1
|
Viennet T, Yin M, Jayaraj A, Kim W, Sun ZYJ, Fujiwara Y, Zhang K, Seruggia D, Seo HS, Dhe-Paganon S, Orkin SH, Arthanari H. Structural insights into the DNA-binding mechanism of BCL11A: The integral role of ZnF6. Structure 2024:S0969-2126(24)00422-2. [PMID: 39423807 DOI: 10.1016/j.str.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
The transcription factor BCL11A is a critical regulator of the switch from fetal hemoglobin (HbF: α2γ2) to adult hemoglobin (HbA: α2β2) during development. BCL11A binds at a cognate recognition site (TGACCA) in the γ-globin gene promoter and represses its expression. DNA-binding is mediated by a triple zinc finger domain, designated ZnF456. Here, we report comprehensive investigation of ZnF456, leveraging X-ray crystallography and NMR to determine the structures in both the presence and absence of DNA. We delve into the dynamics and mode of interaction with DNA. Moreover, we discovered that the last zinc finger of BCL11A (ZnF6) plays a different role compared to ZnF4 and 5, providing a positive entropic contribution to DNA binding and γ-globin gene repression. Comprehending the DNA binding mechanism of BCL11A opens avenues for the strategic, structure-based design of novel therapeutics targeting sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Thibault Viennet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Maolu Yin
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Abhilash Jayaraj
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Woojin Kim
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Zhen-Yu J Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuko Fujiwara
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Zhang
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Davide Seruggia
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stuart H Orkin
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Tants JN, Oberstrass L, Weigand JE, Schlundt A. Structure and RNA-binding of the helically extended Roquin CCCH-type zinc finger. Nucleic Acids Res 2024; 52:9838-9853. [PMID: 38953172 PMCID: PMC11381341 DOI: 10.1093/nar/gkae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Zinc finger (ZnF) domains appear in a pool of structural contexts and despite their small size achieve varying target specificities, covering single-stranded and double-stranded DNA and RNA as well as proteins. Combined with other RNA-binding domains, ZnFs enhance affinity and specificity of RNA-binding proteins (RBPs). The ZnF-containing immunoregulatory RBP Roquin initiates mRNA decay, thereby controlling the adaptive immune system. Its unique ROQ domain shape-specifically recognizes stem-looped cis-elements in mRNA 3'-untranslated regions (UTR). The N-terminus of Roquin contains a RING domain for protein-protein interactions and a ZnF, which was suggested to play an essential role in RNA decay by Roquin. The ZnF domain boundaries, its RNA motif preference and its interplay with the ROQ domain have remained elusive, also driven by the lack of high-resolution data of the challenging protein. We provide the solution structure of the Roquin-1 ZnF and use an RBNS-NMR pipeline to show that the ZnF recognizes AU-rich RNAs. We systematically refine the contributions of adenines in a poly(U)-background to specific complex formation. With the simultaneous binding of ROQ and ZnF to a natural target transcript of Roquin, our study for the first time suggests how Roquin integrates RNA shape and sequence features through the ROQ-ZnF tandem.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Lasse Oberstrass
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marbacher Weg 6, 35037 Marburg, Germany
| | - Julia E Weigand
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marbacher Weg 6, 35037 Marburg, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Zhang X, Blumenthal RM, Cheng X. Updated understanding of the protein-DNA recognition code used by C2H2 zinc finger proteins. Curr Opin Struct Biol 2024; 87:102836. [PMID: 38754172 DOI: 10.1016/j.sbi.2024.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
C2H2 zinc-finger (ZF) proteins form the largest family of DNA-binding transcription factors coded by mammalian genomes. In a typical DNA-binding ZF module, there are twelve residues (numbered from -1 to -12) between the last zinc-coordinating cysteine and the first zinc-coordinating histidine. The established C2H2-ZF "recognition code" suggests that residues at positions -1, -4, and -7 recognize the 5', central, and 3' bases of a DNA base-pair triplet, respectively. Structural studies have highlighted that additional residues at positions -5 and -8 also play roles in specific DNA recognition. The presence of bulky and either charged or polar residues at these five positions determines specificity for given DNA bases: guanine is recognized by arginine, lysine, or histidine; adenine by asparagine or glutamine; thymine or 5-methylcytosine by glutamate; and unmodified cytosine by aspartate. This review discusses recent structural characterizations of C2H2-ZFs that add to our understanding of the principles underlying the C2H2-ZF recognition code.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Smerdon MJ, Wyrick JJ, Delaney S. A half century of exploring DNA excision repair in chromatin. J Biol Chem 2023; 299:105118. [PMID: 37527775 PMCID: PMC10498010 DOI: 10.1016/j.jbc.2023.105118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
DNA in eukaryotic cells is packaged into the compact and dynamic structure of chromatin. This packaging is a double-edged sword for DNA repair and genomic stability. Chromatin restricts the access of repair proteins to DNA lesions embedded in nucleosomes and higher order chromatin structures. However, chromatin also serves as a signaling platform in which post-translational modifications of histones and other chromatin-bound proteins promote lesion recognition and repair. Similarly, chromatin modulates the formation of DNA damage, promoting or suppressing lesion formation depending on the chromatin context. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potentially mutagenic and carcinogenic lesions in DNA. Here, we survey many of the landmark findings on DNA damage and repair in chromatin over the last 50 years (i.e., since the beginning of this field), focusing on excision repair, the first repair mechanism studied in the chromatin landscape. For example, we highlight how the impact of chromatin on these processes explains the distinct patterns of somatic mutations observed in cancer genomes.
Collapse
Affiliation(s)
- Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - John J Wyrick
- Genetics and Cell Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Structural basis of TFIIIC-dependent RNA polymerase III transcription initiation. Mol Cell 2023; 83:2641-2652.e7. [PMID: 37402369 PMCID: PMC10528418 DOI: 10.1016/j.molcel.2023.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
RNA polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here, we use cryoelectron microscopy (cryo-EM) to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Gene-specific factor TFIIIA interacts with DNA and acts as an adaptor for TFIIIC-promoter interactions. We also visualize DNA binding of TFIIIB subunits, Brf1 and TBP (TATA-box binding protein), which results in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA within the complex undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the transcription initiation complex assembly on the 5S rRNA promoter and allow us to directly compare Pol III and Pol II transcription adaptations.
