1
|
Chiappa G, Fassio G, Modica MV, Oliverio M. Potential Ancestral Conoidean Toxins in the Venom Cocktail of the Carnivorous Snail Raphitoma purpurea (Montagu, 1803) (Neogastropoda: Raphitomidae). Toxins (Basel) 2024; 16:348. [PMID: 39195758 PMCID: PMC11359391 DOI: 10.3390/toxins16080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Venomous marine gastropods of the superfamily Conoidea possess a rich arsenal of toxins, including neuroactive toxins. Venom adaptations might have played a fundamental role in the radiation of conoideans; nevertheless, there is still no knowledge about the venom of the most diversified family of the group: Raphitomidae Bellardi, 1875. In this study, transcriptomes were produced from the carcase, salivary glands, and proximal and distal venom ducts of the northeastern Atlantic species Raphitoma purpurea (Montagu, 1803). Using a gut barcoding approach, we were also able to report, for the first time, molecular evidence of a vermivorous diet for the genus. Transcriptomic analyses revealed over a hundred putative venom components (PVC), including 69 neurotoxins. Twenty novel toxin families, including some with high levels of expansion, were discovered. No significant difference was observed between the distal and proximal venom duct secretions. Peptides related to cone snail toxins (Cerm06, Pgam02, and turritoxin) and other venom-related proteins (disulfide isomerase and elevenin) were retrieved from the salivary glands. These salivary venom components may constitute ancestral adaptations for venom production in conoideans. Although often neglected, salivary gland secretions are of extreme importance for understanding the evolutionary history of conoidean venom.
Collapse
Affiliation(s)
- Giacomo Chiappa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| | - Giulia Fassio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Via Gregorio Allegri 1, 00198 Rome, Italy;
| | - Marco Oliverio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| |
Collapse
|
2
|
Koch TL, Robinson SD, Salcedo PF, Chase K, Biggs J, Fedosov AE, Yandell M, Olivera BM, Safavi-Hemami H. Prey Shifts Drive Venom Evolution in Cone Snails. Mol Biol Evol 2024; 41:msae120. [PMID: 38935574 PMCID: PMC11296725 DOI: 10.1093/molbev/msae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Venom systems are complex traits that have independently emerged multiple times in diverse plant and animal phyla. Within each venomous lineage there typically exists interspecific variation in venom composition where several factors have been proposed as drivers of variation, including phylogeny and diet. Understanding these factors is of broad biological interest and has implications for the development of antivenom therapies and venom-based drug discovery. Because of their high species richness and the presence of several major evolutionary prey shifts, venomous marine cone snails (genus Conus) provide an ideal system to investigate drivers of interspecific venom variation. Here, by analyzing the venom gland expression profiles of ∼3,000 toxin genes from 42 species of cone snail, we elucidate the role of prey-specific selection pressures in shaping venom variation. By analyzing overall venom composition and individual toxin structures, we demonstrate that the shifts from vermivory to piscivory in Conus are complemented by distinct changes in venom composition independent of phylogeny. In vivo injections of venom from piscivorous cone snails in fish further showed a higher potency compared with venom of nonpiscivores demonstrating a selective advantage. Together, our findings provide compelling evidence for the role of prey shifts in directing the venom composition of cone snails and expand our understanding of the mechanisms of venom variation and diversification.
Collapse
Affiliation(s)
- Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Samuel D Robinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Biggs
- Division of Aquatic and Wildlife Resources, Department of Agriculture, Mangilao, GU 96913, USA
| | - Alexander E Fedosov
- Swedish Museum of Natural History, Department of Zoology, Stockholm 114 18, Sweden
| | - Mark Yandell
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| |
Collapse
|
3
|
Germoush MO, Fouda M, Aly H, Saber I, Alrashdi BM, Massoud D, Alzwain S, Altyar AE, Abdel-Daim MM, Sarhan M. Proteomic analysis of the venom of Conus flavidus from Red Sea reveals potential pharmacological applications. J Genet Eng Biotechnol 2024; 22:100375. [PMID: 38797555 PMCID: PMC11066669 DOI: 10.1016/j.jgeb.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Venomous marine cone snails produce unique neurotoxins called conopeptides or conotoxins, which are valuable for research and drug discovery. Characterizing Conus venom is important, especially for poorly studied species, as these tiny and steady molecules have considerable potential as research tools for detecting new pharmacological applications. In this study, a worm-hunting cone snail, Conus flavidus inhabiting the Red Sea coast were collected, dissected and the venom gland extraction was subjected to proteomic analysis to define the venom composition, and confirm the functional structure of conopeptides. RESULTS Analysis of C. flavidus venom identified 117 peptide fragments and assorted them to conotoxin precursors and non-conotoxin proteins. In this procedure, 65 conotoxin precursors were classified and identified to 16 conotoxin precursors and hormone superfamilies. In the venom of C. flavidus, the four conotoxin superfamilies T, A, O2, and M were the most abundant peptides, accounting for 75.8% of the total conotoxin diversity. Additionally, 19 non-conotoxin proteins were specified in the venom, as well as several potentially biologically active peptides with putative applications. CONCLUSION Our research displayed that the structure of the C. flavidus-derived proteome is similar to other Conus species and includes toxins, ionic channel inhibitors, insulin-like peptides, and hyaluronidase. This study provides a foundation for discovering new conopeptides from C. flavidus venom for pharmaceutical use.
Collapse
Affiliation(s)
- Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia.
| | - Maged Fouda
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Hamdy Aly
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt
| | - Islam Saber
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt
| | - Barakat M Alrashdi
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Sarah Alzwain
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia; Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Moustafa Sarhan
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Assuit, Egypt; Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Saudi Arabia
| |
Collapse
|
4
|
Sonoda GG, Tobaruela EDC, Norenburg J, Fabi JP, Andrade SCS. Venomous Noodles: The Evolution of Toxins in Nemertea through Positive Selection and Gene Duplication. Toxins (Basel) 2023; 15:650. [PMID: 37999513 PMCID: PMC10674772 DOI: 10.3390/toxins15110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023] Open
Abstract
Some, probably most and perhaps all, members of the phylum Nemertea are poisonous, documented so far from marine and benthic specimens. Although the toxicity of these animals has been long known, systematic studies on the characterization of toxins, mechanisms of toxicity, and toxin evolution for this group are scarce. Here, we present the first investigation of the molecular evolution of toxins in Nemertea. Using a proteo-transcriptomic approach, we described toxins in the body and poisonous mucus of the pilidiophoran Lineus sanguineus and the hoplonemertean Nemertopsis pamelaroeae. Using these new and publicly available transcriptomes, we investigated the molecular evolution of six selected toxin gene families. In addition, we also characterized in silico the toxin genes found in the interstitial hoplonemertean, Ototyphlonemertes erneba, a meiofaunal taxa. We successfully identified over 200 toxin transcripts in each of these species. Evidence of positive selection and gene duplication was observed in all investigated toxin genes. We hypothesized that the increased rates of gene duplications observed for Pilidiophora could be involved with the expansion of toxin genes. Studies concerning the natural history of Nemertea are still needed to understand the evolution of their toxins. Nevertheless, our results show evolutionary mechanisms similar to other venomous groups.
Collapse
Affiliation(s)
- Gabriel Gonzalez Sonoda
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
- Instituto Butantan, São Paulo 05503-900, Brazil
| | - Eric de Castro Tobaruela
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | | | - João Paulo Fabi
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
| |
Collapse
|
5
|
Yano Y, Fukuoka R, Maturana AD, Ohdachi SD, Kita M. Mammalian neurotoxins, Blarina paralytic peptides, cause hyperpolarization of human T-type Ca channel hCa v3.2 activation. J Biol Chem 2023; 299:105066. [PMID: 37468103 PMCID: PMC10493266 DOI: 10.1016/j.jbc.2023.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Among the rare venomous mammals, the short-tailed shrew Blarina brevicauda has been suggested to produce potent neurotoxins in its saliva to effectively capture prey. Several kallikrein-like lethal proteases have been identified, but the active substances of B. brevicauda remained unclear. Here, we report Blarina paralytic peptides (BPPs) 1 and 2 isolated from its submaxillary glands. Synthetic BPP2 showed mealworm paralysis and a hyperpolarization shift (-11 mV) of a human T-type Ca2+ channel (hCav3.2) activation. The amino acid sequences of BPPs were similar to those of synenkephalins, which are precursors of brain opioid peptide hormones that are highly conserved among mammals. However, BPPs rather resembled centipede neurotoxic peptides SLPTXs in terms of disulfide bond connectivity and stereostructure. Our results suggested that the neurotoxin BPPs were the result of convergent evolution as homologs of nontoxic endogenous peptides that are widely conserved in mammals. This finding is of great interest from the viewpoint of the chemical evolution of vertebrate venoms.
