1
|
Zahir A, Okorie PA, Nwobasi VN, David EI, Nwankwegu RO, Azi F. Harnessing Microbial Signal Transduction Systems in Natural and Synthetic Consortia for Biotechnological Applications. Biotechnol Appl Biochem 2024. [PMID: 39740178 DOI: 10.1002/bab.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/24/2024] [Indexed: 01/02/2025]
Abstract
Signal transduction is crucial for communication and cellular response in microbial communities. Consortia rely on it for effective communication, responding to changing environmental conditions, establishing community structures, and performing collective behaviors. Microbial signal transduction can be through quorum sensing (QS), two-component signal transduction systems, biofilm formation, nutrient sensing, chemotaxis, horizontal gene transfer stress response, and so forth. The consortium uses small signaling molecules in QS to regulate gene expression and coordinate intercellular communication and behaviors. Biofilm formation allows cells to adhere and aggregate, promoting species interactions and environmental stress resistance. Chemotaxis enables directional movement toward or away from chemical gradients, promoting efficient resource utilization and community organization within the consortium. In recent years, synthetic microbial consortia have gained attention for their potential applications in biotechnology and bioremediation. Understanding signal transduction in natural and synthetic microbial consortia is important for gaining insights into community dynamics, evolution, and ecological function. It can provide strategies for biotechnological innovation for enhancing biosensors, biodegradation, bioenergy efficiency, and waste reduction. This review provides compelling insight that will advance our understanding of microbial signal transduction dynamics and its role in orchestrating microbial interactions, which facilitate coordination, cooperation, gene expression, resource allocation, and trigger specific responses that determine community success.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Department of Food Science and Technology, Faculty of Veterinary Sciences, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Peter A Okorie
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Veronica N Nwobasi
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Esther I David
- Department of Home Economics, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Rita O Nwankwegu
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
2
|
Dooley D, Ryu S, Giannone RJ, Edwards J, Dien BS, Slininger PJ, Trinh CT. Expanded genome and proteome reallocation in a novel, robust Bacillus coagulans strain capable of utilizing pentose and hexose sugars. mSystems 2024; 9:e0095224. [PMID: 39377583 PMCID: PMC11575207 DOI: 10.1128/msystems.00952-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Bacillus coagulans, a Gram-positive thermophilic bacterium, is recognized for its probiotic properties and recent development as a microbial cell factory. Despite its importance for biotechnological applications, the current understanding of B. coagulans' robustness is limited, especially for undomesticated strains. To fill this knowledge gap, we characterized the metabolic capability and performed functional genomics and systems analysis of a novel, robust strain, B. coagulans B-768. Genome sequencing revealed that B-768 has the largest B. coagulans genome known to date (3.94 Mbp), about 0.63 Mbp larger than the average genome of sequenced B. coagulans strains, with expanded carbohydrate metabolism and mobilome. Functional genomics identified a well-equipped genetic portfolio for utilizing a wide range of C5 (xylose, arabinose), C6 (glucose, mannose, galactose), and C12 (cellobiose) sugars present in biomass hydrolysates, which was validated experimentally. For growth on individual xylose and glucose, the dominant sugars in biomass hydrolysates, B-768 exhibited distinct phenotypes and proteome profiles. Faster growth and glucose uptake rates resulted in lactate overflow metabolism, which makes B. coagulans a lactate overproducer; however, slower growth and xylose uptake diminished overflow metabolism due to the high energy demand for sugar assimilation. Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) made up 60%-65% of the measured proteomes but were allocated differently when growing on xylose and glucose. The trade-off in proteome reallocation, with high investment in COG-C over COG-G, explains the xylose growth phenotype with significant upregulation of xylose metabolism, pyruvate metabolism, and tricarboxylic acid (TCA) cycle. Strain B-768 tolerates and effectively utilizes inhibitory biomass hydrolysates containing mixed sugars and exhibits hierarchical sugar utilization with glucose as the preferential substrate.IMPORTANCEThe robustness of B. coagulans makes it a valuable microorganism for biotechnology applications; yet, this phenotype is not well understood at the cellular level. Through phenotypic characterization and systems analysis, this study elucidates the functional genomics and robustness of a novel, undomesticated strain, B. coagulans B-768, capable of utilizing inhibitory switchgrass biomass hydrolysates. The genome of B-768, enriched with carbohydrate metabolism genes, demonstrates high regulatory capacity. The coordination of proteome reallocation in Carbohydrate Transport and Metabolism (COG-G), Translation (COG-J), and Energy Conversion and Production (COG-C) is critical for effective cell growth, sugar utilization, and lactate production via overflow metabolism. Overall, B-768 is a novel, robust, and promising B. coagulans strain that can be harnessed as a microbial biomanufacturing platform to produce chemicals and fuels from biomass hydrolysates.
Collapse
Affiliation(s)
- David Dooley
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| | - Richard J Giannone
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jackson Edwards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Bruce S Dien
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Patricia J Slininger
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Bioenergy Research Unit, Peoria, Illinois, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA
| |
Collapse
|
3
|
O'Connor MJ, Bartler AV, Ho KC, Zhang K, Casas Fuentes RJ, Melnick BA, Huffman KN, Hong SJ, Galiano RD. Understanding Staphylococcus aureus in hyperglycaemia: A review of virulence factor and metabolic adaptations. Wound Repair Regen 2024; 32:661-670. [PMID: 38853489 DOI: 10.1111/wrr.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
Staphylococcus aureus is one of the most commonly detected bacteria in diabetic skin and soft tissue infections. The incidence and severity of skin and soft tissue infections are higher in patients with diabetes, indicating a potentiating mechanism of hyperglycaemia and infection. The goal of this review is to explore the metabolic and virulence factor adaptations of S. aureus under hyperglycaemic conditions. Primary data from identified studies were included and summarised in this paper. Understanding the nexus of hyperglycaemia, metabolism, and virulence factors provides insights into the complexity of diabetic skin and soft tissue infections attributed to S. aureus.
Collapse
Affiliation(s)
- Madeline J O'Connor
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Creighton University School of Medicine, Phoenix, Arizona, USA
| | - Angelica V Bartler
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly C Ho
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenneth Zhang
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rolando J Casas Fuentes
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley A Melnick
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | - Kristin N Huffman
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seok Jong Hong
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Galiano
- Division of Plastic and Reconstructive Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Gasser C, Faurie JM, Rul F. Regulation of lactose, glucose and sucrose metabolisms in S. thermophilus. Food Microbiol 2024; 121:104487. [PMID: 38637064 DOI: 10.1016/j.fm.2024.104487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 04/20/2024]
Abstract
Streptococcus thermophilus is a bacterium widely used in the production of yogurts and cheeses, where it efficiently ferments lactose, the saccharide naturally present in milk. It is also employed as a starter in dairy- or plant-based fermented foods that contain saccharides other than lactose (e.g., sucrose, glucose). However, little is known about how saccharide use is regulated, in particular when saccharides are mixed. Here, we determine the effect of the 5 sugars that S. thermophilus is able to use, at different concentration and when they are mixed on the promoter activities of the C-metabolism genes. Using a transcriptional fusion approach, we discovered that lactose and glucose modulated the activity of the lacS and scrA promoters in a concentration-dependent manner. When mixed with lactose, glucose also repressed the two promoter activities; when mixed with sucrose, lactose still repressed scrA promoter activity. We determined that catabolite control protein A (CcpA) played a key role in these dynamics. We also showed that promoter activity was linked with glycolytic flux, which varied depending on saccharide type and concentration. Overall, this study identified key mechanisms in carbohydrate metabolism - autoregulation and partial hierarchical control - and demonstrated that they are partly mediated by CcpA.
