1
|
|
2
|
Romaniuk A, Paszel-Jaworska A, Totoń E, Lisiak N, Hołysz H, Królak A, Grodecka-Gazdecka S, Rubiś B. The non-canonical functions of telomerase: to turn off or not to turn off. Mol Biol Rep 2018; 46:1401-1411. [PMID: 30448892 DOI: 10.1007/s11033-018-4496-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Telomerase is perceived as an immortality enzyme that enables passing the Hayflick limit. Its main function is telomere restoration but only in a limited group of cells, including cancer cells. Since it is found in a vast majority of cancer cells, it became a natural target for cancer therapy. However, it has much more functions than just altering the metabolism of telomeres-it also reveals numerous so-called non-canonical functions. Thus, a question arises whether it is always beneficial to turn it off when planning a cancer strategy and considering potential side effects? The purpose of this review is to discuss some of the recent discoveries about telomere-independent functions of telomerase in the context of cancer therapy and potential side effects.
Collapse
Affiliation(s)
- Aleksandra Romaniuk
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Anna Paszel-Jaworska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Hanna Hołysz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Anna Królak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland.
| |
Collapse
|
3
|
Yanai H, Fraifeld VE. The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Res Rev 2018; 41:18-33. [PMID: 29106993 DOI: 10.1016/j.arr.2017.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022]
Abstract
Since Hayflick's discovery of cellular senescence (CS), a great volume of knowledge in the field has been accumulated and intensively discussed. Here, we attempted to organize the evidence "for" and "against" the hypothesized causal role of CS in aging. For that purpose, we utilized robust Koch-like logical criteria, based on the assumption that some quantitative relationships between the accumulation of senescent cells and aging rate should exist. If so, it could be expected that (i) the "CS load" would be greater in the premature aging phenotype and lesser in longevity phenotype; (ii) CS would promote age-related diseases, and (iii) the interventions that modulate the levels of senescent cells should also modulate health/lifespan. The analysis shows that CS can be considered a causal factor of aging and an important player in various age-related diseases, though its contribution may greatly vary across species. While the relative impact of senescent cells to aging could overall be rather limited and their elimination is hardly expected to be the "fountain of youth", the potential benefits of the senolytic strategy seems a promising option in combating age-related diseases and extending healthspan.
Collapse
|
4
|
Korandová M, Frydrychová RČ. Activity of telomerase and telomeric length in Apis mellifera. Chromosoma 2015; 125:405-11. [DOI: 10.1007/s00412-015-0547-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/23/2015] [Accepted: 10/05/2015] [Indexed: 01/15/2023]
|
5
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Foote CG, Vleck D, Vleck CM. Extent and variability of interstitial telomeric sequences and their effects on estimates of telomere length. Mol Ecol Resour 2013; 13:417-28. [DOI: 10.1111/1755-0998.12079] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 12/22/2012] [Accepted: 12/28/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Christopher G. Foote
- Department of Ecology, Evolution and Organismal Biology Iowa State University Ames IA 50011 USA
| | - David Vleck
- Department of Ecology, Evolution and Organismal Biology Iowa State University Ames IA 50011 USA
| | - Carol M. Vleck
- Department of Ecology, Evolution and Organismal Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
7
|
Alternatively spliced telomerase reverse transcriptase variants lacking telomerase activity stimulate cell proliferation. Mol Cell Biol 2012; 32:4283-96. [PMID: 22907755 DOI: 10.1128/mcb.00550-12] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight human and six chicken novel alternatively spliced (AS) variants of telomerase reverse transcriptase (TERT) were identified, including a human variant (Δ4-13) containing an in-frame deletion which removed exons 4 through 13, encoding the catalytic domain of telomerase. This variant was expressed in telomerase-negative normal cells and tissues as well as in transformed telomerase-positive cell lines and cells which employ an alternative method to maintain telomere length. The overexpression of the Δ4-13 variant significantly elevated the proliferation rates of several cell types without enhancing telomerase activity, while decreasing the endogenous expression of this variant by use of small interfering RNA (siRNA) technology reduced cell proliferation. The expression of the Δ4-13 variant stimulated Wnt signaling. In chicken cells, AS TERT variants containing internal deletions or insertions that eliminated or reduced telomerase activity also enhanced cell proliferation. This is the first report that naturally occurring AS TERT variants which lack telomerase activity stimulate cell proliferation.
Collapse
|
8
|
Ponsot E, Echaniz-Laguna A, Delis AM, Kadi F. Telomere length and regulatory proteins in human skeletal muscle with and without ongoing regenerative cycles. Exp Physiol 2012; 97:774-84. [PMID: 22366562 DOI: 10.1113/expphysiol.2011.063818] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New insights suggest the existence of telomere regulatory mechanisms in several adult tissues. In this study, we aimed to assess in vivo telomere length and the presence of specific proteins involved in telomere regulation in a model of human skeletal muscle with (patients with dermatomyosis or polymyositis) and without ongoing regenerative events (healthy subjects). Mean (meanTRF) and minimal telomere (miniTRF) lengths and the expression of telomerase, tankyrase 1, TRF2 (telomeric repeat binding factor 2) and POT1 (protection of telomeres 1) were investigated in skeletal muscle samples from 12 patients (MYO) and 13 healthy subjects (CON). There was no significant shortening of telomeres in skeletal muscle from patients compared with control subjects (MYO, meanTRF length 11.0 ± 1.8 kbp and miniTRF length 4.7 ± 0.8 kbp; CON, meanTRF length 10.4 ± 1.1 kbp and miniTRF length 4.6 ± 0.5 kbp). Theoretically, telomere length can be controlled by endogenous mechanisms. Here, we show for the first time that expression levels of telomerase, tankyrase 1, TRF2 and POT1 were, respectively, six-, seven-, three- and fivefold higher in the nuclear fraction of skeletal muscle of MYO compared with CON (P < 0.05). This suggests the existence of endogenous mechanisms allowing for telomere regulation in skeletal muscle with ongoing cycles of degeneration and regeneration and a model where regulatory factors are possibly involved in the protection of skeletal muscle telomeres.
Collapse
Affiliation(s)
- Elodie Ponsot
- School of Health and Medical Sciences, University of Örebro, 70182 Örebro, Sweden
| | | | | | | |
Collapse
|
9
|
Abstract
Telomeres, the nucleoprotein "caps" protecting the ends of linear chromosomes, are maintained by telomerase. Telomeres have important roles in maintaining genomic stability and preventing senescence or oncogenesis. Chicken is a classical model animal for genetic and developmental studies. With further development of chicken genomics, great progress has been made in research of chicken telomere and telomerase. This review describes recent advances and future research directions in chicken telomere biology.
Collapse
|
10
|
Macieira-Coelho A. Cell division and aging of the organism. Biogerontology 2011; 12:503-15. [PMID: 21732041 DOI: 10.1007/s10522-011-9346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/23/2011] [Indexed: 02/07/2023]
Abstract
The capacity to regenerate cell compartments through cell proliferation is an important characteristic of many developed metazoan tissues. Pre- and post-natal development proceeds through the modifications occurring during cell division. Experiments with cultivated cells showed that cell proliferation originates changes in cell functions and coordinations that contribute to aging and senescence. The implications of the finite cell proliferation to aging of the organism is not the accumulation of cells at the end of their life cycle, but rather the drift in cell function created by cell division. Comparative gerontology shows that the regulation of the length of telomeres has no implications for aging. On the other hand there are interspecies differences in regard to the somatic cell division potential that seem to be related with the "plasticity" of the genome and with longevity, which should be viewed independently of the aging phenomenon. Telomeres may play a role in this plasticity through the regulation of chromosome recombination, and via the latter also in development.
