1
|
Cossa A, Trépout S, Wien F, Groen J, Le Brun E, Turbant F, Besse L, Pereiro E, Arluison V. Cryo soft X-ray tomography to explore Escherichia coli nucleoid remodeling by Hfq master regulator. J Struct Biol 2022; 214:107912. [PMID: 36283630 DOI: 10.1016/j.jsb.2022.107912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.
Collapse
Affiliation(s)
- Antoine Cossa
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Sylvain Trépout
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia.
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Johannes Groen
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Eva Pereiro
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Université Paris Cité, UFR Sciences du vivant, 75006 Paris cedex, France.
| |
Collapse
|
2
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
3
|
Presnell KV, Flexer-Harrison M, Alper HS. Design and synthesis of synthetic UP elements for modulation of gene expression in Escherichia coli. Synth Syst Biotechnol 2019; 4:99-106. [PMID: 31080900 PMCID: PMC6501063 DOI: 10.1016/j.synbio.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Metabolic engineering requires fine-tuned gene expression for most pathway optimization applications. To develop a suitable suite of promoters, traditional bacterial promoter engineering efforts have focused on modifications to the core region, especially the −10 and −35 regions, of native promoters. Here, we demonstrate an alternate, unexplored route of promoter engineering through randomization of the UP element of the promoter—a region that contacts the alpha subunit carboxy-terminal domain instead of the sigma subunit of the RNA polymerase holoenzyme. Through this work, we identify five novel UP element sequences through library-based searches in Escherichia coli. The resulting elements were used to activate the E. coli core promoter, rrnD promoter, to levels on par and higher than the prevalent strong bacterial promoter, OXB15. These relative levels of expression activation were transferrable when applied upstream of alternate core promoter sequences, including rrnA and rrnH. This work thus presents and validates a novel strategy for bacterial promoter engineering with transferability across varying core promoters and potential for transferability across bacterial species.
Collapse
Affiliation(s)
- Kristin V Presnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Madeleine Flexer-Harrison
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Sauer C, Ver Loren van Themaat E, Boender LGM, Groothuis D, Cruz R, Hamoen LW, Harwood CR, van Rij T. Exploring the Nonconserved Sequence Space of Synthetic Expression Modules in Bacillus subtilis. ACS Synth Biol 2018; 7:1773-1784. [PMID: 29939720 DOI: 10.1021/acssynbio.8b00110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing protein expression levels is a key step in the commercial production of enzymes. Predicting promoter activity and translation initiation efficiency based solely on consensus sequences have so far met with mixed results. Here, we addressed this challenge using a "brute-force" approach by designing and synthesizing a large combinatorial library comprising ∼12 000 unique synthetic expression modules (SEMs) for Bacillus subtilis. Using GFP fluorescence as a reporter of gene expression, we obtained a dynamic expression range that spanned 5 orders of magnitude, as well as a maximal 13-fold increase in expression compared with that of the already strong veg expression module. Analyses of the synthetic modules indicated that sequences at the 5'-end of the mRNA were the most important contributing factor to the differences in expression levels, presumably by preventing formation of strong secondary mRNA structures that affect translation initiation. When the gfp coding region was replaced by the coding region of the xynA gene, encoding the industrially relevant B. subtilis xylanase enzyme, only a 3-fold improvement in xylanase production was observed. Moreover, the correlation between GFP and xylanase expression levels was weak. This suggests that the differences in expression levels between the gfp and xynA constructs were due to differences in 5'-end mRNA folding and consequential differences in the rates of translation initiation. Our data show that the use of large libraries of SEMs, in combination with high-throughput technologies, is a powerful approach to improve the production of a specific protein, but that the outcome cannot necessarily be extrapolated to other proteins.
Collapse
Affiliation(s)
- Christopher Sauer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | | | | | - Daphne Groothuis
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Rita Cruz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Leendert W. Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Colin R. Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Tjeerd van Rij
- DSM Biotechnology Center, P.O. Box 1, 2600 MA Delft, The Netherlands
| |
Collapse
|
5
|
Regulatory Elements Located in the Upstream Region of the Rhizobium leguminosarum rosR Global Regulator Are Essential for Its Transcription and mRNA Stability. Genes (Basel) 2017; 8:genes8120388. [PMID: 29244767 PMCID: PMC5748706 DOI: 10.3390/genes8120388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with clover (Trifolium spp.). Previously, the rosR gene, encoding a global regulatory protein involved in motility, synthesis of cell-surface components, and other cellular processes was identified and characterized in this bacterium. This gene possesses a long upstream region that contains several regulatory motifs, including inverted repeats (IRs) of different lengths. So far, the role of these motifs in the regulation of rosR transcription has not been elucidated in detail. In this study, we performed a functional analysis of these motifs using a set of transcriptional rosR-lacZ fusions that contain mutations in these regions. The levels of rosR transcription for different mutant variants were evaluated in R. leguminosarum using both quantitative real-time PCR and β-galactosidase activity assays. Moreover, the stability of wild type rosR transcripts and those with mutations in the regulatory motifs was determined using an RNA decay assay and plasmids with mutations in different IRs located in the 5′-untranslated region of the gene. The results show that transcription of rosR undergoes complex regulation, in which several regulatory elements located in the upstream region and some regulatory proteins are engaged. These include an upstream regulatory element, an extension of the -10 element containing three nucleotides TGn (TGn-extended -10 element), several IRs, and PraR repressor related to quorum sensing.
Collapse
|
6
|
Yan Q, Fong SS. Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli. J Biol Eng 2017; 11:33. [PMID: 29118850 PMCID: PMC5664571 DOI: 10.1186/s13036-017-0075-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UP elements (upstream element) are DNA sequences upstream of a promoter that interact with the α-subunit of RNA polymerase (RNAP) and can affect transcription by altering the binding RNAP to DNA. However, details of UP element and binding affinity effects on transcriptional strength are unclear. RESULTS Here, we investigated the effects of UP element sequences on gene transcription, binding affinity, and gene expression noise. Addition of UP elements resulted in increased gene expression (maximum 95.7-fold increase) and reduced gene expression noise (8.51-fold reduction). Half UP element sequences at the proximal subsite has little effect on transcriptional strength despite increasing binding affinity by 2.28-fold. In vitro binding assays were used to determine dissociation constants (Kd) and in the in vitro system, the full range of gene expression occurs in a small range of dissociation constants (25 nM < Kd < 45 nM) indicating that transcriptional strength is highly sensitive to small changes in binding affinity. CONCLUSIONS These results demonstrate the utility of UP elements and provide mechanistic insight into the functional relationship between binding affinity and transcription. Given the centrality of gene expression via transcription to biology, additional insight into transcriptional mechanisms can foster both fundamental and applied research. In particular, knowledge of the DNA sequence-specific effects on expression strength can aid in promoter engineering for different organisms and for metabolic engineering to balance pathway fluxes.
Collapse
Affiliation(s)
- Qiang Yan
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA 23284-3028 USA
| | - Stephen S. Fong
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, West Hall, Room 422, 601 West Main Street, P.O. Box 843028, Richmond, VA 23284-3028 USA
- Center for the study of Biological Complexity, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
7
|
Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metab Eng 2017; 44:253-264. [PMID: 29097310 DOI: 10.1016/j.ymben.2017.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/17/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
Malonyl-CoA is the basic building block for synthesizing a range of important compounds including fatty acids, phenylpropanoids, flavonoids and non-ribosomal polyketides. Centering around malonyl-CoA, we summarized here the various metabolic engineering strategies employed recently to regulate and control malonyl-CoA metabolism and improve cellular productivity. Effective metabolic engineering of microorganisms requires the introduction of heterologous pathways and dynamically rerouting metabolic flux towards products of interest. Transcriptional factor-based biosensors translate an internal cellular signal to a transcriptional output and drive the expression of the designed genetic/biomolecular circuits to compensate the activity loss of the engineered biosystem. Recent development of genetically-encoded malonyl-CoA sensor has stood out as a classical example to dynamically reprogram cell metabolism for various biotechnological applications. Here, we reviewed the design principles of constructing a transcriptional factor-based malonyl-CoA sensor with superior detection limit, high sensitivity and broad dynamic range. We discussed various synthetic biology strategies to remove pathway bottleneck and how genetically-encoded metabolite sensor could be deployed to improve pathway efficiency. Particularly, we emphasized that integration of malonyl-CoA sensing capability with biocatalytic function would be critical to engineer efficient microbial cell factory. Biosensors have also advanced beyond its classical function of a sensor actuator for in situ monitoring of intracellular metabolite concentration. Applications of malonyl-CoA biosensors as a sensor-invertor for negative feedback regulation of metabolic flux, a metabolic switch for oscillatory balancing of malonyl-CoA sink pathway and source pathway and a screening tool for engineering more efficient biocatalyst are also presented in this review. We envision the genetically-encoded malonyl-CoA sensor will be an indispensable tool to optimize cell metabolism and cost-competitively manufacture malonyl-CoA-derived compounds.