Collapse
Affiliation(s)
- C Gasser
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France; Danone Nutricia Research, Avenue de la Vauve, 91120, Palaiseau, France; Yeasty, 4 rue Pierre Fontaine Génopole, 91000, Évry Courcouronnes, France
| | - J M Faurie
- Danone Nutricia Research, Avenue de la Vauve, 91120, Palaiseau, France; Procelys by Lesaffre, 103 Rue Jean Jaurès, 94704, Maisons-Alfort Cedex, France
| | - F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Li S, Zhou Y, Yan Y, Qin Y, Weng Q, Sun L. Structure-Based Virtual Screening, ADMET Properties Prediction and Molecular Dynamics Studies Reveal Potential Inhibitors of Mycoplasma pneumoniae HPrK/P. Life (Basel) 2024; 14:657. [PMID: 38929642 PMCID: PMC11204831 DOI: 10.3390/life14060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Mycoplasma pneumoniae pneumonia (MPP) is a frequent cause of community-acquired pneumonia (CAP) in children. The incidence of childhood pneumonia caused by M. pneumoniae infection has been rapidly increasing worldwide. M. pneumoniae is naturally resistant to beta-lactam antibiotics due to its lack of a cell wall. Macrolides and related antibiotics are considered the optimal drugs for treating M. pneumoniae infection. However, clinical resistance to macrolides has become a global concern in recent years. Therefore, it is imperative to urgently identify new targets and develop new anti-M. pneumoniae drugs to treat MMP. Previous studies have shown that deficiencies in HPrK/P kinase or phosphorylase activity can seriously affect carbon metabolism, growth, morphology, and other cellular functions of M. pneumoniae. To identify potential drug development targets against M. pneumoniae, this study analyzed the sequence homology and 3D structure alignment of M. pneumoniae HPrK/P. Through sequence and structure analysis, we found that HPrK/P lacks homologous proteins in the human, while its functional motifs are highly conserved in bacteria. This renders it a promising candidate for drug development. Structure-based virtual screening was then used to discover potential inhibitors among 2614 FDA-approved drugs and 948 bioactive small molecules for M. pneumoniae HPrK/P. Finally, we identified three candidate drugs (Folic acid, Protokylol and Gluconolactone) as potential HPrK/P inhibitors through molecular docking, molecular dynamics (MDs) simulations, and ADMET predictions. These drugs offer new strategies for the treatment of MPP.
Collapse
Affiliation(s)
- Shen Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Ying Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Yujuan Yan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Yinying Qin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Qilu Weng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
6
|
Arnold ND, Garbe D, Brück TB. Proteomic and Transcriptomic Analyses to Decipher the Chitinolytic Response of Jeongeupia spp. Mar Drugs 2023; 21:448. [PMID: 37623729 PMCID: PMC10455584 DOI: 10.3390/md21080448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and associated enzyme systems are essential for the advancement of biotechnological chitin valorization. Through combined investigation of the chitin-induced secretome with differential proteomic and transcriptomic analyses, a holistic system biology approach has been applied to unravel the chitin response mechanisms in the Gram-negative Jeongeupia wiesaeckerbachi. Hereby, the majority of the genome-encoded chitinolytic machinery, consisting of various glycoside hydrolases and a lytic polysaccharide monooxygenase, could be detected extracellularly. Intracellular proteomics revealed a distinct translation pattern with significant upregulation of glucosamine transport, metabolism, and chemotaxis-associated proteins. While the differential transcriptomic results suggested the overall recruitment of more genes during chitin metabolism compared to that of glucose, the detected protein-mRNA correlation was low. As one of the first studies of its kind, the involvement of over 350 unique enzymes and 570 unique genes in the catabolic chitin response of a Gram-negative bacterium could be identified through a three-way systems biology approach. Based on the cumulative data, a holistic model for the chitinolytic machinery of Jeongeupia spp. is proposed.
Collapse
Affiliation(s)
| | | | - Thomas B. Brück
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Werner-Siemens Chair for Synthetic Biotechnology (WSSB), Lichtenbergstr. 4, 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
7
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
8
|
Edelstein IA. Mycoplasma pneumoniae – modern data on the structure, molecular biology and epidemiology of the pathogen. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2023; 25:332-349. [DOI: 10.36488/cmac.2023.4.332-349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Mycoplasma pneumoniae is a common etiologic agent of respiratory tract infections and community-acquired pneumonia (CAP) in children and adults. Recently, much new data on this pathogen, its molecular biology, cytoadherence and epidemiology have been accumulated. This review describes in detail the features of the microorganism and the pathogenesis of the diseases caused, clinical manifestations, provides data on the epidemiology of the incidence of respiratory mycoplasmosis and CAP caused by this microorganism in the world, discusses the issues of asymptomatic carriage, considers the problems of laboratory diagnosis, antibiotic therapy and antibiotic resistance of the pathogen.
Collapse
|
9
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
10
|
Overview of protein phosphorylation in bacteria with a main focus on unusual protein kinases in Bacillus subtilis. Res Microbiol 2021; 172:103871. [PMID: 34500011 DOI: 10.1016/j.resmic.2021.103871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022]
Abstract
Protein phosphorylation is a post-translational modification that affects protein activity through the addition of a phosphate moiety by protein kinases or phosphotransferases. It occurs in all life forms. In addition to Hanks kinases found also in eukaryotes, bacteria encode membrane histidine kinases that, with their cognate response regulator, constitute two-component systems and phosphotransferases that phosphorylate proteins involved in sugar utilization on histidine and cysteine residues. In addition, they encode BY-kinases and arginine kinases that phosphorylate protein specifically on tyrosine and arginine residues respectively. They also possess unusual bacterial protein kinases illustrated here by examples from Bacillus subtilis.
Collapse
|
11
|
Rudra P, Boyd JM. Metabolic control of virulence factor production in Staphylococcus aureus. Curr Opin Microbiol 2020; 55:81-87. [PMID: 32388086 DOI: 10.1016/j.mib.2020.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
As investigators decipher the underlining mechanisms of Staphylococcus aureus pathogenesis, it is becoming apparent that perturbations in central metabolism alter virulence factor production and infection outcomes. It is also evident that S. aureus has the ability to metabolically adapt to improve colonization and overcome challenges imparted by the immune system. Altered metabolite pools modify virulence factor production suggesting that proper functioning of a core metabolic network is necessary for successful niche colonization and pathogenesis. Herein we discuss four examples of transcriptional regulators that monitor metabolic status. These regulatory systems sense perturbations in the metabolic network and respond by altering the transcription of genes utilized for central metabolism, energy generation and pathogenesis.
Collapse
Affiliation(s)
- Paulami Rudra
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
12
|
Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci 2020; 77:395-413. [PMID: 31768608 PMCID: PMC7015805 DOI: 10.1007/s00018-019-03377-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed 'reverse CCR' (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.