Collapse
Affiliation(s)
- Anna Talyzina
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Chiranjib Banerjee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Susan Fishbain
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Alexis Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Zuo Z, Billings T, Walker M, Petkov PM, Fordyce P, Stormo GD. On the dependent recognition of some long zinc finger proteins. Nucleic Acids Res 2023; 51:5364-5376. [PMID: 36951113 PMCID: PMC10287918 DOI: 10.1093/nar/gkad207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
The human genome contains about 800 C2H2 zinc finger proteins (ZFPs), and most of them are composed of long arrays of zinc fingers. Standard ZFP recognition model asserts longer finger arrays should recognize longer DNA-binding sites. However, recent experimental efforts to identify in vivo ZFP binding sites contradict this assumption, with many exhibiting short motifs. Here we use ZFY, CTCF, ZIM3, and ZNF343 as examples to address three closely related questions: What are the reasons that impede current motif discovery methods? What are the functions of those seemingly unused fingers and how can we improve the motif discovery algorithms based on long ZFPs' biophysical properties? Using ZFY, we employed a variety of methods and find evidence for 'dependent recognition' where downstream fingers can recognize some previously undiscovered motifs only in the presence of an intact core site. For CTCF, high-throughput measurements revealed its upstream specificity profile depends on the strength of its core. Moreover, the binding strength of the upstream site modulates CTCF's sensitivity to different epigenetic modifications within the core, providing new insight into how the previously identified intellectual disability-causing and cancer-related mutant R567W disrupts upstream recognition and deregulates the epigenetic control by CTCF. Our results establish that, because of irregular motif structures, variable spacing and dependent recognition between sub-motifs, the specificities of long ZFPs are significantly underestimated, so we developed an algorithm, ModeMap, to infer the motifs and recognition models of ZIM3 and ZNF343, which facilitates high-confidence identification of specific binding sites, including repeats-derived elements. With revised concept, technique, and algorithm, we can discover the overlooked specificities and functions of those 'extra' fingers, and therefore decipher their broader roles in human biology and diseases.
Collapse
Affiliation(s)
- Zheng Zuo
- Department of Genetics, Stanford University, CA, USA
- Department of Genetics, Washington University in St. Louis, MO, USA
| | | | | | | | - Polly M Fordyce
- Department of Genetics, Stanford University, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, CA, USA
- Stanford ChEM-H Institute, Stanford University, CA, USA
| | - Gary D Stormo
- Department of Genetics, Washington University in St. Louis, MO, USA
| |
Collapse
|
8
|
Talyzina A, Han Y, Banerjee C, Fishbain S, Reyes A, Vafabakhsh R, He Y. Structural basis of TFIIIC-dependent RNA Polymerase III transcription initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540967. [PMID: 37292922 PMCID: PMC10245719 DOI: 10.1101/2023.05.16.540967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA Polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here we use cryo-electron microscopy to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Brf1-TBP binding further stabilizes the DNA, resulting in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the mechanism of how the transcription initiation complex assembles on the 5S rRNA promoter, a crucial step in Pol III transcription regulation.
Collapse
Affiliation(s)
- Anna Talyzina
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Chiranjib Banerjee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Susan Fishbain
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Alexis Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, United States
- Lead contact
| |
Collapse
|
9
|
Clanor PB, Buchholz CN, Hayes JE, Friedman MA, White AM, Enke RA, Berndsen CE. Structural and functional analysis of the human cone‐rod homeobox transcription factor. Proteins 2022; 90:1584-1593. [PMID: 35255174 PMCID: PMC9271546 DOI: 10.1002/prot.26332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
The cone‐rod homeobox (CRX) protein is a critical K50 homeodomain transcription factor responsible for the differentiation and maintenance of photoreceptor neurons in the vertebrate retina. Mutant alleles in the human gene encoding CRX result in a variety of distinct blinding retinopathies, including retinitis pigmentosa, cone‐rod dystrophy, and Leber congenital amaurosis. Despite the success of using in vitro biochemistry, animal models, and genomics approaches to study this clinically relevant transcription factor over the past 25 years since its initial characterization, there are no high‐resolution structures in the published literature for the CRX protein. In this study, we use bioinformatic approaches and small‐angle X‐ray scattering (SAXS) structural analysis to further understand the biochemical complexity of the human CRX homeodomain (CRX‐HD). We find that the CRX‐HD is a compact, globular monomer in solution that can specifically bind functional cis‐regulatory elements encoded upstream of retina‐specific genes. This study presents the first structural analysis of CRX, paving the way for a new approach to studying the biochemistry of this protein and its disease‐causing mutant protein variants.
Collapse
Affiliation(s)
| | - Christine N. Buchholz
- Department of Chemistry and Biochemistry James Madison University Harrisonburg Virginia USA
| | - Jonathan E. Hayes
- Department of Chemistry and Biochemistry James Madison University Harrisonburg Virginia USA
| | | | - Andrew M. White
- Department of Chemistry and Biochemistry James Madison University Harrisonburg Virginia USA
| | - Ray A. Enke
- Department of Biology James Madison University Harrisonburg Virginia USA
- Center for Genome and Metagenome Studies James Madison University Harrisonburg Virginia USA
| | - Christopher E. Berndsen
- Department of Chemistry and Biochemistry James Madison University Harrisonburg Virginia USA
- Center for Genome and Metagenome Studies James Madison University Harrisonburg Virginia USA
| |
Collapse
|
10
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
11
|
Wang Q, Daiß JL, Xu Y, Engel C. Snapshots of RNA polymerase III in action - A mini review. Gene 2022; 821:146282. [PMID: 35149153 DOI: 10.1016/j.gene.2022.146282] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022]
Abstract
RNA polymerase (Pol) III is responsible for the transcription of tRNAs, 5S rRNA, U6 snRNA, and other non-coding RNAs. Transcription factors such as TFIIIA, -B, -C, SNAPc, and Maf1 are required for promoter recognition, promoter opening, and Pol III activity regulation. Recent developments in cryo-electron microscopy and advanced purification approaches for endogenous multi-subunit complexes accelerated structural studies resulting in detailed structural insights which allowed an in-depth understanding of the molecular mechanisms underlying Pol III transcription. Here, we summarize structural data on Pol III and its regulating factors providing a three-dimensional framework to guide further analysis of RNA polymerase III.
Collapse
Affiliation(s)
- Qianmin Wang
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; Present address: Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Youwei Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
12
|
Oiwa NN, Li K, Cordeiro CE, Heermann DW. Prediction and comparative analysis of CTCF binding sites based on a first principle approach. Phys Biol 2022; 19. [PMID: 35290214 DOI: 10.1088/1478-3975/ac5dca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
We calculated the patterns for the CCCTC transcription factor (CTCF) binding sites across many genomes on a first principle approach. The validation of the first principle method was done on the human as well as on the mouse genome. The predicted human CTCF binding sites are consistent with the consensus sequence, ChIP-seq data for the K562 cell, nucleosome positions for IMR90 cell as well as the CTCF binding sites in the mouse HOXA gene. The analysis of Homo sapiens, Mus musculus, Sus scrofa, Capra hircus and Drosophila melanogaster whole genomes shows: binding sites are organized in cluster-like groups, where two consecutive sites obey a power-law with coefficient ranging from to 0.3292 0.0068 to 0.5409 0.0064; the distance between these groups varies from 18.08 0.52kbp to 42.1 2.0kbp. The genome of Aedes aegypti does not show a power law, but 19.9% of binding sites are 144 4 and 287 5bp distant of each other. We run negative tests, confirming the under-representation of CTCF binding sites in Caenorhabditis elegans, Plasmodium falciparum and Arabidopsis thaliana complete genomes.