Collapse
Affiliation(s)
- Yusuke Yano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryo Fukuoka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Andres D Maturana
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satoshi D Ohdachi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
6
|
Jang MJ, Hong WJ, Park YS, Jung KH, Kim S. Genomic basis of multiphase evolution driving divergent selection of zinc-finger homeodomain genes. Nucleic Acids Res 2023; 51:7424-7437. [PMID: 37394281 PMCID: PMC10415114 DOI: 10.1093/nar/gkad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Gene families divergently evolve and become adapted as different genes with specific structures and functions in living organisms. We performed comprehensive structural and functional analyses of Zinc-finger homeodomain genes (ZF-HDs), including Mini zinc-finger genes (MIFs) and Zinc-finger with homeodomain genes (ZHDs), displaying competitive functions each other. Intensive annotation updates for 90 plant genomes verified that most MIFs (MIF-Is) exhibited distinct motif compositions from ZHDs, although some MIFs (MIF-Zs) contained ZHD-specific motifs. Phylogenetic analyses suggested that MIF-Zs and ZHDs originated from the same ancestral gene, whereas MIF-Is emerged from a distinct progenitor. We used a gene-editing system to identify a novel function of MIF-Is in rice: regulating the surface material patterns in anthers and pollen through transcriptional regulation by interacting ZHDs. Kingdom-wide investigations determined that (i) ancestral MIFs diverged into MIF-Is and MIF-Zs in the last universal common ancestor, (ii) integration of HD into the C-terminal of MIF-Zs created ZHDs after emergence of green plants and (iii) MIF-Is and ZHDs subsequently expanded independently into specific plant lineages, with additional formation of MIF-Zs from ZHDs. Our comprehensive analysis provides genomic evidence for multiphase evolution driving divergent selection of ZF-HDs.
Collapse
Affiliation(s)
- Min-Jeong Jang
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
7
|
Farhat S, Modica MV, Puillandre N. Whole Genome Duplication and Gene Evolution in the Hyperdiverse Venomous Gastropods. Mol Biol Evol 2023; 40:msad171. [PMID: 37494290 PMCID: PMC10401626 DOI: 10.1093/molbev/msad171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The diversity of venomous organisms and the toxins they produce have been increasingly investigated, but taxonomic bias remains important. Neogastropods, a group of marine predators representing almost 22% of the known gastropod diversity, evolved a wide range of feeding strategies, including the production of toxins to subdue their preys. However, whether the diversity of these compounds is at the origin of the hyperdiversification of the group and how genome evolution may correlate with both the compounds and species diversities remain understudied. Among the available gastropods genomes, only eight, with uneven quality assemblies, belong to neogastropods. Here, we generated chromosome-level assemblies of two species belonging to the Tonnoidea and Muricoidea superfamilies (Monoplex corrugatus and Stramonita haemastoma). The two obtained high-quality genomes had 3 and 2.2 Gb, respectively, and 92-89% of the total assembly conformed 35 pseudochromosomes in each species. Through the analysis of syntenic blocks, Hox gene cluster duplication, and synonymous substitutions distribution pattern, we inferred the occurrence of a whole genome duplication event in both genomes. As these species are known to release venom, toxins were annotated in both genomes, but few of them were found in homologous chromosomes. A comparison of the expression of ohnolog genes (using transcriptomes from osphradium and salivary glands in S. haemastoma), where both copies were differentially expressed, showed that most of them had similar expression profiles. The high quality of these genomes makes them valuable reference in their respective taxa, facilitating the identification of genome-level processes at the origin of their evolutionary success.
Collapse
Affiliation(s)
- Sarah Farhat
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Roma, Italy
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
8
|
Rogalski A, Himaya SWA, Lewis RJ. Coordinated adaptations define the ontogenetic shift from worm- to fish-hunting in a venomous cone snail. Nat Commun 2023; 14:3287. [PMID: 37311767 DOI: 10.1038/s41467-023-38924-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Marine cone snails have attracted researchers from all disciplines but early life stages have received limited attention due to difficulties accessing or rearing juvenile specimens. Here, we document the culture of Conus magus from eggs through metamorphosis to reveal dramatic shifts in predatory feeding behaviour between post-metamorphic juveniles and adult specimens. Adult C. magus capture fish using a set of paralytic venom peptides combined with a hooked radular tooth used to tether envenomed fish. In contrast, early juveniles feed exclusively on polychaete worms using a unique "sting-and-stalk" foraging behaviour facilitated by short, unbarbed radular teeth and a distinct venom repertoire that induces hypoactivity in prey. Our results demonstrate how coordinated morphological, behavioural and molecular changes facilitate the shift from worm- to fish-hunting in C. magus, and showcase juvenile cone snails as a rich and unexplored source of novel venom peptides for ecological, evolutionary and biodiscovery studies.
Collapse
Affiliation(s)
- Aymeric Rogalski
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - S W A Himaya
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
9
|
Shaikh NY, Sunagar K. The deep-rooted origin of disulfide-rich spider venom toxins. eLife 2023; 12:83761. [PMID: 36757362 PMCID: PMC10017107 DOI: 10.7554/elife.83761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
Spider venoms are a complex concoction of enzymes, polyamines, inorganic salts, and disulfide-rich peptides (DRPs). Although DRPs are widely distributed and abundant, their bevolutionary origin has remained elusive. This knowledge gap stems from the extensive molecular divergence of DRPs and a lack of sequence and structural data from diverse lineages. By evaluating DRPs under a comprehensive phylogenetic, structural and evolutionary framework, we have not only identified 78 novel spider toxin superfamilies but also provided the first evidence for their common origin. We trace the origin of these toxin superfamilies to a primordial knot - which we name 'Adi Shakti', after the creator of the Universe according to Hindu mythology - 375 MYA in the common ancestor of Araneomorphae and Mygalomorphae. As the lineages under evaluation constitute nearly 60% of extant spiders, our findings provide fascinating insights into the early evolution and diversification of the spider venom arsenal. Reliance on a single molecular toxin scaffold by nearly all spiders is in complete contrast to most other venomous animals that have recruited into their venoms diverse toxins with independent origins. By comparatively evaluating the molecular evolutionary histories of araneomorph and mygalomorph spider venom toxins, we highlight their contrasting evolutionary diversification rates. Our results also suggest that venom deployment (e.g. prey capture or self-defense) influences evolutionary diversification of DRP toxin superfamilies.
Collapse
Affiliation(s)
- Naeem Yusuf Shaikh
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science BangaloreBengaluruIndia
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science BangaloreBengaluruIndia
| |
Collapse
|
10
|
Ding X, Zhao R, Dai Y, Zhang Y, Lin S, Ye J. Comprehensive Analysis of Copy Number Variations on Glycoside Hydrolase 45 Genes among Different Bursaphelenchus xylophilus Strains. Int J Mol Sci 2022; 23:ijms232315323. [PMID: 36499649 PMCID: PMC9735991 DOI: 10.3390/ijms232315323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bursaphelenchus xylophilus is considered the most dangerous quarantine pest in China. It causes enormous economic and ecological losses in many countries from Asia and Europe. The glycoside hydrolase 45 gene family has been demonstrated in early studies to contribute to the cell wall degradation ability of B. xylophilus during its infection. However, the copy number variation (CNV) of the GH45 gene and its association with B. xylophilus pathogenicity were not fully elucidated. In this study, we found that the GH45 gene with two copies is the most predominant type among 259 B. xylophilus strains collected from China and Japan. Additionally, 18 strains are identified as GH45 genes with a single copy, and only two strains are verified to have three copies. Subsequent expression analysis and inoculation test suggest that the copy numbers of the GH45 gene are correlated with gene expression as well as the B. xylophilus pathogenicity. B. xylophilus strains with more copies of the GH45 gene usually exhibit more abundant expression and cause more severe wilt symptoms on pine trees. The aforementioned results indicated the potential regulatory effects of CNV in B. xylophilus and provided novel information to better understand the molecular pathogenesis of this devastating pest.
Collapse
Affiliation(s)
- Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
- Correspondence:
| | - Ruiwen Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Yonglin Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Sixi Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing 210037, China
| |
Collapse
|
11
|
Barassé V, Téné N, Klopp C, Paquet F, Tysklind N, Troispoux V, Lalägue H, Orivel J, Lefranc B, Leprince J, Kenne M, Tindo M, Treilhou M, Touchard A, Bonnafé E. Venomics survey of six myrmicine ants provides insights into the molecular and structural diversity of their peptide toxins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103876. [PMID: 36410579 DOI: 10.1016/j.ibmb.2022.103876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Among ants, Myrmicinae represents the most speciose subfamily. The venom composition previously described for these social insects is extremely variable, with alkaloids predominant in some genera while, conversely, proteomics studies have revealed that some myrmicine ant venoms are peptide-rich. Using integrated transcriptomic and proteomic approaches, we characterized the venom peptidomes of six ants belonging to the different tribes of Myrmicinae. We identified a total of 79 myrmicitoxins precursors which can be classified into 38 peptide families according to their mature sequences. Myrmicine ant venom peptidomes showed heterogeneous compositions, with linear and disulfide-bonded monomers as well as dimeric toxins. Several peptide families were exclusive to a single venom whereas some were retrieved in multiple species. A hierarchical clustering analysis of precursor signal sequences led us to divide the myrmicitoxins precursors into eight families, including some that have already been described in other aculeate hymenoptera such as secapin-like peptides and voltage-gated sodium channel (NaV) toxins. Evolutionary and structural analyses of two representatives of these families highlighted variation and conserved patterns that might be crucial to explain myrmicine venom peptide functional adaptations to biological targets.
