1
|
Pun R, North BJ. Role of spindle assembly checkpoint proteins in gametogenesis and embryogenesis. Front Cell Dev Biol 2025; 12:1491394. [PMID: 39911185 PMCID: PMC11794522 DOI: 10.3389/fcell.2024.1491394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents uneven segregation of sister chromatids between daughter cells during anaphase. This essential regulatory checkpoint prevents aneuploidy which can lead to various congenital defects observed in newborns. Many studies have been carried out to elucidate the role of proteins involved in the SAC as well as the function of the checkpoint during gametogenesis and embryogenesis. In this review, we discuss the role of SAC proteins in regulating both meiotic and mitotic cell division along with several factors that influence the SAC strength in various species. Finally, we outline the role of SAC proteins and the consequences of their absence or insufficiency on proper gametogenesis and embryogenesis in vivo.
Collapse
Affiliation(s)
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
2
|
Silva PMA, Bousbaa H. BUB3, beyond the Simple Role of Partner. Pharmaceutics 2022; 14:pharmaceutics14051084. [PMID: 35631670 PMCID: PMC9147866 DOI: 10.3390/pharmaceutics14051084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/07/2022] Open
Abstract
The BUB3 protein plays a key role in the activation of the spindle assembly checkpoint (SAC), a ubiquitous surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis and, consequently, prevents chromosome mis-segregation and aneuploidy. Besides its role in SAC signaling, BUB3 regulates chromosome attachment to the spindle microtubules. It is also involved in telomere replication and maintenance. Deficiency of the BUB3 gene has been closely linked to premature aging. Upregulation of the BUB3 gene has been found in a variety of human cancers and is associated with poor prognoses. Here, we review the structure and functions of BUB3 in mitosis, its expression in cancer and association with survival prognoses, and its potential as an anticancer target.
Collapse
Affiliation(s)
- Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|
3
|
Proteome analysis of endometrial tissue from patients with PCOS reveals proteins predicted to impact the disease. Mol Biol Rep 2020; 47:8763-8774. [PMID: 33098551 DOI: 10.1007/s11033-020-05924-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disease that causes an ovulatory infertility in approximately 10% of reproductive-age women. We searched for candidate proteins that might contribute to endometrial receptivity defects in PCOS patients, and result in adverse reproductive outcomes. Shotgun proteomics approach was used to investigate the proteome profile of the endometrium at the luteal phase in PCOS patients compared to healthy fertile individuals. Biological process and pathway analyses were conducted to categorize the proteins with differential expressions. Confirmation was performed for a number of proteins via immunoblotting in new samples. 150 proteins with higher abundance, and 46 proteins with lower abundance were identified in the endometrial tissue from PCOS patients compared to healthy fertile individuals. The proteins with higher abundance were enriched in protein degradation, cell cycle, and signaling cascades. Proteins with lower abundance in PCOS patients were enriched in extracellular matrix (ECM) composition and function, as well as the salvage pathway of purine biosynthesis. Metabolism was the most affected biological process with over 100 up-regulated, and approximately 30 down-regulated proteins. Our results indicate significant imbalances in metabolism, proteasome, cell cycle, ECM related proteins, and signaling cascades in endometrial tissue of PCOS, which may contribute to poor reproductive outcomes in these patients. We postulate that the endometria in PCOS patients may not be well-differentiated and synchronized for implantation. Possible roles of the above-mentioned pathways that underlie implantation failure in PCOS will be discussed. Our findings need to be confirmed in larger populations.