Collapse
|
11
|
Martínez-A C, van Wely KHM. Centromere fission, not telomere erosion, triggers chromosomal instability in human carcinomas. Carcinogenesis 2011; 32:796-803. [PMID: 21478459 PMCID: PMC3106440 DOI: 10.1093/carcin/bgr069] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The majority of sporadic carcinomas suffer from a kind of genetic instability in which chromosome number changes occur together with segmental defects. This means that changes involving intact chromosomes accompany breakage-induced alterations. Whereas the causes of aneuploidy are described in detail, the origins of chromosome breakage in sporadic carcinomas remain disputed. The three main pathways of chromosomal instability (CIN) proposed until now (random breakage, telomere fusion and centromere fission) are largely based on animal models and in vitro experiments, and recent studies revealed several discrepancies between animal models and human cancer. Here, we discuss how the experimental systems translate to human carcinomas and compare the theoretical breakage products to data from patient material and cancer cell lines. The majority of chromosomal defects in human carcinomas comprises pericentromeric breaks that are captured by healthy telomeres, and only a minor proportion of chromosome fusions can be attributed to telomere erosion or random breakage. Centromere fission, not telomere erosion, is therefore the most probably trigger of CIN and early carcinogenesis. Similar centromere–telomere fusions might drive a subset of congenital defects and evolutionary chromosome changes.
Collapse
Affiliation(s)
- Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, UAM Campus Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
12
|
Miller RA, Williams JB, Kiklevich JV, Austad S, Harper JM. Comparative cellular biogerontology: primer and prospectus. Ageing Res Rev 2011; 10:181-90. [PMID: 20109583 PMCID: PMC2889236 DOI: 10.1016/j.arr.2010.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 01/25/2023]
Abstract
Most prior work on the biological basis of aging has focused on describing differences between young and old individuals but provided only limited insight into the mechanisms controlling the rate of aging. Natural selection has produced a goldmine of experimental material, in the form of species of differing aging rate, whose longevity can vary by 10-fold or more within mammalian orders, but these resources remain largely unexplored at the cellular level. In this review article we focus on one approach to comparative biogerontology: the strategy of evaluating the properties of cultured cells from organisms of varying lifespan and aging rate. In addition, we discuss problems associated with the analysis and interpretations of interspecific variation of cellular trait data among species with disparate longevity. Given the impressive array of 'natural experiments' in aging rate, overcoming the technical and conceptual obstacles confronting research in comparative cellular gerontology will be well worth the effort.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, 48109, United States
| | | | | | | | | |
Collapse
|
13
|
Sohn SH, Cho EJ. Distribution of Telomeric DNA in Korean Native Chicken Chromosomes. ACTA ACUST UNITED AC 2010. [DOI: 10.5536/kjps.2010.37.3.247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Gomes NM, Shay JW, Wright WE. Telomere biology in Metazoa. FEBS Lett 2010; 584:3741-51. [PMID: 20655915 PMCID: PMC2928394 DOI: 10.1016/j.febslet.2010.07.031] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 12/22/2022]
Abstract
In this review we present critical overview of some of the available literature on the fundamental biology of telomeres and telomerase in Metazoan. With the exception of Nematodes and Arthropods, the (TTAGGG)(n) sequence is conserved in most Metazoa. Available data show that telomerase-based end maintenance is a very ancient mechanism in unicellular and multicellular organisms. In invertebrates, fish, amphibian, and reptiles persistent telomerase activity in somatic tissues might allow the maintenance of the extensive regenerative potentials of these species. Telomerase repression among birds and many mammals suggests that, as humans, they may use replicative aging as a tumor protection mechanism.
Collapse
Affiliation(s)
- Nuno M.V. Gomes
- Department of Cell Biology. The University of Texas Southwestern Medical Center at Dallas. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9039
| | - Jerry W. Shay
- Department of Cell Biology. The University of Texas Southwestern Medical Center at Dallas. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9039
| | - Woodring E. Wright
- Department of Cell Biology. The University of Texas Southwestern Medical Center at Dallas. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9039
| |
Collapse
|
15
|
Xu Y, Yu M, Wu F, Sun J, Wood C, Hattori MA, Wang J, Xi Y. Effects of ectopic expression of human telomerase reverse transcriptase on immortalization of feather keratinocyte stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 312:872-84. [PMID: 19551764 DOI: 10.1002/jez.b.21302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Normal somatic cells possess a finite life span owing to replicative senescence. Telomerase functions as a potential regulator of senescence in various cells. Expression level of human telomerase reverse transcriptase (hTERT) is correlated with telomerase activity and cellular immortalization. In this study, we investigated the effects of ectopic expression of hTERT on proliferation potential of chicken feather keratinocyte stem cells (FKSCs). We established FKSCs transduced with hTERT catalytic subunit fused with EGFP marker gene (hTERT-EGFP-FKSCs). hTERT-EGFP-FKSCs had the great potential of proliferation in vitro and expressed kerainocyte stem cell markers integrin beta1 and CD49c. Keratin 15 and keratin 19, as native FKSCs, were also detected in hTERT-EGFP-FKSCs. By the analysis of fluorescent RT-PCR, western blotting and TRAP assay, hTERT-EGFP-FKSCs were positive for telomerase activity, in comparison with native FKSCs showing no telomerase activity. We demonstrated that ectopic expression of hTERT could result in immortalization of FKSCs. Tumorigenecity of hTERT-EGFP-FKSCs were examined by soft agar assay and transplantation into NOD-SCID mice. Results showed that hTERT-EGFP-FKSCs sustained the cellular characteristics of native FKSCs and had no transforming activity. In vivo differentiation multipotentials of hTERT-EGFP-FKSCs were confirmed by transplantation into developing chicken embryos and in situ hybridization analysis. These data provide a novel framework for understanding human telomerase activity in different species and suggest a new insight for manipulating hTERT for therapeutic purposes in treating tissue injury and aging.
Collapse
Affiliation(s)
- Yulin Xu
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cooley C, Baird KM, Faure V, Wenner T, Stewart JL, Modino S, Slijepcevic P, Farr CJ, Morrison CG. Trf1 is not required for proliferation or functional telomere maintenance in chicken DT40 cells. Mol Biol Cell 2009; 20:2563-71. [PMID: 19321665 DOI: 10.1091/mbc.e08-10-1019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The telomere end-protection complex prevents the ends of linear eukaryotic chromosomes from degradation or inappropriate DNA repair. The homodimeric double-stranded DNA-binding protein, Trf1, is a component of this complex and is essential for mouse embryonic development. To define the requirement for Trf1 in somatic cells, we deleted Trf1 in chicken DT40 cells by gene targeting. Trf1-deficient cells proliferated as rapidly as control cells and showed telomeric localization of Trf2, Rap1, and Pot1. Telomeric G-strand overhang lengths were increased in late-passage Trf1-deficient cells, although telomere lengths were unaffected by Trf1 deficiency, as determined by denaturing Southern and quantitative FISH analysis. Although we observed some clonal variation in terminal telomere fragment lengths, this did not correlate with cellular Trf1 levels. Trf1 was not required for telomere seeding, indicating that de novo telomere formation can proceed without Trf1. The Pin2 isoform and a novel exon 4, 5-deleted isoform localized to telomeres in Trf1-deficient cells. Trf1-deficient cells were sensitive to DNA damage induced by ionizing radiation. Our data demonstrate that chicken DT40 B cells do not require Trf1 for functional telomere structure and suggest that Trf1 may have additional, nontelomeric roles involved in maintaining genome stability.