Collapse
Affiliation(s)
- Valentine Barassé
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France.
| | - Nathan Téné
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France.
| | - Christophe Klopp
- Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, Genotoul Bioinfo, INRAE Toulouse, 31326, Castanet-Tolosan, France.
| | - Françoise Paquet
- Centre de Biophysique Moléculaire - CNRS - UPR 4301, 45071, Orléans, France.
| | - Niklas Tysklind
- INRAE, UMR EcoFoG (Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310, Kourou, French Guiana.
| | - Valérie Troispoux
- INRAE, UMR EcoFoG (Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane), Campus Agronomique, 97310, Kourou, French Guiana.
| | - Hadrien Lalägue
- CNRS, UMR EcoFoG (AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane), 97310, Kourou, France.
| | - Jérôme Orivel
- CNRS, UMR EcoFoG (AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane), 97310, Kourou, France.
| | - Benjamin Lefranc
- Inserm U 1239, Normandie Univ, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire Normandie (PRIMACEN), 76000, Rouen, France.
| | - Jérôme Leprince
- Inserm U 1239, Normandie Univ, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire Normandie (PRIMACEN), 76000, Rouen, France.
| | - Martin Kenne
- Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala, P.O.Box. 24157, Douala, Cameroon.
| | - Maurice Tindo
- Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala, P.O.Box. 24157, Douala, Cameroon.
| | - Michel Treilhou
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France.
| | - Axel Touchard
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France; CNRS, UMR EcoFoG (AgroParisTech, CNRS, CIRAD, INRAE, Université des Antilles, Université de Guyane), 97310, Kourou, France.
| | - Elsa Bonnafé
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012, Albi, France.
| |
Collapse
|
12
|
Mitochondrial marker–based analyses provide new insights into role of coral reef ecosystems in molluscan speciation. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-021-00533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Mason AJ, Holding ML, Rautsaw RM, Rokyta DR, Parkinson CL, Gibbs HL. Venom gene sequence diversity and expression jointly shape diet adaptation in pitvipers. Mol Biol Evol 2022; 39:6567549. [PMID: 35413123 PMCID: PMC9040050 DOI: 10.1093/molbev/msac082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the joint roles of protein sequence variation and differential expression during adaptive evolution is a fundamental, yet largely unrealized goal of evolutionary biology. Here, we use phylogenetic path analysis to analyze a comprehensive venom-gland transcriptome dataset spanning three genera of pitvipers to identify the functional genetic basis of a key adaptation (venom complexity) linked to diet breadth (DB). The analysis of gene-family-specific patterns reveals that, for genes encoding two of the most important venom proteins (snake venom metalloproteases and snake venom serine proteases), there are direct, positive relationships between sequence diversity (SD), expression diversity (ED), and increased DB. Further analysis of gene-family diversification for these proteins showed no constraint on how individual lineages achieved toxin gene SD in terms of the patterns of paralog diversification. In contrast, another major venom protein family (PLA2s) showed no relationship between venom molecular diversity and DB. Additional analyses suggest that other molecular mechanisms—such as higher absolute levels of expression—are responsible for diet adaptation involving these venom proteins. Broadly, our findings argue that functional diversity generated through sequence and expression variations jointly determine adaptation in the key components of pitviper venoms, which mediate complex molecular interactions between the snakes and their prey.
Collapse
Affiliation(s)
- Andrew J Mason
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | | | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Fouda MMA, Abdel-Wahab M, Mohammadien A, Germoush MO, Sarhan M. Proteomic analysis of Red Sea Conus taeniatus venom reveals potential biological applications. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210023. [PMID: 34712278 PMCID: PMC8525892 DOI: 10.1590/1678-9199-jvatitd-2021-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Diverse and unique bioactive neurotoxins known as conopeptides or conotoxins
are produced by venomous marine cone snails. Currently, these small and
stable molecules are of great importance as research tools and platforms for
discovering new drugs and therapeutics. Therefore, the characterization of
Conus venom is of great significance, especially for
poorly studied species. Methods: In this study, we used bioanalytical techniques to determine the venom
profile and emphasize the functional composition of conopeptides in
Conus taeniatus, a neglected worm-hunting cone snail.
Results: The proteomic analysis revealed that 84.0% of the venom proteins were between
500 and 4,000 Da, and 16.0% were > 4,000 Da. In C.
taeniatus venom, 234 peptide fragments were identified and
classified as conotoxin precursors or non-conotoxin proteins. In this
process, 153 conotoxin precursors were identified and matched to 23
conotoxin precursors and hormone superfamilies. Notably, the four conotoxin
superfamilies T (22.87%), O1 (17.65%), M (13.1%) and O2 (9.8%) were the most
abundant peptides in C. taeniatus venom, accounting for
63.40% of the total conotoxin diversity. On the other hand, 48 non-conotoxin
proteins were identified in the venom of C. taeniatus.
Moreover, several possibly biologically active peptide matches were
identified, and putative applications of the peptides were assigned. Conclusion: Our study showed that the composition of the C.
taeniatus-derived proteome is comparable to that of other
Conus species and contains an effective mix of toxins,
ionic channel inhibitors and antimicrobials. Additionally, it provides a
guidepost for identifying novel conopeptides from the venom of C.
taeniatus and discovering conopeptides of potential
pharmaceutical importance.
Collapse
Affiliation(s)
- Maged M A Fouda
- Department of Biology, College of Science, Jouf University, Saudi Arabia.,Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | | | - Amal Mohammadien
- Department of Biology, College of Science, Taeif University, Saudi Arabia.,Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mousa O Germoush
- Department of Biology, College of Science, Jouf University, Saudi Arabia
| | - Moustafa Sarhan
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
15
|
Himaya SWA, Jin AH, Hamilton B, Rai SK, Alewood P, Lewis RJ. Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus. Sci Rep 2021; 11:13282. [PMID: 34168165 PMCID: PMC8225645 DOI: 10.1038/s41598-021-91919-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
The venom duct origins of predatory and defensive venoms has not been studied for hook-and-line fish hunting cone snails despite the pharmacological importance of their venoms. To better understand the biochemistry and evolution of injected predatory and defensive venoms, we compared distal, central and proximal venom duct sections across three specimens of C. striatus (Pionoconus) using proteomic and transcriptomic approaches. A total of 370 conotoxin precursors were identified from the whole venom duct transcriptome. Milked defensive venom was enriched with a potent cocktail of proximally expressed inhibitory α-, ω- and μ-conotoxins compared to milked predatory venom. In contrast, excitatory κA-conotoxins dominated both the predatory and defensive venoms despite their distal expression, suggesting this class of conotoxin can be selectively expressed from the same duct segment in response to either a predatory or defensive stimuli. Given the high abundance of κA-conotoxins in the Pionoconus clade, we hypothesise that the κA-conotoxins have evolved through adaptive evolution following their repurposing from ancestral inhibitory A superfamily conotoxins to facilitate the dietary shift to fish hunting and species radiation in this clade.
Collapse
Affiliation(s)
- S. W. A. Himaya
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Ai-Hua Jin
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Brett Hamilton
- grid.1003.20000 0000 9320 7537Centre for Microscopy and Microanalysis, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Subash K. Rai
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Present Address: Genome Innovation Hub, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Paul Alewood
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia
| | - Richard J. Lewis
- grid.1003.20000 0000 9320 7537Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072 Australia
| |
Collapse
|
16
|
Copy Number Variations of Glycoside Hydrolase 45 Genes in Bursaphelenchus xylophilus and Their Impact on the Pathogenesis of Pine Wilt Disease. FORESTS 2021. [DOI: 10.3390/f12030275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The pine wood nematode Bursaphelenchus xylophilus parasitizes millions of pine trees worldwide each year, causing severe wilt and the death of host trees. Glycoside hydrolase 45 genes of B. xylophilus are reported to have been acquired by horizontal gene transfer from fungi and are responsible for cell wall degradation during nematode infection. Previous studies ignored the possibility of copy number variations of such genes. In this study, we determined that two of the glycoside hydrolase 45 genes evolved to maintain multiple copies with distinct expression levels, enabling the nematode to infect a variety of pine hosts. Additionally, tandem repeat variations within coding regions were also detected between different copies of glycoside hydrolase 45 genes that could result in changes in protein sequences and serve as an effective biological marker to detect copy number variations among different B. xylophilus populations. Consequently, we were able to further identify the copy number variations of glycoside hydrolase 45 genes among B. xylophilus strains with different virulence. Our results provide new insights into the pathogenicity of B. xylophilus, provide a practical marker to genotype copy number variations and may aid in population classification.