Collapse
Affiliation(s)
- Nestor Norio Oiwa
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, Baden-Württemberg, 69120, GERMANY
| | - Kunhe Li
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69117, GERMANY
| | - Claudette E Cordeiro
- Department of Physics, Universidade Federal Fluminense, Avenida Atlantica s/n, Gragoatal, Niteroi, Rio de Janeiro, 24220-900, BRAZIL
| | - Dieter W Heermann
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69120, GERMANY
| |
Collapse
|
13
|
Trerotola M, Antolini L, Beni L, Guerra E, Spadaccini M, Verzulli D, Moschella A, Alberti S. A deterministic code for transcription factor-DNA recognition through computation of binding interfaces. NAR Genom Bioinform 2022; 4:lqac008. [PMID: 35261972 PMCID: PMC8896162 DOI: 10.1093/nargab/lqac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/05/2021] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The recognition code between transcription factor (TF) amino acids and DNA bases remains poorly understood. Here, the determinants of TF amino acid-DNA base binding selectivity were identified through the analysis of crystals of TF-DNA complexes. Selective, high-frequency interactions were identified for the vast majority of amino acid side chains (‘structural code’). DNA binding specificities were then independently assessed by meta-analysis of random-mutagenesis studies of Zn finger-target DNA sequences. Selective, high-frequency interactions were identified for the majority of mutagenized residues (‘mutagenesis code’). The structural code and the mutagenesis code were shown to match to a striking level of accuracy (P = 3.1 × 10−33), suggesting the identification of fundamental rules of TF binding to DNA bases. Additional insight was gained by showing a geometry-dictated choice among DNA-binding TF residues with overlapping specificity. These findings indicate the existence of a DNA recognition mode whereby the physical-chemical characteristics of the interacting residues play a deterministic role. The discovery of this DNA recognition code advances our knowledge on fundamental features of regulation of gene expression and is expected to pave the way for integration with higher-order complexity approaches.
Collapse
Affiliation(s)
- Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University “G. D’ Annunzio”, Via L. Polacchi 11, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Laura Antolini
- Center for Biostatistics, Department of Clinical Medicine, Prevention and Biotechnology, University of Milano-Bicocca, 20052 Monza, Italy
| | - Laura Beni
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University “G. D’ Annunzio”, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University “G. D’ Annunzio”, Via L. Polacchi 11, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | | | - Damiano Verzulli
- Unit of Informatics, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Antonino Moschella
- Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Saverio Alberti
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University “G. D’ Annunzio”, Via L. Polacchi 11, 66100 Chieti, Italy
- Unit of Medical Genetics, Department of Biomedical Sciences - BIOMORF, University of Messina, via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
14
|
Yoon C, Lee D, Lee SJ. Regulation of the Central Dogma through Bioinorganic Events with Metal Coordination for Specific Interactions. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chungwoon Yoon
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Dong‐Heon Lee
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
15
|
Hou L, Wei Y, Lin Y, Wang X, Lai Y, Yin M, Chen Y, Guo X, Wu S, Zhu Y, Yuan J, Tariq M, Li N, Sun H, Wang H, Zhang X, Chen J, Bao X, Jauch R. Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Nucleic Acids Res 2020; 48:3869-3887. [PMID: 32016422 PMCID: PMC7144947 DOI: 10.1093/nar/gkaa067] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/03/2023] Open
Abstract
Some transcription factors that specifically bind double-stranded DNA appear to also function as RNA-binding proteins. Here, we demonstrate that the transcription factor Sox2 is able to directly bind RNA in vitro as well as in mouse and human cells. Sox2 targets RNA via a 60-amino-acid RNA binding motif (RBM) positioned C-terminally of the DNA binding high mobility group (HMG) box. Sox2 can associate with RNA and DNA simultaneously to form ternary RNA/Sox2/DNA complexes. Deletion of the RBM does not affect selection of target genes but mitigates binding to pluripotency related transcripts, switches exon usage and impairs the reprogramming of somatic cells to a pluripotent state. Our findings designate Sox2 as a multi-functional factor that associates with RNA whilst binding to cognate DNA sequences, suggesting that it may co-transcriptionally regulate RNA metabolism during somatic cell reprogramming.
Collapse
Affiliation(s)
- Linlin Hou
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanjie Wei
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yingying Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Guangzhou/Shenzhen, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiwei Wang
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yiwei Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Menghui Yin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China
| | - Yanpu Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Xiangpeng Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Senbin Wu
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Muqddas Tariq
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Na Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofei Zhang
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,CAS Key Laboratory of Regenerative Biology, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xichen Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Chirgadze YN, Ivanov VV. Zn-CysHis Protein Factor Families: Role of Electrostatic Interaction of Zn-Domains in Factor Functions. Mol Biol 2020. [DOI: 10.1134/s002689332002003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Tian Z, Li X, Li M, Wu W, Zhang M, Tang C, Li Z, Liu Y, Chen Z, Yang M, Ma L, Caba C, Tong Y, Lam HM, Dai S, Chen Z. Crystal structures of REF6 and its complex with DNA reveal diverse recognition mechanisms. Cell Discov 2020; 6:17. [PMID: 32257379 PMCID: PMC7105484 DOI: 10.1038/s41421-020-0150-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Relative of Early Flowing 6 (REF6) is a DNA-sequence-specific H3K27me3/2 demethylase that contains four zinc finger (ZnF) domains and targets several thousand genes in Arabidopsis thaliana. The ZnF domains are essential for binding target genes, but the structural basis remains unclear. Here, we determined crystal structures of the ZnF domains and REF6-DNA complex, revealing a unique REF6-family-specific half-cross-braced ZnF (RCZ) domain and two C2H2-type ZnFs. DNA-binding induces a profound conformational change in the hinge region of REF6. Each REF6 recognizes six bases and DNA methylation reduces the binding affinity. Both the acidic region and basic region are important for the self-association of REF6. The REF6 DNA-binding affinity is determined by the sequence-dependent conformations of DNA and also the cooperativity in different target motifs. The conformational plasticity enables REF6 to function as a global transcriptional regulator that directly binds to many diverse genes, revealing the structural basis for the epigenetic modification recognition.
Collapse
Affiliation(s)
- Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xiaorong Li
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Min Li
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Manfeng Zhang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Chenjun Tang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Zhihui Li
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Zhenhang Chen
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
18
|
Padjasek M, Kocyła A, Kluska K, Kerber O, Tran JB, Krężel A. Structural zinc binding sites shaped for greater works: Structure-function relations in classical zinc finger, hook and clasp domains. J Inorg Biochem 2020; 204:110955. [DOI: 10.1016/j.jinorgbio.2019.110955] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
|
19
|
A Krüppel-like factor 1 ( KLF1) Mutation Associated with Severe Congenital Dyserythropoietic Anemia Alters Its DNA-Binding Specificity. Mol Cell Biol 2020; 40:MCB.00444-19. [PMID: 31818881 DOI: 10.1128/mcb.00444-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Krüppel-like factor 1 (KLF1/EKLF) is a transcription factor that globally activates genes involved in erythroid cell development. Various mutations are identified in the human KLF1 gene. The E325K mutation causes congenital dyserythropoietic anemia (CDA) type IV, characterized by severe anemia and non-erythroid-cell-related symptoms. The CDA mutation is in the second zinc finger of KLF1 at a position functionally involved in its interactions with DNA. The molecular parameters of how CDA-KLF1 exerts its biological effects have not been addressed. Here, using an in vitro selection strategy, we determined the preferred DNA-binding site for CDA-KLF1. Binding to the deduced consensus sequence is supported by in vitro gel shifts and by in vivo functional reporter gene studies. Two significant changes compared to wild-type (WT) binding are observed: G is selected as the middle nucleotide, and the 3' portion of the consensus sequence is more degenerate. As a consequence, CDA-KLF1 did not bind the WT consensus sequence. However, activation of ectopic sites is promoted. Continuous activation of WT target genes occurs if they fortuitously contain the novel CDA site nearby. Our findings provide a molecular understanding of how a single mutation in the KLF1 zinc finger exerts effects on erythroid physiology in CDA type IV.