Collapse
|
8
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|
9
|
Davis MC, Kesthely CA, Franklin EA, MacLellan SR. The essential activities of the bacterial sigma factor. Can J Microbiol 2016; 63:89-99. [PMID: 28117604 DOI: 10.1139/cjm-2016-0576] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transcription is the first and most heavily regulated step in gene expression. Sigma (σ) factors are general transcription factors that reversibly bind RNA polymerase (RNAP) and mediate transcription of all genes in bacteria. σ Factors play 3 major roles in the RNA synthesis initiation process: they (i) target RNAP holoenzyme to specific promoters, (ii) melt a region of double-stranded promoter DNA and stabilize it as a single-stranded open complex, and (iii) interact with other DNA-binding transcription factors to contribute complexity to gene expression regulation schemes. Recent structural studies have demonstrated that when σ factors bind promoter DNA, they capture 1 or more nucleotides that are flipped out of the helical DNA stack and this stabilizes the promoter open-complex intermediate that is required for the initiation of RNA synthesis. This review describes the structure and function of the σ70 family of σ proteins and the essential roles they play in the transcription process.
Collapse
Affiliation(s)
- Maria C Davis
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Christopher A Kesthely
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Emily A Franklin
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Shawn R MacLellan
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
10
|
Bakhtiari N, Mirshahi M, Babaeipour V, Maghsoudi N, Tahzibi A. Down Regulation of ackA-pta Pathway in Escherichia coli BL21 (DE3): A Step Toward Optimized Recombinant Protein Expression System. Jundishapur J Microbiol 2014; 7:e8990. [PMID: 25147677 PMCID: PMC4138692 DOI: 10.5812/jjm.8990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/01/2012] [Accepted: 02/19/2013] [Indexed: 01/27/2023] Open
Abstract
Background: One of the most important problems in production of recombinant protein is to attain over-expression of the target gene and high cell density. In such conditions, the secondary metabolites of bacteria become toxic for the medium and cause cells to die. One of these aforementioned metabolites is acetate, which enormously accumulated in the medium, so that both cell and protein yields are affected. Objectives: To overcome this problem, several strategies applied. In this research we used antisense RNA strategy, where the transcription of phosphotransacetylase (PTA) and acetate kinase (ACK), two acetate pathway key enzymes, could be controlled, which led to reduced acetate production. Materials and Methods: In order to achieve this, recombinant plasmid harboring antisense sequences targeting both of pta and ackA was assembled, after transfecting to the cells, its effects on the cell growth and acetate accumulation in the minimal media was assessed and compared with the control, the plasmid without antisense cassette, in presence and absence of IPTG in Escherichia coli BL21 (DE3). Results: It was observed that the mentioned strategy partially affect the growth and amount of excreted acetate in comparison with the control. In addition it was found that high down-regulation of the acetate production pathway reduces the growth rate of E. coli BL21 (DE3). Conclusions: The study principally proved the importance of this strategy in acetate excretion control.
Collapse
Affiliation(s)
- Nahid Bakhtiari
- Biochemistry Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Manouchehr Mirshahi
- Biochemistry Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Valiollah Babaeipour
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, IR Iran
- Corresponding author: Valiollah Babaeipour, Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, IR Iran. Tel: +98-2122974614; Fax: +98-2122974614, E-mail:
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Abbas Tahzibi
- Food and Drug Organization, Ministry of Health of Iran, Tehran, IR Iran
| |
Collapse
|
11
|
A repetitive DNA element regulates expression of the Helicobacter pylori sialic acid binding adhesin by a rheostat-like mechanism. PLoS Pathog 2014; 10:e1004234. [PMID: 24991812 PMCID: PMC4081817 DOI: 10.1371/journal.ppat.1004234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors.
Collapse
|
12
|
Boedicker JQ, Garcia HG, Johnson S, Phillips R. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation. Phys Biol 2013; 10:066005. [PMID: 24231252 DOI: 10.1088/1478-3975/10/6/066005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution.
Collapse
Affiliation(s)
- James Q Boedicker
- Departments of Applied Physics and Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
13
|
Porrúa O, López-Sánchez A, Platero AI, Santero E, Shingler V, Govantes F. An A-tract at the AtzR binding site assists DNA binding, inducer-dependent repositioning and transcriptional activation of the PatzDEF promoter. Mol Microbiol 2013; 90:72-87. [PMID: 23906008 DOI: 10.1111/mmi.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 11/29/2022]
Abstract
The LysR-type regulator AtzR activates the Pseudomonas sp. ADP atzDEF operon in response to nitrogen limitation and cyanuric acid. Activation involves repositioning of the AtzR tetramer on the PatzDEF promoter and relaxation of an AtzR-induced DNA bend. Here we examine the in vivo and in vitro contribution of an A5 -tract present at the PatzDEF promoter region to AtzR binding and transcriptional activation. Substitution of the A-tract for the sequence ACTCA prevented PatzDEF activation and high-affinity AtzR binding, impaired AtzR contacts with the activator binding site and shifted the position of the AtzR-induced DNA bend. Analysis of a collection of mutants bearing different alterations in the A-tract sequence showed that the extent of AtzR-dependent activation does not correlate with the magnitude or orientation of the spontaneous DNA bend generated at this site. Our results support the notion that indirect readout of the A-tract-associated narrow minor groove is essential for the AtzR-DNA complex to achieve a conformation competent for activation of the PatzDEF promoter. Conservation of this motif in several binding sites of LysR-type regulators suggests that this mechanism may be shared by other proteins in this family.
Collapse
Affiliation(s)
- Odil Porrúa
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Rhodius VA, Mutalik VK, Gross CA. Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucleic Acids Res 2011; 40:2907-24. [PMID: 22156164 PMCID: PMC3326320 DOI: 10.1093/nar/gkr1190] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Predicting the location and strength of promoters from genomic sequence requires accurate sequenced-based promoter models. We present the first model of a full-length bacterial promoter, encompassing both upstream sequences (UP-elements) and core promoter modules, based on a set of 60 promoters dependent on σ(E), an alternative ECF-type σ factor. UP-element contribution, best described by the length and frequency of A- and T-tracts, in combination with a PWM-based core promoter model, accurately predicted promoter strength both in vivo and in vitro. This model also distinguished active from weak/inactive promoters. Systematic examination of promoter strength as a function of RNA polymerase (RNAP) concentration revealed that UP-element contribution varied with RNAP availability and that the σ(E) regulon is comprised of two promoter types, one of which is active only at high concentrations of RNAP. Distinct promoter types may be a general mechanism for increasing the regulatory capacity of the ECF group of alternative σ's. Our findings provide important insights into the sequence requirements for the strength and function of full-length promoters and establish guidelines for promoter prediction and for forward engineering promoters of specific strengths.
Collapse
Affiliation(s)
- Virgil A Rhodius
- Department of Microbiology and Immunology, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
15
|
Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J Biotechnol 2011; 157:167-72. [PMID: 22100269 DOI: 10.1016/j.jbiotec.2011.10.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/16/2011] [Accepted: 10/18/2011] [Indexed: 11/20/2022]
Abstract
Transcription efficiency of inducible promoters remains a bottleneck in recombinant protein production in Bacillus subtilis cells. Here, we present experimental data how to generate strong IPTG-inducible promoters by optimization of nucleotides at the conserved regions of the groESL promoter including the UP element, the -35, -15, -10 and the +1 region. Combination of these changes into one promoter enhanced the amount of recombinant proteins accumulating intracellularly up to about 30% of the total cellular protein.