Collapse
|
17
|
Jackson TNW, Koludarov I. How the Toxin got its Toxicity. Front Pharmacol 2020; 11:574925. [PMID: 33381030 PMCID: PMC7767849 DOI: 10.3389/fphar.2020.574925] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Venom systems are functional and ecological traits, typically used by one organism to subdue or deter another. A predominant subset of their constituent molecules—“toxins”—share this ecological function and are therefore molecules that mediate interactions between organisms. Such molecules have been referred to as “exochemicals.” There has been debate within the field of toxinology concerning the evolutionary pathways leading to the “recruitment” of a gene product for a toxic role within venom. We review these discussions and the evidence interpreted in support of alternate pathways, along with many of the most popular models describing the origin of novel molecular functions in general. We note that such functions may arise with or without gene duplication occurring and are often the consequence of a gene product encountering a novel “environment,” i.e., a range of novel partners for molecular interaction. After stressing the distinction between “activity” and “function,” we describe in detail the results of a recent study which reconstructed the evolutionary history of a multigene family that has been recruited as a toxin and argue that these results indicate that a pluralistic approach to understanding the origin of novel functions is advantageous. This leads us to recommend that an expansive approach be taken to the definition of “neofunctionalization”—simply the origins of a novel molecular function by any process—and “recruitment”—the “weaponization” of a molecule via the acquisition of a toxic function in venom, by any process. Recruitment does not occur at the molecular level or even at the level of gene expression, but only when a confluence of factors results in the ecological deployment of a physiologically active molecule as a toxin. Subsequent to recruitment, the evolutionary regime of a gene family may shift into a more dynamic form of “birth-and-death.” Thus, recruitment leads to a form of “downwards causation,” in which a change at the ecological level at which whole organisms interact leads to a change in patterns of evolution at the genomic level.
Collapse
Affiliation(s)
- Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| | - Ivan Koludarov
- Animal Venomics Group, Justus Leibig University, Giessen, Germany
| |
Collapse
|
18
|
Bjørn-Yoshimoto WE, Ramiro IBL, Yandell M, McIntosh JM, Olivera BM, Ellgaard L, Safavi-Hemami H. Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines 2020; 8:E235. [PMID: 32708023 PMCID: PMC7460000 DOI: 10.3390/biomedicines8080235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023] Open
Abstract
Conotoxins form a diverse group of peptide toxins found in the venom of predatory marine cone snails. Decades of conotoxin research have provided numerous measurable scientific and societal benefits. These include their use as a drug, diagnostic agent, drug leads, and research tools in neuroscience, pharmacology, biochemistry, structural biology, and molecular evolution. Human envenomations by cone snails are rare but can be fatal. Death by envenomation is likely caused by a small set of toxins that induce muscle paralysis of the diaphragm, resulting in respiratory arrest. The potency of these toxins led to concerns regarding the potential development and use of conotoxins as biological weapons. To address this, various regulatory measures have been introduced that limit the use and access of conotoxins within the research community. Some of these regulations apply to all of the ≈200,000 conotoxins predicted to exist in nature of which less than 0.05% are estimated to have any significant toxicity in humans. In this review we provide an overview of the many benefits of conotoxin research, and contrast these to the perceived biosecurity concerns of conotoxins and research thereof.
Collapse
Affiliation(s)
- Walden E. Bjørn-Yoshimoto
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
| | - Iris Bea L. Ramiro
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA;
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
19
|
Presence-absence polymorphisms of single-copy genes in the stony coral Acropora digitifera. BMC Genomics 2020; 21:158. [PMID: 32054446 PMCID: PMC7020367 DOI: 10.1186/s12864-020-6566-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite the importance of characterizing genetic variation among coral individuals for understanding phenotypic variation, the correlation between coral genomic diversity and phenotypic expression is still poorly understood. Results In this study, we detected a high frequency of genes showing presence–absence polymorphisms (PAPs) for single-copy genes in Acropora digitifera. Among 10,455 single-copy genes, 516 (5%) exhibited PAPs, including 32 transposable element (TE)-related genes. Five hundred sixteen genes exhibited a homozygous absence in one (102) or more than one (414) individuals (n = 33), indicating that most of the absent alleles were not rare variants. Among genes showing PAPs (PAP genes), roughly half were expressed in adults and/or larvae, and the PAP status was associated with differential expression among individuals. Although 85% of PAP genes were uncharacterized or had ambiguous annotations, 70% of these genes were specifically distributed in cnidarian lineages in eumetazoa, suggesting that these genes have functional roles related to traits related to cnidarians or the family Acroporidae or the genus Acropora. Indeed, four of these genes encoded toxins that are usually components of venom in cnidarian-specific cnidocytes. At least 17% of A. digitifera PAP genes were also PAPs in A. tenuis, the basal lineage in the genus Acropora, indicating that PAPs were shared among species in Acropora. Conclusions Expression differences caused by a high frequency of PAP genes may be a novel genomic feature in the genus Acropora; these findings will contribute to improve our understanding of correlation between genetic and phenotypic variation in corals.
Collapse
|
20
|
Himaya SWA, Rai SK, Pamfili G, Jin AH, Alewood PF, Lewis RJ. Venomic Interrogation Reveals the Complexity of Conus striolatus Venom. Aust J Chem 2020. [DOI: 10.1071/ch19588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Given the complexity of cone snail venoms, high throughput venomics approaches are required to fully investigate venom composition, envenomation strategies, and evolutionary trajectories. This study describes 158 conotoxins in the venom transcriptome of the little studied C. striolatus from the fish hunting clade Pionoconus. Despite similar gene superfamily distributions along the venom duct, only 18 common transcripts were identified between distal, central, and proximal venom duct transcriptomes. Proteomic analysis of the injected predatory venom collected from the same individual revealed an ~18-fold enhanced complexity at the proteomic level, consistent with complex post-translational modifications and variable venom peptide processing occurring in the venom duct. Overall, C. striolatus venom was dominated by M, O1, O2, and A gene superfamily conotoxins and conkunitzins, which are potential modulators of sodium, calcium, and potassium channels. Conkunitzins and gene superfamily A peptides dominated the proximal over the distal duct, the M and O1 gene superfamily peptides were distributed along the full length of the duct, while the O2 gene superfamily peptides dominated the distal duct. Interestingly, the predatory injected venom of C. striolatus was dominated by peptides from gene superfamilies M, O1, O2, A, and conkunitzins, suggesting the predatory venom of C. striolatus may arise at multiple sites along the venom duct.
Collapse
|
21
|
Casewell NR, Petras D, Card DC, Suranse V, Mychajliw AM, Richards D, Koludarov I, Albulescu LO, Slagboom J, Hempel BF, Ngum NM, Kennerley RJ, Brocca JL, Whiteley G, Harrison RA, Bolton FMS, Debono J, Vonk FJ, Alföldi J, Johnson J, Karlsson EK, Lindblad-Toh K, Mellor IR, Süssmuth RD, Fry BG, Kuruppu S, Hodgson WC, Kool J, Castoe TA, Barnes I, Sunagar K, Undheim EAB, Turvey ST. Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proc Natl Acad Sci U S A 2019; 116:25745-25755. [PMID: 31772017 PMCID: PMC6926037 DOI: 10.1073/pnas.1906117116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions.
Collapse
Affiliation(s)
- Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom;
| | - Daniel Petras
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
- Collaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Vivek Suranse
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India
| | - Alexis M Mychajliw
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles, CA 90036
- Institute of Low Temperature Science, Hokkaido University, 060-0819 Sapporo, Japan
| | - David Richards
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
- Biomedical Research Centre, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Ivan Koludarov
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | | | - Neville M Ngum
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | - Rosalind J Kennerley
- Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey JE3 5BP, British Channel Islands, United Kingdom
| | - Jorge L Brocca
- SOH Conservación, Apto. 401 Residencial Las Galerías, Santo Domingo, 10130, Dominican Republic
| | - Gareth Whiteley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Fiona M S Bolton
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Jessica Alföldi
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Jeremy Johnson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Elinor K Karlsson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Kerstin Lindblad-Toh
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Ian R Mellor
- School of Life Sciences, University of Nottingham, University Park, NG7 2RD Nottingham, United Kingdom
| | | | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Sanjaya Kuruppu
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedicine Discovery Institute, Monash University, VIC 3800, Australia
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76010
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, SW7 5BD London, United Kingdom
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, Brisbane QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY London, United Kingdom
| |
Collapse
|
22
|
Conotoxin Diversity in the Venom Gland Transcriptome of the Magician's Cone, Pionoconus magus. Mar Drugs 2019; 17:md17100553. [PMID: 31569823 PMCID: PMC6835573 DOI: 10.3390/md17100553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The transcriptomes of the venom glands of two individuals of the magician’s cone, Pionoconus magus, from Okinawa (Japan) were sequenced, assembled, and annotated. In addition, RNA-seq raw reads available at the SRA database from one additional specimen of P. magus from the Philippines were also assembled and annotated. The total numbers of identified conotoxin precursors and hormones per specimen were 118, 112, and 93. The three individuals shared only five identical sequences whereas the two specimens from Okinawa had 30 sequences in common. The total number of distinct conotoxin precursors and hormones for P. magus was 275, and were assigned to 53 conotoxin precursor and hormone superfamilies, two of which were new based on their divergent signal region. The superfamilies that had the highest number of precursors were M (42), O1 (34), T (27), A (18), O2 (17), and F (13), accounting for 55% of the total diversity. The D superfamily, previously thought to be exclusive of vermivorous cones was found in P. magus and contained a highly divergent mature region. Similarly, the A superfamily alpha 4/3 was found in P. magus despite the fact that it was previously postulated to be almost exclusive of the genus Rhombiconus. Differential expression analyses of P. magus compared to Chelyconus ermineus, the only fish-hunting cone from the Atlantic Ocean revealed that M and A2 superfamilies appeared to be more expressed in the former whereas the O2 superfamily was more expressed in the latter.
