Jaworek MW, Winter R, Cockell CS. Perchlorate salts confer psychrophilic characteristics in α-chymotrypsin. Sci Rep 2021; 11:16523. [PMID: 34400699 PMCID: PMC8367967 DOI: 10.1038/s41598-021-95997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Studies of salt effects on enzyme activity have typically been conducted at standard temperatures and pressures, thus missing effects which only become apparent under non-standard conditions. Here we show that perchlorate salts, which are found pervasively on Mars, increase the activity of α-chymotrypsin at low temperatures. The low temperature activation is facilitated by a reduced enthalpy of activation owing to the destabilising effects of perchlorate salts. By destabilising α-chymotrypsin, the perchlorate salts also cause an increasingly negative entropy of activation, which drives the reduction of enzyme activity at higher temperatures. We have also shown that α-chymotrypsin activity appears to exhibit an altered pressure response at low temperatures while also maintaining stability at high pressures and sub-zero temperatures. As the effects of perchlorate salts on the thermodynamics of α-chymotrypsin's activity closely resemble those of psychrophilic adaptations, it suggests that the presence of chaotropic molecules may be beneficial to life operating in low temperature environments.
Collapse
Affiliation(s)
- Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
24
|
Chen Q, Wu Y, Huang Z, Zhang W, Mu W. Molecular Characterization of a Mesophilic Cellobiose 2-Epimerase That Maintains a High Catalytic Efficiency at Low Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8268-8275. [PMID: 34231359 DOI: 10.1021/acs.jafc.1c02025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cellobiose 2-epimerase (CE) can catalyze bioconversion of lactose to its prebiotic derivative epilactose. The catalytic property of a novel CE from Treponema brennaborense (Trbr-CE) was investigated. Trbr-CE showed the highest catalytic efficiency of epimerization toward lactose among all of the previously reported CEs. This enzyme's specific activity could reach as high as 208.5 ± 5.3 U/mg at its optimum temperature, which is 45 °C. More importantly, this enzyme demonstrated a considerably high activity at low temperatures, suggesting Trbr-CE as a promising enzyme for industrial low-temperature production of epilactose. This structurally flexible enzyme exhibited a comparatively high binding affinity toward substrates, which was confirmed by both experimental verification and computational analysis. Molecular dynamics (MD) simulations and binding free energy calculations were applied to provide insights into molecular recognition upon temperature changes. Compared with thermophilic CEs, Trbr-CE presents a more negative enthalpy change and a higher entropy change when the temperature drops.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanchang Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
A meta-analysis of the activity, stability, and mutational characteristics of temperature-adapted enzymes. Biosci Rep 2021; 41:228416. [PMID: 33871022 PMCID: PMC8150157 DOI: 10.1042/bsr20210336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the characteristics that define temperature-adapted enzymes has been a major goal of extremophile enzymology in recent decades. In the present study, we explore these characteristics by comparing psychrophilic, mesophilic, and thermophilic enzymes. Through a meta-analysis of existing data, we show that psychrophilic enzymes exhibit a significantly larger gap (Tg) between their optimum and melting temperatures compared with mesophilic and thermophilic enzymes. These results suggest that Tg may be a useful indicator as to whether an enzyme is psychrophilic or not and that models of psychrophilic enzyme catalysis need to account for this gap. Additionally, by using predictive protein stability software, HoTMuSiC and PoPMuSiC, we show that the deleterious nature of amino acid substitutions to protein stability increases from psychrophiles to thermophiles. How this ultimately affects the mutational tolerance and evolutionary rate of temperature adapted organisms is currently unknown.
Collapse
|
26
|
Fields PA. Reductionism in the study of enzyme adaptation. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110574. [PMID: 33600949 DOI: 10.1016/j.cbpb.2021.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
One of the principal goals of comparative biology is the elucidation of mechanisms by which organisms adapt to different environments. The study of enzyme structure, function, and stability has contributed significantly to this effort, by revealing adaptation at a molecular level. Comparative biochemistry, including enzymology, necessarily pursues a reductionist approach in describing the function and structure of biomolecules, allowing more straightforward study of molecular systems by removing much of the complexity of their biological milieu. Although this reductionism has allowed a remarkable series of discoveries linking chemical processes to metabolism and to whole-organism function in the context of the environment, it also has the potential to mislead when careful consideration is not made of the simplifying assumptions inherent to such research. In this review, a brief history of the growth of enzymology, its reliance on a reductionist philosophy, and its contributions to our understanding of biological systems is given. Examples then are provided of research techniques, based on a reductionist approach, that have advanced our knowledge about enzyme adaptation to environmental stresses, including stability assays, enzyme kinetics, and the impact of solute composition on enzyme function. In each case, the benefits of the reductionist nature of the approach is emphasized, notable advances are described, but potential drawbacks due to inherent oversimplification of the study system are also identified.