Collapse
Affiliation(s)
- Carol Cooley
- Centre for Chromosome Biology, National University of Ireland Galway, Department of Biochemistry and NCBES, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Seluanov A, Hine C, Bozzella M, Hall A, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 2008; 7:813-23. [PMID: 18778411 PMCID: PMC2637185 DOI: 10.1111/j.1474-9726.2008.00431.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Large, long-lived species experience more lifetime cell divisions and hence a greater risk of spontaneous tumor formation than smaller, short-lived species. Large, long-lived species are thus expected to evolve more elaborate tumor suppressor systems. In previous work, we showed that telomerase activity coevolves with body mass, but not lifespan, in rodents: telomerase activity is repressed in the somatic tissues of large rodent species but remains active in small ones. Without telomerase activity, the telomeres of replicating cells become progressively shorter until, at some critical length, cells stop dividing. Our findings therefore suggested that repression of telomerase activity mitigates the increased risk of cancer in larger-bodied species but not necessarily longer-lived ones. These findings imply that other tumor suppressor mechanisms must mitigate increased cancer risk in long-lived species. Here, we examined the proliferation of fibroblasts from 15 rodent species with diverse body sizes and lifespans. We show that, consistent with repressed telomerase activity, fibroblasts from large rodents undergo replicative senescence accompanied by telomere shortening and overexpression of p16(Ink4a) and p21(Cip1/Waf1) cycline-dependent kinase inhibitors. Interestingly, small rodents with different lifespans show a striking difference: cells from small shorter-lived species display continuous rapid proliferation, whereas cells from small long-lived species display continuous slow proliferation. We hypothesize that cells of small long-lived rodents, lacking replicative senescence, have evolved alternative tumor-suppressor mechanisms that prevent inappropriate cell division in vivo and slow cell growth in vitro. Thus, large-bodied species and small but long-lived species have evolved distinct tumor suppressor mechanisms.
Collapse
Affiliation(s)
- Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Christopher Hine
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Michael Bozzella
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Amelia Hall
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Tais H. C. Sasahara
- Department of Surgery, LSSCA, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Antonio A. C. M. Ribeiro
- Department of Surgery, LSSCA, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Kenneth C. Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, U.S.A
| | - Daven C. Presgraves
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
18
|
A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis. PLoS One 2008; 3:e3364. [PMID: 18846223 PMCID: PMC2561060 DOI: 10.1371/journal.pone.0003364] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/23/2008] [Indexed: 11/19/2022] Open
Abstract
Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from “authentic” telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words)
Collapse
|
19
|
Haussmann MF, Mauck RA. TECHNICAL ADVANCES: New strategies for telomere-based age estimation. Mol Ecol Resour 2008; 8:264-74. [PMID: 21585768 DOI: 10.1111/j.1471-8286.2007.01973.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med 2008; 44:235-46. [PMID: 18021748 DOI: 10.1016/j.freeradbiomed.2007.10.001] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 08/15/2007] [Accepted: 10/01/2007] [Indexed: 01/04/2023]
Abstract
Telomeres are nucleoprotein structures, located at the ends of chromosomes and are subject to shortening at each cycle of cell division. They prevent chromosomal ends from being recognized as double strand breaks and protect them from end to end fusion and degradation. Telomeres consist of stretches of repetitive DNA with a high G-C content and are reported to be highly sensitive to damage induced by oxidative stress. The resulting DNA strand breaks can be formed either directly or as an intermediate step during the repair of oxidative bases. In contrast to the majority of genomic DNA, there is evidence that telomeric DNA is deficient in the repair of single strand breaks. Since chronic oxidative stress plays a major role in the pathophysiology of several chronic inflammatory diseases, it is hypothesized that telomere length is reducing at a faster rate during oxidative stress. Therefore, assessment of telomere length might be a useful biomarker of disease progression. In this review several features of telomere length regulation, their relation with oxidative stress, and the potential application of measurement of telomere length as biomarker of chronic oxidative stress, will be discussed.
Collapse
Affiliation(s)
- Joyce M J Houben
- Department of Health Risk Analysis and Toxicology, Maastricht University, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Haussmann MF, Winkler DW, Huntington CE, Nisbet ICT, Vleck CM. Telomerase activity is maintained throughout the lifespan of long-lived birds. Exp Gerontol 2007; 42:610-8. [PMID: 17470387 DOI: 10.1016/j.exger.2007.03.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 02/15/2007] [Accepted: 03/20/2007] [Indexed: 12/20/2022]
Abstract
Telomerase is an enzyme capable of elongating telomeres, the caps at the ends of chromosomes associated with aging, lifespan and survival. We investigated tissue-level variation in telomerase across different ages in four bird species that vary widely in their life history. Telomerase activity in bone marrow may be associated with the rate of erythrocyte telomere shortening; birds with lower rates of telomere shortening and longer lifespans have higher bone marrow telomerase activity throughout life. Telomerase activity in all of the species appears to be tightly correlated with the proliferative potential of specific organs, and it is also highest in the hatchling age-class, when the proliferative demands of most organs are the highest. This study offers an alternative view to the commonly held hypothesis that telomerase activity is down-regulated in all post-mitotic somatic tissues in long-lived organisms as a tumor-protective mechanism. This highlights the need for more comparative analyses of telomerase, lifespan and the incidence of tumor formation.
Collapse
|
22
|
Zhang XF, Yang RF, Wang J, Zhao L, Li L, Shen FM, Su DF. Arterial baroreflex function does not influence telomere length in kidney of rats. Acta Pharmacol Sin 2006; 27:1409-16. [PMID: 17049115 DOI: 10.1111/j.1745-7254.2006.00422.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIM To investigate the relationship between arterial baroreflex (ABR) function and telomere length in kidney of rats. METHODS Stroke-prone spontaneously hypertensive rats (SHR-SP) and sinoaortic denervated rats (SAD) were used as models with depressed arterial baroreflex. In the first experiments, SHR-SP rats were examined at the age of 24 weeks for both sexes and 40 weeks for female rats. In the second experiments, SAD rats were studied 4 and 35 weeks after SAD operation. Blood pressure was continuously recorded for 4 h in a conscious state. After the determination of baroreflex sensitivity (BRS), the terminal restriction fragment (TRF) of rat kidney was analyzed using Southern blot. RESULTS The TRF length was found shorter in: a) male SHR-SP compared with age-matched female SHR-SP; b) female SHR-SP 40 weeks of age compared with 24 weeks of age; c) in rats 35 weeks after operation compared with rats 4 weeks post operation in both sham-operated and SAD rats. CONCLUSION In SHR-SP, the TRF length did not correlate with BRS. In addition, SAD did not affect TRF length at either 4 or 35 weeks post-surgery. It may be concluded that baroreflex function does not influence the terminal restriction fragment (TRF) length in rats.
Collapse
Affiliation(s)
- Xiao-fei Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zucchero T, Ahmed S. Genetics of proliferative aging. Exp Gerontol 2006; 41:992-1000. [PMID: 17049783 DOI: 10.1016/j.exger.2006.06.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/21/2006] [Accepted: 06/30/2006] [Indexed: 12/23/2022]
Abstract
Human lifespan is limited by aging of both mitotic and post-mitotic cells. These two forms of aging may occur by distinct or overlapping mechanisms. Telomere erosion has been shown to limit the proliferative lifespan of human somatic cells. Other vertebrates, such as mice, possess robust telomerase activity in most cell types and their somatic cells display finite replicative lifespans as a consequence of other forms of macromolecular damage. Genetic analysis in humans, mice and yeast has provided clues regarding pathways that may affect a cell's replicative lifespan. In addition, analysis of the means by which germ cells maintain their effervescent character may provide a deeper understanding of how replicative aging occurs in somatic cells.