Collapse
|
23
|
Phuong MA, Alfaro ME, Mahardika GN, Marwoto RM, Prabowo RE, von Rintelen T, Vogt PWH, Hendricks JR, Puillandre N. Lack of Signal for the Impact of Conotoxin Gene Diversity on Speciation Rates in Cone Snails. Syst Biol 2019; 68:781-796. [PMID: 30816949 PMCID: PMC6934442 DOI: 10.1093/sysbio/syz016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding why some groups of organisms are more diverse than others is a central goal in macroevolution. Evolvability, or the intrinsic capacity of lineages for evolutionary change, is thought to influence disparities in species diversity across taxa. Over macroevolutionary time scales, clades that exhibit high evolvability are expected to have higher speciation rates. Cone snails (family: Conidae, $>$900 spp.) provide a unique opportunity to test this prediction because their toxin genes can be used to characterize differences in evolvability between clades. Cone snails are carnivorous, use prey-specific venom (conotoxins) to capture prey, and the genes that encode venom are known and diversify through gene duplication. Theory predicts that higher gene diversity confers a greater potential to generate novel phenotypes for specialization and adaptation. Therefore, if conotoxin gene diversity gives rise to varying levels of evolvability, conotoxin gene diversity should be coupled with macroevolutionary speciation rates. We applied exon capture techniques to recover phylogenetic markers and conotoxin loci across 314 species, the largest venom discovery effort in a single study. We paired a reconstructed timetree using 12 fossil calibrations with species-specific estimates of conotoxin gene diversity and used trait-dependent diversification methods to test the impact of evolvability on diversification patterns. Surprisingly, we did not detect any signal for the relationship between conotoxin gene diversity and speciation rates, suggesting that venom evolution may not be the rate-limiting factor controlling diversification dynamics in Conidae. Comparative analyses showed some signal for the impact of diet and larval dispersal strategy on diversification patterns, though detection of a signal depended on the dataset and the method. If our results remain true with increased taxonomic sampling in future studies, they suggest that the rapid evolution of conid venom may cause other factors to become more critical to diversification, such as ecological opportunity or traits that promote isolation among lineages.
Collapse
Affiliation(s)
- Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Gusti N Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University Bali, Jl Sesetan-Markisa 6, Denpasar, Bali 80225, Indonesia
| | - Ristiyanti M Marwoto
- Zoology Division (Museum Zoologicum Bogoriense), Research Center for Biology, LIPI, Km.46, Jl. Raya Bogor, Cibinong, Bogor, West Java 16911, Indonesia
| | - Romanus Edy Prabowo
- Aquatic Biology Laboratory, Faculty of Biology, Universitas Jenderal Soedirman, Jalan dr. Suparno 63 Grendeng, Purwokerto, Indonesia, 53122
| | - Thomas von Rintelen
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | - Philipp W H Vogt
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
| | | | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, 1259 Trumansburg Road, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| |
Collapse
|
24
|
Cole TJ, Brewer MS. TOXIFY: a deep learning approach to classify animal venom proteins. PeerJ 2019; 7:e7200. [PMID: 31293833 PMCID: PMC6601600 DOI: 10.7717/peerj.7200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023] Open
Abstract
In the era of Next-Generation Sequencing and shotgun proteomics, the sequences of animal toxigenic proteins are being generated at rates exceeding the pace of traditional means for empirical toxicity verification. To facilitate the automation of toxin identification from protein sequences, we trained Recurrent Neural Networks with Gated Recurrent Units on publicly available datasets. The resulting models are available via the novel software package TOXIFY, allowing users to infer the probability of a given protein sequence being a venom protein. TOXIFY is more than 20X faster and uses over an order of magnitude less memory than previously published methods. Additionally, TOXIFY is more accurate, precise, and sensitive at classifying venom proteins.
Collapse
Affiliation(s)
- T Jeffrey Cole
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| | - Michael S Brewer
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
25
|
Effects of Predator-Prey Interactions on Predator Traits: Differentiation of Diets and Venoms of a Marine Snail. Toxins (Basel) 2019; 11:toxins11050299. [PMID: 31130611 PMCID: PMC6563511 DOI: 10.3390/toxins11050299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Species interactions are fundamental ecological forces that can have significant impacts on the evolutionary trajectories of species. Nonetheless, the contribution of predator-prey interactions to genetic and phenotypic divergence remains largely unknown. Predatory marine snails of the family Conidae exhibit specializations for different prey items and intraspecific variation in prey utilization patterns at geographic scales. Because cone snails utilize venom to capture prey and venom peptides are direct gene products, it is feasible to examine the evolution of genes associated with changes in resource utilization. Here, we compared feeding ecologies and venom duct transcriptomes of individuals from three populations of Conus miliaris, a species that exhibits geographic variation in prey utilization and dietary breadth, in order to determine the extent to which dietary differences are correlated with differences in venom composition, and if expanded niche breadth is associated with increased variation in venom composition. While populations showed little to no overlap in resource utilization, taxonomic richness of prey was greatest at Easter Island. Changes in dietary breadth were associated with differences in expression patterns and increased genetic differentiation of toxin-related genes. The Easter Island population also exhibited greater diversity of toxin-related transcripts, but did not show increased variance in expression of these transcripts. These results imply that differences in dietary breadth contribute more to the structural and regulatory differentiation of venoms than differences in diet.
Collapse
|
26
|
Abstract
Sam Granick opened his seminal 1957 paper titled 'Speculations on the origins and evolution of photosynthesis' with the assertion that there is a constant urge in human beings to seek beginnings (I concur). This urge has led to an incessant stream of speculative ideas and debates on the evolution of photosynthesis that started in the first half of the twentieth century and shows no signs of abating. Some of these speculative ideas have become commonplace, are taken as fact, but find little support. Here, I review and scrutinize three widely accepted ideas that underpin the current study of the evolution of photosynthesis: first, that the photochemical reaction centres used in anoxygenic photosynthesis are more primitive than those in oxygenic photosynthesis; second, that the probability of acquiring photosynthesis via horizontal gene transfer is greater than the probability of losing photosynthesis; and third, and most important, that the origin of anoxygenic photosynthesis pre-dates the origin of oxygenic photosynthesis. I shall attempt to demonstrate that these three ideas are often grounded in incorrect assumptions built on more assumptions with no experimental or observational support. I hope that this brief review will not only serve as a cautionary tale but also that it will open new avenues of research aimed at disentangling the complex evolution of photosynthesis and its impact on the early history of life and the planet.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
27
|
Cardona T, Sánchez‐Baracaldo P, Rutherford AW, Larkum AW. Early Archean origin of Photosystem II. GEOBIOLOGY 2019; 17:127-150. [PMID: 30411862 PMCID: PMC6492235 DOI: 10.1111/gbi.12322] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 05/09/2023]
Abstract
Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life SciencesImperial College LondonLondonUK
| | | | | | | |
Collapse
|
28
|
Nardelli A, Vecchi M, Mandrioli M, Manicardi GC. The Evolutionary History and Functional Divergence of Trehalase ( treh) Genes in Insects. Front Physiol 2019; 10:62. [PMID: 30828300 PMCID: PMC6384254 DOI: 10.3389/fphys.2019.00062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/21/2019] [Indexed: 01/04/2023] Open
Abstract
Trehalases (treh) have been found in different organisms, such as bacteria, fungi, yeast, nematodes, insects, vertebrates, and plants. Their biochemical properties are extremely variable and not yet fully understood. Gene expression patterns have shown differences among insect species suggesting a potential functional diversification of trehalase enzymes during their evolution. A second gene family encoding for enzymes with hypothetical trehalase activity has been repeatedly annotated in insect genome as acid trehalases/acid trehalase-like (ath), but its functional role is still not clear. The currently available large amount of genomic data from many insect species may enable a better understanding of the evolutionary history, phylogenetic relationships and possible roles of trehalase encoding genes in this taxon. The aim of the present study is to infer the evolutionary history of trehalases and acid trehalase genes in insects and analyze the trehalase functional divergence during their evolution, combining phylogenetic and genomic synteny/colinearity analyses.