Collapse
Affiliation(s)
- Heejoon Park
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - S Lee McGill
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Adrienne D Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
13
|
Wang X, Chen Z, Feng H, Chen X, Wei L. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis. Microb Cell Fact 2019; 18:141. [PMID: 31426791 PMCID: PMC6699124 DOI: 10.1186/s12934-019-1176-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus subtilis 916 has been identified as an effective biocontrol agent against Rhizoctonia solani, the causal pathogen of rice sheath blight, under greenhouse and field conditions. HPLC analysis showed that surfactin, a member of the lipopeptide family produced by B. subtilis, was the major antimicrobial substance. RESULTS Previously, we obtained a mutant strain of B. subtilis 916, Bs-H74, which produced significantly more surfactin than the wild type and presented 10% stronger inhibitory activity against R. solani. To explore the molecular mechanism underlying the higher surfactin productivity in the mutant, high-throughput proteomic analysis was carried out to analyze the differential protein expression. Our results showed that several differentially expressed proteins are involved in OppA, DegU and Carbon Catabolite Repression (CCR) regulatory pathways, which could be positively or negatively associated with surfactin biosynthesis. At both transcriptional and translational levels, we suggested that OppA may play a key role in surfactin synthesis regulation. Based on the above findings, we proposed the hypothesis that a point mutation in the oppA gene may lead to changes in oligopeptides acquisition in B. subtilis, and then the changed oligopeptides may activate or suppress the global regulatory protein, CcpA in the CCR pathway, and ComA and DegU may indirectly regulate surfactin synthesis in Bs-H74. To further explore the regulatory mechanisms in Bs-H74, metabolomics analysis was performed in this study. Interestingly, only 16 metabolites showed changes in abundance in Bs-H74 compared to Bs-916. Neohesperidin, a type of natural flavanone glycosides from citrus with a range of biological activities, increased by 18 times over the wild type Bs-916. This result implied exciting findings in regulatory mechanisms by OppA protein. CONCLUSIONS In summary, this study has revealed the mechanisms underlying the improved antagonistic property with increased surfactin production in Bs-H74 at the gene, protein and metabolic levels, which may help to comprehend the map of the regulatory networks in B. subtilis. Findings from our work have provided a solid physical and theoretical basis for practically applying metabolic and genetic engineering to achieve improved and high-yielding biocontrol strains.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Feng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
14
|
Li RF, Cui P, Wei PZ, Liu XY, Tang JL, Lu GT. HprK Xcc is a serine kinase that regulates virulence in the Gram-negative phytopathogen Xanthomonas campestris. Environ Microbiol 2019; 21:4504-4520. [PMID: 31301270 PMCID: PMC6916182 DOI: 10.1111/1462-2920.14740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/28/2022]
Abstract
The HprK serine kinase is a component of the phosphoenolpyruvate phosphotransferase system (PTS) of bacteria that generally regulates catabolite repression through phosphorylation/dephosphorylation of the PTS protein PtsH at a conserved serine residue. However, many bacteria do not encode a complete PTS or even have an HprK homologue. Xanthomonas campestris pv. campestris (Xcc) is a pathogen that cause black rot disease in crucifer plants and one of the few Gram-negative bacteria that encodes a homologue of HprK protein (herein HprKXcc ). To gain insight into the role of HprKXcc and other PTS-related components in Xcc we individually mutated and phenotypically assessed the resulting strains. Deletion of hprK Xcc demonstrated its requirement for virulence and other diverse cellular processes associated including extracellular enzyme activity, extracellular-polysaccharide production and cell motility. Global transcriptome analyses revealed the HprKXcc had a broad regulatory role in Xcc. Additionally, through overexpression, double gene deletion and transcriptome analysis we demonstrated that hprK Xcc shares an epistatic relationship with ptsH. Furthermore, we demonstrate that HprKXcc is a functional serine kinase, which has the ability to phosphorylate PtsH. Taken together, the data illustrates the previously unappreciated global regulatory role of HprKXcc and previously uncharacterized PTS components that control virulence in this pathogen.
Collapse
Affiliation(s)
- Rui-Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ping Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Ping-Zhen Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xing-Yan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Guang-Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Galinier A. La répression catabolique ou comment les bactéries choisissent leurs sucres préférés. Med Sci (Paris) 2018; 34:531-539. [DOI: 10.1051/medsci/20183406012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La répression catabolique permet aux bactéries, mais aussi aux levures ou champignons, une utilisation préférentielle des sources de carbone. Ce phénomène se traduit par une croissance diauxique durant laquelle les bactéries assimilent d’abord les sources de carbone rapidement métabolisables, puis les sources de carbone non préférentielles. Divers mécanismes moléculaires sont responsables de la répression catabolique et contrôlent non seulement l’expression de gènes impliqués dans l’utilisation de sources de carbone alternatives, mais aussi l’expression de plusieurs gènes impliqués dans des processus cellulaires variés. Cette synthèse décrit les principaux mécanismes moléculaires retrouvés chez les entérobactéries et chez les firmicutes, ainsi que l’importance du système des phosphotransférases dans cette régulation.
Collapse
|
16
|
Galinier A, Deutscher J. Sophisticated Regulation of Transcriptional Factors by the Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. J Mol Biol 2017; 429:773-789. [PMID: 28202392 DOI: 10.1016/j.jmb.2017.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 11/16/2022]
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a carbohydrate transport and phosphorylation system present in bacteria of all different phyla and in archaea. It is usually composed of three proteins or protein complexes, enzyme I, HPr, and enzyme II, which are phosphorylated at histidine or cysteine residues. However, in many bacteria, HPr can also be phosphorylated at a serine residue. The PTS not only functions as a carbohydrate transporter but also regulates numerous cellular processes either by phosphorylating its target proteins or by interacting with them in a phosphorylation-dependent manner. The target proteins can be catabolic enzymes, transporters, and signal transduction proteins but are most frequently transcriptional regulators. In this review, we will describe how PTS components interact with or phosphorylate proteins to regulate directly or indirectly the activity of transcriptional repressors, activators, or antiterminators. We will briefly summarize the well-studied mechanism of carbon catabolite repression in firmicutes, where the transcriptional regulator catabolite control protein A needs to interact with seryl-phosphorylated HPr in order to be functional. We will present new results related to transcriptional activators and antiterminators containing specific PTS regulation domains, which are the phosphorylation targets for three different types of PTS components. Moreover, we will discuss how the phosphorylation level of the PTS components precisely regulates the activity of target transcriptional regulators or antiterminators, with or without PTS regulation domain, and how the availability of PTS substrates and thus the metabolic status of the cell are connected with various cellular processes, such as biofilm formation or virulence of certain pathogens.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UPR 9043, CNRS, Aix Marseille Université, IMM, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; Centre National de la Recherche Scientifique, UMR8261 (affiliated with the Univ. Paris Diderot, Sorbonne, Paris Cité), Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
17
|
Terakawa A, Natsume A, Okada A, Nishihata S, Kuse J, Tanaka K, Takenaka S, Ishikawa S, Yoshida KI. Bacillus subtilis 5'-nucleotidases with various functions and substrate specificities. BMC Microbiol 2016; 16:249. [PMID: 27784292 PMCID: PMC5080769 DOI: 10.1186/s12866-016-0866-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Escherichia coli, nagD, yrfG, yjjG, yieH, yigL, surE, and yfbR encode 5'-nucleotidases that hydrolyze the phosphate group of 5'-nucleotides. In Bacillus subtilis, genes encoding 5'-nucleotidase have remained to be identified. RESULTS We found that B. subtilis ycsE, araL, yutF, ysaA, and yqeG show suggestive similarities to nagD. Here, we expressed them in E. coli to purify the respective His6-tagged proteins. YcsE exhibited significant 5'-nucleotidase activity with a broader specificity, whereas the other four enzymes had rather weak but suggestive activities with various capacities and substrate specificities. In contrast, B. subtilis yktC shares high similarity with E. coli suhB encoding an inositol monophosphatase. YktC exhibited inositol monophosphatase activity as well as 5'-nucleotidase activity preferential for GMP and IMP. The ycsE, yktC, and yqeG genes are induced by oxidative stress and were dispensable, although yqeG was required to maintain normal growth on solid medium. In the presence of diamide, only mutants lacking yktC exhibited enhanced growth defects, whereas the other mutants without ycsE or yqeG did not. CONCLUSIONS Accordingly, in B. subtilis, at least YcsE and YktC acted as major 5'-nucleotidases and the four minor enzymes might function when the intracellular concentrations of substrates are sufficiently high. In addition, YktC is involved in resistance to oxidative stress caused by diamide, while YqeG is necessary for normal colony formation on solid medium.
Collapse
Affiliation(s)
- Ayako Terakawa
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Ayane Natsume
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Atsushi Okada
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shogo Nishihata
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Junko Kuse
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.,Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Ken-Ichi Yoshida
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan. .,Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
18
|
Sharma AK, Arora D, Singh LK, Gangwal A, Sajid A, Molle V, Singh Y, Nandicoori VK. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen. J Biol Chem 2016; 291:24215-24230. [PMID: 27758870 DOI: 10.1074/jbc.m116.754531] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events.