Collapse
Affiliation(s)
- Peter A Fields
- Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA.
| |
Collapse
|
27
|
Miri S, Davoodi SM, Brar SK, Rouissi T, Sheng Y, Martel R. Psychrozymes as novel tools to biodegrade p-xylene and potential use for contaminated groundwater in the cold climate. BIORESOURCE TECHNOLOGY 2021; 321:124464. [PMID: 33302008 DOI: 10.1016/j.biortech.2020.124464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Sites contaminated by petroleum hydrocarbons in cold-climate regions have recently received significant attention due to their sensitive ecosystem and human health impacts. Two cold-adapted pseudomonas strains were isolated from contaminated groundwater and soil. As xylene monooxygenase from Pseudomonas synxantha S2TR-26 and catechol 2,3-dioxygenase from Pseudomonas mandelii S2TR-08, have a matching end product, they acted in symphony to degrade p-xylene. Their unique thermodynamic and kinetic behavior permits them to achieve rapid degradation of p-xylene at low temperatures (<15 °C). The results showed that the sequential action led to the conversion of 200 mg/l of p-xylene within 72 h and complete degradation after 120 h. The cocktail of these enzymes with a ratio of 1:1.5 (xylene monooxygenase: catechol 2, 3-dioxygenase) confirmed the complete degradation of p-xylene within 48 h at 15 °C. This approach will allow efficient biodegradation of p-xylene to minimize the bioremediation duration in cold-climate regions.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Yi Sheng
- Department of Biology, Life Science, York University, North York, Toronto, Ontario Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
28
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
29
|
Akita M, Nishikawa Y, Shigenobu Y, Ambe D, Morita T, Morioka K, Adachi K. Correlation of proline, hydroxyproline and serine content, denaturation temperature and circular dichroism analysis of type I collagen with the physiological temperature of marine teleosts. Food Chem 2020; 329:126775. [DOI: 10.1016/j.foodchem.2020.126775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/08/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022]
|
30
|
Miller WT. Temperature sensitivities of metazoan and pre-metazoan Src kinases. Biochem Biophys Rep 2020; 23:100775. [PMID: 32566764 PMCID: PMC7298416 DOI: 10.1016/j.bbrep.2020.100775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022] Open
Abstract
Homologous enzymes from different species display functional characteristics that correlate with the physiological and environmental temperatures encountered by the organisms. In this study, we have investigated the temperature sensitivity of the nonreceptor tyrosine kinase Src. We compared the temperature dependencies of c-Src and two Src kinases from single-celled eukaryotes, the choanoflagellate Monosiga brevicollis and the filasterean Capsaspora owczarzaki. Metazoan c-Src exhibits temperature sensitivity, with high activity at 30 °C and 37 °C. This sensitivity is driven by changes in substrate binding as well as maximal velocity, and it is dependent on the amino acid sequence surrounding tyrosine in the substrate. When tested with a peptide that displays temperature-dependent phosphorylation by c-Src, the enzymatic rates for the unicellular Src kinases show much less variation over the temperatures tested. The data demonstrate that unicellular Src kinases are temperature compensated relative to metazoan c-Src, consistent with an evolutionary adaptation to their environments.
Collapse
Affiliation(s)
- W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY, 11768, USA
| |
Collapse
|
31
|
Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. GLOBAL CHANGE BIOLOGY 2020; 26:3221-3229. [PMID: 32097522 DOI: 10.1111/gcb.15053] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 05/14/2023]
Abstract
The temperature sensitivity of soil processes is of major interest, especially in light of climate change. Originally formulated to explain the temperature dependence of chemical reactions, the Arrhenius equation, and related Q10 temperature coefficient, has a long history of application to soil biological processes. However, empirical data indicate that Q10 and Arrhenius model are often poor metrics of temperature sensitivity in soils. In this opinion piece, we aim to (a) review alternative approaches for characterizing temperature sensitivity, focusing on macromolecular rate theory (MMRT); (b) provide strategies and tools for implementing a new temperature sensitivity framework; (c) develop thermal adaptation hypotheses for the MMRT framework; and (d) explore new questions and opportunities stemming from this paradigm shift. Microbial ecologists should consider developing and adopting MMRT as the basis for predicting biological rates as a function of temperature. Improved understanding of temperature sensitivity in soils is particularly pertinent as microbial response to temperature has a large impact on global climate feedbacks.
Collapse
Affiliation(s)
- Charlotte J Alster
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Joseph C von Fischer
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
32
|
Faria SC, Bianchini A, Lauer MM, Zimbardi ALRL, Tapella F, Romero MC, McNamara JC. Living on the Edge: Physiological and Kinetic Trade-Offs Shape Thermal Tolerance in Intertidal Crabs From Tropical to Sub-Antarctic South America. Front Physiol 2020; 11:312. [PMID: 32390860 PMCID: PMC7194293 DOI: 10.3389/fphys.2020.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Temperature is an important abiotic factor that drives the evolution of ectotherms owing to its pervasive effects at all levels of organization. Although a species' thermal tolerance is environmentally driven within a spatial cline, it may be constrained over time due to differential phylogenetic inheritance. At the limits of thermal tolerance, hemolymph oxygen is reduced and lactate formation is increased due to mismatch between oxygen supply and demand; imbalance between enzyme flexibility/stability also impairs the ability to generate energy. Here, we characterized the effects of lower (LL50) and upper (UL50) critical thermal limits on selected descriptors of aerobic and anaerobic metabolism in 12 intertidal crab species distributed from northern Brazil (≈7.8°S) to southern Patagonia (≈53.2°S), considering their phylogeny. We tested for (i) functional trade-offs regarding aerobic and anaerobic metabolism and LDH kinetics in shaping thermal tolerance; (ii) influence of shared ancestry and thermal province on metabolic evolution; and (iii) presence of evolutionary convergences and adaptive peaks in the crab phylogeny. The tropical and subtropical species showed similar systemic and kinetic responses, both differing from the sub-Antarctic crabs. The lower UL50's of the sub-Antarctic crabs may reflect mismatch between the evolution of aerobic and anaerobic metabolism since these crabs exhibit lower oxygen consumption but higher lactate formation than tropical and subtropical species also at their respective UL50's. LDH activity increased with temperature increase, while Km Pyr remained fairly constant; catalytic coefficient correlated negatively with thermal niche. Thermal tolerance may rely on a putative evolutionary trade-off between aerobic and anaerobic metabolism regarding energy supply, while temperature compensation of kinetic performance is driven by thermal habitat as revealed by the LDH affinity/efficiency equilibrium. The overall physiological evolution revealed two homoplastic adaptive peaks in the sub-Antarctic crabs with a further shift in the tropical/subtropical clade. The physiological traits at UL50 have evolved in a phylogenetic manner while all others were more plastic. Thus, shared inheritance and thermal environment have driven the crabs' thermal tolerance and metabolic evolution, revealing physiological transformations that have arisen in both colder and warmer climes, especially at higher levels of biological organization and phylogenetic diversity.