Collapse
Affiliation(s)
- Andrea Nardelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Vecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
29
|
Phylogenetic Comparative Methods can Provide Important Insights into the Evolution of Toxic Weaponry. Toxins (Basel) 2018; 10:toxins10120518. [PMID: 30563097 PMCID: PMC6315408 DOI: 10.3390/toxins10120518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 11/24/2022] Open
Abstract
The literature on chemical weaponry of organisms is vast and provides a rich understanding of the composition and mechanisms of the toxins and other components involved. However, an ecological or evolutionary perspective has often been lacking and is largely limited to (1) molecular evolutionary studies of particular toxins (lacking an ecological view); (2) comparisons across different species that ignore phylogenetic relatedness (lacking an evolutionary view); or (3) descriptive studies of venom composition and toxicology that contain post hoc and untested ecological or evolutionary interpretations (a common event but essentially uninformative speculation). Conveniently, comparative biologists have prolifically been developing and using a wide range of phylogenetic comparative methods that allow us to explicitly address many ecological and evolutionary questions relating to venoms and poisons. Nevertheless, these analytical tools and approaches are rarely used and poorly known by biological toxinologists and toxicologists. In this review I aim to (1) introduce phylogenetic comparative methods to the latter audience; (2) highlight the range of questions that can be addressed using them; and (3) encourage biological toxinologists and toxicologists to either seek out adequate training in comparative biology or seek collaboration with comparative biologists to reap the fruits of a powerful interdisciplinary approach to the field.
Collapse
|
30
|
Zhang S, Li J, Qin Q, Liu W, Bian C, Yi Y, Wang M, Zhong L, You X, Tang S, Liu Y, Huang Y, Gu R, Xu J, Bian W, Shi Q, Chen X. Whole-Genome Sequencing of Chinese Yellow Catfish Provides a Valuable Genetic Resource for High-Throughput Identification of Toxin Genes. Toxins (Basel) 2018; 10:E488. [PMID: 30477130 PMCID: PMC6316204 DOI: 10.3390/toxins10120488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 11/18/2022] Open
Abstract
Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ≈6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.
Collapse
Affiliation(s)
- Shiyong Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Jia Li
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen 518083, China.
| | - Qin Qin
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Wei Liu
- Nanjing Institute of Fisheries Science, Nanjing 210029, China.
| | - Chao Bian
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen 518083, China.
| | - Yunhai Yi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen 518083, China.
| | - Minghua Wang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Liqiang Zhong
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Xinxin You
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen 518083, China.
| | - Shengkai Tang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Yanshan Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Yu Huang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen 518083, China.
| | - Ruobo Gu
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang 212000, China.
| | - Junmin Xu
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang 212000, China.
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | - Wenji Bian
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen 518083, China.
- BGI Zhenjiang Institute of Hydrobiology, Zhenjiang 212000, China.
| | - Xiaohui Chen
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| |
Collapse
|
31
|
Abalde S, Tenorio MJ, Afonso CML, Zardoya R. Conotoxin Diversity in Chelyconus ermineus (Born, 1778) and the Convergent Origin of Piscivory in the Atlantic and Indo-Pacific Cones. Genome Biol Evol 2018; 10:2643-2662. [PMID: 30060147 PMCID: PMC6178336 DOI: 10.1093/gbe/evy150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/27/2022] Open
Abstract
The transcriptome of the venom duct of the Atlantic piscivorous cone species Chelyconus ermineus (Born, 1778) was determined. The venom repertoire of this species includes at least 378 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. A total of three individuals were sequenced showing considerable intraspecific variation: each individual had many exclusive conotoxin precursors, and only 20% of all inferred mature peptides were common to all individuals. Three different regions (distal, medium, and proximal with respect to the venom bulb) of the venom duct were analyzed independently. Diversity (in terms of number of distinct members) of conotoxin precursor superfamilies increased toward the distal region whereas transcripts detected toward the proximal region showed higher expression levels. Only the superfamilies A and I3 showed statistically significant differential expression across regions of the venom duct. Sequences belonging to the alpha (motor cabal) and kappa (lightning-strike cabal) subfamilies of the superfamily A were mainly detected in the proximal region of the venom duct. The mature peptides of the alpha subfamily had the α4/4 cysteine spacing pattern, which has been shown to selectively target muscle nicotinic-acetylcholine receptors, ultimately producing paralysis. This function is performed by mature peptides having a α3/5 cysteine spacing pattern in piscivorous cone species from the Indo-Pacific region, thereby supporting a convergent evolution of piscivory in cones.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cadiz, Puerto Real, Spain
| | - Carlos M L Afonso
- Fisheries, Biodiversity and Conervation Group, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
32
|
Dougherty ML, Underwood JG, Nelson BJ, Tseng E, Munson KM, Penn O, Nowakowski TJ, Pollen AA, Eichler EE. Transcriptional fates of human-specific segmental duplications in brain. Genome Res 2018; 28:1566-1576. [PMID: 30228200 PMCID: PMC6169893 DOI: 10.1101/gr.237610.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/07/2018] [Indexed: 01/27/2023]
Abstract
Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, incorrect, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then amplified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distinguish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth-death process of duplicate genes and particularly how the process leads to gene innovation. In 48% of the cases, we find that the expressed duplicates have changed substantially from their ancestral models due to novel sites of transcription initiation, splicing, and polyadenylation, as well as fusion transcripts that connect duplication-derived exons with neighboring genes. We detect unannotated open reading frames in genes currently annotated as pseudogenes, while relegating other duplicates to nonfunctional status. Our method significantly improves gene annotation, specifically defining full-length transcripts, isoforms, and open reading frames for new genes in highly identical SDs. The approach will be more broadly applicable to genes in structurally complex regions of other genomes where the duplication process creates novel genes important for adaptive traits.
Collapse
Affiliation(s)
- Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Jason G Underwood
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, California 94025, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Elizabeth Tseng
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, California 94025, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Osnat Penn
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94158, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Alex A Pollen
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
33
|
The habu genome reveals accelerated evolution of venom protein genes. Sci Rep 2018; 8:11300. [PMID: 30050104 PMCID: PMC6062510 DOI: 10.1038/s41598-018-28749-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/29/2018] [Indexed: 01/11/2023] Open
Abstract
Evolution of novel traits is a challenging subject in biological research. Several snake lineages developed elaborate venom systems to deliver complex protein mixtures for prey capture. To understand mechanisms involved in snake venom evolution, we decoded here the ~1.4-Gb genome of a habu, Protobothrops flavoviridis. We identified 60 snake venom protein genes (SV) and 224 non-venom paralogs (NV), belonging to 18 gene families. Molecular phylogeny reveals early divergence of SV and NV genes, suggesting that one of the four copies generated through two rounds of whole-genome duplication was modified for use as a toxin. Among them, both SV and NV genes in four major components were extensively duplicated after their diversification, but accelerated evolution is evident exclusively in the SV genes. Both venom-related SV and NV genes are significantly enriched in microchromosomes. The present study thus provides a genetic background for evolution of snake venom composition.
Collapse
|
34
|
Pierce MD, Dzama K, Muchadeyi FC. Genetic Diversity of Seven Cattle Breeds Inferred Using Copy Number Variations. Front Genet 2018; 9:163. [PMID: 29868114 PMCID: PMC5962699 DOI: 10.3389/fgene.2018.00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/23/2018] [Indexed: 11/25/2022] Open
Abstract
Copy number variations (CNVs) comprise deletions, duplications, and insertions found within the genome larger than 50 bp in size. CNVs are thought to be primary role-players in breed formation and adaptation. South Africa boasts a diverse ecology with harsh environmental conditions and a broad spectrum of parasites and diseases that pose challenges to livestock production. This has led to the development of composite cattle breeds which combine the hardiness of Sanga breeds and the production potential of the Taurine breeds. The prevalence of CNVs within these respective breeds of cattle and the prevalence of CNV regions (CNVRs) in their diversity, adaptation and production is however not understood. This study therefore aimed to ascertain the prevalence, diversity, and correlations of CNVRs within cattle breeds used in South Africa. Illumina Bovine SNP50 data and PennCNV were utilized to identify CNVRs within the genome of 287 animals from seven cattle breeds representing Sanga, Taurine, Composite, and cross breeds. Three hundred and fifty six CNVRs of between 36 kb to 4.1 Mb in size were identified. The null hypothesis that one CNVR loci is independent of another was tested using the GENEPOP software. One hunded and two and seven of the CNVRs in the Taurine and Sanga/Composite cattle breeds demonstrated a significant (p ≤ 0.05) association. PANTHER overrepresentation analyses of correlated CNVRs demonstrated significant enrichment of a number of biological processes, molecular functions, cellular components, and protein classes. CNVR genetic variation between and within breed group was measured using phiPT which allows intra-individual variation to be suppressed and hence proved suitable for measuring binary CNVR presence/absence data. Estimate PhiPT within and between breed variance was 2.722 and 0.518 respectively. Pairwise population PhiPT values corresponded with breed type, with Taurine Holstein and Angus breeds demonstrating no between breed CNVR variation. Phylogenetic trees were drawn. CNVRs primarily clustered animals of the same breed type together. This study successfully identified, characterized, and analyzed 356 CNVRs within seven cattle breeds. CNVR correlations were evident, with many more correlations being present among the exotic Taurine breeds. CNVR genetic diversity of Sanga, Taurine and Composite breeds was ascertained with breed types exposed to similar selection pressures demonstrating analogous incidences of CNVRs.
Collapse
Affiliation(s)
- Magretha D Pierce
- Animal Production, Agricultural Research Council, Pretoria, South Africa
| | - Kennedy Dzama
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - Farai C Muchadeyi
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| |
Collapse
|
35
|
Phuong MA, Mahardika GN. Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution. Mol Biol Evol 2018; 35:1210-1224. [PMID: 29514313 PMCID: PMC5913681 DOI: 10.1093/molbev/msy034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24-63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.