Collapse
Affiliation(s)
- Aditya K Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India.,the Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Delhi-110025, India
| | - Divya Arora
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Lalit K Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Aakriti Gangwal
- the Department of Zoology, University of Delhi Delhi-110007, India
| | - Andaleeb Sajid
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Virginie Molle
- the Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, Montpellier, France, and
| | - Yogendra Singh
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India, .,the Department of Zoology, University of Delhi Delhi-110007, India
| | - Vinay Kumar Nandicoori
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India,
| |
Collapse
|
19
|
Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium. Appl Environ Microbiol 2016; 82:6109-6119. [PMID: 27496775 DOI: 10.1128/aem.02128-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 02/02/2023] Open
Abstract
The discovery and exploitation of the prokaryotic adaptive immunity system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins have revolutionized genetic engineering. CRISPR-Cas tools have enabled extensive genome editing as well as efficient modulation of the transcriptional program in a multitude of organisms. Progress in the development of genetic engineering tools for the genus Clostridium has lagged behind that of many other prokaryotes, presenting the CRISPR-Cas technology an opportunity to resolve a long-existing issue. Here, we applied the Streptococcus pyogenes type II CRISPR-Cas9 (SpCRISPR-Cas9) system for genome editing in Clostridium acetobutylicum DSM792. We further explored the utility of the SpCRISPR-Cas9 machinery for gene-specific transcriptional repression. For proof-of-concept demonstration, a plasmid-encoded fluorescent protein gene was used for transcriptional repression in C. acetobutylicum Subsequently, we targeted the carbon catabolite repression (CCR) system of C. acetobutylicum through transcriptional repression of the hprK gene encoding HPr kinase/phosphorylase, leading to the coutilization of glucose and xylose, which are two abundant carbon sources from lignocellulosic feedstocks. Similar approaches based on SpCRISPR-Cas9 for genome editing and transcriptional repression were also demonstrated in Clostridium pasteurianum ATCC 6013. As such, this work lays a foundation for the derivation of clostridial strains for industrial purposes. IMPORTANCE After recognizing the industrial potential of Clostridium for decades, methods for the genetic manipulation of these anaerobic bacteria are still underdeveloped. This study reports the implementation of CRISPR-Cas technology for genome editing and transcriptional regulation in Clostridium acetobutylicum, which is arguably the most common industrial clostridial strain. The developed genetic tools enable simpler, more reliable, and more extensive derivation of C. acetobutylicum mutant strains for industrial purposes. Similar approaches were also demonstrated in Clostridium pasteurianum, another clostridial strain that is capable of utilizing glycerol as the carbon source for butanol fermentation, and therefore can be arguably applied in other clostridial strains.
Collapse
|
20
|
Linde M, Peterhoff D, Sterner R, Babinger P. Identification and Characterization of Heptaprenylglyceryl Phosphate Processing Enzymes in Bacillus subtilis. J Biol Chem 2016; 291:14861-70. [PMID: 27226549 DOI: 10.1074/jbc.m115.711994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
In Archaea, ether lipids play an essential role as the main building blocks of the cellular membrane. Recently, ether lipids have also been discovered in the domain of Bacteria, and the key enzymes that catalyze their synthesis, glycerol-1-phosphate dehydrogenase and heptaprenylglyceryl phosphate synthase, have been described. In Bacillales, heptaprenylglyceryl phosphate does not become linked to a second polyprenyl moiety like ether lipids in Archaea but is dephosphorylated and acetylated. Here, we report on the enzymes that catalyze these reactions. We enriched the phosphatase activity from a B. subtilis cell extract and suppose that dephosphorylation is catalyzed by the phosphatase PhoB or by any other phosphatase in an unspecific manner. By screening a B. subtilis knock-out library for deficiency in acetylation, the yvoF gene product was identified to be the acetyltransferase. The acetyl-CoA-dependent enzyme YvoF is a close relative of maltose O-acetyltransferase (MAT). Its catalytic properties were analyzed and compared with MAT. YvoF and MAT partially overlap in substrate and product range in vitro, but MAT is not able to complement the yvoF knock-out in vivo.
Collapse
Affiliation(s)
- Mona Linde
- From the Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - David Peterhoff
- From the Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Reinhard Sterner
- From the Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Patrick Babinger
- From the Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
21
|
Pompeo F, Foulquier E, Galinier A. Impact of Serine/Threonine Protein Kinases on the Regulation of Sporulation in Bacillus subtilis. Front Microbiol 2016; 7:568. [PMID: 27148245 PMCID: PMC4837961 DOI: 10.3389/fmicb.2016.00568] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 11/16/2022] Open
Abstract
Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and tyrosine. These protein kinases regulate different physiological processes in response to environmental modifications. For example, in response to nutritional stresses, the Gram-positive bacterium Bacillus subtilis can differentiate into an endospore; the initiation of sporulation is controlled by the master regulator Spo0A, which is activated by phosphorylation. Spo0A phosphorylation is carried out by a multi-component phosphorelay system. These phosphorylation events on histidine and aspartate residues are labile, highly dynamic and permit a temporal control of the sporulation initiation decision. More recently, another kind of phosphorylation, more stable yet still dynamic, on serine or threonine residues, was proposed to play a role in spore maintenance and spore revival. Kinases that perform these phosphorylation events mainly belong to the Hanks family and could regulate spore dormancy and spore germination. The aim of this mini review is to focus on the regulation of sporulation in B. subtilis by these serine and threonine phosphorylation events and the kinases catalyzing them.
Collapse
Affiliation(s)
- Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, CNRS, UMR 7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, CNRS, UMR 7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université Marseille, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, CNRS, UMR 7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université Marseille, France
| |
Collapse
|
22
|
Shi L, Pigeonneau N, Ventroux M, Derouiche A, Bidnenko V, Mijakovic I, Noirot-Gros MF. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk. Front Microbiol 2014; 5:538. [PMID: 25374563 PMCID: PMC4205851 DOI: 10.3389/fmicb.2014.00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis.
Collapse
Affiliation(s)
- Lei Shi
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Nathalie Pigeonneau
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France
| | - Magali Ventroux
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France
| | - Abderahmane Derouiche
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Vladimir Bidnenko
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Ivan Mijakovic
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | | |
Collapse
|
23
|
CcpA-mediated catabolite activation of the Bacillus subtilis ilv-leu operon and its negation by either CodY- or TnrA-mediated negative regulation. J Bacteriol 2014; 196:3793-806. [PMID: 25157083 DOI: 10.1128/jb.02055-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ilv-leu operon functions in the biosynthesis of branched-chain amino acids. It undergoes catabolite activation involving a promoter-proximal cre which is mediated by the complex of CcpA and P-Ser-HPr. This activation of ilv-leu expression is negatively regulated through CodY binding to a high-affinity site in the promoter region under amino acid-rich growth conditions, and it is negatively regulated through TnrA binding to the TnrA box under nitrogen-limited growth conditions. The CcpA-mediated catabolite activation of ilv-leu required a helix face-dependent interaction of the complex of CcpA and P-Ser-HPr with RNA polymerase and needed a 19-nucleotide region upstream of cre for full activation. DNase I footprinting indicated that CodY binding to the high-affinity site competitively prevented the binding of the complex of CcpA and P-Ser-HPr to cre. This CodY binding not only negated catabolite activation but also likely inhibited transcription initiation from the ilv-leu promoter. The footprinting also indicated that TnrA and the complex of CcpA and P-Ser-HPr simultaneously bound to the TnrA box and the cre site, respectively, which are 112 nucleotides apart; TnrA binding to its box was likely to induce DNA bending. This implied that interaction of TnrA bound to its box with the complex of CcpA and P-Ser-HPr bound to cre might negate catabolite activation, but TnrA bound to its box did not inhibit transcription initiation from the ilv-leu promoter. Moreover, this negation of catabolite activation by TnrA required a 26-nucleotide region downstream of the TnrA box.