Collapse
|
16
|
Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc Natl Acad Sci U S A 2011; 108:10690-5. [PMID: 21673140 DOI: 10.1073/pnas.1102544108] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H-NS and Lsr2 are nucleoid-associated proteins from Gram-negative bacteria and Mycobacteria, respectively, that play an important role in the silencing of horizontally acquired foreign DNA that is more AT-rich than the resident genome. Despite the fact that Lsr2 and H-NS proteins are dissimilar in sequence and structure, they serve apparently similar functions and can functionally complement one another. The mechanism by which these xenogeneic silencers selectively target AT-rich DNA has been enigmatic. We performed high-resolution protein binding microarray analysis to simultaneously assess the binding preference of H-NS and Lsr2 for all possible 8-base sequences. Concurrently, we performed a detailed structure-function relationship analysis of their C-terminal DNA binding domains by NMR. Unexpectedly, we found that H-NS and Lsr2 use a common DNA binding mechanism where a short loop containing a "Q/RGR" motif selectively interacts with the DNA minor groove, where the highest affinity is for AT-rich sequences that lack A-tracts. Mutations of the Q/RGR motif abolished DNA binding activity. Netropsin, a DNA minor groove-binding molecule effectively outcompeted H-NS and Lsr2 for binding to AT-rich sequences. These results provide a unified molecular mechanism to explain findings related to xenogeneic silencing proteins, including their lack of apparent sequence specificity but preference for AT-rich sequences. Our findings also suggest that structural information contained within the DNA minor groove is deciphered by xenogeneic silencing proteins to distinguish genetic material that is self from nonself.
Collapse
|
17
|
Abstract
Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.
Collapse
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | | | | |
Collapse
|
18
|
Geinguenaud F, Calandrini V, Teixeira J, Mayer C, Liquier J, Lavelle C, Arluison V. Conformational transition of DNA bound to Hfq probed by infrared spectroscopy. Phys Chem Chem Phys 2011; 13:1222-9. [DOI: 10.1039/c0cp01084g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Olliver A, Saggioro C, Herrick J, Sclavi B. DnaA-ATP acts as a molecular switch to control levels of ribonucleotide reductase expression in Escherichia coli. Mol Microbiol 2010; 76:1555-71. [PMID: 20487274 DOI: 10.1111/j.1365-2958.2010.07185.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RNR) is the bottleneck enzyme in the synthesis of dNTPs required for DNA replication. In order to avoid the mutagenic effects of imbalances in dNTPs the amount and activity of RNR enzyme in the cell is tightly regulated. RNR expression from the nrdAB operon is thus coupled to coincide with the initiation of DNA replication. However, the mechanism for the co-ordination of gene transcription and DNA replication remains to be elucidated. The timing and synchrony of DNA replication initiation in Escherichia coli is controlled in part by the binding of the DnaA protein to the origin of replication. DnaA is also a transcription factor of the nrdAB operon and could thus be the link between these two processes. Here we show that RNA polymerase can form a stable transcription initiation complex at the nrdAB promoter by direct interaction with the far upstream sites required for the timing of expression as a function of DNA replication. In addition, we show that the binding of DnaA on the promoter can either activate or repress transcription as a function of its concentration and its nucleotide-bound state. However, transcription regulation by DnaA does not significantly affect the timing of expression of RNR from the nrdAB operon.
Collapse
Affiliation(s)
- Anne Olliver
- LBPA, UMR 8113 du CNRS, ENS Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | |
Collapse
|
20
|
Zhang Z, Saier MH. A novel mechanism of transposon-mediated gene activation. PLoS Genet 2009; 5:e1000689. [PMID: 19834539 PMCID: PMC2753651 DOI: 10.1371/journal.pgen.1000689] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/17/2009] [Indexed: 12/03/2022] Open
Abstract
Transposable Insertion Sequences (IS elements) have been shown to provide various benefits to their hosts via gene activation or inactivation under stress conditions by appropriately inserting into specific chromosomal sites. Activation is usually due to derepression or introduction of a complete or partial promoter located within the element. Here we define a novel mechanism of gene activation by the transposon IS5 in Escherichia coli. The glycerol utilization operon, glpFK, that is silent in the absence of the cAMP-Crp complex, is activated by IS5 when inserted upstream of its promoter. High-level expression is nearly constitutive, only mildly dependent on glycerol, glucose, GlpR, and Crp, and allows growth at a rate similar to or more rapid than that of wild-type cells. Expression is from the glpFK promoter and dependent on (1) the DNA phase, (2) integration host factor (IHF), and (3) a short region at the 3′ end of IS5 harboring a permanent bend and an IHF binding site. The lacZYA operon is also subject to such activation in the absence of Crp. Thus, we have defined a novel mechanism of gene activation involving transposon insertion that may be generally applicable to many organisms. Transposons are “jumping genes” that can move from one location within a genome to another. Insertion of a transponson changes the DNA sequence and therefore gives rise to mutations that can activate or inactivate gene expression. Here, we demonstrate for the first time that one such transposon, Insertion Sequence 5 (IS5), when positioned upstream of a metabolic operon (glpFK) of E. coli, can activate the otherwise cryptic expression of the operon. This effect is due solely to a short region at the 3′ end of IS5 that harbors a permanent bend and an overlapping nucleoid protein binding site, both of which are required for maximal gene expression. We demonstrate the importance of phasing and conclude that DNA looping probably plays a role. We also show that another operon, the E. coli lactose operon (lacZYA), can be similarly activated by IS5. Although this is the first study to show that unique sequences within a transposon are necessary and sufficient to activate a downstream silent promoter, similar mechanisms of gene activation may occur for other operons.
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
AbstractShort runs of adenines are a ubiquitous DNA element in regulatory regions of many organisms. When runs of 4–6 adenine base pairs (‘A-tracts’) are repeated with the helical periodicity, they give rise to global curvature of the DNA double helix, which can be macroscopically characterized by anomalously slow migration on polyacrylamide gels. The molecular structure of these DNA tracts is unusual and distinct from that of canonical B-DNA. We review here our current knowledge about the molecular details of A-tract structure and its interaction with sequences flanking them of either side and with the environment. Various molecular models were proposed to describe A-tract structure and how it causes global deflection of the DNA helical axis. We review old and recent findings that enable us to amalgamate the various findings to one model that conforms to the experimental data. Sequences containing phased repeats of A-tracts have from the very beginning been synonymous with global intrinsic DNA bending. In this review, we show that very often it is the unique structure of A-tracts that is at the basis of their widespread occurrence in regulatory regions of many organisms. Thus, the biological importance of A-tracts may often be residing in their distinct structure rather than in the global curvature that they induce on sequences containing them.
Collapse
|
22
|
Activation of the promoter of the fengycin synthetase operon by the UP element. J Bacteriol 2009; 191:4615-23. [PMID: 19447911 DOI: 10.1128/jb.00255-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis F29-3 produces an antifungal peptidic antibiotic that is synthesized nonribosomally by fengycin synthetases. Our previous work established that the promoter of the fengycin synthetase operon is located 86 nucleotides upstream of the translational initiation codon of fenC. This investigation involved transcriptional fusions with a DNA fragment that contains the region between positions -105 and +80 and determined that deleting the region between positions -55 and -42 reduces the promoter activity by 64.5%. Transcriptional fusions in the B. subtilis DB2 chromosome also indicated that mutating the sequence markedly reduces the promoter activity. An in vitro transcription analysis confirmed that the transcription is inefficient when the sequence in this region is mutated. Electrophoretic mobility shift and footprinting analyses demonstrated that the C-terminal domain of the RNA polymerase alpha subunit binds to the region between positions -55 and -39. These results indicated that the sequence is an UP element. Finally, this UP element is critical for the production of fengycin, since mutating the UP sequence in the chromosome of B. subtilis F29-3 reduces the transcription of the fen operon by 85% and prevents the cells from producing enough fengycin to suppress the germination of Paecilomyces variotii spores on agar plates.