Collapse
Affiliation(s)
- Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
| | - Gusti N Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University Bali, Denpasar, Bali, Indonesia
| |
Collapse
|
36
|
Pekár S, Petráková L, Šedo O, Korenko S, Zdráhal Z. Trophic niche, capture efficiency and venom profiles of six sympatric ant-eating spider species (Araneae: Zodariidae). Mol Ecol 2018; 27:1053-1064. [DOI: 10.1111/mec.14485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Stano Pekár
- Department of Botany and Zoology; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Lenka Petráková
- Department of Botany and Zoology; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Ondrej Šedo
- Research Group Proteomics, CEITEC - Central European Institute of Technology; Masaryk University; Brno Czech Republic
- National Centre for Biomolecular Research; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Stanislav Korenko
- Department of Agroecology and Biometeorology; Faculty of Agrobiology, Food and Natural Resources; Czech University of Life Sciences; Prague Czech Republic
| | - Zbyněk Zdráhal
- Research Group Proteomics, CEITEC - Central European Institute of Technology; Masaryk University; Brno Czech Republic
- National Centre for Biomolecular Research; Faculty of Science; Masaryk University; Brno Czech Republic
| |
Collapse
|
37
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
38
|
Pellissier L, Kostikova A, Litsios G, Salamin N, Alvarez N. High Rate of Protein Coding Sequence Evolution and Species Diversification in the Lycaenids. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Segmental duplications: evolution and impact among the current Lepidoptera genomes. BMC Evol Biol 2017; 17:161. [PMID: 28683762 PMCID: PMC5499213 DOI: 10.1186/s12862-017-1007-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Results Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs (“Unique” SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. Conclusions The results showed that most of the SDs were “unique SDs”, which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our results provide a valuable resource beyond the genetic mutation to explore the genome structure for future Lepidoptera research. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1007-y) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Olivera BM, Raghuraman S, Schmidt EW, Safavi-Hemami H. Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:717-735. [PMID: 28551870 DOI: 10.1007/s00359-017-1183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 11/24/2022]
Abstract
From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products-venom components from predatory marine cone snails-this review provides a rationale for why a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as "Chemical Neuroethology", linking the substantial work carried out by chemists on natural products with accelerating advances in neuroethology.
Collapse
Affiliation(s)
| | | | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
41
|
Selection To Increase Expression, Not Sequence Diversity, Precedes Gene Family Origin and Expansion in Rattlesnake Venom. Genetics 2017; 206:1569-1580. [PMID: 28476866 DOI: 10.1534/genetics.117.202655] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/02/2017] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is the primary mechanism leading to new genes and phenotypic novelty, but the proximate evolutionary processes underlying gene family origin, maintenance, and expansion are poorly understood. Although sub- and neofunctionalization provide clear long-term advantages, selection does not act with foresight, and unless a redundant gene copy provides an immediate fitness advantage, the copy will most likely be lost. Many models for the evolution of genes immediately following duplication have been proposed, but the robustness and applicability of these models is unclear because of the lack of data at the population level. We used qPCR, protein expression data, genome sequencing, and hybrid enrichment to test three competing models that differ in whether selection favoring the spread of duplicates acts primarily on expression level or sequence diversity for specific toxin-encoding loci in the eastern diamondback rattlesnake (Crotalus adamanteus). We sampled 178 individuals and identified significant inter- and intrapopulation variation in copy number, demonstrated that copy number was significantly and positively correlated with protein expression, and found little to no sequence variation across paralogs in all populations. Collectively, these results demonstrate that selection for increased expression, not sequence diversity, was the proximate evolutionary process underlying gene family origin and expansion, providing data needed to resolve the debate over which evolutionary processes govern the fates of gene copies immediately following duplication.
Collapse
|
42
|
Rokyta DR, Ward MJ. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon 2017; 128:23-37. [DOI: 10.1016/j.toxicon.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
43
|
Gorson J, Holford M. Small Packages, Big Returns: Uncovering the Venom Diversity of Small Invertebrate Conoidean Snails. Integr Comp Biol 2016; 56:962-972. [PMID: 27371389 PMCID: PMC6058754 DOI: 10.1093/icb/icw063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Venomous organisms used in research were historically chosen based on size and availability. This opportunity-driven strategy created a species bias in which snakes, scorpions, and spiders became the primary subjects of venom research. Increasing technological advancements have enabled interdisciplinary studies using genomics, transcriptomics, and proteomics to expand venom investigation to animals that produce small amounts of venom or lack traditional venom producing organs. One group of non-traditional venomous organisms that have benefitted from the rise of -omic technologies is the Conoideans. The Conoidean superfamily of venomous marine snails includes, the Terebridae, Turridae (s.l), and Conidae. Conoidea venom is used for both predation and defense, and therefore under strong selection pressures. The need for conoidean venom peptides to be potent and specific to their molecular targets has made them important tools for investigating cellular physiology and bioactive compounds that are beneficial to improving human health. A convincing case for the potential of Conoidean venom is made with the first commercially available conoidean venom peptide drug Ziconotide (Prialt®), an analgesic derived from Conus magus venom that is used to treat chronic pain in HIV and cancer patients. Investigation of conoidean venom using -omics technology provides significant insights into predator-driven diversification in biodiversity and identifies novel compounds for manipulating cellular communication, especially as it pertains to disease and disorders.
Collapse
Affiliation(s)
- J Gorson
- *Department of Chemistry, Hunter College, The City University of New York, Belfer Research Building, NY, 10021 USA
- Departments of Biology, Chemistry, and Biochemistry, The Graduate City, The City University of New York, NY, 10016 USA
- Invertebrate Zoology, Sackler Institute of Comparative Genomics, American Museum of Natural History, NY, 10024 USA
| | - M Holford
- *Department of Chemistry, Hunter College, The City University of New York, Belfer Research Building, NY, 10021 USA
- Departments of Biology, Chemistry, and Biochemistry, The Graduate City, The City University of New York, NY, 10016 USA
- Invertebrate Zoology, Sackler Institute of Comparative Genomics, American Museum of Natural History, NY, 10024 USA
| |
Collapse
|
44
|
Safavi-Hemami H, Lu A, Li Q, Fedosov AE, Biggs J, Showers Corneli P, Seger J, Yandell M, Olivera BM. Venom Insulins of Cone Snails Diversify Rapidly and Track Prey Taxa. Mol Biol Evol 2016; 33:2924-2934. [PMID: 27524826 PMCID: PMC5062327 DOI: 10.1093/molbev/msw174] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A specialized insulin was recently found in the venom of a fish-hunting cone snail, Conus geographus Here we show that many worm-hunting and snail-hunting cones also express venom insulins, and that this novel gene family has diversified explosively. Cone snails express a highly conserved insulin in their nerve ring; presumably this conventional signaling insulin is finely tuned to the Conus insulin receptor, which also evolves very slowly. By contrast, the venom insulins diverge rapidly, apparently in response to biotic interactions with prey and also possibly the cones' own predators and competitors. Thus, the inwardly directed signaling insulins appear to experience predominantly purifying sele\ction to target an internal receptor that seldom changes, while the outwardly directed venom insulins frequently experience directional selection to target heterospecific insulin receptors in a changing mix of prey, predators and competitors. Prey insulin receptors may often be constrained in ways that prevent their evolutionary escape from targeted venom insulins, if amino-acid substitutions that result in escape also degrade the receptor's signaling functions.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aiping Lu
- School of Life Sciences and Technology, Institute of Protein Research, Tongji University, Shanghai, China
| | - Qing Li
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT
| | - Alexander E Fedosov
- A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Science, Leninsky Prospect, Moscow, Russia
| | - Jason Biggs
- University of Guam Marine Laboratory, Agana, Guam
| | | | - Jon Seger
- Department of Biology, University of Utah, Salt Lake City, UT
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT
| | | |
Collapse
|
45
|
Rodríguez de la Vega RC, Giraud T. Intragenome Diversity of Gene Families Encoding Toxin-like Proteins in Venomous Animals. Integr Comp Biol 2016; 56:938-949. [PMID: 27543626 DOI: 10.1093/icb/icw097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of venoms is the story of how toxins arise and of the processes that generate and maintain their diversity. For animal venoms these processes include recruitment for expression in the venom gland, neofunctionalization, paralogous expansions, and functional divergence. The systematic study of these processes requires the reliable identification of the venom components involved in antagonistic interactions. High-throughput sequencing has the potential of uncovering the entire set of toxins in a given organism, yet the existence of non-venom toxin paralogs and the misleading effects of partial census of the molecular diversity of toxins make necessary to collect complementary evidence to distinguish true toxins from their non-venom paralogs. Here, we analyzed the whole genomes of two scorpions, one spider and one snake, aiming at the identification of the full repertoires of genes encoding toxin-like proteins. We classified the entire set of protein-coding genes into paralogous groups and monotypic genes, identified genes encoding toxin-like proteins based on known toxin families, and quantified their expression in both venom-glands and pooled tissues. Our results confirm that genes encoding toxin-like proteins are part of multigene families, and that these families arise by recruitment events from non-toxin genes followed by limited expansions of the toxin-like protein coding genes. We also show that failing to account for sequence similarity with non-toxin proteins has a considerable misleading effect that can be greatly reduced by comparative transcriptomics. Our study overall contributes to the understanding of the evolutionary dynamics of proteins involved in antagonistic interactions.