Collapse
|
24
|
Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system. Antimicrob Agents Chemother 2013; 58:957-65. [PMID: 24277024 DOI: 10.1128/aac.01919-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are ubiquitous inhabitants of the gastrointestinal (GI) tract. However, antibiotic-resistant enterococci are also major causes of hospital-acquired infections. Enterococci are intrinsically resistant to cephalosporins, enabling growth to abnormally high densities in the GI tract in patients during cephalosporin therapy, thereby promoting dissemination to other sites where they cause infection. Despite its importance, many questions about the underlying basis for cephalosporin resistance remain. A specific two-component signaling system, composed of the CroS sensor kinase and its cognate response regulator (CroR), is required for cephalosporin resistance in Enterococcus faecalis, but little is known about the factors that control this signaling system to modulate resistance. To explore the signaling network in which CroR participates to influence cephalosporin resistance, we employed a protein fragment complementation assay to detect protein-protein interactions in E. faecalis cells, revealing a previously unknown association of CroR with the HPr protein of the phosphotransferase system (PTS) responsible for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses indicate that association with HPr restricts the ability of CroR to promote cephalosporin resistance and gene expression in a nutrient-dependent manner. Mutational analysis suggests that the interface used by HPr to associate with CroR is distinct from the interface used to associate with other cellular partners. Our results define a physical and functional connection between a critical nutrient-responsive signaling system (the PTS) and a two-component signaling system that drives antibiotic resistance in E. faecalis, and they suggest a general strategy by which bacteria can integrate their nutritional status with diverse environmental stimuli.
Collapse
|
25
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
26
|
Tsakraklides V, Shaw AJ, Miller BB, Hogsett DA, Herring CD. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:85. [PMID: 23181505 PMCID: PMC3526391 DOI: 10.1186/1754-6834-5-85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/25/2012] [Indexed: 02/20/2024]
Abstract
BACKGROUND The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol. RESULTS We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization. CONCLUSION Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.
Collapse
Affiliation(s)
| | - A Joe Shaw
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | - Bethany B Miller
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | - David A Hogsett
- Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
| | | |
Collapse
|
27
|
Himmel S, Zschiedrich CP, Becker S, Hsiao HH, Wolff S, Diethmaier C, Urlaub H, Lee D, Griesinger C, Stülke J. Determinants of interaction specificity of the Bacillus subtilis GlcT antitermination protein: functionality and phosphorylation specificity depend on the arrangement of the regulatory domains. J Biol Chem 2012; 287:27731-42. [PMID: 22722928 DOI: 10.1074/jbc.m112.388850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The control of several catabolic operons in bacteria by transcription antitermination is mediated by RNA-binding proteins that consist of an RNA-binding domain and two reiterated phosphotransferase system regulation domains (PRDs). The Bacillus subtilis GlcT antitermination protein regulates the expression of the ptsG gene, encoding the glucose-specific enzyme II of the phosphotransferase system. In the absence of glucose, GlcT becomes inactivated by enzyme II-dependent phosphorylation at its PRD1, whereas the phosphotransferase HPr phosphorylates PRD2. However, here we demonstrate by NMR analysis and mass spectrometry that HPr also phosphorylates PRD1 in vitro but with low efficiency. Size exclusion chromatography revealed that non-phosphorylated PRD1 forms dimers that dissociate upon phosphorylation. The effect of HPr on PRD1 was also investigated in vivo. For this purpose, we used GlcT variants with altered domain arrangements or domain deletions. Our results demonstrate that HPr can target PRD1 when this domain is placed at the C terminus of the protein. In agreement with the in vitro data, HPr exerts a negative control on PRD1. This work provides the first insights into how specificity is achieved in a regulator that contains duplicated regulatory domains with distinct dimerization properties that are controlled by phosphorylation by different phosphate donors. Moreover, the results suggest that the domain arrangement of the PRD-containing antitermination proteins is under selective pressure to ensure the proper regulatory output, i.e. transcription antitermination of the target genes specifically in the presence of the corresponding sugar.
Collapse
Affiliation(s)
- Sebastian Himmel
- Department of NMR-based Structural Biology, Max Planck Institute for iophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway. J Bacteriol 2011; 193:6939-49. [PMID: 22001508 DOI: 10.1128/jb.06197-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most organisms can choose their preferred carbon source from a mixture of nutrients. This process is called carbon catabolite repression. The Gram-positive bacterium Bacillus subtilis uses glucose as the preferred source of carbon and energy. Glucose-mediated catabolite repression is caused by binding of the CcpA transcription factor to the promoter regions of catabolic operons. CcpA binds DNA upon interaction with its cofactors HPr(Ser-P) and Crh(Ser-P). The formation of the cofactors is catalyzed by the metabolite-activated HPr kinase/phosphorylase. Recently, it has been shown that malate is a second preferred carbon source for B. subtilis that also causes catabolite repression. In this work, we addressed the mechanism by which malate causes catabolite repression. Genetic analyses revealed that malate-dependent catabolite repression requires CcpA and its cofactors. Moreover, we demonstrate that HPr(Ser-P) is present in malate-grown cells and that CcpA and HPr interact in vivo in the presence of glucose or malate but not in the absence of a repressing carbon source. The formation of the cofactor HPr(Ser-P) could be attributed to the concentrations of ATP and fructose 1,6-bisphosphate in cells growing with malate. Both metabolites are available at concentrations that are sufficient to stimulate HPr kinase activity. The adaptation of cells to environmental changes requires dynamic metabolic and regulatory adjustments. The repression strength of target promoters was similar to that observed in steady-state growth conditions, although it took somewhat longer to reach the second steady-state of expression when cells were shifted to malate.
Collapse
|
29
|
Landmann JJ, Busse RA, Latz JH, Singh KD, Stülke J, Görke B. Crh, the paralogue of the phosphocarrier protein HPr, controls the methylglyoxal bypass of glycolysis in Bacillus subtilis. Mol Microbiol 2011; 82:770-87. [PMID: 21992469 DOI: 10.1111/j.1365-2958.2011.07857.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histidine protein HPr has a key role in regulation of carbohydrate utilization in low-GC Gram-positive bacteria. Bacilli possess the paralogue Crh. Like HPr, Crh becomes phosphorylated by kinase HPrK/P in response to high fructose-1,6-bisphosphate concentrations. However, Crh can only partially substitute for the regulatory functions of HPr leaving its role mysterious. Using protein co-purification, we identified enzyme methylglyoxal synthase MgsA as interaction partner of Crh in Bacillus subtilis. MgsA converts dihydroxyacetone-phosphate to methylglyoxal and thereby initiates a glycolytic bypass that prevents the deleterious accumulation of phospho-sugars under carbon overflow conditions. However, methylgyloxal is toxic and its production requires control. We show here that exclusively the non-phosphorylated form of Crh interacts with MgsA in vivo and inhibits MgsA activity in vitro. Accordingly, Crh inhibits methylglyoxal formation in vivo under nutritional famine conditions that favour a low HPr kinase activity. Thus, Crh senses the metabolic state of the cell, as reflected by its phosphorylation state, and accordingly controls flux through the harmful methylglyoxal pathway. Interestingly, HPr is unable to bind and regulate MgsA, making this a bona fide function of Crh. Four residues that differ in the interaction surfaces of HPr and Crh may account for this difference.