Collapse
|
20
|
Ovarian Transcriptomic Analyses in the Urban Human Health Pest, the Western Black Widow Spider. Genes (Basel) 2020; 11:genes11010087. [PMID: 31940922 PMCID: PMC7017306 DOI: 10.3390/genes11010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
Due to their abundance and ability to invade diverse environments, many arthropods have become pests of economic and health concern, especially in urban areas. Transcriptomic analyses of arthropod ovaries have provided insight into life history variation and fecundity, yet there are few studies in spiders despite their diversity within arthropods. Here, we generated a de novo ovarian transcriptome from 10 individuals of the western black widow spider (Latrodectus hesperus), a human health pest of high abundance in urban areas, to conduct comparative ovarian transcriptomic analyses. Biological processes enriched for metabolism—specifically purine, and thiamine metabolic pathways linked to oocyte development—were significantly abundant in L. hesperus. Functional and pathway annotations revealed overlap among diverse arachnid ovarian transcriptomes for highly-conserved genes and those linked to fecundity, such as oocyte maturation in vitellogenin and vitelline membrane outer layer proteins, hormones, and hormone receptors required for ovary development, and regulation of fertility-related genes. Comparative studies across arachnids are greatly needed to understand the evolutionary similarities of the spider ovary, and here, the identification of ovarian proteins in L. hesperus provides potential for understanding how increased fecundity is linked to the success of this urban pest.
Collapse
|
21
|
Novel alternatively spliced isoforms of pig ZNF280D and their diverse mRNA expression patterns. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Chirgadze YN, Ivanov VV. Binding of Cys2His2 transcription factors with operator DNA: functional role of linkers between Zn-fingers. J Biomol Struct Dyn 2019; 38:3736-3742. [PMID: 31448692 DOI: 10.1080/07391102.2019.1659857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuri N Chirgadze
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Victor V Ivanov
- Joint Institute for Nuclear Research, Dubna, Russia.,National Research Nuclear University MEPhI, Moscow, Russia
| |
Collapse
|
23
|
Wang D, Horton JR, Zheng Y, Blumenthal RM, Zhang X, Cheng X. Role for first zinc finger of WT1 in DNA sequence specificity: Denys-Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites. Nucleic Acids Res 2019; 46:3864-3877. [PMID: 29294058 PMCID: PMC5934627 DOI: 10.1093/nar/gkx1274] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Wilms tumor protein (WT1) is a Cys2-His2 zinc-finger transcription factor vital for embryonic development of the genitourinary system. The protein contains a C-terminal DNA binding domain with four tandem zinc-fingers (ZF1-4). An alternative splicing of Wt1 can add three additional amino acids-lysine (K), threonine (T) and serine (S)-between ZF3 and ZF4. In the -KTS isoform, ZF2-4 determine the sequence-specificity of DNA binding, whereas the function of ZF1 remains elusive. Three X-ray structures are described here for wild-type -KTS isoform ZF1-4 in complex with its cognate DNA sequence. We observed four unique ZF1 conformations. First, like ZF2-4, ZF1 can be positioned continuously in the DNA major groove forming a 'near-cognate' complex. Second, while ZF2-4 make base-specific interactions with one DNA molecule, ZF1 can interact with a second DNA molecule (or, presumably, two regions of the same DNA molecule). Third, ZF1 can intercalate at the joint of two tail-to-head DNA molecules. If such intercalation occurs on a continuous DNA molecule, it would kink the DNA at the ZF1 binding site. Fourth, two ZF1 units can dimerize. Furthermore, we examined a Denys-Drash syndrome-associated ZF1 mutation (methionine at position 342 is replaced by arginine). This mutation enhances WT1 affinity for a guanine base. X-ray crystallography of the mutant in complex with its preferred sequence revealed the interactions responsible for this affinity change. These results provide insight into the mechanisms of action of WT1, and clarify the fact that ZF1 plays a role in determining sequence specificity of this critical transcription factor.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Zheng
- RGENE, Inc., 953 Indiana Street, San Francisco, CA 94107, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties of zinc fingers with a naturally altered metal binding site. Metallomics 2019; 10:248-263. [PMID: 29230465 DOI: 10.1039/c7mt00256d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zinc fingers (ZFs) are among the most abundant motifs found in proteins, and are commonly known for their structural role. Classical ZFs (CCHH) are part of the transcription factors that participate in DNA binding. Although biochemical studies of classical ZFs have a long history, there is limited knowledge about the sequential and structural diversity of ZFs. We have found that classical ZFs, with metal binding sites consisting of amino acids other than conserved Cys or His residues, are frequently encoded in the human genome, and we refer to these peptides as ZFs with a naturally altered metal binding site. The biological role of the altered ZFs remains undiscovered. In this study, we characterized nine natural XCHH, CXHH, CCXH and CCHX ZFs in terms of their Zn(ii) and Co(ii) binding properties, such as complex stoichiometry, spectroscopic properties and metal-to-peptide affinity. We revealed that XCHH and CXHH ZFs form ML complexes that are 4-5 orders of magnitude weaker in comparison to CCHH ZFs. Nevertheless, spectroscopic studies demonstrate that, depending on the altered position, they may adopt an open coordination geometry with one or two water molecules bound to a central metal ion, which has not been demonstrated in natural ZFs before. Stability data show that both CCXH and CCHX peptides have high Zn(ii) affinity (with a Kd of 10-9 to 10-11 M), suggesting their potential biological function. This study is a comprehensive overview of the relationship between the sequence, structure, and stability of ZFs.