Collapse
Affiliation(s)
- Samuel Coelho Faria
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Mariana Machado Lauer
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | | | - Federico Tapella
- Centro Austral de Investigaciones Científicas, CADIC-CONICET, Ushuaia, Argentina
| | | | - John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| |
Collapse
|
33
|
Chao YC, Merritt M, Schaefferkoetter D, Evans TG. High-throughput quantification of protein structural change reveals potential mechanisms of temperature adaptation in Mytilus mussels. BMC Evol Biol 2020; 20:28. [PMID: 32054457 PMCID: PMC7020559 DOI: 10.1186/s12862-020-1593-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Temperature exerts a strong influence on protein evolution: species living in thermally distinct environments often exhibit adaptive differences in protein structure and function. However, previous research on protein temperature adaptation has focused on small numbers of proteins and on proteins adapted to extreme temperatures. Consequently, less is known about the types and quantity of evolutionary change that occurs to proteins when organisms adapt to small shifts in environmental temperature. In this study, these uncertainties were addressed by developing software that enabled comparison of structural changes associated with temperature adaptation (hydrogen bonding, salt bridge formation, and amino acid use) among large numbers of proteins from warm- and cold-adapted species of marine mussels, Mytilus galloprovincialis and Mytilus trossulus, respectively. Results Small differences in habitat temperature that characterize the evolutionary history of Mytilus mussels were sufficient to cause protein structural changes consistent with temperature adaptation. Hydrogen bonds and salt bridges that increase stability and protect against heat-induced denaturation were more abundant in proteins from warm-adapted M. galloprovincialis compared with proteins from cold-adapted M. trossulus. These structural changes were related to deviations in the use of polar and charged amino acids that facilitate formation of hydrogen bonds and salt bridges within proteins, respectively. Enzymes, in particular those within antioxidant and cell death pathways, were over-represented among proteins with the most hydrogen bonds and salt bridges in warm-adapted M. galloprovincialis. Unlike extremophile proteins, temperature adaptation in Mytilus proteins did not involve substantial changes in the number of hydrophobic or large volume amino acids, nor in the content of glycine or proline. Conclusions Small shifts in organism temperature tolerance, such as that needed to cope with climate warming, may result from structural and functional changes to a small percentage of the proteome. Proteins in which function is dependent on large conformational change, notably enzymes, may be particularly sensitive to temperature perturbation and represent foci for natural selection. Protein temperature adaptation can occur through different types and frequencies of structural change, and adaptive mechanisms used to cope with small shifts in habitat temperature appear different from mechanisms used to retain protein function at temperature extremes.
Collapse
Affiliation(s)
- Ying-Chen Chao
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Melanie Merritt
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Devin Schaefferkoetter
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA
| | - Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA, 94542, USA.
| |
Collapse
|
34
|
Katava M, Marchi M, Madern D, Sztucki M, Maccarini M, Sterpone F. Temperature Unmasks Allosteric Propensity in a Thermophilic Malate Dehydrogenase via Dewetting and Collapse. J Phys Chem B 2020; 124:1001-1008. [DOI: 10.1021/acs.jpcb.9b10776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M. Katava
- UPR9080, Laboratoire de Biochimie Théorique, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - M. Marchi
- Centre d’Etudes de Saclay, Commissariat à l’Energie Atomique DRF/Joliot/SB2SM, 91191 Gif sur Yvette Cedex, France
| | - D. Madern
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - M. Sztucki
- ESRF - The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - M. Maccarini
- Laboratoire TIMC/IMAG UMR CNRS 5525, Université Grenoble Alpes, 38000 Grenoble, France
| | - F. Sterpone
- UPR9080, Laboratoire de Biochimie Théorique, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
35
|
Sočan J, Isaksen GV, Brandsdal BO, Åqvist J. Towards Rational Computational Engineering of Psychrophilic Enzymes. Sci Rep 2019; 9:19147. [PMID: 31844096 PMCID: PMC6915740 DOI: 10.1038/s41598-019-55697-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cold-adapted enzymes from psychrophilic species achieve their high catalytic efficiency at low temperature by a different partitioning of the activation free energy into its enthalpic and entropic components, compared to orthologous mesophilic enzymes. Their lower activation enthalpy, partly compensated by an increased entropic penalty, has been suggested to originate from changes in flexibility of the protein surface. Multiple sequence alignments of psychrophilic and mesophilic enzymes also show characteristic motifs located in surface loops of the protein. Here, we use computer simulations to examine the effects of a number of designed surface mutations of psychrophilic and mesophilic elastases on the temperature dependence of the catalyzed peptide cleavage reaction. For each of 14 mutant enzyme variants we report calculations of their thermodynamic activation parameters. The results show that substitution of psychrophilic loop residues into the mesophilic enzyme consistently changes both the activation parameters and loop flexibilities towards the former, and vice versa for opposite substitutions.