Collapse
Affiliation(s)
- Jens J Landmann
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microbiol 2011; 77:6419-25. [PMID: 21803899 DOI: 10.1128/aem.05219-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel technically compliant expression system was developed for heterologous protein production in Bacillus subtilis with the aim of increasing product yields at the same time as decreasing production costs. Standard systems involve the positively regulated manP promoter of the mannose operon, which led to relatively high product yields of 5.3% (5.3 g enhanced green fluorescent protein [eGFP] per 100 g cell dry weight [CDW]) but required large quantities of mannose to induce the reactions, thus rendering the system's technical application rather expensive. To improve this situation, mutant B. subtilis strains were used: the ΔmanA (mannose metabolism) strain TQ281 and the ΔmanP (mannose uptake) strain TQ356. The total amount of inducer could be reduced with TQ281, which, however, displayed sensitivity to mannose. An inducer-independent self-induction system was developed with TQ356 to further improve the cost efficiency and product yield of the system, in which glucose prevents induction by carbon catabolite repression. To create optimal self-induction conditions, a glucose-limited process strategy, namely, a fed-batch process, was utilized as follows. The initiation of self-induction at the beginning of the glucose-restricted transition phase between the batch and fed-batch phase of fermentation and its maintenance throughout the glucose-limiting fed-batch phase led to a nearly 3-fold increase of product yield, to 14.6%. The novel B. subtilis self-induction system thus makes a considerable contribution to improving product yield and reducing the costs associated with its technical application.
Collapse
|
31
|
Macek B, Mijakovic I. Site-specific analysis of bacterial phosphoproteomes. Proteomics 2011; 11:3002-11. [PMID: 21726046 DOI: 10.1002/pmic.201100012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 11/11/2022]
Abstract
Protein phosphorylation on serine, threonine and tyrosine is established as an important regulatory modification in bacteria. A growing number of studies employing mass spectrometry-based proteomics report large protein phosphorylation datasets, providing precise evidence for in-vivo phosphorylation that is especially suitable for functional follow-up. Here, we provide an overview of the strategies currently used in bacterial phosphoproteomics, with an emphasis on gel-free proteomics and approaches that enable global detection of phosphorylation sites in bacterial proteins. The proteomics technology has matured sufficiently to permit routine characterization of phosphoproteomes and phosphopeptides with high sensitivity; we argue that the next challenge in the field will be the large-scale detection of protein kinase and phosphatase substrates and their integration into regulatory networks of the bacterial cell.
Collapse
Affiliation(s)
- Boris Macek
- Proteome Center Tuebingen, University of Tuebingen, Germany.
| | | |
Collapse
|
32
|
Catabolite repression of the Bacillus subtilis FadR regulon, which is involved in fatty acid catabolism. J Bacteriol 2011; 193:2388-95. [PMID: 21398533 DOI: 10.1128/jb.00016-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis fadR regulon involved in fatty acid degradation comprises five operons, lcfA-fadR-fadB-etfB-etfA, lcfB, fadN-fadA-fadE, fadH-fadG, and fadF-acdA-rpoE. Since the lcfA-fadRB-etfBA, lcfB, and fadNAE operons, whose gene products directly participate in the β-oxidation cycle, had been found to be probably catabolite repressed upon genome-wide transcript analysis, we performed Northern blotting, which indicated that they are clearly under CcpA-dependent catabolite repression. So, we searched for catabolite-responsive elements (cre's) to which the complex of CcpA and P-Ser-HPr binds to exert catabolite repression by means of a web-based cis-element search in the B. subtilis genome using known cre sequences, which revealed the respective candidate cre sequences in the lcfA, lcfB, and fadN genes. DNA footprinting indicated that the complex actually interacted with these cre's in vitro. Deletion analysis of each cre using the lacZ fusions with the respective promoter regions of the three operons with and without it, indicated that these cre's are involved in the CcpA-dependent catabolite repression of the operons in vivo.
Collapse
|
33
|
Abstract
The mannose operon of Bacillus subtilis consists of three genes, manP, manA, and yjdF, which are responsible for the transport and utilization of mannose. Upstream and in the same orientation as the mannose operon a regulatory gene, manR, codes for a transcription activator of the mannose operon, as shown in this study. Both mannose operon transcription and manR transcription are inducible by mannose. The presence of mannose resulted in a 4- to 7-fold increase in expression of lacZ from the manP promoter (P(manP)) and in a 3-fold increase in expression of lacZ from the manR promoter (P(manR)). The transcription start sites of manPA-yjdF and manR were determined to be a single A residue and a single G residue, respectively, preceded by -10 and -35 boxes resembling a vegetative sigma(A) promoter structure. Through deletion analysis the target sequences of ManR upstream of P(manP) and P(manR) were identified between bp -80 and -35 with respect to the transcriptional start site of both promoters. Deletion of manP (mannose transporter) resulted in constitutive expression from both the P(manP) and P(manR) promoters, indicating that the phosphotransferase system (PTS) component EII(Man) has a negative effect on regulation of the mannose operon and manR. Moreover, both P(manP) and P(manR) are subject to carbon catabolite repression (CCR). By constructing protein sequence alignments a DNA binding motif at the N-terminal end, two PTS regulation domains (PRDs), and an EIIA- and EIIB-like domain were identified in the ManR sequence, indicating that ManR is a PRD-containing transcription activator. Like findings for other PRD regulators, the phosphoenolpyruvate (PEP)-dependent phosphorylation by the histidine protein HPr via His15 plays an essential role in transcriptional activation of P(manP) and P(manR). Phosphorylation of Ser46 of HPr or of the homologous Crh protein by HPr kinase and formation of a repressor complex with CcpA are parts of the B. subtilis CCR system. Only in the double mutant with an HPr Ser46Ala mutation and a crh knockout mutation was CCR strongly reduced. In contrast, P(manR) and P(manP) were not inducible in a ccpA deletion mutant.
Collapse
|
34
|
Yomano LP, York SW, Shanmugam KT, Ingram LO. Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 2009; 31:1389-98. [PMID: 19458924 PMCID: PMC2721133 DOI: 10.1007/s10529-009-0011-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/27/2009] [Accepted: 04/30/2009] [Indexed: 11/28/2022]
Abstract
The use of lignocellulose as a source of sugars for bioproducts requires the development of biocatalysts that maximize product yields by fermenting mixtures of hexose and pentose sugars to completion. In this study, we implicate mgsA encoding methylglyoxal synthase (and methylglyoxal) in the modulation of sugar metabolism. Deletion of this gene (strain LY168) resulted in the co-metabolism of glucose and xylose, and accelerated the metabolism of a 5-sugar mixture (mannose, glucose, arabinose, xylose and galactose) to ethanol.
Collapse
Affiliation(s)
- L P Yomano
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
35
|
Atkinson TP, Balish MF, Waites KB. Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections. FEMS Microbiol Rev 2008; 32:956-73. [PMID: 18754792 DOI: 10.1111/j.1574-6976.2008.00129.x] [Citation(s) in RCA: 325] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Since its initial description in the 1940s and eventual elucidation as a highly evolved pathogenic bacterium, Mycoplasma pneumoniae has come to be recognized as a worldwide cause of primary atypical pneumonia. Beyond its ability to cause severe lower respiratory illness and milder upper respiratory symptoms it has become apparent that a wide array of extrapulmonary infectious and postinfectious events may accompany the infections in humans caused by this organism. Autoimmune disorders and chronic diseases such as asthma and arthritis are increasingly being associated with this mycoplasma, which frequently persists in individuals for prolonged periods. The reductive evolutionary process that has led to the minimal genome of M. pneumoniae suggests that it exists as a highly specialized parasitic bacterium capable of residing in an intracellular state within the respiratory tissues, occasionally emerging to produce symptoms. This review includes discussion of some of the newer aspects of our knowledge on this pathogen, characteristics of clinical infections, how it causes disease, the recent emergence of macrolide resistance, and the status of laboratory diagnostic methods.
Collapse
|
36
|
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008; 6:613-24. [PMID: 18628769 DOI: 10.1038/nrmicro1932] [Citation(s) in RCA: 1108] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most bacteria can selectively use substrates from a mixture of different carbon sources. The presence of preferred carbon sources prevents the expression, and often also the activity, of catabolic systems that enable the use of secondary substrates. This regulation, called carbon catabolite repression (CCR), can be achieved by different regulatory mechanisms, including transcription activation and repression and control of translation by an RNA-binding protein, in different bacteria. Moreover, CCR regulates the expression of virulence factors in many pathogenic bacteria. In this Review, we discuss the most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner.