Collapse
|
23
|
Sclavi B. Opening the DNA at the Promoter; The Energetic Challenge. RNA POLYMERASES AS MOLECULAR MOTORS 2009. [DOI: 10.1039/9781847559982-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bianca Sclavi
- LBPA UMR 8113 du CNRS ENS Cachan 61 Avenue du Président Wilson 94235 Cachan France
| |
Collapse
|
24
|
The YvrI alternative sigma factor is essential for acid stress induction of oxalate decarboxylase in Bacillus subtilis. J Bacteriol 2008; 191:931-9. [PMID: 19047353 DOI: 10.1128/jb.01435-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YvrI is a recently identified alternative sigma factor in Bacillus subtilis that requires the coactivator YvrHa to activate transcription. Previously, a strain engineered to overproduce YvrI was found to overproduce oxalate decarboxylase (OxdC), and further analysis identified three YvrI-activated promoters preceding the yvrI-yvrHa, yvrJ, and oxdC-yvrL operons. Independently, proteome analyses identified OxdC as a highly abundant, cell wall-associated protein that accumulated under acidic growth conditions. We show here that the accumulation of OxdC in the cell wall proteome under acidic growth conditions is absolutely dependent on YvrI and is correlated with enhanced transcription of both the yvrI-yvrHa and the oxdC-yvrL operons. Conversely, OxdC accumulates to a high level even under nonacidic growth conditions in cells lacking YvrL, a negative regulator of YvrI/YvrHa-dependent transcription. These results indicate that YvrI and its associated coregulators YvrHa and YvrL are required for the regulation of OxdC expression by acid stress. The high-level accumulation of OxdC depends, in part, on a strong oxdC promoter. A regulatory sequence with similarity to an upstream promoter element (UP) was identified upstream of the oxdC promoter and is required for high-level promoter activity. Conservation of the YvrI/YvrHa/YvrL regulatory system among related species allowed us to deduce an expanded consensus sequence for the compositionally unusual promoters recognized by this new sigma factor.
Collapse
|
25
|
Reyes DY, Zuber P. Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation. Mol Microbiol 2008; 69:765-79. [PMID: 18687074 DOI: 10.1111/j.1365-2958.2008.06330.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Spx protein of Bacillus subtilis interacts with RNA polymerase (RNAP) to activate transcription initiation in response to thiol-oxidative stress. Protein-DNA cross-linking analysis of reactions containing RNAP, Spx and trxA (thioredoxin) or trxB (thioredoxin reductase) promoter DNA was undertaken to uncover the organization of the Spx-activated transcription initiation complex. Spx induced contact between the RNAP sigma(A) subunit and the -10 promoter sequence of trxA and B, and contact of the betabeta' subunits with core promoter DNA. No Spx-DNA contact was detected. Spx mutants, Spx(C10A) and Spx(G52R.), or RNAP alpha C-terminal domain mutants that impair productive Spx-RNAP interaction did not induce heightened sigma and betabeta' contact with the core promoter. Deletion analysis and the activity of hybrid promoter constructs having upstream trxB DNA fused at positions -31, -36 and -41 of the srf (surfactin synthetase) promoter indicated that a cis-acting site between -50 and -36 was required for Spx activity. Mutations at -43 and -44 of trxB abolished Spx-dependent transcription and Spx-induced cross-linking between the sigma subunit and the -10 region. These data are consistent with a model that Spx activation requires contact between the Spx/RNAP complex and upstream promoter DNA, which allows Spx-induced engagement of the sigma and large subunits with the core promoter.
Collapse
Affiliation(s)
- Dindo Y Reyes
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 NW Walker Rd., Beaverton, OR 97006, USA.
| | | |
Collapse
|
26
|
Seleem MN, Ali M, Boyle SM, Sriranganathan N. Vectors for enhanced gene expression and protein purification in Salmonella. Gene 2008; 421:95-8. [DOI: 10.1016/j.gene.2008.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 01/31/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
27
|
Dekhtyar M, Morin A, Sakanyan V. Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes. BMC Bioinformatics 2008; 9:233. [PMID: 18471287 PMCID: PMC2412878 DOI: 10.1186/1471-2105-9-233] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 05/09/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bacterial promoters, which increase the efficiency of gene expression, differ from other promoters by several characteristics. This difference, not yet widely exploited in bioinformatics, looks promising for the development of relevant computational tools to search for strong promoters in bacterial genomes. RESULTS We describe a new triad pattern algorithm that predicts strong promoter candidates in annotated bacterial genomes by matching specific patterns for the group I sigma70 factors of Escherichia coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns, consisting of an UP-element, required for interaction with the alpha subunit, and then optimally-separated patterns of -35 and -10 boxes, required for interaction with the sigma70 subunit of RNA polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences depends on the A+T content of the DNA under examination. The accuracy of in silico prediction was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga maritima, by applying a cell-free expression assay using the predicted strong promoters. In this organism, the strong promoters govern genes for translation, energy metabolism, transport, cell movement, and other as-yet unidentified functions. CONCLUSION The triad pattern algorithm developed for predicting strong bacterial promoters is well suited for analyzing bacterial genomes with an A+T content of less than 62%. This computational tool opens new prospects for investigating global gene expression, and individual strong promoters in bacteria of medical and/or economic significance.
Collapse
Affiliation(s)
| | - Amelie Morin
- Laboratoire de Biotechnologie, UMR CNRS 6204, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Vehary Sakanyan
- Laboratoire de Biotechnologie, UMR CNRS 6204, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
- ProtNeteomix, 2 rue de la Houssinière, 44322 Nantes, France
| |
Collapse
|
28
|
Li LL, Malone JE, Iglewski BH. Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol 2007; 189:4367-74. [PMID: 17449616 PMCID: PMC1913358 DOI: 10.1128/jb.00007-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria communicate with each other to regulate cell density-dependent gene expression via a quorum-sensing (QS) cascade. In Pseudomonas aeruginosa, two known QS systems, las and rhl, control the expression of many factors that relate to virulence, pathogenicity, and biofilm development. Microarray studies of the las and rhl regulons led to our hypothesis that a complicated hierarchy in the QS regulon is composed of multiple transcriptional regulators. Here, we examined a QS-regulated gene, vqsR, which encodes a probable transcriptional regulator with a putative 20-bp operator sequence (las box) upstream. The transcriptional start site for vqsR was determined. The vqsR promoter was identified by examining a series of vqsR promoter-lacZ fusions. In addition, an Escherichia coli system where either LasR or RhlR protein was expressed from a plasmid indicated that the las system was the dominant regulator for vqsR. Electrophoretic mobility shift assays (EMSA) demonstrate that purified LasR protein binds directly to the vqsR promoter in the presence of 3O-C12-HSL. Point mutational analysis of the vqsR las box suggests that positions 3 and 18 in the las box are important for vqsR transcription, as assayed with a series of vqsRp-lacZ fusions. EMSA also shows that positions 3 and 18 are important for binding between the vqsR promoter and LasR. Our results demonstrate that the las system directly regulates vqsR, and certain nucleotides in the las box are crucial for LasR binding and activation of the vqsR promoter.
Collapse
Affiliation(s)
- Luen-Luen Li
- Department of Microbiology and Immunology, Box 672, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
29
|
Cellai S, Mangiarotti L, Vannini N, Naryshkin N, Kortkhonjia E, Ebright RH, Rivetti C. Upstream promoter sequences and alphaCTD mediate stable DNA wrapping within the RNA polymerase-promoter open complex. EMBO Rep 2007; 8:271-8. [PMID: 17290289 PMCID: PMC1808028 DOI: 10.1038/sj.embor.7400888] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 11/02/2006] [Accepted: 11/23/2006] [Indexed: 11/09/2022] Open
Abstract
We show that the extent of stable DNA wrapping by Escherichia coli RNA polymerase (RNAP) in the RNAP-promoter open complex depends on the sequence of the promoter and, in particular, on the sequence of the upstream region of the promoter. We further show that the extent of stable DNA wrapping depends on the presence of the RNAP alpha-subunit carboxy-terminal domain and on the presence and length of the RNAP alpha-subunit interdomain linker. Our results indicate that the extensive stable DNA wrapping observed previously in the RNAP-promoter open complex at the lambda P(R) promoter is not a general feature of RNAP-promoter open complexes.