Collapse
Affiliation(s)
- Jaka Sočan
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Geir Villy Isaksen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, N9037, Tromsø, Norway
| | - Bjørn Olav Brandsdal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, N9037, Tromsø, Norway
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden. .,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, N9037, Tromsø, Norway.
| |
Collapse
|
36
|
Effects of the substituted amino acid residues on the thermal properties of monomeric isocitrate dehydrogenases from a psychrophilic bacterium, Psychromonas marina, and a mesophilic bacterium, Azotobacter vinelandii. Extremophiles 2019; 23:809-820. [PMID: 31595369 DOI: 10.1007/s00792-019-01137-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
A cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Psychromonas marina (PmIDH), showed a high degree of amino acid sequential identity (64%) to a mesophilic one from a mesophilic bacterium, Azotobacter vinelandii (AvIDH). In this study, eight corresponding amino acid residues were substituted between them by site-directed mutagenesis, and several thermal properties of the mutated IDHs were examined. In the PmIDH mutants, PmL735F, substituted Leu735 of PmIDH by the corresponding Phe of AvIDH, showed higher specific activity and thermostability of activity than wild-type PmIDH, while the H600Y and N741P mutations of PmIDH resulted in decreased specific activity and thermostability of activity. On the other hand, among the AvIDH mutants, AvP718T showed lower optimum temperature and thermostability of activity than wild-type AvIDH. In PmIDH variously combined the H600Y, L735F and N741P mutations, PmH600YL735F, including the H600Y and L735F mutations, showed higher specific activity than PmH600Y and similar optimum temperature and thermostability of activity to PmH600Y. Furthermore, PmL735FN741P exhibited higher specific activity and thermostability of activity than PmN741P. These results indicated that the effects of the three mutations of PmIDH are additive on the specific activity of both PmH600YL735F and PmL735FN741P and on thermostability of PmL735FN741P.
Collapse
|
37
|
Wang JT, Wang YT, Keshavmurthy S, Meng PJ, Chen CA. The coral Platygyra verweyi exhibits local adaptation to long-term thermal stress through host-specific physiological and enzymatic response. Sci Rep 2019; 9:13492. [PMID: 31530828 PMCID: PMC6748984 DOI: 10.1038/s41598-019-49594-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Climate change threatens coral survival by causing coral bleaching, which occurs when the coral's symbiotic relationship with algal symbionts (Symbiodiniaceae) breaks down. Studies on thermal adaptation focus on symbionts because they are accessible both in vitro and in hospite. However, there is little known about the physiological and biochemical response of adult corals (without Symbiodiniaceae) to thermal stress. Here we show acclimatization and/or adaptation potential of menthol-bleached aposymbiotic coral Platygyra verweyi in terms of respiration breakdown temperature (RBT) and malate dehydrogenase (MDH) enzyme activity in samples collected from two reef sites with contrasting temperature regimes: a site near a nuclear power plant outlet (NPP-OL, with long-term temperature perturbation) and Wanlitong (WLT) in southern Taiwan. Aposymbiotic P. verweyi from the NPP-OL site had a 3.1 °C higher threshold RBT than those from WLT. In addition, MDH activity in P. verweyi from NPP-OL showed higher thermal resistance than those from WLT by higher optimum temperatures and the activation energy required for inactivating the enzyme by heat. The MDH from NPP-OL also had two times higher residual activity than that from WLT after incubation at 50 °C for 1 h. The results of RBT and thermal properties of MDH in P. verweyi demonstrate potential physiological and enzymatic response to a long-term and regular thermal stress, independent of their Symbiodiniaceae partner.
Collapse
Affiliation(s)
- Jih-Terng Wang
- Department of Biotechnology, Tajen University, Pingtung, 907, Taiwan.
| | - Yi-Ting Wang
- Department of Biotechnology, Tajen University, Pingtung, 907, Taiwan
| | | | - Pei-Jei Meng
- National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
- Institute of Marine Biodiversity and Evolution, National Dong Hwa University, Pingtung, 944, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Oceanography, National Taiwan University, Taipei, 108, Taiwan.