Collapse
Affiliation(s)
- Boris Görke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr 8, D-37077 Göttingen, Germany
| | | |
Collapse
|
37
|
Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related Bacillus species. J Bacteriol 2008; 190:2892-902. [PMID: 18296527 DOI: 10.1128/jb.01652-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacillus sphaericus strain C3-41 is an aerobic, mesophilic, spore-forming bacterium that has been used with great success in mosquito control programs worldwide. Genome sequencing revealed that the complete genome of this entomopathogenic bacterium is composed of a chromosomal replicon of 4,639,821 bp and a plasmid replicon of 177,642 bp, containing 4,786 and 186 potential protein-coding sequences, respectively. Comparison of the genome with other published sequences indicated that the B. sphaericus C3-41 chromosome is most similar to that of Bacillus sp. strain NRRL B-14905, a marine species that, like B. sphaericus, is unable to metabolize polysaccharides. The lack of key enzymes and sugar transport systems in the two bacteria appears to be the main reason for this inability, and the abundance of proteolytic enzymes and transport systems may endow these bacteria with exclusive metabolic pathways for a wide variety of organic compounds and amino acids. The genes shared between B. sphaericus C3-41 and Bacillus sp. strain NRRL B-14905, including mobile genetic elements, membrane-associated proteins, and transport systems, demonstrated that these two species are a biologically and phylogenetically divergent group. Knowledge of the genome sequence of B. sphaericus C3-41 thus increases our understanding of the bacilli and may also offer prospects for future genetic improvement of this important biological control agent.
Collapse
|
38
|
Monedero V, Yebra MJ, Poncet S, Deutscher J. Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Res Microbiol 2007; 159:94-102. [PMID: 18096372 DOI: 10.1016/j.resmic.2007.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/17/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
Transport of maltose in Lactobacillus casei BL23 is subject to regulation by inducer exclusion. The presence of glucose or other rapidly metabolized carbon sources blocks maltose transport by a control mechanism that depends on the phosphorylation of the HPr protein at serine residue 46. We have identified the L. casei gene cluster for maltose/maltodextrin utilization by sequence analysis and mutagenesis. It is composed of genes coding for a transcriptional regulator, oligosaccharide hydrolytic enzymes, an ABC transporter (MalEFGK2) and the enzymes for the metabolism of maltose or the degradation products of maltodextrins: maltose phosphorylase and beta-phospho-glucomutase. These genes are induced by maltose and repressed by the presence of glucose via the catabolite control protein A (CcpA). A mutant strain was constructed which expressed the hprKV267F allele and therefore formed large amounts of P-Ser-HPr even in the absence of a repressive carbon source. In this mutant, transport of maltose was severely impaired, whereas transport of sugars not subject to inducer exclusion was not changed. These results strengthen the idea that P-Ser-HPr controls inducer exclusion and make the maltose system of L. casei a suitable model for studying this process in Firmicutes.
Collapse
Affiliation(s)
- Vicente Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, IATA-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain.
| | | | | | | |
Collapse
|
39
|
Eymann C, Becher D, Bernhardt J, Gronau K, Klutzny A, Hecker M. Dynamics of protein phosphorylation on Ser/Thr/Tyr inBacillus subtilis. Proteomics 2007; 7:3509-26. [PMID: 17726680 DOI: 10.1002/pmic.200700232] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Ser/Thr/Tyr phosphoproteome of Bacillus subtilis was analyzed by a 2-D gel-based approach combining Pro-Q Diamond staining and [(33)P]-labeling. In exponentially growing B. subtilis cells 27 proteins could be identified after staining with Pro-Q Diamond and/or [(33)P]-labeling and one additional protein was labeled solely by [(33)P] resulting in a total of 28 potentially phosphorylated proteins. These proteins are mainly involved in enzymatic reactions of basic carbon metabolism and the regulation of the alternative sigma factor sigma(B). We also found significant changes of the phosphoproteome including increased phosphorylation and dephosphorylation rates of some proteins as well as the detection of four newly phosphorylated proteins in response to stress or starvation. For nine proteins, phosphorylation sites at serine or threonine residues were determined by MS. These include the known phosphorylation sites of Crh, PtsH, and RsbV. Additionally, we were able to identify novel phosphorylation sites of AroA, Pyk, and YbbT. Interestingly, the phosphorylation of RsbRA, B, C, and D, four proteins of a multicomponent protein complex involved in environmental stress signaling, was found during exponential growth. For RsbRA, B, and D, phosphorylation of one of the conserved threonine residues in their C-termini were verified by MS (T171, T186, T181, respectively).
Collapse
Affiliation(s)
- Christine Eymann
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Beaufils S, Sauvageot N, Mazé A, Laplace JM, Auffray Y, Deutscher J, Hartke A. The Cold Shock Response of Lactobacillus casei: Relation between HPr Phosphorylation and Resistance to Freeze/Thaw Cycles. J Mol Microbiol Biotechnol 2007; 13:65-75. [PMID: 17693714 DOI: 10.1159/000103598] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When carrying out a proteome analysis with a ptsH3 mutant of Lactobacillus casei, we found that the cold shock protein CspA was significantly overproduced compared to the wild-type strain. We also noticed that CspA and CspB of L. casei and CSPs from other organisms exhibit significant sequence similarity to the C-terminal part of EIIA(Glc), a glucose-specific component of the phosphoenolpyruvate:sugar phosphotransferase system. This similarity suggested a direct interaction of HPr with CSPs, as histidyl-phosphorylated HPr has been shown to phosphorylate EIIA(Glc) in its C-terminal part. We therefore compared the cold shock response of several carbon catabolite repression mutants to that of the wild-type strain. Following a shift from 37 degrees C to lower temperatures (20, 15 or 10 degrees C), all mutants showed significantly reduced growth rates. Moreover, glucose-grown mutants unable to form P-Ser-HPr (ptsH1, hprK) exhibited drastically increased sensitivity to freeze/thaw cycles. However, when the same mutants were grown on ribose or maltose, they were similarly resistant to freezing and thawing as the wild-type strain. Although subsequent biochemical and genetic studies did not allow to identify the form of HPr implicated in the resistance to cold and freezing conditions, they strongly suggested a direct interaction of HPr or one of its phospho-derivatives with CspA and/or another, hitherto undetected cold shock protein in L. casei.
Collapse
Affiliation(s)
- Sophie Beaufils
- Laboratoire de Microbiologie de l'Environnement (EA956 USC INRA 2017), IBFA, Université de Caen, Caen, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The increasing number of genomic and post-genomic studies on Gram-positive organisms and especially on lactic acid bacteria brings a lot of information on sugar catabolism in these bacteria. Like for many other bacteria, glucose is the most preferred source of carbon and energy for Lactococcus lactis. Other carbon sources can induce their own utilization in the absence of well-metabolized sugar. These processes engage numbers of genes and undergo complex mechanisms of regulation. In this review, we discuss various biochemical and genetic control mechanisms involved in sugar catabolism, like regulation by repressors, activators, antiterminators or carbon catabolite repression control.
Collapse
Affiliation(s)
- Magdalena Kowalczyk
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego, Warszawa, Poland.
| | | |
Collapse
|
42
|
Sprehe M, Seidel G, Diel M, Hillen W. CcpA mutants with differential activities in Bacillus subtilis. J Mol Microbiol Biotechnol 2007; 12:96-105. [PMID: 17183216 DOI: 10.1159/000096464] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CcpA is the master regulator for carbon catabolite regulation in Bacillus subtilis and regulates more than 300 genes by repression or activation. To revealthe effects of different functional domains of CcpA on various regulatory modes, we compared the activities of CcpA point mutants in activation (alsS, ackA) and repression (xynP, gntR). CcpA variants mutated at residues in the HPrSerP-binding region without allosteric functions are inactive. On the other hand, CcpA variants mutated at residues that change their conformation upon HPrSerP or CrhP binding regulate only ackA. Another set of mutants with alterations in the corepressor-binding region show glucose-independent regulation of xynP. The data presented here demonstrate the involvement of HPrSerP and/or CrhP in activation of ackA and alsS by CcpA. Furthermore, these data also indicate that activation and repression mediated by CcpA may utilize different conformational changes of the protein.