Collapse
Affiliation(s)
- Sara Cellai
- Department of Biochemistry and Molecular Biology, University of Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - Laura Mangiarotti
- Department of Biochemistry and Molecular Biology, University of Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - Nicola Vannini
- Department of Biochemistry and Molecular Biology, University of Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | - Nikolai Naryshkin
- Department of Chemistry, Waksman Institute, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | - Ekaterine Kortkhonjia
- Department of Chemistry, Waksman Institute, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | - Richard H Ebright
- Department of Chemistry, Waksman Institute, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
- Tel: +1 732 445 5179; Fax: +1 732 445 5312; E-mail:
| | - Claudio Rivetti
- Department of Biochemistry and Molecular Biology, University of Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
- Tel: +39 0521 905649; Fax: +39 0521 905151; E-mail:
| |
Collapse
|
30
|
Aguilera S, López-López K, Nieto Y, Garcidueñas-Piña R, Hernández-Guzmán G, Hernández-Flores JL, Murillo J, Alvarez-Morales A. Functional characterization of the gene cluster from Pseudomonas syringae pv. phaseolicola NPS3121 involved in synthesis of phaseolotoxin. J Bacteriol 2007; 189:2834-43. [PMID: 17237165 PMCID: PMC1855804 DOI: 10.1128/jb.01845-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. phaseolicola is the causal agent of halo blight disease of beans (Phaseolus vulgaris L.), which is characterized by water-soaked lesions surrounded by a chlorotic halo resulting from the action of a non-host-specific toxin known as phaseolotoxin. This phytotoxin inhibits the enzyme ornithine carbamoyltransferase involved in arginine biosynthesis. Different evidence suggested that genes involved in phaseolotoxin production were clustered. Two genes had been previously identified in our laboratory within this cluster: argK, which is involved in the immunity of the bacterium to its own toxin, and amtA, which is involved in the synthesis of homoarginine. We sequenced the region around argK and amtA in P. syringae pv. phaseolicola NPS3121 to determine the limits of the putative phaseolotoxin gene cluster and to determine the transcriptional pattern of the genes comprising it. We report that the phaseolotoxin cluster (Pht cluster) is composed of 23 genes and is flanked by insertion sequences and transposases. The mutation of 14 of the genes within the cluster lead to a Tox(-) phenotype for 11 of them, while three mutants exhibited low levels of toxin production. The analysis of fusions of selected DNA fragments to uidA, Northern probing, and reverse transcription-PCR indicate the presence of five transcriptional units, two monocistronic and three polycistronic; one is internal to a larger operon. The site for transcription initiation has been determined for each promoter, and the putative promoter regions were identified. Preliminary results also indicate that the gene product of phtL is involved in the regulation of the synthesis of phaseolotoxin.
Collapse
Affiliation(s)
- Selene Aguilera
- Cinvestav, IPN Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato, Gto., Apdo. Postal 629, CP 36500 Mexico
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Gene expression is regulated by a complex interplay between binding and the three-dimensional arrangement of transcription factors with RNA polymerase and DNA. Previous studies have supported a direct role for DNA bending and conformation in gene expression, which suggests that agents that induce bends in DNA might be able to control gene expression. To test this hypothesis, we examined the effect of triple-helix-forming oligonucleotide (TFO) bending agents on the transcription of luciferase in an in vitro transcriptional/translational system. We find that transcription is regulated only by a TFO that induces a bend in the DNA. Related TFOs that do not induce bends in DNA have no effect on transcription. Reporter expression can be increased by as much as 80 % or decreased by as much as 50 % depending on the phasing of the upstream bend relative to the promoter. We interpret the results as follows: when the bend is positioned such that the upstream DNA is curved toward the RNA polymerase on the same DNA face, transcription is enhanced. When the upstream DNA is curved away, transcription is attenuated. These results support the hypothesis that DNA-bending agents might have the capability to regulate gene expression, thereby opening up a previously undervalued avenue in research on the artificial control of gene expression.
Collapse
Affiliation(s)
- David Bednarski
- Eugene Applebaum College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
32
|
Seleem M, Ali M, Abd Al-Azeem MW, Boyle SM, Sriranganathan N. High-level heterologous gene expression in Ochrobactrum anthropi using an A-rich UP element. Appl Microbiol Biotechnol 2007; 73:1123-7. [PMID: 16944128 DOI: 10.1007/s00253-006-0555-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/08/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
DNA regions that flank a gene's promoter play an important role in determining transcription efficiency by interacting with the carboxy-terminal domain of RNA polymerase alpha-subunit. We placed an adenine-rich upstream element (UP) between -38 and -59 of the core trc promoter to enhance gene expression in Ochrobactrum anthropi up to 66-fold. The high level of expression achieved by the UP element and the N-terminus fusion of a 6xHis epitope tag facilitated detection and purification of heterologous proteins directly from O. anthropi.
Collapse
Affiliation(s)
- Mohamed Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd, Blacksburg, VA 24061-0342, USA
| | | | | | | | | |
Collapse
|
33
|
Braun F, Marhuenda FB, Morin A, Guevel L, Fleury F, Takahashi M, Sakanyan V. Similarity and divergence between the RNA polymerase α subunits from hyperthermophilic Thermotoga maritima and mesophilic Escherichia coli bacteria. Gene 2006; 380:120-6. [PMID: 16859838 DOI: 10.1016/j.gene.2006.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/12/2006] [Accepted: 05/16/2006] [Indexed: 11/21/2022]
Abstract
The alpha subunit (alphaTm) of Thermotoga maritima RNA polymerase has been characterized to investigate its role in transcriptional regulation in one of the few known anaerobic hyperthermophilic bacteria. The highly thermostable alphaTm shares 54% similarity with its Escherichia coli analogue (alphaEc). The T. maritima rpoA gene coding the alpha subunit does not complement the thermosensitive rpoA112 mutation of E. coli. However, alphaTm and alphaEc show similar folding patterns as determined by circular dichroism. Purified alphaTm binds to the T. maritima PargGo promoter region (probably to a UP-element) and Arg282 appears to be crucial for DNA binding. The thermostable protein is also able to interact with transcription regulatory proteins, like ArgR from T. neapolitana or CRP from E. coli. These data indicate that the RNA polymerase alpha subunit might play a crucial role in the modulation of gene expression in hyperthermophiles.
Collapse
Affiliation(s)
- Frederique Braun
- Unité Biotechnologie, Biocatalyse et Biorégulation, CNRS UMR 6204, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes cedex 03, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The ability to recognize and predict non-σ54promoters in the alphaproteobacteria is not well developed. In this study, 25 experimentally verifiedSinorhizobium melilotipromoter sequences were compiled and used to predict the location of other related promoters in theS. melilotigenome. Fourteen candidate predictions were targeted for verification and of these at least 12 proved to be genuine promoters. As a result, the experimental identification of 12 novel promoters linked to genesrpoD,topA,rpmJ,trpS,ropB1,metC,rpsT,secE,trkHand three tRNA genes is reported. In all, 99 predicted and verified promoters are reported, including those linked with 13 tRNA genes, eight ribosomal protein genes and a number of other physiologically important or essential genes. On the basis of sequence conservation and a mutational analysis of promoter activity, the −35 and −10 consensus for these promoters is 5-CTTGAC-N17-CTATAT. This promoter structure, which seems to be widely conserved amongst several other genera in the alphaproteobacteria, shares significant similarity with, but is skewed by a 1 nt step from, the canonicalEscherichia coliσ70promoter. Perhaps this difference is responsible for the observation thatS. melilotipromoters are often poorly expressed inE. coli. In this regard, expression data from plasmid-bornegfp-reporter fusions to eight of theS. melilotipromoters verified in this work revealed that while these promoters were very active inS. melilotiandAgrobacterium tumefaciensonly very low, near-background activity was detected inE. coli.
Collapse
Affiliation(s)
- Shawn R MacLellan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada
| | - Allyson M MacLean
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada
| | - Turlough M Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
35
|
Narita J, Ishida S, Okano K, Kimura S, Fukuda H, Kondo A. Improvement of protein production in lactic acid bacteria using 5'-untranslated leader sequence of slpA from Lactobacillus acidophilus. Improvement in protein production using UTLS. Appl Microbiol Biotechnol 2006; 73:366-73. [PMID: 16733730 DOI: 10.1007/s00253-006-0477-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/11/2006] [Accepted: 04/18/2006] [Indexed: 11/26/2022]
Abstract
The 5'-untranslated leader sequence (UTLS) of the slpA gene from Lactobacillus acidophilus contributes to mRNA stabilization by producing a 5' stem and loop structure, and a high-level expression system for the lactic acid bacteria was developed using the UTLS in this study. A plasmid, which expresses alpha-amylase under the control of the ldh promoter, was constructed by integrating the core promoter sequence with the UTLS. The role of the UTLS in increasing the copies of the alpha-amylase mRNA was proved by measuring alpha-amylase activity in the culture supernatant and the relative expression of alpha-amylase mRNA was determined by the quantitative real-time PCR analysis. Moreover, several expression systems were constructed by combining the core promoter sequence with the UTLS or with the partially deleted UTLS and the expression level was evaluated. The use of the UTLS led to the success in improving alpha-amylase expression in the two strains of Lactobacillus casei and Lactococcus lactis. The current study showed that the improvement in protein production using the UTLS could be applied to the expression system in the lactic acid bacteria.