- Department of Life Science, Tunghai University, Taichung, 404, Taiwan.
| |
Collapse
|
38
|
Chakravarty D, Bihani SC, Banerjee M, Ballal A. Novel molecular insights into the anti-oxidative stress response and structure-function of a salt-inducible cyanobacterial Mn-catalase. PLANT, CELL & ENVIRONMENT 2019; 42:2508-2521. [PMID: 30993731 DOI: 10.1111/pce.13563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
KatB, a salt-inducible Mn-catalase, protects the cyanobacterium Anabaena from salinity/oxidative stress. In this report, we provide distinctive insights into the biological-biochemical function of KatB at the molecular level. Anabaena overexpressing the wild-type KatB protein (KatBWT) detoxified H2 O2 efficiently, showing reduced burden of reactive oxygen species compared with the strain overproducing KatBF2V (wherein F-2 is replaced by V). Correspondingly, the KatBWT protein also displayed several folds more activity than KatBF2V. Interestingly, the KatB variants with large hydrophobic amino acids (F/W/Y) were more compact, showed enhanced activity, and were resistant to thermal/chemical denaturation than variants with smaller residues (G/A/V) at the second position. X-ray crystallography-based analysis showed that F-2 was required for appropriate interactions between two subunits. These contacts provided stability to the hexamer, making it more compact. F-2, through its interaction with F-66 and W-43, formed the proper hydrophobic pocket that held the active site together. Consequently, only residues that supported activity (i.e., F/Y/W) were selected at the second position in Mn-catalases during evolution. This study (a) demonstrates that modification of nonactive site residues can alter the response of catalases to environmental stress and (b) has expanded the scope of amino acids that can be targeted for rational protein engineering in plants.
Collapse
Affiliation(s)
- Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
39
|
Kühnhold H, Novais SC, Alves LMF, Kamyab E, Lemos MFL, Slater MJ, Kunzmann A. Acclimation capability inferred by metabolic performance in two sea cucumber species from different latitudes. J Therm Biol 2019; 84:407-413. [PMID: 31466780 DOI: 10.1016/j.jtherbio.2019.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/30/2019] [Accepted: 07/17/2019] [Indexed: 01/30/2023]
Abstract
The notion that thermal specialists from tropical regions live closer to their temperature limits than temperate eurytherms, seems too generalized. Species specific differences in physiological and biochemical stress reactions are linked to key components of organism fitness, like metabolic capacity, which indicates that acclimation potential across latitudes might be highly diverse rather than simplistic. In this study the exposure of a tropical (Holothuria scabra) and a temperate (Holothuria forskali) sea cucumber species to identical cold- and warm-acclimation stress was compared using the key metabolic parameters, respiration rate, enzyme activity (ETS, LDH, IDH), and energy reserve fractions (lipid, carbohydrate and protein). Results show much broader respiratory adjustments, as response to temperature change, in H. scabra (2-30 μgO2*gww-1*h-1) compared to H. forskali (1.5-6.6 μgO2*gww-1*h-1). Moreover, the tropical species showed clearly pronounced up and down regulation of metabolic enzymes and shifts in energy reserves, due to thermal acclimation, while the same metabolic indicators remained consistent in the temperate species. In summary, these findings indicate enhanced metabolic plasticity in H. scabra at the cost of elevated energy expenditures, which seems to favor the tropical stenotherm in terms of thermal acclimation capacity. The comparison of such holistic metabolic analyses between conspecifics and congeners, may help to predict the heterogeneous effects of global temperature changes across latitudinal gradients.
Collapse
Affiliation(s)
- Holger Kühnhold
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany.
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Luis M F Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Elham Kamyab
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Matthew J Slater
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| |
Collapse
|
40
|
Gallo AC, Brasileiro CA, DE Barros FC, DE Carvalho JE. Thermal and salinity effects on locomotor performance of Thoropa taophora tadpoles (Anura, Cycloramphidae). Integr Zool 2019; 15:40-54. [PMID: 31149773 DOI: 10.1111/1749-4877.12405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that environmental temperature influences several biological functions of ectotherms, notably in amphibians. The high permeability of anuran skin, associated with the effect of elevated environmental temperature, potentiates the dehydration process and this combination may restrict locomotor performance. Thoropa taophora is an endemic species from the Atlantic Rainforest whose tadpoles are semiterrestrial and predominantly diurnal, and are found in rocky seashores where they are exposed to sea spray and high temperatures. In this study we investigated how temperature and salinity conditions affect the locomotor performance in Thoropa taophora tadpoles. We also assessed how different osmotic concentrations affect the activity of the metabolic pathways that support muscle function. We measured the sprint speed of tadpoles of various sizes at different temperatures and salinities in the field. We also measured the activity of the enzymes pyruvate kinase (PK), lactate dehydrogenase (LDH) and citrate synthase (CS) in different temperatures and osmotic concentrations, and calculated the thermal sensitivity and the activity constants for each osmolality. Our results showed that, in general, sprint speed decreased with increasing temperature and salinity. However, whereas the effect of increased salinity was similar in smaller and larger tadpoles, increased temperature had a higher negative impact on sprint speed of larger tadpoles, thus indicating low thermal sensitivity of small tadpoles. PK and LDH thermal sensitivities and LDH constant of activity decreased as the osmolality increased. In conclusion, the locomotor capacity of tadpoles was decreased by temperature and salinity, which may be related to a decrease in anaerobic metabolism both in terms of sensitivity and total energy turnover through enzymatic activity. We discuss the ecological consequences, including the potential impacts on predator escape behavior promoted by changes in metabolism and locomotor performance in an early stage of development of this species.