Collapse
Affiliation(s)
- Mareen Sprehe
- Lehrstuhl fur Mikrobiologie, Institut fur Biologie, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
43
|
Improvement of Bacillus thuringiensis delta-endotoxin production by overcome of carbon catabolite repression through adequate control of aeration. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1015] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
45
|
Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 2007; 6:697-707. [PMID: 17218307 DOI: 10.1074/mcp.m600464-mcp200] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is well established as a key regulatory posttranslational modification in eukaryotes, but little is known about its extent and function in prokaryotes. Although protein kinases and phosphatases have been predicted and identified in a variety of bacterial species, classical biochemical approaches have so far revealed only a few substrate proteins and even fewer phosphorylation sites. Bacillus subtilis is a model Gram-positive bacterium in which two-dimensional electrophoresis-based studies suggest that the Ser/Thr/Tyr phosphorylation should be present on more than a hundred proteins. However, so far only 16 phosphorylation sites on eight of its proteins have been determined, mostly in in vitro studies. Here we performed a global, gel-free, and site-specific analysis of the B. subtilis phosphoproteome using high accuracy mass spectrometry in combination with biochemical enrichment of phosphopeptides from digested cell lysates. We identified 103 unique phosphopeptides from 78 B. subtilis proteins and determined 78 phosphorylation sites: 54 on serine, 16 on threonine, and eight on tyrosine. Detected phosphoproteins are involved in a wide variety of metabolic processes but are enriched in carbohydrate metabolism. We report phosphorylation sites on almost all glycolytic and tricarboxylic acid cycle enzymes, several kinases, and members of the phosphoenolpyruvate-dependent phosphotransferase system. This significantly enlarged number of bacterial proteins known to be phosphorylated on Ser/Thr/Tyr residues strongly supports the emerging view that protein phosphorylation is a general and fundamental regulatory process, not restricted only to eukaryotes, and opens the way for its detailed functional analysis in bacteria.
Collapse
Affiliation(s)
- Boris Macek
- Max Planck Institute for Biochemistry, Proteomics, and Signal Transduction, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Monedero V, Mazé A, Boël G, Zúñiga M, Beaufils S, Hartke A, Deutscher J. The Phosphotransferase System of Lactobacillus casei: Regulation of Carbon Metabolism and Connection to Cold Shock Response. J Mol Microbiol Biotechnol 2006; 12:20-32. [PMID: 17183208 DOI: 10.1159/000096456] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genome sequencing of two different Lactobacillus casei strains (ATCC334 and BL23) is presently going on and preliminary data revealed that this lactic acid bacterium possesses numerous carbohydrate transport systems probably reflecting its capacity to proliferate under varying environmental conditions. Many carbohydrate transporters belong to the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but all different kinds of non-PTS transporters are present as well and their substrates are known in a few cases. In L. casei regulation of carbohydrate transport and carbon metabolism is mainly achieved by PTS proteins. Carbon catabolite repression (CCR) is mediated via several mechanisms, including the major P-Ser-HPr/catabolite control protein A (CcpA)-dependent mechanism. Catabolite response elements, the target sites for the P-Ser-HPr/CcpA complex, precede numerous genes and operons. PTS regulation domain-containing antiterminators and transcription activators are also present in both L. casei strains. Their activity is usually controlled by two PTS-mediated phosphorylation reactions exerting antagonistic effects on the transcription regulators: P~EIIB-dependent phosphorylation regulates induction of the corresponding genes and P~His-HPr-mediated phosphorylation plays a role in CCR. Carbohydrate transport of L. casei is also regulated via inducer exclusion and inducer expulsion. The presence of glucose, fructose, etc. leads to inhibition of the transport or metabolism of less favorable carbon sources (inducer exclusion) or to the export of accumulated non-metabolizable carbon sources (inducer expulsion). While P-Ser-HPr is essential for inducer exclusion of maltose, it is not necessary for the expulsion of accumulated thio-methyl-beta-D-galactopyranoside. Surprisingly, recent evidence suggests that the PTS of L. casei also plays a role in cold shock response.
Collapse
Affiliation(s)
- Vicente Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Burjassot, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Pompeo F, Luciano J, Galinier A. Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in Bacillus subtilis? J Bacteriol 2006; 189:1154-7. [PMID: 17142398 PMCID: PMC1797305 DOI: 10.1128/jb.01575-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis cells, we identified a new partner of HPr, an enzyme of the glycolysis pathway, the glyceraldehyde-3-phosphate dehydrogenase GapA. We showed that, in vitro, phosphorylated and unphosphorylated forms of HPr and its homologue, Crh, could interact with GapA, but only their seryl-phosphorylated forms were able to inhibit its activity.
Collapse
Affiliation(s)
- Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UPR 9043, IBSM-CNRS, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | |
Collapse
|
48
|
Repizo GD, Blancato VS, Sender PD, Lolkema J, Magni C. Catabolite repression of the citST two-component system in Bacillus subtilis. FEMS Microbiol Lett 2006; 260:224-31. [PMID: 16842348 DOI: 10.1111/j.1574-6968.2006.00318.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In Bacillus subtilis, expression of the citrate transporter CitM is under strict control. Transcription of the citM gene is induced by citrate in the medium mediated by the CitS-CitT two-component system and repressed by rapidly degraded carbon sources mediated by carbon catabolite repression (CCR). In this study, we demonstrate that citST genes are part of a bicistronic operon. The promoter region was localized in a stretch of 58 base pairs upstream of the citS gene by deletion experiments. Transcription of the operon was repressed in the presence of glucose by the general transcription factor CcpA. A distal consensus cre site in the citS-coding sequence was implicated in the mechanism of repression. Furthermore, this repression was relieved in Bacillus subtilis mutants deficient in CcpA or Hpr/Crh, components essential to CCR. Thus, we demonstrate that CCR represses the expression of the citST operon, which is responsible for the induction of citM, through the cre site located 1326 bp from transcriptional start site of citST.
Collapse
Affiliation(s)
- Guillermo D Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
49
|
Chaptal V, Gueguen-Chaignon V, Poncet S, Lecampion C, Meyer P, Deutscher J, Galinier A, Nessler S, Moréra S. Structural analysis of B. subtilis CcpA effector binding site. Proteins 2006; 64:814-6. [PMID: 16755587 DOI: 10.1002/prot.21001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vincent Chaptal
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS FRE 2930, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bertram R, Wünsche A, Sprehe M, Hillen W. Regulated expression of HPrK/P does not affect carbon catabolite repression of thexynoperon and ofrocGinBacillus subtilis. FEMS Microbiol Lett 2006; 259:147-52. [PMID: 16684115 DOI: 10.1111/j.1574-6968.2006.00260.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
HPr kinase/phosphorylase (HPrK/P), a central metabolic regulator in many Gram-positive bacteria, reversibly phosphorylates HPr and Crh, thus controlling their activities as effectors of CcpA predominantly in carbon catabolite repression (CCR). We have placed the constitutively expressed hprK in its native chromosomal locus under anhydrotetracycline-dependent transcriptional control to establish the correlation between HPrK/P amounts and the efficiency of CCR in Bacillus subtilis. This resulted in about eightfold repression of HPrK/P expression but had no effect on CCR as monitored by xynP'-lacZ reporter gene expression and by analysis of RocG protein amounts. These results suggest that very small amounts of HPrK/P are sufficient for complete CCR and that control of HPrK/P activity depends only on the presence of effectors and not on the abundance of the enzyme.
Collapse
Affiliation(s)
- Ralph Bertram
- Lehrstuhl für Mikrobiologie, Institut für Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|