Collapse
Affiliation(s)
- Theresa Zucchero
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
24
|
Churikov D, Wei C, Price CM. Vertebrate POT1 restricts G-overhang length and prevents activation of a telomeric DNA damage checkpoint but is dispensable for overhang protection. Mol Cell Biol 2006; 26:6971-82. [PMID: 16943437 PMCID: PMC1592853 DOI: 10.1128/mcb.01011-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although vertebrate POT1 is thought to play a role in both telomere capping and length regulation, its function has proved difficult to analyze. We therefore generated a conditional cell line that lacks wild-type POT1 but expresses an estrogen receptor-POT1 fusion. The cells grow normally in tamoxifen, but drug removal causes loss of POT1 from the telomere, rapid cell cycle arrest, and eventual cell death. The arrested cells have a 4N DNA content, and addition of caffeine causes immediate entry into mitosis, suggesting a G(2) arrest due to an ATM- and/or ATR-mediated checkpoint. gammaH2AX accumulates at telomeres, indicating a telomeric DNA damage response, the likely cause of the checkpoint. However, POT1 loss does not cause degradation of the G-strand overhang. Instead, the amount of G overhang increases two- to threefold. Some cells eventually escape the cell cycle arrest and enter mitosis. They rarely exhibit telomere fusions but show severe chromosome segregation defects due to centrosome amplification. Our data indicate that vertebrate POT1 is required for telomere capping but that it functions quite differently from TRF2. Instead of being required for G-overhang protection, POT1 is required to suppress a telomeric DNA damage response. Our results also indicate significant functional similarities between POT1 and Cdc13 from budding yeast (Saccharomyces cerevisiae).
Collapse
Affiliation(s)
- Dmitri Churikov
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
25
|
Davis T, Kipling D. Telomeres and telomerase biology in vertebrates: progress towards a non-human model for replicative senescence and ageing. Biogerontology 2006; 6:371-85. [PMID: 16518699 DOI: 10.1007/s10522-005-4901-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/05/2005] [Indexed: 01/02/2023]
Abstract
Studies on telomere and telomerase biology are fundamental to the understanding of human ageing and age-related diseases such as cancer. However, human studies of whole body ageing are hampered by the lack of suitable fully reflective animal model systems, the wild-type mouse model being unsuitable due to differences in telomere biology. Here we summarise recent data on the biology of telomeres, telomerase, and the tumour suppressor protein p53 in various animals, and examine their possible roles in replicative senescence, ageing, and tumourigenesis. The advantages and disadvantages of various animals as model systems for whole body ageing in humans are discussed.
Collapse
Affiliation(s)
- Terence Davis
- Department of Pathology, School of Medicine, Cardiff University, CF14 4XN, Heath Park, Cardiff, UK.
| | | |
Collapse
|
26
|
Kim SH, Rowe J, Fujii H, Jones R, Schmierer B, Kong BW, Kuchler K, Foster D, Ish-Horowicz D, Peters G. Upregulation of chicken p15INK4b at senescence and in the developing brain. J Cell Sci 2006; 119:2435-43. [PMID: 16720639 DOI: 10.1242/jcs.02989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammalian cells, products of the INK4a-ARF locus play major roles in senescence and tumour suppression in different contexts, whereas the adjacent INK4b gene is more generally associated with transforming growth factor β (TGF-β)-mediated growth arrest. As the chicken genome does not encode an equivalent of INK4a, we asked whether INK4b and/or ARF contribute to replicative senescence in chicken cells. In chicken embryo fibroblasts (CEFs), INK4b levels increase substantially at senescence and the gene is transcriptionally silenced in two spontaneously immortalised chicken cell lines. By contrast, ARF levels are unaffected by prolonged culture or immortalisation. These expression patterns resemble the behaviour of INK4a and ARF in human fibroblasts. However, short-hairpin RNA (shRNA)-mediated knockdown of chicken INK4b or ARF provides only modest lifespan extension, suggesting that other factors contribute to senescence in CEFs. As well as underscoring the importance of the INK4b-ARF-INK4a locus in senescence, these findings imply that the encoded products have assumed different roles in different evolutionary niches. Although ARF RNA is not detectable in early chicken embryos, the INK4b transcript is expressed in the roof-plate of the developing hind-brain, consistent with a role in limiting cell proliferation.
Collapse
Affiliation(s)
- Soo-Hyun Kim
- Molecular Oncology, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pauliny A, Wagner RH, Augustin J, Szép T, Blomqvist D. Age-independent telomere length predicts fitness in two bird Species. Mol Ecol 2006; 15:1681-7. [PMID: 16629820 DOI: 10.1111/j.1365-294x.2006.02862.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Telomeres are dynamic DNA-protein structures that form protective caps at the ends of eukaryotic chromosomes. Although initial telomere length is partly genetically determined, subsequent accelerated telomere shortening has been linked to elevated levels of oxidative stress. Recent studies show that short telomere length alone is insufficient to induce cellular senescence; advanced attrition of these repetitive DNA sequences does, however, reflect ageing processes. Furthermore, telomeres vary widely in length between individuals of the same age, suggesting that individuals differ in their exposure or response to telomere-shortening stress factors. Here, we show that residual telomere length predicts fitness components in two phylogenetically distant bird species: longevity in sand martins, Riparia riparia, and lifetime reproductive success in dunlins, Calidris alpina. Our results therefore imply that individuals with longer than expected telomeres for their age are of higher quality.
Collapse
Affiliation(s)
- Angela Pauliny
- Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences, Vienna
| | | | | | | | | |
Collapse
|
28
|
Harrington L. Making the most of a little: dosage effects in eukaryotic telomere length maintenance. Chromosome Res 2005; 13:493-504. [PMID: 16132814 DOI: 10.1007/s10577-005-0994-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Telomerase contains at least two essential components: the telomerase reverse transcriptase (TERT), and the telomerase RNA, which provides the template for the reverse transcription of new telomere DNA by TERT. Loss of telomerase enzymatic function leads to a progressive attrition of telomeric sequence over time, eventually resulting in the disappearance of detectable telomeric DNA and the emergence of chromosome end-to-end fusions, followed by growth arrest or cell death. Recently, the consequences of partial loss of telomerase function have revealed interesting dosage-dependent effects on telomere length and stability. In both mice and humans, hemizygosity for the telomerase RNA or TERT leads to an inability to maintain telomeres; in humans, this insufficiency can lead to diseases such as aplastic anaemia or dyskeratosis congenita. In the budding yeast S. cerevisiae, compound heterozygosity in different telomerase components also results in shortened telomeres. Thus, partial loss of telomerase function can result in a latent but measurable compromise in telomere length. These dosage-dependent effects illuminate a mechanism by which subtle heritable defects in genome integrity can eventually become pernicious.