Collapse
Affiliation(s)
- Antonio C Gallo
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Cinthia A Brasileiro
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Fábio Cury DE Barros
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - José Eduardo DE Carvalho
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
41
|
Twort VG, Newcomb RD, Buckley TR. New Zealand Tree and Giant Wētā (Orthoptera) Transcriptomics Reveal Divergent Selection Patterns in Metabolic Loci. Genome Biol Evol 2019; 11:1293-1306. [PMID: 30957857 PMCID: PMC6486805 DOI: 10.1093/gbe/evz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to low temperatures requires an organism to overcome physiological challenges. New Zealand wētā belonging to the genera Hemideina and Deinacrida are found across a wide range of thermal environments and therefore subject to varying selective pressures. Here we assess the selection pressures across the wētā phylogeny, with a particular emphasis on identifying genes under positive or diversifying selection. We used RNA-seq to generate transcriptomes for all 18 Deinacrida and Hemideina species. A total of 755 orthologous genes were identified using a bidirectional best-hit approach, with the resulting gene set encompassing a diverse range of functional classes. Analysis of ortholog ratios of synonymous to nonsynonymous amino acid changes found 83 genes that are under positive selection for at least one codon. A wide variety of Gene Ontology terms, enzymes, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways are represented among these genes. In particular, enzymes involved in oxidative phosphorylation, melanin synthesis, and free-radical scavenging are represented, consistent with physiological and metabolic changes that are associated with adaptation to alpine environments. Structural alignment of the transcripts with the most codons under positive selection revealed that the majority of sites are surface residues, and therefore have the potential to influence the thermostability of the enzyme, with the exception of prophenoloxidase where two residues near the active site are under selection. These proteins provide interesting candidates for further analysis of protein evolution.
Collapse
Affiliation(s)
- Victoria G Twort
- School of Biological Sciences, University of Auckland, New Zealand.,Manaaki Whenua - Landcare Research, Auckland, New Zealand.,Department of Biology, Lund University, Lund, Sweden
| | - Richard D Newcomb
- School of Biological Sciences, University of Auckland, New Zealand.,The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Thomas R Buckley
- School of Biological Sciences, University of Auckland, New Zealand.,Manaaki Whenua - Landcare Research, Auckland, New Zealand
| |
Collapse
|
42
|
Yusof NA, Kamaruddin S, Abu Bakar FD, Mahadi NM, Abdul Murad AM. Structural and functional insights into TRiC chaperonin from a psychrophilic yeast, Glaciozyma antarctica. Cell Stress Chaperones 2019; 24:351-368. [PMID: 30649671 PMCID: PMC6439030 DOI: 10.1007/s12192-019-00969-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, β, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Shazilah Kamaruddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
43
|
Berthelot C, Clarke J, Desvignes T, William Detrich H, Flicek P, Peck LS, Peters M, Postlethwait JH, Clark MS. Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine? Genome Biol Evol 2019; 11:220-231. [PMID: 30496401 PMCID: PMC6336007 DOI: 10.1093/gbe/evy262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
The evolution of antifreeze glycoproteins has enabled notothenioid fish to flourish in the freezing waters of the Southern Ocean. Whereas successful at the biodiversity level to life in the cold, paradoxically at the cellular level these stenothermal animals have problems producing, folding, and degrading proteins at their ambient temperatures of -1.86 °C. In this first multi-species transcriptome comparison of the amino acid composition of notothenioid proteins with temperate teleost proteins, we show that, unlike psychrophilic bacteria, Antarctic fish provide little evidence for the mass alteration of protein amino acid composition to enhance protein folding and reduce protein denaturation in the cold. The exception was the significant overrepresentation of positions where leucine in temperate fish proteins was replaced by methionine in the notothenioid orthologues. We hypothesize that these extra methionines have been preferentially assimilated into the genome to act as redox sensors in the highly oxygenated waters of the Southern Ocean. This redox hypothesis is supported by analyses of notothenioids showing enrichment of genes associated with responses to environmental stress, particularly reactive oxygen species. So overall, although notothenioid fish show cold-associated problems with protein homeostasis, they may have modified only a selected number of biochemical pathways to work efficiently below 0 °C. Even a slight warming of the Southern Ocean might disrupt the critical functions of this handful of key pathways with considerable impacts for the functioning of this ecosystem in the future.
Collapse
Affiliation(s)
- Camille Berthelot
- Laboratoire Dynamique et Organisation des Génomes (Dyogen), Institut de Biologie de l'Ecole Normale Supérieure – UMR 8197, INSERM U1024, Paris Cedex 05, France
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, United Kingdom
| | | | - H William Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Michael Peters
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University
| | | | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| |
Collapse
|
44
|
Comparing mutagenesis and simulations as tools for identifying functionally important sequence changes for protein thermal adaptation. Proc Natl Acad Sci U S A 2018; 116:679-688. [PMID: 30584112 DOI: 10.1073/pnas.1817455116] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative studies of orthologous proteins of species evolved at different temperatures have revealed consistent patterns of temperature-related variation in thermal stabilities of structure and function. However, the precise mechanisms by which interspecific variations in sequence foster these adaptive changes remain largely unknown. Here, we compare orthologs of cytosolic malate dehydrogenase (cMDH) from marine molluscs adapted to temperatures ranging from -1.9 °C (Antarctica) to ∼55 °C (South China coast) and show how amino acid usage in different regions of the enzyme (surface, intermediate depth, and protein core) varies with adaptation temperature. This eukaryotic enzyme follows some but not all of the rules established in comparisons of archaeal and bacterial proteins. To link the effects of specific amino acid substitutions with adaptive variations in enzyme thermal stability, we combined site-directed mutagenesis (SDM) and in vitro protein experimentation with in silico mutagenesis using molecular dynamics simulation (MDS) techniques. SDM and MDS methods generally but not invariably yielded common effects on protein stability. MDS analysis is shown to provide insights into how specific amino acid substitutions affect the conformational flexibilities of mobile regions (MRs) of the enzyme that are essential for binding and catalysis. Whereas these substitutions invariably lie outside of the MRs, they effectively transmit their flexibility-modulating effects to the MRs through linked interactions among surface residues. This discovery illustrates that regions of the protein surface lying outside of the site of catalysis can help establish an enzyme's thermal responses and foster evolutionary adaptation of function.