Collapse
Affiliation(s)
- Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | | | |
Collapse
|
25
|
Chirgadze YN, Boshkova EA, Yakovlev AV, Ivanov VV. Side projections of double-helical DNA: example of binding patterns of DNA in the complex with factor TFIIIA. J Biomol Struct Dyn 2018; 37:4433-4436. [PMID: 30513263 DOI: 10.1080/07391102.2018.1555774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Y N Chirgadze
- Institute of Protein Research, Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - E A Boshkova
- Institute of Protein Research, Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - A V Yakovlev
- Joint Institute for Nuclear Research , Dubna , Moscow Region , Russia
| | - V V Ivanov
- Joint Institute for Nuclear Research , Dubna , Moscow Region , Russia.,National Research Nuclear University MEPhI , Moscow , Russia
| |
Collapse
|
26
|
Guo J, Li N, Han J, Pei F, Wang T, Lu D, Jiang J. DNA recognition patterns of the multi-zinc-finger protein CTCF: a mutagenesis study. Acta Pharm Sin B 2018; 8:900-908. [PMID: 30505659 PMCID: PMC6251859 DOI: 10.1016/j.apsb.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
CCCTC-binding factor (CTCF) is a zinc-finger protein, serving an important part in the genome architecture as well as some biochemical processes. Over 70,000 CTCF binding DNA sites have been detected genome-wide, and most anchors of chromatin loops are demarcated with the CTCF binding. Various protein or RNA molecules interact with DNA-bound CTCF to conduct different biological functions, and potentially the interfaces between CTCF and its cofactors can be targets for drug development. Here we identify the effective region of CTCF in DNA recognition, which defines the exposed CTCF surface feature for the interaction of cofactors. While the zinc-finger region contributes the most in DNA association, its binding affinity varies based on different DNA sequences. To investigate the effectiveness of individual zinc-fingers, the key residues are mutated to inactivate the DNA binding ability, while the finger configuration and the spacing between fingers are preserved. The strategy is proved to be successful, while clear differences are observed in the DNA binding affinities among the 11 finger mutants and the result is consistent to previous studies in general. With the help of inactivated finger mutants, we identify the ineffective fingers and the dominant effective fingers, which form distinctive patterns on different DNA targets.
Collapse
|
27
|
Potato Spindle Tuber Viroid RNA-Templated Transcription: Factors and Regulation. Viruses 2018; 10:v10090503. [PMID: 30227597 PMCID: PMC6164485 DOI: 10.3390/v10090503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022] Open
Abstract
Viroids are circular noncoding RNAs that infect plants. Without encoding any protein, these noncoding RNAs contain the necessary genetic information for propagation in hosts. Nuclear-replicating viroids employ DNA-dependent RNA polymerase II (Pol II) for replication, a process that makes a DNA-dependent enzyme recognize RNA templates. Recently, a splicing variant of transcription factor IIIA (TFIIIA-7ZF) was identified as essential for Pol II to replicate potato spindle tuber viroid (PSTVd). The expression of TFIIIA-7ZF, particularly the splicing event, is regulated by a ribosomal protein (RPL5). PSTVd modulates its expression through a direct interaction with RPL5 resulting in optimized expression of TFIIIA-7ZF. This review summarizes the recent discoveries of host factors and regulatory mechanisms underlying PSTVd-templated transcription processes and raises new questions that may help future exploration in this direction. In addition, it briefly compares the machinery and the regulatory mechanism for PSTVd with the replication/transcription system of human hepatitis delta virus.
Collapse
|
28
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Hui HX, Hu ZW, Jiang C, Wu J, Gao Y, Wang XW. ZNF418 overexpression protects against gastric carcinoma and prompts a good prognosis. Onco Targets Ther 2018; 11:2763-2770. [PMID: 29785125 PMCID: PMC5955024 DOI: 10.2147/ott.s160802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to investigate the prognostic power of zinc-finger protein 418 (ZNF418) in gastric cancer (GC) and its potential role in GC development and progression. Patients and methods A total of 10 GC patients’ individual plasmas were collected and screened for dysregulated mRNA using human microarray. Among these dysregulated mRNAs, ZNF418 was found to be significantly downregulated in IIIA–IV stage GC patients compared to IA–IIA stage GC patients. Subsequently, the ZNF418 levels were detected by quantitative reverse transcription-polymerase chain reaction in both GC plasmas and tissues in a larger sample, and the association between ZNF418 expression level and clinicopathological features as well as overall survival (OS) of GC patients was further analyzed. Finally, a network of ZNF418 interactions with other molecules was predicated in STRING and GEPIA databases. Results Human mRNA microarray was performed to screen for abnormally expressed mRNAs between five IIIA–IV stage GC patients’ plasma and five IA–IIA stage GC patients’ plasma. A total of 662 mRNAs were differentially expressed in the IIIA–IV stage GC plasma vs IA–IIA stage GC plasma among all the candidate mRNAs according to the Student’s t-test. Results showed that a decrease in the ZNF418 expression level was associated with the presence of GC and also with higher tumor–node–metastasis stage and lower OS rates compared with that in adjacent noncancerous tissues. Cox regression analysis results demonstrated that the OS was independently correlated with ZNF418 expression. Finally, the prediction results showed that a total of eight mRNAs might have an interaction with ZNF418 in both STRING and GEPIA databases. Conclusion ZNF418 was first identified to be significantly downregulated in GC. Our study indicated that ZNF418 might serve as a novel biomarker for GC and was involved in GC development.
Collapse
Affiliation(s)
- Hong-Xia Hui
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Zhong-Wu Hu
- Department of Thoracic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Chao Jiang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Jian Wu
- Department of Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Yong Gao
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Xiao-Wei Wang
- Department of Medical Oncology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| |
Collapse
|
30
|
Yin M, Wang J, Wang M, Li X, Zhang M, Wu Q, Wang Y. Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites. Cell Res 2017; 27:1365-1377. [PMID: 29076501 DOI: 10.1038/cr.2017.131] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022] Open
Abstract
CTCF, a conserved 3D genome architecture protein, determines proper genome-wide chromatin looping interactions through directional binding to specific sequence elements of four modules within numerous CTCF-binding sites (CBSs) by its 11 zinc fingers (ZFs). Here, we report four crystal structures of human CTCF in complex with CBSs of the protocadherin (Pcdh) clusters. We show that directional CTCF binding to cognate CBSs of the Pcdh enhancers and promoters is achieved through inserting its ZF3, ZFs 4-7, and ZFs 9-11 into the major groove along CBSs, resulting in a sequence-specific recognition of module 4, modules 3 and 2, and module 1, respectively; and ZF8 serves as a spacer element for variable distances between modules 1 and 2. In addition, the base contact with the asymmetric "A" in the central position of modules 2-3, is essential for directional recognition of the CBSs with symmetric core sequences but lacking module 1. Furthermore, CTCF tolerates base changes at specific positions within the degenerated CBS sequences, permitting genome-wide CTCF binding to a diverse range of CBSs. Together, these complex structures provide important insights into the molecular mechanisms for the directionality, diversity, flexibility, dynamics, and conservation of multivalent CTCF binding to its cognate sites across the entire human genome.