Collapse
Affiliation(s)
- Lea Harrington
- Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 620 University Avenue, Suite 706, Toronto, Ontario M5G 2C1, Canada.
| |
Collapse
|
29
|
Swanberg SE, Delany ME. Differential expression of genes associated with telomere length homeostasis and oncogenesis in an avian model. Mech Ageing Dev 2005; 126:1060-70. [PMID: 15922407 DOI: 10.1016/j.mad.2005.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/26/2005] [Accepted: 03/28/2005] [Indexed: 11/28/2022]
Abstract
Telomere-binding proteins, their interaction partners and transcription factors play a prominent role in telomere maintenance and telomerase activation. We examined mRNA expression levels of tankyrase 1 and 2, TRF1 and 2, c-myc, TERT and TR in Gallus domesticus, the domestic chicken, by quantitative real-time PCR, establishing expression profiles for three contrasting cell systems: the pluripotent gastrula, differentiated embryo fibroblasts and transformed DT40 cells. All seven genes were up-regulated in DT40 cells compared to telomerase-negative CEFs and a majority of the genes were also up-regulated in the gastrula relative to CEFs. Surprisingly, we found TERT and TR transcripts in CEFs, albeit at low levels. TRF1 was down-regulated in the six CEF cultures by the time of culture growth arrest. A marked increase in the TRF2:TRF1 ratio occurred at or near senescence in all of the CEF cultures studied, with the most elevated ratio found in a short-lived culture in which TRF1 mRNA levels decreased two-fold and TRF2 levels increased 21-fold. This culture also showed highly reduced, degraded telomeres by Southern blot analysis. These data suggest that genes involved in telomere maintenance and telomerase induction are expressed differentially in pluripotent, differentiated and transformed cell systems.
Collapse
Affiliation(s)
- Susan E Swanberg
- Department of Animal Science, Meyer Hall, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
30
|
Michailidis G, Saretzki G, Hall J. Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts. Biochem Biophys Res Commun 2005; 335:240-6. [PMID: 16105549 DOI: 10.1016/j.bbrc.2005.07.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 07/16/2005] [Indexed: 10/25/2022]
Abstract
In this study, we compared the endogenous expression of genes encoding telomere regulating proteins in cultured chicken embryonic fibroblasts (CEFs) and 10-day-old chicken embryos. CEFs maintained in vitro senesced and senescence was accompanied by reduced telomere length, telomerase activity, and expression of the chicken (c) TRF1 gene. There was no change in TRF2 gene expression although the major TRF2 transcript identified in 10-day-old chicken embryos encoded a truncated TRF2 protein (TRF2'), containing an N-terminal dimerisation domain but lacking a myb-related DNA binding domain and nuclear localisation signal. Senescence of the CEFs in vitro was associated with the loss of the TRF2' transcript, indicative of a novel function for the encoded protein. Senescence was also coupled with decreased expression of RAD51, but increased RAD52 expression. These data support that RAD51 independent recombination mechanisms do not function in vitro to maintain chicken telomeres. To attempt to rescue the CEFs from replicative senescence, we stably transfected passage 3 CEFs with the human telomerase reverse transcriptase (hTERT) catalytic subunit. While hTERT expression was detected in the stable transfectants neither telomerase activity nor the stabilisation of telomere length was observed, and the transfectant cells senesced at the same passage number as the untransfected cells. These data indicate that the human TERT is incompatible with the avian telomere maintenance apparatus and suggest the functioning of a species specific telomere system in the avian.
Collapse
Affiliation(s)
- Georgios Michailidis
- Institute of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
31
|
Forsyth NR, Elder FFB, Shay JW, Wright WE. Lagomorphs (rabbits, pikas and hares) do not use telomere-directed replicative aging in vitro. Mech Ageing Dev 2005; 126:685-91. [PMID: 15888323 DOI: 10.1016/j.mad.2005.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 01/06/2005] [Accepted: 01/06/2005] [Indexed: 01/26/2023]
Abstract
Telomere shortening is used for replicative aging in primates and ungulates but not rodents. We examined telomere biology in rabbits to expand the comparative biology of telomere-directed replicative senescence within mammals. The order Lagomorpha consists of two families; Leporidae and Ochotonidae. We examined telomere biology in species representing three leporid genera (European White Rabbit, Black-tailed Jack Rabbit, and Swamp Rabbit) and the monotypic ochotonid genus (North American Pika). Of the leporids one species was a laboratory strain and the others were wild caught. The leporids neither exhibited cellular senescence after sustained periods in culture nor displayed detectable telomerase activity. Continued culture was possible because of their extremely long telomeric arrays. Immunofluorescence showed robust telomere signals at chromosome ends and significant internal chromosomal staining in some instances. Pika was unique in displaying endogenous telomerase activity throughout time in culture. These results show that it is unlikely that lagomorphs use telomere shortening and replicative senescence as a tumor protective mechanism.
Collapse
Affiliation(s)
- Nicholas R Forsyth
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, 75390-9039, USA
| | | | | | | |
Collapse
|
32
|
Davis T, Skinner JW, Faragher RGA, Jones CJ, Kipling D. Replicative senescence in sheep fibroblasts is a p53 dependent process. Exp Gerontol 2005; 40:17-26. [PMID: 15664728 DOI: 10.1016/j.exger.2004.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/06/2004] [Accepted: 09/13/2004] [Indexed: 11/26/2022]
Abstract
Studies on telomere and telomerase biology are fundamental to the understanding of human ageing, and age-related diseases such as cancer. However, human studies are hampered by the lack of fully reflective animal model systems. Here we describe basic studies of telomere length and telomerase activity in sheep tissues and cells. Terminal restriction fragment lengths from sheep tissues ranged from 9 to 23 kb, with telomerase activity present in testis but suppressed in somatic tissues. Sheep fibroblasts had a finite lifespan in culture, after which the cells entered senescence. During in vitro growth the mean terminal restriction fragment lengths decreased in size at a rate of 210 and 350 bp per population doubling (PD). Senescent skin fibroblasts had increased levels of p53 and p21WAF1 compared to young cells. Incubation of senescent cells with siRNA duplexes specific for p53 suppressed p53 expression and allowed the cells to re-enter the cell cycle. Five PDs beyond senescence the siRNA-treated cells reached a second proliferative barrier. This study shows that telomere biology in sheep is similar to that in humans, with senescence in sheep GM03550 fibroblasts being a telomere-driven, p53-(p21WAF1)-dependent process. Therefore sheep may represent an alternative model system for studying telomere biology, replicative senescence, and by implication human ageing.
Collapse
Affiliation(s)
- Terence Davis
- Department of Pathology, School of Medicine, University of Cardiff, Heath Park, Cardiff CF14 4XN, Wales, UK
| | | | | | | | | |
Collapse
|
33
|
The Amount of Telomeres and Telomerase Activity on Chicken Embryonic Cells During Developmental Stages. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2005. [DOI: 10.5187/jast.2005.47.2.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Blackburn EH. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 2005; 579:859-62. [PMID: 15680963 DOI: 10.1016/j.febslet.2004.11.036] [Citation(s) in RCA: 609] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 10/25/2004] [Accepted: 11/02/2004] [Indexed: 12/29/2022]
Abstract
The molecular features of telomeres and telomerase are conserved among most eukaryotes. How telomerase and telomeres function and how they interact to promote the chromosome-stabilizing properties of telomeres are discussed here.
Collapse
Affiliation(s)
- Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2200, USA.
| |
Collapse
|
35
|
Hall ME, Nasir L, Daunt F, Gault EA, Croxall JP, Wanless S, Monaghan P. Telomere loss in relation to age and early environment in long-lived birds. Proc Biol Sci 2004; 271:1571-6. [PMID: 15306302 PMCID: PMC1691772 DOI: 10.1098/rspb.2004.2768] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Shortening of telomeres, specific nucleotide repeats that cap eukaryotic chromosomes, is thought to play an important role in cellular and organismal senescence. We examined telomere dynamics in two long-lived seabirds, the European shag and the wandering albatross. Telomere length in blood cells declines between the chick stage and adulthood in both species. However, among adults, telomere length is not related to age. This is consistent with reports of most telomere loss occurring early in life in other vertebrates. Thus, caution must be used in estimating annual rates of telomere loss, as these are probably not constant with age. We also measured changes within individuals in the wild, using repeat samples taken from individual shags as chicks and adults. We found high inter-individual variation in the magnitude of telomere loss, much of which was explained by circumstances during growth. Individuals laying down high tissue mass for their size showed greater telomere shortening. Independently of this, individuals born late in the season showed more telomere loss. Early conditions, possibly through their effects on oxidative stress, appear to play an important role in telomere attrition and thus potentially in the longevity of individuals.