Collapse
|
45
|
Cold survival strategies for bacteria, recent advancement and potential industrial applications. Arch Microbiol 2018; 201:1-16. [PMID: 30478730 DOI: 10.1007/s00203-018-1602-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
Microorganisms have evolved themselves to thrive under various extreme environmental conditions such as extremely high or low temperature, alkalinity, and salinity. These microorganisms adapted several metabolic processes to survive and reproduce efficiently under such extreme environments. As the major proportion of earth is covered with the cold environment and is exploited by human beings, these sites are not pristine anymore. Human interventions are a great reason for disturbing the natural biogeochemical cycles in these regions. The survival strategies of these organisms have shown great potential for helping us to restore these pristine sites and the use of isolated cold-adapted enzymes from these organisms has also revolutionized various industrial products. This review gives you the insight of psychrophilic enzyme adaptations and their industrial applications.
Collapse
|
46
|
Saavedra HG, Wrabl JO, Anderson JA, Li J, Hilser VJ. Dynamic allostery can drive cold adaptation in enzymes. Nature 2018; 558:324-328. [PMID: 29875414 PMCID: PMC6033628 DOI: 10.1038/s41586-018-0183-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/01/2018] [Indexed: 11/19/2022]
Abstract
Adaptation of organisms to environmental niches is a hallmark of evolution. One prevalent example is that of thermal adaptation, wherein two descendants evolve at different temperature extremes1,2. Underlying the physiological differences between such organisms are changes in enzymes catalyzing essential reactions3, with orthologues from each organism undergoing adaptive mutations that preserve similar catalytic rates at their respective physiological temperatures 4,5. The sequence changes responsible for these adaptive differences, however, are often at surface exposed sites distant from the substrate binding site, leaving the active site of the enzyme structurally unperturbed6,7. How such changes are allosterically propagated to the active site, to modulate activity, is not known. Here we show that entropy-tuning changes can be engineered into distal sites of Escherichia coli adenylate kinase (AK) to quantitatively assess the role of dynamics in determining affinity, turnover, and the role in driving adaptation. The results not only reveal a dynamics-based allosteric tuning mechanism, but also uncover a spatial separation of the control of key enzymatic parameters. Fluctuations in one mobile domain (i.e. the LID) control substrate affinity, while dynamic attenuation in the other (i.e. the AMPbd) affects rate-limiting conformational changes governing enzyme turnover. Dynamics-based regulation may thus represent an elegant, widespread, and previously unrealized evolutionary adaptation mechanism that fine-tunes biological function without altering the ground state structure. Furthermore, because rigid-body conformational changes in both domains were thought to be rate limiting for turnover8,9, these adaptation studies reveal a new paradigm for understanding the relationship between dynamics and turnover in AK.
Collapse
Affiliation(s)
- Harry G Saavedra
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - James O Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jing Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA. .,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
47
|
|
48
|
Saarman NP, Kober KM, Simison WB, Pogson GH. Sequence-Based Analysis of Thermal Adaptation and Protein Energy Landscapes in an Invasive Blue Mussel (Mytilus galloprovincialis). Genome Biol Evol 2018; 9:2739-2751. [PMID: 28985307 PMCID: PMC5647807 DOI: 10.1093/gbe/evx190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive responses to thermal stress in poikilotherms plays an important role in determining competitive ability and species distributions. Amino acid substitutions that affect protein stability and modify the thermal optima of orthologous proteins may be particularly important in this context. Here, we examine a set of 2,770 protein-coding genes to determine if proteins in a highly invasive heat tolerant blue mussel (Mytilus galloprovincialis) contain signals of adaptive increases in protein stability relative to orthologs in a more cold tolerant M. trossulus. Such thermal adaptations might help to explain, mechanistically, the success with which the invasive marine mussel M. galloprovincialis has displaced native species in contact zones in the eastern (California) and western (Japan) Pacific. We tested for stabilizing amino acid substitutions in warm tolerant M. galloprovincialis relative to cold tolerant M. trossulus with a generalized linear model that compares in silico estimates of recent changes in protein stability among closely related congeners. Fixed substitutions in M. galloprovincialis were 3,180.0 calories per mol per substitution more stabilizing at genes with both elevated dN/dS ratios and transcriptional responses to heat stress, and 705.8 calories per mol per substitution more stabilizing across all 2,770 loci investigated. Amino acid substitutions concentrated in a small number of genes were more stabilizing in M. galloprovincialis compared with cold tolerant M. trossulus. We also tested for, but did not find, enrichment of a priori GO terms in genes with elevated dN/dS ratios in M. galloprovincialis. This might indicate that selection for thermodynamic stability is generic across all lineages, and suggests that the high change in estimated protein stability that we observed in M. galloprovincialis is driven by selection for extra stabilizing substitutions, rather than by higher incidence of selection in a greater number of genes in this lineage. Nonetheless, our finding of more stabilizing amino acid changes in the warm adapted lineage is important because it suggests that adaption for thermal stability has contributed to M. galloprovincialis’ superior tolerance to heat stress, and that pairing tests for positive selection and tests for transcriptional response to heat stress can identify candidates of protein stability adaptation.