Collapse
Affiliation(s)
- Ricardo C Rodríguez de la Vega
- Ecologie Systematique Evolution, UMR8079, CNRS, Univ. of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, UMR8079, CNRS, Univ. of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
46
|
Roy SW. Is Mutation Random or Targeted?: No Evidence for Hypermutability in Snail Toxin Genes. Mol Biol Evol 2016; 33:2642-7. [PMID: 27486220 DOI: 10.1093/molbev/msw140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ever since Luria and Delbruck, the notion that mutation is random with respect to fitness has been foundational to modern biology. However, various studies have claimed striking exceptions to this rule. One influential case involves toxin-encoding genes in snails of the genus Conus, termed conotoxins, a large gene family that undergoes rapid diversification of their protein-coding sequences by positive selection. Previous reconstructions of the sequence evolution of conotoxin genes claimed striking patterns: (1) elevated synonymous change, interpreted as being due to targeted "hypermutation" in this region; (2) elevated transversion-to-transition ratios, interpreted as reflective of the particular mechanism of hypermutation; and (3) much lower rates of synonymous change in the codons encoding several highly conserved cysteine residues, interpreted as strong position-specific codon bias. This work has spawned a variety of studies on the potential mechanisms of hypermutation and on causes for cysteine codon bias, and has inspired hypermutation hypotheses for various other fast-evolving genes. Here, I show that all three findings are likely to be artifacts of statistical reconstruction. First, by simulating nonsynonymous change I show that high rates of dN can lead to overestimation of dS. Second, I show that there is no evidence for any of these three patterns in comparisons of closely related conotoxin sequences, suggesting that the reported findings are due to breakdown of statistical methods at high levels of sequence divergence. The current findings suggest that mutation and codon bias in conotoxin genes may not be atypical, and that random mutation and selection can explain the evolution of even these exceptional loci.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, San Francisco State University
| |
Collapse
|
47
|
Phuong MA, Mahardika GN, Alfaro ME. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genomics 2016; 17:401. [PMID: 27229931 PMCID: PMC4880860 DOI: 10.1186/s12864-016-2755-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/19/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Although diet is believed to be a major factor underlying the evolution of venom, few comparative studies examine both venom composition and diet across a radiation of venomous species. Cone snails within the family, Conidae, comprise more than 700 species of carnivorous marine snails that capture their prey by using a cocktail of venomous neurotoxins (conotoxins or conopeptides). Venom composition across species has been previously hypothesized to be shaped by (a) prey taxonomic class (i.e., worms, molluscs, or fish) and (b) dietary breadth. We tested these hypotheses under a comparative phylogenetic framework using ecological data from past studies in conjunction with venom duct transcriptomes sequenced from 12 phylogenetically disparate cone snail species, including 10 vermivores (worm-eating), one molluscivore, and one generalist. RESULTS We discovered 2223 unique conotoxin precursor peptides that encoded 1864 unique mature toxins across all species, >90 % of which are new to this study. In addition, we identified two novel gene superfamilies and 16 novel cysteine frameworks. Each species exhibited unique venom profiles, with venom composition and expression patterns among species dominated by a restricted set of gene superfamilies and mature toxins. In contrast with the dominant paradigm for interpreting Conidae venom evolution, prey taxonomic class did not predict venom composition patterns among species. We also found a significant positive relationship between dietary breadth and measures of conotoxin complexity. CONCLUSIONS The poor performance of prey taxonomic class in predicting venom components suggests that cone snails have either evolved species-specific expression patterns likely as a consequence of the rapid evolution of conotoxin genes, or that traditional means of categorizing prey type (i.e., worms, mollusc, or fish) and conotoxins (i.e., by gene superfamily) do not accurately encapsulate evolutionary dynamics between diet and venom composition. We also show that species with more generalized diets tend to have more complex venoms and utilize a greater number of venom genes for prey capture. Whether this increased gene diversity confers an increased capacity for evolutionary change remains to be tested. Overall, our results corroborate the key role of diet in influencing patterns of venom evolution in cone snails and other venomous radiations.
Collapse
Affiliation(s)
- Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Gusti N Mahardika
- Animal Biomedical and Molecular Biology Laboratory, Faculty of Veterinary Medicine, Udayana University Bali, Jl Sesetan-Markisa 6, Denpasar, Bali, 80225, Indonesia
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
48
|
Verdes A, Anand P, Gorson J, Jannetti S, Kelly P, Leffler A, Simpson D, Ramrattan G, Holford M. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins. Toxins (Basel) 2016; 8:117. [PMID: 27104567 PMCID: PMC4848642 DOI: 10.3390/toxins8040117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.
Collapse
Affiliation(s)
- Aida Verdes
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Prachi Anand
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Juliette Gorson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Stephen Jannetti
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Patrick Kelly
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Abba Leffler
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine 550 1st Avenue, New York, NY 10016, USA.
| | - Danny Simpson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Tandon School of Engineering, New York University 6 MetroTech Center, Brooklyn, NY 11201, USA.
| | - Girish Ramrattan
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Mandë Holford
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| |
Collapse
|
49
|
Zhu L, Peigneur S, Gao B, Zhang S, Tytgat J, Zhu S. Target-Driven Positive Selection at Hot Spots of Scorpion Toxins Uncovers Their Potential in Design of Insecticides. Mol Biol Evol 2016; 33:1907-20. [PMID: 27189560 DOI: 10.1093/molbev/msw065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Positive selection sites (PSSs), a class of amino acid sites with an excess of nonsynonymous to synonymous substitutions, are indicators of adaptive molecular evolution and have been detected in many protein families involved in a diversity of biological processes by statistical approaches. However, few studies are conducted to evaluate their functional significance and the driving force behind the evolution (i.e., agent of selection). Scorpion α-toxins are a class of multigene family of peptide neurotoxins affecting voltage-gated Na(+ )(Nav) channels, whose members exhibit differential potency and preference for insect and mammalian Nav channels. In this study, we undertook a systematical molecular dissection of nearly all the PSSs newly characterized in the Mesobuthus α-toxin family and a two-residue insertion ((19)AlaPhe(20)) located within a positively selected loop via mutational analysis of α-like MeuNaTxα-5, one member affecting both insect and mammalian Nav channels. This allows to identify hot-spot residues on its functional face involved in interaction with the receptor site of Nav channels, which comprises two PSSs (Ile(40) and Leu(41)) and the small insertion, both located on two spatially separated functional loops. Mutations at these hot-spots resulted in a remarkably decreased anti-mammalian activity in MeuNaTxα-5 with partially impaired or enhanced insecticide activity, suggesting the potential of PSSs in designing promising candidate insecticides from scorpion α-like toxins. Based on an experiment-guided toxin-channel complex model and high evolutionary variability in the receptor site of predators and prey of scorpions, we provide new evidence for target-driven adaptive evolution of scorpion toxins to deal with their targets' diversity.
Collapse
Affiliation(s)
- Limei Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Steve Peigneur
- Laboratory of Toxicology, University of Leuven, Leuven, Belgium
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shangfei Zhang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jan Tytgat
- Laboratory of Toxicology, University of Leuven, Leuven, Belgium
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
50
|
Chang D, Duda TF. Age-related association of venom gene expression and diet of predatory gastropods. BMC Evol Biol 2016; 16:27. [PMID: 26818019 PMCID: PMC4730619 DOI: 10.1186/s12862-016-0592-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background Venomous organisms serve as wonderful systems to study the evolution and expression of genes that are directly associated with prey capture. To evaluate the relationship between venom gene expression and prey utilization, we examined these features among individuals of different ages of the venomous, worm-eating marine snail Conus ebraeus. We determined expression levels of six genes that encode venom components, used a DNA-based approach to evaluate the identity of prey items, and compared patterns of venom gene expression and dietary specialization. Results C. ebraeus exhibits two major shifts in diet with age—an initial transition from a relatively broad dietary breadth to a narrower one and then a return to a broader diet. Venom gene expression patterns also change with growth. All six venom genes are up-regulated in small individuals, down-regulated in medium-sized individuals, and then either up-regulated or continued to be down-regulated in members of the largest size class. Venom gene expression is not significantly different among individuals consuming different types of prey, but instead is coupled and slightly delayed with shifts in prey diversity. Conclusion These results imply that changes in gene expression contribute to intraspecific variation of venom composition and that gene expression patterns respond to changes in the diversity of food resources during different growth stages. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0592-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Chang
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA. .,Present address: University of California Santa Cruz, 1156 High Street -- Mail Stop EEBiology, Santa Cruz, CA, 95064, USA.
| | - Thomas F Duda
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA. .,Smithsonian Tropical Research Institute, Balboa, Ancόn, Republic of Panama.
| |
Collapse
|