Collapse
Affiliation(s)
- Margaret E Hall
- Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Suzuki M, Hayashizaki Y. Mouse-centric comparative transcriptomics of protein coding and non-coding RNAs. Bioessays 2004; 26:833-43. [PMID: 15273986 DOI: 10.1002/bies.20084] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The largest transcriptome reported so far comprises 60,770 mouse full-length cDNA clones, and is an effective reference data set for comparative transcriptomics. The number of mouse cDNAs identified greatly exceeds the number of genes predicted from the sequenced human and mouse genomes. This is largely because of extensive alternative splicing and the presence of many non-coding RNAs (ncRNAs), which are difficult to predict from genomic sequences. Notably, ncRNAs are a major component of the transcriptomes of higher organisms, and many sense-antisense pairs have been identified. The ncRNAs function in a range of regulatory mechanisms for gene expression and other biological processes. They might also have contributed to the increased functional diversification of genomes during evolution. In this review, we discuss aspects of the transcriptome of various organisms in relation to the mouse data, in order to shed light on the regulatory mechanisms and physiological significance of these abundant RNAs.
Collapse
Affiliation(s)
- Masanori Suzuki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Kanagawa, Japan
| | | |
Collapse
|
37
|
Abstract
Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic chromosomes that function in stabilizing chromosomal end integrity. In vivo studies of somatic tissue of mammals and birds have shown a correlation between telomere length and organismal age within species, and correlations between telomere shortening rate and lifespan among species. This result presents the tantalizing possibility that telomere length could be used to provide much needed information on age, ageing and survival in natural populations where longitudinal studies are lacking. Here we review methods available for measuring telomere length and discuss the potential uses and limitations of telomeres as age and ageing estimators in the fields of vertebrate ecology, evolution and conservation.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK
| | | | | |
Collapse
|
38
|
Abstract
Since ageing is a universal human feature, it is not surprising that, from the Babylonian epic of Gilgamesh to Ponce de Leon seeking the "Fountain of Youth," countless people have dreamed of finding a way to avoid ageing, to no avail. Yet the search continues. In this review, we present one of the latest candidates: the enzyme telomerase, capable of elongating the tips of chromosomes, the telomeres. Research into the causes of cellular ageing established the telomeres as the molecular clock that counts the number of times cells divide and triggers cellular senescence. Herein, we review arguments both in favor and against the use of telomerase as an anti-ageing therapy. The importance of the telomeres in cellular ageing, the low or non-existent levels of telomerase activity in human tissues, and the ability of telomerase to immortalize human cells suggest that telomerase can be used as an anti-ageing therapy. On the other hand, recent experiments in mice have raised doubts whether telomerase affects organismal ageing. Results from human cells expressing telomerase have also suggested telomerase may promote tumorigenesis. We conclude that, though telomerase may be used in regenerative medicine and to treat specific diseases, it is unlikely to become a source of anti-ageing therapies.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Research Unit on Cellular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium.
| | | |
Collapse
|
39
|
Erdmann N, Liu Y, Harrington L. Distinct dosage requirements for the maintenance of long and short telomeres in mTert heterozygous mice. Proc Natl Acad Sci U S A 2004; 101:6080-5. [PMID: 15079066 PMCID: PMC395926 DOI: 10.1073/pnas.0401580101] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Indexed: 11/18/2022] Open
Abstract
Telomerase is a ribonucleoprotein containing an essential telomerase RNA template and telomerase reverse transcriptase (TERT) that maintains telomeres. The dosage requirements for mammalian TERT in telomere length homeostasis are not known, but are of importance in cellular senescence, stem cell renewal, and cancer. Here, we characterize telomere maintenance and function upon successive breeding of mice deficient in mTert. These studies reveal a unique dosage requirement for telomere length maintenance by TERT; despite haploinsufficiency for the maintenance of long telomeres, mTert+/- mice retain minimal telomere DNA at all chromosome ends and do not exhibit the infertility typical of telomerase-deficient strains. Unlike the long (>50 kbp) average telomere lengths of wild-type laboratory mice, mTert+/- animals mice possess short telomere lengths similar to humans and wild-derived mice. Unexpectedly, mTert+/- mice are ersatz carriers for genetic instability, because their mating led to accelerated genetic instability and infertility in null progeny. Thus, limiting TERT levels play a key role in the maintenance of genome integrity, with important ramifications for the maintenance of short telomeres in human cancer and aging.
Collapse
Affiliation(s)
- Natalie Erdmann
- Ontario Cancer Institute, 620 University Avenue, Toronto, ON, Canada M5G 2C1
| | | | | |
Collapse
|
40
|
Wei C, Price CM. Cell cycle localization, dimerization, and binding domain architecture of the telomere protein cPot1. Mol Cell Biol 2004; 24:2091-102. [PMID: 14966288 PMCID: PMC350568 DOI: 10.1128/mcb.24.5.2091-2102.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pot1 is a single-stranded-DNA-binding protein that recognizes telomeric G-strand DNA. It is essential for telomere capping in Saccharomyces pombe and regulates telomere length in humans. Human Pot1 also interacts with proteins that bind the duplex region of the telomeric tract. Thus, like Cdc13 from S. cerevisiae, Pot 1 may have multiple roles at the telomere. We show here that endogenous chicken Pot1 (cPot1) is present at telomeres during periods of the cell cycle when t loops are thought to be present. Since cPot1 can bind internal loops and directly adjacent DNA-binding sites, it is likely to fully coat and protect both G-strand overhangs and the displaced G strand of a t loop. The minimum binding site of cPot1 is double that of the S. pombe DNA-binding domain. Although cPot can self associate, dimerization is not required for DNA binding and hence does not explain the binding-site duplication. Instead, the DNA-binding domain appears to be extended to contain a second binding motif in addition to the conserved oligonucleotide-oligosaccharide (OB) fold present in other G-strand-binding proteins. This second motif could be another OB fold. Although dimerization is inefficient in vitro, it may be regulated in vivo and could promote association with other telomere proteins and/or telomere compaction.
Collapse
Affiliation(s)
- Chao Wei
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | |
Collapse
|
41
|
Rubin H. Promise and problems in relating cellular senescence in vitro to aging in vivo. Arch Gerontol Geriatr 2004; 34:275-86. [PMID: 14764330 DOI: 10.1016/s0167-4943(01)00221-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2001] [Revised: 11/06/2001] [Accepted: 11/08/2001] [Indexed: 12/21/2022]
Abstract
According to the 'Hayflick limit', human fetal fibroblasts have a uniform, limited replicative lifespan of about 50 population doublings in cell culture. This concept was extrapolated to diverse cells in the body. It seemed to decrease with the age of the cell donor and, as a form of cell senescence, was thought to underlie the aging process. More discriminating analysis, however, showed that the fibroblasts decayed in a stochastic manner from the time of their explantation, at a rate that increased with the number of population doublings in culture. There was no consistent relation to the age of the donor. Despite the contradictory evidence, the original version of the Hayflick limit retained its general acceptance. Cell senescence was attributed to the absence of telomerase in the fibroblasts, which resulted in shortening of telomeres at each division until they fell below a critical length needed for further division. However, it is well established that stem cells in renewing tissues undergo many more than 50 divisions in a lifetime, without apparent senescence. Contrary to early findings of no telomerase in most tissues, their stem cells retain telomerase and presumably telomere length despite many divisions in vivo. Massive accumulation of lipofuscin granules occurs under stress in long term crowded cultures, but the granules dissipate on subculture or neoplastic transformation. The overall results indicate a critical disjunction between cell senescence in vitro and aging in vivo. By contrast, cell culture has been useful in showing a need for telomere capping in maintaining cell stability and viability. It may also provide information about the biochemical mechanism of lipofuscin production.