Collapse
Affiliation(s)
- Norah P Saarman
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz.,Department of Ecology and Evolutionary Biology, Yale University
| | - Kord M Kober
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz.,Department of Physiological Nursing, University of California, San Francisco.,Institute for Computational Health Sciences, University of California, San Francisco
| | - W Brian Simison
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz
| |
Collapse
|
49
|
Sočan J, Kazemi M, Isaksen GV, Brandsdal BO, Åqvist J. Catalytic Adaptation of Psychrophilic Elastase. Biochemistry 2018; 57:2984-2993. [PMID: 29726678 DOI: 10.1021/acs.biochem.8b00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The class I pancreatic elastase from Atlantic salmon is considered to be a cold-adapted enzyme in view of the cold habitat, the reduced thermostability of the enzyme, and the fact that it is faster than its mesophilic porcine counterpart at room temperature. However, no experimental characterization of its catalytic properties at lower temperatures has actually been reported. Here we use extensive computer simulations of its catalytic reaction, at different temperatures and with different peptide substrates, to compare its characteristics with those of porcine pancreatic elastase, with which it shares 67% sequence identity. We find that both enzymes have a preference for smaller aliphatic residues at the P1 position, while the reaction rate with phenylalanine at P1 is predicted to be substantially lower. With the former class of substrates, the calculated reaction rates for salmon enzyme are consistently higher than those of the porcine ortholog at all temperatures examined, and the difference is most pronounced at the lowest temperature. As observed for other cold-adapted enzymes, this is caused by redistribution of the activation free energy in terms of enthalpy and entropy and can be linked to differences in the mobility of surface-exposed loops in the two enzymes. Such mobility changes are found to be reflected by characteristic sequence conservation patterns in psychrophilic and mesophilic species. Hence, calculations of mutations in a single surface loop show that the temperature dependence of the catalytic reaction is altered in a predictable way.
Collapse
Affiliation(s)
- Jaka Sočan
- Department of Cell and Molecular Biology , Uppsala University, Biomedical Center , Box 596 , SE-751 24 Uppsala , Sweden
| | - Masoud Kazemi
- Department of Cell and Molecular Biology , Uppsala University, Biomedical Center , Box 596 , SE-751 24 Uppsala , Sweden
| | - Geir Villy Isaksen
- Department of Cell and Molecular Biology , Uppsala University, Biomedical Center , Box 596 , SE-751 24 Uppsala , Sweden.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Tromsø , N9037 Tromsø , Norway
| | - Bjørn Olav Brandsdal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Tromsø , N9037 Tromsø , Norway
| | - Johan Åqvist
- Department of Cell and Molecular Biology , Uppsala University, Biomedical Center , Box 596 , SE-751 24 Uppsala , Sweden
| |
Collapse
|
50
|
Zhang D, Hu P, Liu T, Wang J, Jiang S, Xu Q, Chen L. GC bias lead to increased small amino acids and random coils of proteins in cold-water fishes. BMC Genomics 2018; 19:315. [PMID: 29720106 PMCID: PMC5930961 DOI: 10.1186/s12864-018-4684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Temperature adaptation of biological molecules is fundamental in evolutionary studies but remains unsolved. Fishes living in cold water are adapted to low temperatures through adaptive modification of their biological molecules, which enables their functioning in extreme cold. To study nucleotide and amino acid preference in cold-water fishes, we investigated the substitution asymmetry of codons and amino acids in protein-coding DNA sequences between cold-water fishes and tropical fishes., The former includes two Antarctic fishes, Dissostichus mawsoni (Antarctic toothfish), Gymnodraco acuticeps (Antarctic dragonfish), and two temperate fishes, Gadus morhua (Atlantic cod) and Gasterosteus aculeatus (stickleback), and the latter includes three tropical fishes, including Danio rerio (zebrafish), Oreochromis niloticus (Nile tilapia) and Xiphophorus maculatus (Platyfish). RESULTS Cold-water fishes showed preference for Guanines and cytosines (GCs) in both synonymous and nonsynonymous codon substitution when compared with tropical fishes. Amino acids coded by GC-rich codons are favored in the temperate fishes, while those coded by AT-rich codons are disfavored. Similar trends were discovered in Antarctic fishes but were statistically weaker. The preference of GC rich codons in nonsynonymous substitution tends to increase ratio of small amino acid in proteins, which was demonstrated by biased small amino acid substitutions in the cold-water species when compared with the tropical species, especially in the temperate species. Prediction and comparison of secondary structure of the proteomes showed that frequency of random coils are significantly larger in the cold-water fish proteomes than those of the tropical fishes. CONCLUSIONS Our results suggested that natural selection in cold temperature might favor biased GC content in the coding DNA sequences, which lead to increased frequency of small amino acids and consequently increased random coils in the proteomes of cold-water fishes.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, People's Republic of China
| | - Peng Hu
- Department of Genetics, University of Pennsylvania, Philadelphia, USA
| | - Taigang Liu
- College of Informatics, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, People's Republic of China
| | - Shouwen Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, People's Republic of China
| | - Qianghua Xu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, People's Republic of China.
| |
Collapse
|