Collapse
Affiliation(s)
- Junya Narita
- Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Grajcar L, El Amri C, Ghomi M, Fermandjian S, Huteau V, Mandel R, Lecomte S, Baron MH. Assessment of adenyl residue reactivity within model nucleic acids by surface enhanced Raman spectroscopy. Biopolymers 2006; 82:6-28. [PMID: 16425174 DOI: 10.1002/bip.20455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We rank the reactivity of the adenyl residues (A) of model DNA and RNA molecules with electropositive subnano size [Ag]n+ sites as a function of nucleic acid primary sequences and secondary structures and in the presence of biological amounts of Cl- and Na+ or Mg2+ ions. In these conditions A is markedly more reactive than any other nucleic acid bases. A reactivity is higher in ribo (r) than in deoxyribo (d) species [pA>pdA and (pA)n>>(pdA)n]. Base pairing decreases A reactivity in corresponding duplexes but much less in r than in d. In linear single and paired dCAG or dGAC loci, base stacking inhibits A reactivity even if A is bulged or mispaired (A.A). dA tracts are highly reactive only when dilution prevents self-association and duplex structures. In d hairpins the solvent-exposed A residues are reactive in CAG and GAC triloops and even more in ATC loops. Among the eight rG1N2R3A4 loops, those bearing a single A (A4) are the least reactive. The solvent-exposed A2 is reactive, but synergistic structural transitions make the initially stacked A residues of any rGNAA loop much more reactive. Mg2+ cross-bridging single strands via phosphates may screen A reactivity. In contrast d duplexes cross-bridging enables "A flipping" much more in rA.U pairs than in dA.T. Mg2+ promotes A reactivity in unpaired strands. For hairpins Mg2+ binding stabilizes the stems, but according to A position in the loops, A reactivity may be abolished, reduced, or enhanced. It is emphasized that not only accessibility but also local flexibility, concerted docking, and cation and anion binding control A reactivity.
Collapse
Affiliation(s)
- Lydie Grajcar
- Laboratoire de Dynamique Interactions et Réactivité, UMR 7075, Université Paris 6 CNRS, 2 rue Henri Dunant, 94320, Thiais, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang M, FitzGerald KA, Lidstrom ME. Identification of an upstream regulatory sequence that mediates the transcription of mox genes in Methylobacterium extorquens AM1. Microbiology (Reading) 2005; 151:3723-3728. [PMID: 16272393 DOI: 10.1099/mic.0.28243-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A multiple A-tract sequence has been identified in the promoter regions for the mxaF, pqqA, mxaW, mxbD and mxcQ genes involved in methanol oxidation in Methylobacterium extorquens AM1, a facultative methylotroph. Site-directed mutagenesis was exploited to delete or change this conserved sequence. Promoter-xylE transcriptional fusions were used to assess promoter activity in these mutants. A fiftyfold drop in the XylE activity was observed for the mxaF and pqqA promoters without this sequence, and a five- to sixfold drop in the XylE activity was observed for the mxbD and mxcQ promoters without this sequence. Mutants were generated in the chromosomal copies in which this sequence was either deleted or altered, and these mutants were unable to grow on methanol. When one of these sequences was added to Plac of Escherichia coli, which is a weak constitutive promoter in M. extorquens AM1, the activity increased two- to threefold. These results suggest that this sequence is essential for normal expression of these genes in M. extorquens AM1, and may serve as a general enhancer element for genetic constructs in this bacterium.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2125, USA
| | - Kelly A FitzGerald
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2125, USA
| | - Mary E Lidstrom
- Department of Microbiology, University of Washington, Seattle, WA 98195-2125, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2125, USA
| |
Collapse
|
38
|
England JC, Gober JW. Role of core promoter sequences in the mechanism of swarmer cell-specific silencing of gyrB transcription in Caulobacter crescentus. BMC Microbiol 2005; 5:25. [PMID: 15904494 PMCID: PMC1175088 DOI: 10.1186/1471-2180-5-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 05/17/2005] [Indexed: 12/02/2022] Open
Abstract
Background Each Caulobacter crescentus cell division yields two distinct cell types: a flagellated swarmer cell and a non-motile stalked cell. The swarmer cell is further distinguished from the stalked cell by an inability to reinitiate DNA replication, by the physical properties of its nucleoid, and its discrete program of gene expression. Specifically, with regard to the latter feature, many of the genes involved in DNA replication are not transcribed in swarmer cells. Results We show that for one of these genes involved in DNA replication, gyrB, its pattern of temporal expression depends upon an 80 base pair promoter region with strong resemblance to the Caulobacter crescentus σ73 consensus promoter sequence; regulation does not appear to be affected by the general strength of the promoter activity, as mutations that increased its conformity with the consensus did not affect its cell-cycle expression pattern. Transcription from the gyrB promoter in vitro required only the presence of the σ73 RNA polymerase (from E. coli) and the requisite nucleoside triphosphates, although a distinct binding activity, present in crude whole-cell extracts, formed a complex gyrB promoter DNA. We also assayed the effect on gyrB expression in strains containing mutations in either smc or dps, two genes encoding proteins that condense DNA. However we found there was no change in the temporal pattern of gyrB transcription in strains containing deletions in either of these genes. Conclusion These experiments demonstrate that gyrB transcription does not require any auxiliary factors, suggesting that temporal regulation is not dependent upon an activator protein. Swarmer-specific silencing may not be attributable to the observed physical difference in the swarmer cell nucleoid, since mutations in either smc or dps, two genes encoding proteins that condense DNA, did not alter the temporal pattern of gyrB transcription in strains containing deletions in either of these genes. Rather a repressor that specifically recognizes sequences in the gyrB promoter region that are also probably essential for transcription, is likely to be responsible for controlling cell cycle expression.
Collapse
Affiliation(s)
- Jennifer C England
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, 90095-1569, USA
| | - James W Gober
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, 90095-1569, USA
| |
Collapse
|
39
|
Abstract
We report here that phased runs of adenines and thymines are very frequent in the neighborhood of 3' of the coding regions of Escherichia coli and Bacillus subtilis. These findings suggest that the DNA curvature could affect transcription termination either directly, through contacts with RNA polymerase, or indirectly, via contacts with some regulatory proteins.
Collapse
Affiliation(s)
- S Hosid
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | | |
Collapse
|
40
|
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. Plastid RNA polymerases, promoters, and transcription regulators in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:1-68. [PMID: 16157177 DOI: 10.1016/s0074-7696(05)44001-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of cyanobacterial genes). Therefore, it was assumed that plastids have a simple transcription-regulatory system. Later, however, it was revealed that plastid transcription is a multistep gene regulation system and plays a crucial role in developmental and environmental regulation of plastid gene expression. Recent molecular and genetic approaches have identified several new players involved in transcriptional regulation in plastids, such as multiple RNA polymerases, plastid sigma factors, transcription regulators, nucleoid proteins, and various signaling factors. They have provided novel insights into the molecular basis of plastid transcription in higher plants. This review summarizes state-of-the-art knowledge of molecular mechanisms that regulate plastid transcription in higher plants.