Collapse
Affiliation(s)
- Harry Rubin
- Department of Molecular and Cell Biology and Virus Laboratory, Life Sciences Addition, University of California, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
42
|
Swanberg SE, Delany ME. Dynamics of telomere erosion in transformed and non-transformed avian cells in vitro. Cytogenet Genome Res 2004; 102:318-25. [PMID: 14970723 DOI: 10.1159/000075769] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 07/30/2003] [Indexed: 11/19/2022] Open
Abstract
Although vertebrate telomeres are highly conserved, telomere dynamics and telomerase profiles vary among species. The objective of the present study was to examine telomerase activity and telomere length profiles of transformed and non-transformed avian cells in vitro. Non-transformed chicken embryo fibroblasts (CEFs) showed little or no telomerase activity from the earliest passages through senescence. Unexpectedly, a single culture of particularly long-lived senescent CEFs showed telomerase activity after over 250 days in culture. Transformed avian lines (six chicken, two quail and one turkey) and tumor samples (two chicken) exhibited telomerase activity. Telomere length profiles of non-transformed CEF cultures derived from individual embryos of an inbred line (UCD 003) exhibited cycles of shortening and lengthening with a substantial net loss of telomeric DNA by senescence. The telomere length profiles of several transformed cell lines resembled telomere length profiles of senescent CEFs in that they exhibited little of the typical smear of terminal restriction fragments (TRFs) suggesting that these transformed cells may possess a reduced amount of telomeric DNA. These results show that avian telomerase activity profiles are consistent with the telomerase activity profiles of human primary and transformed cells. Further, monitoring of telomere lengths of primary cells provides evidence for a dynamic series of changes over the lifespan of any specific cell culture ultimately resulting in net telomeric DNA loss by senescence.
Collapse
Affiliation(s)
- S E Swanberg
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
43
|
Tan M, Wei C, Price CM. The telomeric protein Rap1 is conserved in vertebrates and is expressed from a bidirectional promoter positioned between the Rap1 and KARS genes. Gene 2004; 323:1-10. [PMID: 14659874 DOI: 10.1016/j.gene.2003.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have identified the chicken homolog of the mammalian telomere protein repression and activation protein 1 (Rap1). Although cRap1 has only 36% sequence identity to hRap1, it contains the same conserved BRCA1 C-terminal (BRCT), Myb and Rap C-terminus (RCT) domains. Two-hybrid analysis and immunolocalization experiments revealed that cRap1 interacts with the telomere-binding protein telomeric repeat binding factor (TRF)2 and localizes to telomeres. Thus, despite considerable sequence divergence, the identity and overall domain structure of telomere-associated proteins is conserved in vertebrates. Analysis of the cRap1 genomic locus revealed that the cRap1 gene lies immediately adjacent to the cKARS (lysyl-tRNA synthetase) gene with the two genes in a head-to-head orientation separated by only 57 nt. This same organization is conserved at the human Rap1-KARS locus. When 5' regions of the cRap1 and cKARS genes were tested for promoter activity, the promoters of both genes were found to lie in or near the intergenic spacer. The two promoters lack TATA boxes but appear to have downstream promoter elements (DPEs). Analysis of human Rap1 and KARS expressed sequence tags (ESTs) indicated that this localization of TATA-less promoters to the intergenic spacer is a conserved feature of the Rap1-KARS locus.
Collapse
Affiliation(s)
- Ming Tan
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati Medical Center, PO Box 524, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
44
|
Akagi T, Sasai K, Hanafusa H. Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation. Proc Natl Acad Sci U S A 2003; 100:13567-72. [PMID: 14597713 PMCID: PMC263854 DOI: 10.1073/pnas.1834876100] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cells are known to be more refractory than rodent cells against oncogenic transformation in vitro. To date, the molecular mechanisms underlying such resistance remain largely unknown. The combination of simian virus 40 early region and H-Ras V12 has been effective for transformation of rat embryo fibroblasts, but not for human cells. However, the additional ectopic expression of the telomerase catalytic subunit (hTERT) was reported to be capable of causing transformation of normal human cells. In this study, however, we demonstrate that the combined expression of the above-mentioned three genetic elements is not always sufficient to transform normal human diploid fibroblasts (HDF). Although the expression and function of these introduced genetic elements were essentially the same, among four HDF, TIG-1 and TIG-3 were resistant to transformation. The other two (BJ and IMR-90) showed transformed phenotypes, but they were much restricted compared with rat embryo fibroblasts in expressing simian virus 40 early region and H-Ras V12. In correlation with these phenotypes, TIG-1 and TIG-3 remained diploid after the introduction of these genetic elements, whereas BJ and IMR-90 became highly aneuploid. These results strongly suggest that the lack of telomerase is not the sole reason for the refractory nature of HDF against transformation and that normal human cells have still undefined intrinsic mechanisms rendering them resistant to oncogenic transformation.
Collapse
Affiliation(s)
- Tsuyoshi Akagi
- Laboratory of Molecular Oncology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | |
Collapse
|
45
|
Haussmann MF, Winkler DW, O'Reilly KM, Huntington CE, Nisbet ICT, Vleck CM. Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc Biol Sci 2003; 270:1387-92. [PMID: 12965030 PMCID: PMC1691385 DOI: 10.1098/rspb.2003.2385] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We know very little about physiological constraints on the evolution of life-history traits in general, and, in particular, about physiological and molecular adjustments that accompany the evolution of variation in lifespan. Identifying mechanisms that underlie adaptive variation in lifespan should provide insight into the evolution of trade-offs between lifespan and other life-history traits. Telomeres, the DNA caps at the ends of linear chromosomes, usually shorten as animals age, but whether telomere rate of change is associated with lifespan is unknown. We measured telomere length in erythrocytes from five bird species with markedly different lifespans. Species with shorter lifespans lost more telomeric repeats with age than species with longer lifespans. A similar correlation is seen in mammals. Furthermore, telomeres did not shorten with age in Leach's storm-petrels, an extremely long-lived bird, but actually lengthened. This novel finding suggests that regulation of telomere length is associated not only with cellular replicative lifespan, but also with organismal lifespan, and that very long-lived organisms have escaped entirely any telomeric constraint on cellular replicative lifespan.
Collapse
Affiliation(s)
- Mark F Haussmann
- Department of Zoology and Genetics, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Vleck CM, Haussmann MF, Vleck D. The natural history of telomeres: tools for aging animals and exploring the aging process. Exp Gerontol 2003; 38:791-5. [PMID: 12855289 DOI: 10.1016/s0531-5565(03)00110-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have been exploring the use of telomere length as a technique to age animals. If telomere restriction fragments (TRFs) shorten predictably with age in a particular tissue, then measurement of TRFs will allow estimation of ages of animals when age cannot be measured directly. This would be particularly useful in population studies where tissue samples can be collected, but age of individuals or age structure of the population is otherwise unknown. We have demonstrated that rate of change in length of TRFs from blood cells can be used to estimate age in a number of avian species. Calibration of this telomere 'clock' using known-age individuals has led to new questions regarding the importance of TRF shortening in aging and its evolution in animals with differing life spans. Our current data show a tight correlation between telomere rate of change (TROC) and maximum life span in birds, with the longest living species having the slowest TROC. In contrast, absolute length of TRFs is not correlated with maximum life span. Very long-lived Leach's storm-petrels have telomeres that in fact lengthen with age! These data suggest that in the longest-lived organisms, cellular replicative life span may not be constrained by shortening telomeres. Published data show that TRFs shorten more slowly in long-lived mammals than in short-lived ones, although for birds and mammals of similar life span, telomere shortening is faster in mammals than in birds. This corresponds with the relatively greater longevity in birds than in mammals.