Collapse
Affiliation(s)
- Maolu Yin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuyu Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinmei Li
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo Zhang
- Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Collaborative Innovative Center of Systems Biomedicine, SCSB, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, SJTU Medical School, Shanghai 200240, China.,School of Life Sciences and Biotechnology, SJTU, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Collaborative Innovative Center of Systems Biomedicine, SCSB, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China.,State Key Laboratory of Oncogenes and Related Genes, SJTU Medical School, Shanghai 200240, China.,School of Life Sciences and Biotechnology, SJTU, Shanghai 200240, China
| | - Yanli Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| |
Collapse
|
31
|
Hashimoto H, Wang D, Horton JR, Zhang X, Corces VG, Cheng X. Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA. Mol Cell 2017; 66:711-720.e3. [PMID: 28529057 DOI: 10.1016/j.molcel.2017.05.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 12/25/2022]
Abstract
The multidomain CCCTC-binding factor (CTCF), containing a tandem array of 11 zinc fingers (ZFs), modulates the three-dimensional organization of chromatin. We crystallized the human CTCF DNA-binding domain in complex with a known CTCF-binding site. While ZF2 does not make sequence-specific contacts, each finger of ZF3-7 contacts three bases of the 15-bp consensus sequence. Each conserved nucleotide makes base-specific hydrogen bonds with a particular residue. Most of the variable base pairs within the core sequence also engage in interactions with the protein. These interactions compensate for deviations from the consensus sequence, allowing CTCF to adapt to sequence variations. CTCF is sensitive to cytosine methylation at position 2, but insensitive at position 12 of the 15-bp core sequence. These differences can be rationalized structurally. Although included in crystallizations, ZF10 and ZF11 are not visible, while ZF8 and ZF9 span the backbone of the DNA duplex, conferring no sequence specificity but adding to overall binding stability.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Han L, Marcus E, D'Silva S, Phizicky EM. S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates. RNA (NEW YORK, N.Y.) 2017; 23:406-419. [PMID: 28003514 PMCID: PMC5311504 DOI: 10.1261/rna.059667.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 05/25/2023]
Abstract
The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Base Sequence
- Binding Sites
- Cloning, Molecular
- Cytidine/analogs & derivatives
- Cytidine/genetics
- Cytidine/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Nucleic Acid Conformation
- Protein Binding
- Protein Biosynthesis
- Protein Domains
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Transfer, Thr/chemistry
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Thr/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Substrate Specificity
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Sonia D'Silva
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
33
|
Bédard M, Roy V, Montagne M, Lavigne P. Structural Insights into c-Myc-interacting Zinc Finger Protein-1 (Miz-1) Delineate Domains Required for DNA Scanning and Sequence-specific Binding. J Biol Chem 2016; 292:3323-3340. [PMID: 28035002 DOI: 10.1074/jbc.m116.748699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
c-Myc-interacting zinc finger protein-1 (Miz-1) is a poly-Cys2His2 zinc finger (ZF) transcriptional regulator of many cell cycle genes. A Miz-1 DNA sequence consensus has recently been identified and has also unveiled Miz-1 functions in other cellular processes, underscoring its importance in the cell. Miz-1 contains 13 ZFs, but it is unknown why Miz-1 has so many ZFs and whether they recognize and bind DNA sequences in a typical fashion. Here, we used NMR to deduce the role of Miz-1 ZFs 1-4 in detecting the Miz-1 consensus sequence and preventing nonspecific DNA binding. In the construct containing the first 4 ZFs, we observed that ZFs 3 and 4 form an unusual compact and stable structure that restricts their motions. Disruption of this compact structure by an electrostatically mismatched A86K mutation profoundly affected the DNA binding properties of the WT construct. On the one hand, Miz1-4WT was found to bind the Miz-1 DNA consensus sequence weakly and through ZFs 1-3 only. On the other hand, the four ZFs in the structurally destabilized Miz1-4A86K mutant bound to the DNA consensus with a 30-fold increase in affinity (100 nm). The formation of such a thermodynamically stable but nonspecific complex is expected to slow down the rate of DNA scanning by Miz-1 during the search for its consensus sequence. Interestingly, we found that the motif stabilizing the compact structure between ZFs 3 and 4 is conserved and enriched in other long poly-ZF proteins. As discussed in detail, our findings support a general role of compact inter-ZF structures in minimizing the formation of off-target DNA complexes.
Collapse
Affiliation(s)
- Mikaël Bédard
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Vincent Roy
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Martin Montagne
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada
| | - Pierre Lavigne
- Département de Biochimie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada; Regroupement Stratégique sur la Fonction, la Structure, et l'Ingénierie des Protéines (PROTEO), Université Laval, Québec G1V 0A6, Canada; Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, Québec H3G 0B1, Canada.
| |
Collapse
|
34
|
Mao P, Wyrick JJ, Roberts SA, Smerdon MJ. UV-Induced DNA Damage and Mutagenesis in Chromatin. Photochem Photobiol 2016; 93:216-228. [PMID: 27716995 DOI: 10.1111/php.12646] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
UV radiation induces photolesions that distort the DNA double helix and, if not repaired, can cause severe biological consequences, including mutagenesis or cell death. In eukaryotes, both the formation and repair of UV damage occur in the context of chromatin, in which genomic DNA is packaged with histones into nucleosomes and higher order chromatin structures. Here, we review how chromatin impacts the formation of UV photoproducts in eukaryotic cells. We describe the initial discovery that nucleosomes and other DNA binding proteins induce characteristic "photofootprints" during the formation of UV photoproducts. We also describe recent progress in genomewide methods for mapping UV damage, which echoes early biochemical studies, and highlights the role of nucleosomes and transcription factors in UV damage formation and repair at unprecedented resolution. Finally, we discuss our current understanding of how the distribution and repair of UV-induced DNA damage influence mutagenesis in human skin cancers.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA
| |
Collapse
|
35
|
Wai DCC, Shihab M, Low JKK, Mackay JP. The zinc fingers of YY1 bind single-stranded RNA with low sequence specificity. Nucleic Acids Res 2016; 44:9153-9165. [PMID: 27369384 PMCID: PMC5100589 DOI: 10.1093/nar/gkw590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022] Open
Abstract
Classical zinc fingers (ZFs) are traditionally considered to act as sequence-specific DNA-binding domains. More recently, classical ZFs have been recognised as potential RNA-binding modules, raising the intriguing possibility that classical-ZF transcription factors are involved in post-transcriptional gene regulation via direct RNA binding. To date, however, only one classical ZF-RNA complex, that involving TFIIIA, has been structurally characterised. Yin Yang-1 (YY1) is a multi-functional transcription factor involved in many regulatory processes, and binds DNA via four classical ZFs. Recent evidence suggests that YY1 also interacts with RNA, but the molecular nature of the interaction remains unknown. In the present work, we directly assess the ability of YY1 to bind RNA using in vitro assays. Systematic Evolution of Ligands by EXponential enrichment (SELEX) was used to identify preferred RNA sequences bound by the YY1 ZFs from a randomised library over multiple rounds of selection. However, a strong motif was not consistently recovered, suggesting that the RNA sequence selectivity of these domains is modest. YY1 ZF residues involved in binding to single-stranded RNA were identified by NMR spectroscopy and found to be largely distinct from the set of residues involved in DNA binding, suggesting that interactions between YY1 and ssRNA constitute a separate mode of nucleic acid binding. Our data are consistent with recent reports that YY1 can bind to RNA in a low-specificity, yet physiologically relevant manner.
Collapse
Affiliation(s)
- Dorothy C C Wai
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Manar Shihab
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Ordemann JM, Austin RN. Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health. Metallomics 2016; 8:579-88. [DOI: 10.1039/c5mt00300h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review focuses on one possible link between the cellular biology of lead and its neurotoxic effects: the link between Pb2+substitution for Zn2+in zinc-finger proteins and mental illness in adulthood.