Collapse
Affiliation(s)
- Takashi Shiina
- Faculty of Human Environment, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
41
|
Ross W, Gourse RL. Sequence-independent upstream DNA-alphaCTD interactions strongly stimulate Escherichia coli RNA polymerase-lacUV5 promoter association. Proc Natl Acad Sci U S A 2004; 102:291-6. [PMID: 15626760 PMCID: PMC544289 DOI: 10.1073/pnas.0405814102] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C-terminal domains of the two alpha-subunits (alphaCTD) in Escherichia coli RNA polymerase (RNAP) recognize specific sequences called UP elements in some promoters. These interactions can increase transcription dramatically. Previously, effects of upstream DNA-alphaCTD interactions on transcription were quantified relative to control promoters with nonspecific DNA sequences substituted for UP elements. However, contributions of nonspecific upstream DNA-alphaCTD interactions to promoter activity have not been evaluated extensively. Here, we examine effects of removal of alphaCTD, upstream promoter DNA, or both on the rate of open-complex formation with promoters that lack UP elements. Deletion of alphaCTD decreased the composite second-order association rate constant, k(a), of RNAP for the lacUV5 promoter by approximately 10-fold. Much of this effect was attributable to a decrease in the isomerization rate constant, k(2). Removal of promoter DNA upstream of the -35 element also decreased both k(a) and k(2) approximately 10-fold. Upstream DNA extending approximately to base pair -100 was sufficient for maximal association rates of wild-type RNAP with lacUV5 promoter fragments. The alphaCTD and upstream DNA did not affect dissociation rates from the open complex. We suggest that sequence-independent upstream DNA interactions with alphaCTD are major contributors to initiation at many (or all) promoters (not merely promoters containing UP elements) and that these interactions facilitate isomerization events occurring well downstream of the alpha-binding sites. In addition to highlighting the functional importance of nonspecific protein-DNA interactions, these results suggest also that UP element-alphaCTD interactions play an even larger role in transcription initiation than appreciated previously.
Collapse
Affiliation(s)
- Wilma Ross
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Davis CA, Capp MW, Record MT, Saecker RM. The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2004; 102:285-90. [PMID: 15626761 PMCID: PMC544287 DOI: 10.1073/pnas.0405779102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of activators to upstream DNA sequences regulates transcription initiation by affecting the stability of the initial RNA polymerase (RNAP)-promoter complex and/or the rate of subsequent conformational changes required to form the open complex (RP(O)). Here we observe that the presence of nonspecific upstream DNA profoundly affects an early step in formation of the transcription bubble. Kinetic studies with the lambdaP(R) promoter and Escherichia coli RNAP reveal that the presence of DNA upstream of base pair -47 greatly increases the rate of forming RP(O), without significantly affecting its rate of dissociation. We find that this increase is largely due to an acceleration of the rate-limiting step (isomerization) in RP(O) formation, a step that occurs after polymerase binds. Footprinting experiments reveal striking structural differences downstream of the transcription start site (+1) in the first kinetically significant intermediate when upstream DNA is present. On the template strand, the DNase I downstream boundary of this early intermediate is +20 when upstream DNA is present but is shortened by approximately two helical turns when upstream DNA beyond -47 is removed. KMnO(4) footprinting reveals an identical initiation bubble (-11 to +2), but unusual reactivity of template strand upstream cytosines (-12, -14, and -15) on the truncated promoter. Based on this work, we propose that early wrapping interactions between upstream DNA and the polymerase exterior strongly affect the events that control entry and subsequent unwinding of the DNA start site in the jaws of polymerase.
Collapse
Affiliation(s)
- Caroline A Davis
- Department of Biochemistry and Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
43
|
Shah IM, Wolf RE. Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress. J Mol Biol 2004; 343:513-32. [PMID: 15465042 DOI: 10.1016/j.jmb.2004.08.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 08/17/2004] [Accepted: 08/18/2004] [Indexed: 11/18/2022]
Abstract
SoxS is the transcription activator of the SoxRS regulon. Despite being synthesized de novo in response to oxidative stress and despite the large disparity between the number of SoxS binding sites and the number of SoxS molecules per cell, SoxS-dependent promoters are rapidly activated after the onset of the stress. With the usual recruitment/post-recruitment mechanisms being unsuitable for activating gene expression under these conditions, we previously proposed that SoxS functions by "pre-recruitment". In pre-recruitment, SoxS forms SoxS-RNA polymerase binary complexes, which use the DNA binding properties of SoxS and sigma(70) to distinguish SoxS-dependent promoters from housekeeping promoters and from the large number of sequence-equivalent but functionally irrelevant SoxS binding sites. With previous work in Escherichia coli having indicated that the most likely target on RNA polymerase for interaction with SoxS is the C-terminal domain of alpha, we investigated the interaction directly with the yeast two-hybrid system. We found that SoxS interacts with the alphaCTD and that SoxS positive control mutations disrupt the interaction. Moreover, single alanine substitutions of the alphaCTD that reduce or enhance SoxS activation in E.coli reduce or enhance the interaction between SoxS and the alphaCTD in yeast. Significantly, the critical amino acid residues lie in and around the DNA binding determinant of the alphaCTD, the first example of an activator contacting this determinant. These interactions were confirmed with an affinity immobilization assay. Lastly, we found that SoxS induction interferes with utilization of the UP element of an rRNA promoter. Thus, by functioning as a co-sigma factor that interacts with the DNA binding determinant of the alphaCTD, SoxS diverts RNA polymerase from UP-containing promoters to SoxS-activatable promoters.
Collapse
Affiliation(s)
- Ishita M Shah
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | |
Collapse
|
44
|
Yoon JW, Minnich SA, Ahn JS, Park YH, Paszczynski A, Hovde CJ. Thermoregulation of the Escherichia coli O157:H7 pO157 ecf operon and lipid A myristoyl transferase activity involves intrinsically curved DNA. Mol Microbiol 2004; 51:419-35. [PMID: 14756783 DOI: 10.1046/j.1365-2958.2003.03827.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Escherichia coli O157:H7 survives in diverse environments from the ruminant gastrointestinal tract to cool nutrient-dilute water. We hypothesized that the gene regulation required for this flexibility includes intrinsically curved DNA that responds to environmental changes. Three intrinsically curved DNAs were cloned from the E. coli O157:H7 virulence plasmid (pO157), sequenced and designated Bent 1 through Bent 3 (BNT1, BNT2 and BNT3). Compared to BNT1 and BNT3, BNT2 had characteristics typical of intrinsically curved DNA including electrophoretic gel retardation at 4 degrees C, six partially phased adenine:thymine tracts and transcriptional activation. BNT2::lacZ operon fusions showed that BNT2 activated transcription at 24 degrees C compared to 37 degrees C and was partially repressed by a bacterial nucleoid-associated protein H-NS. BNT2 regulated the E. coli attaching and effacing gene-positive conserved fragments 1-4 (ecf1-4) that are conserved in Shiga toxin-producing E. coli associated with human disease. Experimental analyses showed that ecf1-4 formed an operon. ecf1, 2 and 3 encoded putative proteins associated with bacterial surface polysaccharide biosynthesis and invasion and ecf4 complemented a chromosomal deletion of lpxM encoding lipid A myristoyl transferase. Mass spectrometric analysis of lipid A from ecf and lpxM single and double mutants showed that myristoylation was altered at lower temperature.
Collapse
Affiliation(s)
- Jang W Yoon
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
45
|
Puopolo KM, Madoff LC. Upstream short sequence repeats regulate expression of the alpha C protein of group B Streptococcus. Mol Microbiol 2004; 50:977-91. [PMID: 14617155 DOI: 10.1046/j.1365-2958.2003.03745.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group B streptococci (GBS) express a family of repeat-containing surface proteins, the prototype of which is the alpha C protein expressed in type Ia/C strain A909. We have isolated a series of mutant GBS strains by mouse-passage of A909 that do not produce normal levels of the alpha C protein. Polymerase chain reaction amplification and sequencing of the gene encoding the alpha C protein, bca, from four mutant strains revealed the presence of a full-length gene in each strain. However, Northern and RT-PCR analysis revealed greatly reduced levels of RNA encoding the alpha C protein. Sequence analysis of the mutant genes found the coding region unchanged from the wild-type gene in each case, but variation was observed in a specific locus located 110 bp upstream of the start codon. The presence of a 5-nucleotide repeat, AGATT, and a string of adenine residues mark this locus. Both deletion and expansion of the AGATT motif were associated with the complete null phenotype. Deletions in the string of adenine residues were associated with both a decreased-production phenotype and a complete null phenotype. Cloning of this upstream region into a green-fluorescent protein (GFP) reporter system in GBS demonstrated promoter activity that was completely abolished by changes in the pentanucleotide repeat or adenine string. Primer extension studies of the wild-type strain revealed one dominant and two minor transcription start sites. Primer extension studies of the null and low-expression mutant strains revealed that the dominant transcript is completely absent in each mutant. The short sequence repeat locus is located at position - 55 to - 78 relative to the start site of the dominant transcript. We have demonstrated in vitro phase variation in expression of the alpha C protein associated with variation at the pentanucleotide repeat locus. We conclude that this short sequence repeat motif is located upstream of the dominant promoter for the alpha C protein and represents a regulatory site for alpha C protein expression. This is the first evidence of transcriptional regulation by short-sequence repeats in a Gram-positive organism.