Collapse
Affiliation(s)
- Carol M Vleck
- Department of Zoology and Genetics, Iowa State University, Ames, IA 50014, USA.
| | | | | |
Collapse
|
47
|
Delany ME, Daniels LM, Swanberg SE, Taylor HA. Telomeres in the chicken: genome stability and chromosome ends. Poult Sci 2003; 82:917-26. [PMID: 12817446 DOI: 10.1093/ps/82.6.917] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomeres are the complex nucleoprotein structures at the termini of linear chromosomes. Telomeric DNA consists of a highly conserved hexanucleotide arranged in tandem repeats. Telomerase, a ribonucleoprotein of the reverse transcriptase family, specifies the sequence of telomeric DNA and maintains telomere array length. Numerous studies in model organisms established the significance of telomere structure and function in regulating genome stability, cellular aging, and oncogenesis. Our overall research objectives are to understand the organization of the telomere arrays in chicken in the context of the unusual organization and specialized features of this higher vertebrate genome (which include a compact genome, numerous microchromosomes, and high recombination rate) and to elucidate the role telomeres play in genome stability impacting cell function and life span. Recent studies found that the chicken genome contains three overlapping size classes of telomere arrays that differ in location and age-related stability: Class I 0.5 to 10 kb, Class II 10 to 40 kb, and Class III 40 kb to 2 Mb. Some notable features of chicken telomere biology are that the chicken genome contains ten times more telomeric DNA than the human genome and the Class III telomere arrays are the largest described for any vertebrate species. In vivo, chicken telomeres (Class II) shorten in an age-related fashion and telomerase activity is high in early stage embryos and developing organs but down-regulates during late embryogenesis or postnatally in most somatic tissues. In vitro, chicken cells down-regulate telomerase activity unless transformed. Knowledge of chicken telomere biology contributes information relevant to present and future biotechnology applications of chickens in vivo and chicken cells in vitro.
Collapse
Affiliation(s)
- M E Delany
- Department of Animal Science, University of California, One Shields Ave., Davis, California 95616, USA.
| | | | | | | |
Collapse
|
48
|
Bousman S, Schneider G, Shampay J. Telomerase activity is widespread in adult somatic tissues of Xenopus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 295:82-6. [PMID: 12548544 DOI: 10.1002/jez.b.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chromosome ends, or telomeres, are maintained by telomerase. Work in selected vertebrates has implied that telomerase is often repressed in differentiated cells, and telomere erosion results in senescence of cultured cells. Tissues from mature Xenopus laevis frogs were examined for telomerase enzymatic activity with the TRAP (telomere repeat amplification protocol) assay. All tissues contained active telomerase, most abundantly in testis, spleen, liver, and embryos; activity was less abundant but still readily detectable with < 100 ng of protein extract from brain and muscle tissues. Activity in somatic tissues of the diploid Xenopus tropicalis suggests this condition is not limited to the polyploid members of the genus, and that extensive differentiation-linked telomerase repression does not occur in Xenopus.
Collapse
Affiliation(s)
- Sylvia Bousman
- Kleinholz Biological Laboratories, Department of Biology, Reed College, Portland, Oregon 97202, USA
| | | | | |
Collapse
|
49
|
Kim H, Farris J, Christman SA, Kong BW, Foster LK, O'Grady SM, Foster DN. Events in the immortalizing process of primary human mammary epithelial cells by the catalytic subunit of human telomerase. Biochem J 2002; 365:765-72. [PMID: 11978176 PMCID: PMC1222721 DOI: 10.1042/bj20011848] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 04/12/2002] [Accepted: 04/29/2002] [Indexed: 11/17/2022]
Abstract
The in vitro immortalization of primary human mammary epithelial (HME) cells solely by the exogenous introduction of the catalytic subunit of human telomerase (hTERT) has been achieved. Early passage hTERT-transfected HME (T-HME) cells continuously decreased the length and density of telomeres even in the presence of telomerase activity, with a significant number of cells staining positive for senescence-associated beta-galactosidase (SA-beta-gal). Subsequently, with the increase in cell passages, the copy number of the exogenously transfected hTERT gene and the percentage of SA-beta-gal positive cells were found to decrease. Eventually, a single copy of the exogenous hTERT gene was observed in the relatively later passage T-HME cells in which telomere length was elongated and stabilized without obvious activation of endogenous hTERT and c-Myc expression. In T-HME cells, the expression of two p53 regulated genes p21(WAF) and HDM2 increased (as in primary senescent HME cells), and was found to be further elevated as the function of p53 was activated by treatment with DNA-damaging agents. p16(INK4a) was shown to be significantly higher in the primary senescent HME and the early passage T-HME cells when compared with the primary presenescent HME cells, with a dramatic repression of p16(INK4a) observed in the later passage T-HME cells. In addition, the expression of E2F1 and its transcription factor activity were found to be significantly higher in the later passage T-HME cells when compared with the earlier passage T-HME cells. Together, our results indicate that in vitro immortalization in HME cells may require the activation of the function of telomerase and other genetic alterations such as the spontaneous loss of p16(INK4a) expression.
Collapse
Affiliation(s)
- Hyunggee Kim
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, U.S.A
| | | | | | | | | | | | | |
Collapse
|
50
|
Rubin H. The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol 2002; 20:675-81. [PMID: 12089551 DOI: 10.1038/nbt0702-675] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cultured human fibroblasts undergo senescence (a loss of replicative capacity) after a uniform, fixed number of approximately 50 population doublings, commonly termed the Hayflick limit. It has been long known from clonal and other quantitative studies, however, that cells decline in replicative capacity from the time of explantation and do so in a stochastic manner, with a half-life of only approximately 8 doublings. The apparent 50-cell doubling limit reflects the expansive propagation of the last surviving clone. The relevance of either figure to survival of cells in the body is questionable, given that stem cells in some renewing tissues undergo >1,000 divisions in a lifetime with no morphological sign of senescence. Oddly enough, these observations have had little if any effect on general acceptance of the Hayflick limit in its original form. The absence of telomerase in cultured human cells and the shortening of telomeres at each population doubling have suggested that telomere length acts as a mitotic clock that accounts for their limited lifespan. This concept assumed an iconic character with the report that ectopic expression of telomerase by a vector greatly extended the lifespan of human cells. That something similar might occur in vivo seemed consistent with initial reports that most human somatic tissues lack telomerase activity. More careful study, however, has revealed telomerase activity in stem cells and some dividing transit cells of many renewing tissues and even in dividing myocytes of repairing cardiac muscle. It now seems likely that telomerase is active in vivo where and when it is needed to maintain tissue integrity. Caution is recommended in applying telomerase inhibition to kill telomerase-expressing cancer cells, because it would probably damage stem cells in essential organs and even increase the likelihood of secondary cancers. The risk may be especially high in sun-exposed skin, where there are usually thousands of p53-mutant clones of keratinocytes predisposed to cancer.
Collapse
Affiliation(s)
- Harry Rubin
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, CA 94720-3200, USA.
| |
Collapse
|