Collapse
|
37
|
Abstract
In eukaryotic cells, DNA associates with histones and exists in the form of a chromatin hierarchy. Thus, it is generally believed that many eukaryotic cellular DNA processing events such as replication, transcription, recombination and DNA repair are influenced by the packaging of DNA into chromatin. This mini-review covers the current knowledge of DNA damage and repair in chromatin based on in vitro studies. Specifically, nucleosome assembly affects DNA damage formation in both random sequences and sequences with strong nucleosome-positioning signals such as 5S rDNA. At least three systems have been used to analyze the effect of nucleosome folding on nucleotide excision repair (NER) in vitro: (a) human cell extracts that have to rely on labeling of repair synthesis to monitor DNA repair, due to very low repair efficacy; (b) Xenopus oocyte nuclear extracts, that have very robust DNA repair efficacy, have been utilized to follow direct removal of DNA damage; (c) six purified human DNA repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1) that have been used to reconstitute excision repair in vitro. In general, the results have shown that nucleosome folding inhibits NER and, therefore, its activity must be enhanced by chromatin remodeling factors like SWI/SNF. In addition, binding of transcription factors such as TFIIIA to the 5S rDNA promoter also modulates NER efficacy.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Department of Biochemistry and Center for Cancer Research, Purdue University, 175 S. University Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
38
|
Malgieri G, Palmieri M, Russo L, Fattorusso R, Pedone PV, Isernia C. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart. FEBS J 2015; 282:4480-96. [PMID: 26365095 DOI: 10.1111/febs.13503] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
39
|
Thapar R. Structure-specific nucleic acid recognition by L-motifs and their diverse roles in expression and regulation of the genome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:677-87. [PMID: 25748361 DOI: 10.1016/j.bbagrm.2015.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 01/08/2023]
Abstract
The high-mobility group (HMG) domain containing proteins regulate transcription, DNA replication and recombination. They adopt L-shaped folds and are structure-specific DNA binding motifs. Here, I define the L-motif super-family that consists of DNA-binding HMG-box proteins and the L-motif of the histone mRNA binding domain of stem-loop binding protein (SLBP). The SLBP L-motif and HMG-box domains adopt similar L-shaped folds with three α-helices and two or three small hydrophobic cores that stabilize the overall fold, but have very different and distinct modes of nucleic acid recognition. A comparison of the structure, dynamics, protein-protein and nucleic acid interactions, and regulation by PTMs of the SLBP and the HMG-box L-motifs reveals the versatile and diverse modes by which L-motifs utilize their surfaces for structure-specific recognition of nucleic acids to regulate gene expression.
Collapse
Affiliation(s)
- Roopa Thapar
- BioSciences at Rice-Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA.
| |
Collapse
|
40
|
Liu L, Heermann DW. The interaction of DNA with multi-Cys2His2 zinc finger proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064107. [PMID: 25563438 DOI: 10.1088/0953-8984/27/6/064107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The multi-Cys2His2 (mC2H2) zinc finger protein, like CTCF, plays a central role in the three-dimensional organization of chromatin and gene regulation. The interaction between DNA and mC2H2 zinc finger proteins becomes crucial to better understand how CTCF dynamically shapes the chromatin structure. Here, we study a coarse-grained model of the mC2H2 zinc finger proteins in complexes with DNA, and in particular, we study how a mC2H2 zinc finger protein binds to and searches for its target DNA loci. On the basis of coarse-grained molecular dynamics simulations, we present several interesting kinetic conformational properties of the proteins, such as the rotation-coupled sliding, the asymmetrical roles of different zinc fingers and the partial binding partial dangling mode. In addition, two kinds of studied mC2H2 zinc finger proteins, of CG-rich and AT-rich binding motif each, were able to recognize their target sites and slide away from their non-target sites, which shows a proper sequence specificity in our model and the derived force field for mC2H2-DNA interaction. A further application to CTCF shows that the protein binds to a specific DNA duplex only with its central zinc fingers. The zinc finger domains of CTCF asymmetrically bend the DNA, but do not form a DNA loop alone in our simulations.
Collapse
Affiliation(s)
- Lei Liu
- Institute for Theoretical Physics, Heidelberg University, 69117 Heidelberg, Germany
| | | |
Collapse
|
41
|
Malik MQ, Bertke MM, Huber PW. Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes. J Biol Chem 2014; 289:35468-81. [PMID: 25368327 DOI: 10.1074/jbc.m114.609123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 5 S rRNA gene-specific transcription factor IIIA (TFIIIA) interacts with the small ubiquitin-like modifier (SUMO) E3 ligase PIAS2b and with one of its targets, the transcriptional corepressor, XCtBP. PIAS2b is restricted to the cytoplasm of Xenopus oocytes but relocates to the nucleus immediately after fertilization. Following the midblastula transition, PIAS2b and XCtBP are present on oocyte-type, but not somatic-type, 5 S rRNA genes up through the neurula stage, as is a limiting amount of TFIIIA. Histone H3 methylation, coincident with the binding of XCtBP, also occurs exclusively on the oocyte-type genes. Immunohistochemical staining of embryos confirms the occupancy of a subset of the oocyte-type genes by TFIIIA that become positioned at the nuclear periphery shortly after the midblastula transition. Inhibition of SUMOylation activity relieves repression of oocyte-type 5 S rRNA genes and is correlated with a decrease in methylation of H3K9 and H3K27 and disruption of subnuclear localization. These results reveal a novel function for TFIIIA as a negative regulator that recruits histone modification activity through the CtBP repressor complex exclusively to the oocyte-type 5 S rRNA genes, leading to their terminal repression.
Collapse
Affiliation(s)
- Mariam Q Malik
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Michelle M Bertke
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Paul W Huber
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
42
|
Pröpper K, Meindl K, Sammito M, Dittrich B, Sheldrick GM, Pohl E, Usón I. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1743-57. [PMID: 24914984 PMCID: PMC4051508 DOI: 10.1107/s1399004714007603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/04/2014] [Indexed: 11/11/2022]
Abstract
Protein-DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein-DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite the fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein-DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein-DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.
Collapse
Affiliation(s)
- Kevin Pröpper
- University of Göttingen, Germany
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Spain
| | - Kathrin Meindl
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Spain
| | - Massimo Sammito
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Spain
| | | | | | | | - Isabel Usón
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain
| |
Collapse
|
43
|
Polozov RV, Sivozhelezov VS, Chirgadze YN, Ivanov VV. Recognition rules for binding of Zn-Cys2His2 transcription factors to operator DNA. J Biomol Struct Dyn 2014; 33:253-66. [PMID: 24460547 DOI: 10.1080/07391102.2013.879074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The molecules of Zn-finger transcription factors consist of several similar small protein units. We analyzed the crystal structures 46 basic units of 22 complexes of Zn-Cys2His2 family with the fragments of operator DNA. We showed that the recognition of DNA occurs via five protein contacts. The canonical binding positions of the recognizing α-helix were -1, 3, 6, and 7, which make contacts with the tetra-nucleotide sequence ZXYZ of the coding DNA strand; here the canonical binding triplet is underlined. The non-coding DNA strand forms only one contact at α-helix position 2. We have discovered that there is a single highly conservative contact His7α with the phosphate group of nucleotide Z, which precedes each triplet XYZ of the coding DNA chain. This particular contact is invariant for the all Zn-Cys2His2 family with high frequency of occurrence 83%, which we considered as an invariant recognition rule. We have also selected a previously unreported Zn-Cys2His2-Arg subfamily of 21 Zn-finger units bound with DNA triplets, which make two invariant contacts with residues Arg6α and His7α with the coding DNA chain. These contacts show frequency of occurrence 100 and 90%, and are invariant recognition rule. Three other variable protein-DNA contacts are formed mainly with the bases and specify the recognition patterns of individual factor units. The revealed recognition rules are inherent for the Zn-Cys2His2 family and Zn-Cys2His2-Arg subfamily of different taxonomic groups and can distinguish members of these families from any other family of transcription factors.