Collapse
Affiliation(s)
- Karen M Puopolo
- Department of Newborn Medicine, Brigham and Womens' Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
46
|
Delany I, Spohn G, Rappuoli R, Scarlato V. An anti-repression Fur operator upstream of the promoter is required for iron-mediated transcriptional autoregulation in Helicobacter pylori. Mol Microbiol 2003; 50:1329-38. [PMID: 14622419 DOI: 10.1046/j.1365-2958.2003.03757.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Fur protein acts as a regulator of iron-dependent gene transcription in bacteria. In Helicobacter pylori, Fur regulates iron-activated and iron-repressed promoters. It also acts as an autoregulatory rheostat of transcription to fine-tune its own expression in response to iron by binding to three operators at its own promoter Pfur. Using biochemical and genetic analyses, here we show that the distal upstream operator III (centred at -110) is essential for iron regulation of Pfur and functions as an anti-repression site that is bound by the iron-free form of Fur to induce transcription. Furthermore, operator I (centred at -50) may have a dual role both as a high-affinity binding site for Fur and as an UP element. We propose that its role is ensuring that Fur expression is not repressed below a minimum threshold level. Our data supports a novel promoter architecture and mechanism of regulation by Fur.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S rl, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | |
Collapse
|
47
|
Nakano S, Küster-Schöck E, Grossman AD, Zuber P. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci U S A 2003; 100:13603-8. [PMID: 14597697 PMCID: PMC263860 DOI: 10.1073/pnas.2235180100] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Spx protein of Bacillus subtilis represses activator-stimulated transcription by interacting with the C-terminal domain of RNA polymerase (RNAP) alpha subunit. Its concentration increases in cells lacking the ATP-dependent protease, ClpXP, resulting in severe effects on growth and developmental processes. Microarray analysis was undertaken to identify genes that are induced or repressed when Spx interacts with RNAP. The induced genes included those encoding products known to function in maintaining thiol homeostasis. Two genes, thioredoxin (trxA) and thioredoxin reductase (trxB), are transcriptionally induced under conditions of thiol-specific oxidative (disulfide) stress by a mechanism involving Spx-RNAP interaction. Disulfide stress also results in an increase in Spx-dependent transcriptional repression. The increase in Spx activity in cells encountering disulfide stress is due in part to a posttranscriptional mechanism of spx control resulting in an increase in Spx concentration. An spx null mutant and a strain bearing an allele of rpoA that prevents Spx-RNAP interaction show hypersensitivity to disulfide stress. From these results, it is proposed that Spx is an activator that mobilizes the operations necessary to reverse the effects of oxidative damage, but it also serves as a negative regulator that causes the postponement of developmental programs and energy-consuming growth-related functions while the cell copes with the period of stress.
Collapse
Affiliation(s)
- Shunji Nakano
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
48
|
Kim JYH, Cha HJ. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnol Bioeng 2003; 83:841-53. [PMID: 12889024 DOI: 10.1002/bit.10735] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A problem with the use of Escherichia coli to produce foreign proteins is that although endogenously produced acetate is physiologically indispensable, it inhibits protein expression. Here we firstly employed an antisense RNA strategy as an elaborate metabolic engineering tool to partially block biosynthesis of two major acetate pathway enzymes, phosphotransacetylase (PTA) and acetate kinase (ACK). Three recombinant plasmids containing antisense genes targeting either or both of pta and ackA were constructed, and their effects on the acetate pathway and foreign protein productivity compared to control plasmid without any antisense genes were determined in E. coli BL21. Green fluorescent protein (GFP) was employed as a model foreign protein, and timing of antisense expression was controlled by using the intrinsic ackA promoter. We found that the antisense method partially reduced mRNA levels of target enzyme genes and, over time, lowered the concentration of acetate in culture media in all antisense-regulated strains. Notably, total production of GFP was enhanced 1.6- to 2.1-fold in antisense-regulated strains, even though the degree of acetate reduction was not significantly large. It was revealed that the acetate pathway has more critical roles in cellular physiology than expected in the previous reports. When the scale of culture was increased, enhancement of protein production became larger, demonstrating that this antisense strategy can be successfully applied to practical large-scale protein production processes.
Collapse
Affiliation(s)
- Jaoon Y H Kim
- Department of Chemical Engineering, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | |
Collapse
|
49
|
Macchi R, Montesissa L, Murakami K, Ishihama A, De Lorenzo V, Bertoni G. Recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida through integration host factor-mediated positioning switch of alpha subunit carboxyl-terminal domain on an UP-like element. J Biol Chem 2003; 278:27695-702. [PMID: 12754257 DOI: 10.1074/jbc.m303031200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interactions between the sigma54-containing RNA polymerase (sigma54-RNAP) and the region of the Pseudomonas putida Pu promoter spanning from the enhancer to the binding site for the integration host factor (IHF) were analyzed both by DNase I and hydroxyl radical footprinting. A short Pu region centered at position -104 was found to be involved in the interaction with sigma54-RNAP, both in the absence and in the presence of IHF protein. Deletion or scrambling of the -104 region strongly reduced promoter affinity in vitro and promoter activity in vivo, respectively. The reduction in promoter affinity coincided with the loss of IHF-mediated recruitment of the sigma54-RNAP in vitro. The experiments with oriented-alpha sigma54-RNAP derivatives containing bound chemical nuclease revealed interchangeable positioning of only one of the two alpha subunit carboxyl-terminal domains (alphaCTDs) both at the -104 region and in the surroundings of position -78. The addition of IHF resulted in perfect position symmetry of the two alphaCTDs. These results indicate that, in the absence of IHF, the sigma54-RNAP asymmetrically uses only one alphaCTD subunit to establish productive contacts with upstream sequences of the Pu promoter. In the presence of IHF-induced curvature, the closer proximity of the upstream DNA to the body of the sigma54-RNAP can allow the other alphaCTD to be engaged in and thus favor closed complex formation.
Collapse
Affiliation(s)
- Raffaella Macchi
- Dipartimento di Genetica e Biologia dei Microrganismi, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Worthey EA, Martinez-Calvillo S, Schnaufer A, Aggarwal G, Cawthra J, Fazelinia G, Fong C, Fu G, Hassebrock M, Hixson G, Ivens AC, Kiser P, Marsolini F, Rickel E, Rickell E, Salavati R, Sisk E, Sunkin SM, Stuart KD, Myler PJ. Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. Nucleic Acids Res 2003; 31:4201-10. [PMID: 12853638 PMCID: PMC167632 DOI: 10.1093/nar/gkg469] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Leishmania parasites (order Kinetoplastida, family Trypanosomatidae) cause a spectrum of human diseases ranging from asymptomatic to lethal. The approximately 33.6 Mb genome is distributed among 36 chromosome pairs that range in size from approximately 0.3 to 2.8 Mb. The complete nucleotide sequence of Leishmania major Friedlin chromosome 1 revealed 79 protein-coding genes organized into two divergent polycistronic gene clusters with the mRNAs transcribed towards the telomeres. We report here the complete nucleotide sequence of chromosome 3 (384 518 bp) and an analysis revealing 95 putative protein-coding ORFs. The ORFs are primarily organized into two large convergent polycistronic gene clusters (i.e. transcribed from the telomeres). In addition, a single gene at the left end is transcribed divergently towards the telomere, and a tRNA gene separates the two convergent gene clusters. Numerous genes have been identified, including those for metabolic enzymes, kinases, transporters, ribosomal proteins, spliceosome components, helicases, an RNA-binding protein and a DNA primase subunit.
Collapse
Affiliation(s)
- E A Worthey
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|