Collapse
Affiliation(s)
- R V Polozov
- a Institute of Theoretical Experimental Biophysics, Russian Academy of Sciences , Pushchino 142290 , Moscow Region , Russia
| | | | | | | |
Collapse
|
44
|
Tan C, Li W, Wang W. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger. J Phys Chem B 2013; 117:15917-25. [PMID: 24266699 DOI: 10.1021/jp4052165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.
Collapse
Affiliation(s)
- Cheng Tan
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University , Nanjing, Jiangsu 210093, China
| | | | | |
Collapse
|
45
|
Persikov AV, Rowland EF, Oakes BL, Singh M, Noyes MB. Deep sequencing of large library selections allows computational discovery of diverse sets of zinc fingers that bind common targets. Nucleic Acids Res 2013; 42:1497-508. [PMID: 24214968 PMCID: PMC3919609 DOI: 10.1093/nar/gkt1034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Cys2His2 zinc finger (ZF) is the most frequently found sequence-specific DNA-binding domain in eukaryotic proteins. The ZF's modular protein-DNA interface has also served as a platform for genome engineering applications. Despite decades of intense study, a predictive understanding of the DNA-binding specificities of either natural or engineered ZF domains remains elusive. To help fill this gap, we developed an integrated experimental-computational approach to enrich and recover distinct groups of ZFs that bind common targets. To showcase the power of our approach, we built several large ZF libraries and demonstrated their excellent diversity. As proof of principle, we used one of these ZF libraries to select and recover thousands of ZFs that bind several 3-nt targets of interest. We were then able to computationally cluster these recovered ZFs to reveal several distinct classes of proteins, all recovered from a single selection, to bind the same target. Finally, for each target studied, we confirmed that one or more representative ZFs yield the desired specificity. In sum, the described approach enables comprehensive large-scale selection and characterization of ZF specificities and should be a great aid in furthering our understanding of the ZF domain.
Collapse
Affiliation(s)
- Anton V Persikov
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA, Department of Computer Science, Princeton University, Princeton, NJ 08544, USA and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
46
|
Structure, function and regulation of Transcription Factor IIIA: From Xenopus to Arabidopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:274-82. [DOI: 10.1016/j.bbagrm.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/14/2022]
|
47
|
Vannini A. A structural perspective on RNA polymerase I and RNA polymerase III transcription machineries. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:258-64. [PMID: 23031840 DOI: 10.1016/j.bbagrm.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
RNA polymerase I and III are responsible for the bulk of nuclear transcription in actively growing cells and their activity impacts the cellular biosynthetic capacity. As a consequence, RNA polymerase I and III deregulation has been directly linked to cancer development. The complexity of RNA polymerase I and III transcription apparatuses has hampered their structural characterization. However, in the last decade tremendous progresses have been made, providing insights into the molecular and functional architecture of these multi-subunit transcriptional machineries. Here we summarize the available structural data on RNA polymerase I and III, including specific transcription factors and global regulators. Despite the overall scarcity of detailed structural data, the recent advances in the structural biology of RNA polymerase I and III represent the first step towards a comprehensive understanding of the molecular mechanism underlying RNA polymerase I and III transcription. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Alessandro Vannini
- Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
48
|
Burdach J, O'Connell MR, Mackay JP, Crossley M. Two-timing zinc finger transcription factors liaising with RNA. Trends Biochem Sci 2012; 37:199-205. [PMID: 22405571 DOI: 10.1016/j.tibs.2012.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/16/2012] [Accepted: 02/02/2012] [Indexed: 02/01/2023]
Abstract
Classical zinc fingers (ZFs) are one of the most common protein domains in higher eukaryotes and have been known for almost 30 years to act as sequence-specific DNA-binding domains. This knowledge has come, however, from the study of a small number of archetypal proteins, and a larger picture is beginning to emerge that ZF functions are far more diverse than originally suspected. Here, we review the evidence that a subset of ZF proteins live double lives, binding to both DNA and RNA targets and frequenting both the cytoplasm and the nucleus. This duality can create an important additional level of gene regulation that serves to connect transcriptional and post-transcriptional control.
Collapse
Affiliation(s)
- Jon Burdach
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | | | | | | |
Collapse
|
49
|
Zhang Y, Hu W, Shen J, Tong X, Yang Z, Shen Z, Lan W, Wu H, Cao C. Cysteine 397 plays important roles in the folding of the neuron-restricted silencer factor/RE1-silencing transcription factor. Biochem Biophys Res Commun 2011; 414:309-14. [PMID: 21951847 DOI: 10.1016/j.bbrc.2011.09.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 09/12/2011] [Indexed: 11/25/2022]
Abstract
The neuron-restrictive silencer factor/RE1-silencing transcription factor (NRSF/REST) is regarded as not only a key transcriptional repressor but also an activator in neuron gene expression by specifically interacting with neuron-restrictive silencer element (NRSE/RE1) dsDNA and small NRSE/RE1 dsRNA, respectively. But its exact mechanism remains unclear. One major problem is that it is hard to obtain its functional multiple zinc finger (ZnF) domains in a large quantity for further structural studies. To address this issue, in this study, we for the first time attained soluble NRSF/REST functional domains named as ZnF5-8, ZnF4-8, ZnF3-8 and ZnF2-8 containing four, five, six and seven ZnF motifs in tandem, respectively, by using Circular Dichroism (CD) spectrum and two-dimensional (2D) nucleic magnetic resonance (NMR) (1)H-(1)H NOESY spectrum to monitor the folding of each single ZnF peptide. The data indicated that the residue cysteine 397 (Cys397) plays important roles in the global folding of NRSF/REST multiple ZnFs domain.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Bio-organic and Natural Product Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nunez N, Clifton MMK, Funnell APW, Artuz C, Hallal S, Quinlan KGR, Font J, Vandevenne M, Setiyaputra S, Pearson RCM, Mackay JP, Crossley M. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain. J Biol Chem 2011; 286:38190-38201. [PMID: 21908891 DOI: 10.1074/jbc.m111.301234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.
Collapse
Affiliation(s)
- Noelia Nunez
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Molly M K Clifton
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Alister P W Funnell
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Crisbel Artuz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Samantha Hallal
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Kate G R Quinlan
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Josep Font
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Surya Setiyaputra
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Richard C M Pearson
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Merlin Crossley
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|