Collapse
|
4
|
The roles of kinetochore of micronucleus in mitosis of HeLa cells: a live cell imaging study. Cancer Cell Int 2019; 19:206. [PMID: 31388333 PMCID: PMC6679434 DOI: 10.1186/s12935-019-0917-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability. However, the roles of kinetochore of MN in mitosis have not been completely addressed. Methods The HeLa CENP B-GFP H2B-mCherry cells are applied to address these questions via the long-term live-cell imaging. In the cells, the kinetochore-positive micronucleus (K+MN) contained CENP B-GFP, while the kinetochore-negative micronucleus (K-MN) did not. Results K-MN-bearing cells produced much more chromosome fragments than did MN-free cells. Most of the chromosome fragments eventually merged into K-MNi. K+MN-bearing cells yielded more kinetochore-positive lagging chromosomes (K+LCs) and K+MNi than MN-free cells did. The results suggested the differences in the fates of K+MNi and K-MNi in mitosis. The cycle of K-MN → Chromosome fragment → K-MN may occur in generations of K-MN-bearing cells, while part of K+MNi might reincorporate into the main nucleus. The K+MN-bearing cells prolonged significantly duration of mitosis compared with MN-free cells. The presence of micronuclei, regardless of K-MN and K+MN, enhanced apoptosis cell death. And K+MN-bearing cells were inclined to apoptosis more than K-MN-bearing cells. The results suggested differences in fates between K-MN-bearing and K+MN-bearing cells. Conclusions Kinetochore determined the fates of micronuclei. Kinetochore in micronuclei indirectly prolonged the duration of mitosis. Kinetochore enhanced cytotoxicity of micronuclei. Our data are direct evidences showing the roles of kinetochore of micronucleus in mitosis of HeLa cells.
Collapse
|
5
|
Etemad B, Vertesy A, Kuijt TEF, Sacristan C, van Oudenaarden A, Kops GJPL. Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy. J Cell Sci 2019; 132:jcs.231589. [PMID: 31138679 DOI: 10.1242/jcs.231589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by monitoring kinetochore-microtubule interactions. SAC proteins are shed from kinetochores once stable attachments are achieved. Human kinetochores consist of hundreds of SAC protein recruitment modules and bind up to 20 microtubules, raising the question of how the SAC responds to intermediate attachment states. We show that one protein module ('RZZS-MAD1-MAD2') of the SAC is removed from kinetochores at low microtubule occupancy and remains absent at higher occupancies, while another module ('BUB1-BUBR1') is retained at substantial levels irrespective of attachment states. These behaviours reflect different silencing mechanisms: while BUB1 displacement is almost fully dependent on MPS1 inactivation, MAD1 (also known as MAD1L1) displacement is not. Artificially tuning the affinity of kinetochores for microtubules further shows that ∼50% occupancy is sufficient to shed MAD2 and silence the SAC. Kinetochores thus respond as a single unit to shut down SAC signalling at submaximal occupancy states, but retain one SAC module. This may ensure continued SAC silencing on kinetochores with fluctuating occupancy states while maintaining the ability for fast SAC re-activation.
Collapse
Affiliation(s)
- Banafsheh Etemad
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Abel Vertesy
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Timo E F Kuijt
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Carlos Sacristan
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
6
|
Mesic A, Markocic E, Rogar M, Juvan R, Hudler P, Komel R. Single nucleotide polymorphisms rs911160 in AURKA and rs2289590 in AURKB mitotic checkpoint genes contribute to gastric cancer susceptibility. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:701-711. [PMID: 28843004 DOI: 10.1002/em.22129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in mitotic checkpoint genes could confer increased susceptibility to gastric cancer (GC). We investigated the association of Aurora kinase A (AURKA), Aurora kinase B (AURKB), Aurora kinase C (AURKC), Polo-like kinase 1 (PLK1) and Budding uninhibited by benzimidazol 3, yeast (BUB3) gene polymorphisms with GC risk. MATERIALS AND METHODS Genotyping of 6 SNPs in AURKA (rs911160 and rs8173), AURKB (rs2289590), AURKC (rs11084490), PLK1 (rs42873), and BUB3 (rs7897156) was performed using TaqMan genotyping assays. RESULTS Our study demonstrated that rs911160 (AURKA) heterozygous genotype was associated with an increased GC risk (OR = 1.50, 95% CI = 1.01-2.22, P = 0.043). Analysis of rs911160 (AURKA) showed significant association with an increased risk for intestinal type GC (OR = 1.80, 95%CI = 1.01-3.21, P = 0.040) and the risk was significantly higher in women than men (OR = 2.65, 95%CI = 1.02-6.87, P = 0.033). SNP rs2289590 in AURKB might contribute to susceptibility for the development of gastric cancer, particularly in women (OR = 2.08, 95% CI = 1.05-4.09, P = 0.032). CONCLUSION Our findings suggested that AURKA (rs911160) and AURKB (rs2289590) polymorphisms could affect GC risk. Further validation studies in larger and multi-ethnical populations are needed to elucidate their functional impact on the development of GC. Environ. Mol. Mutagen. 58:701-711, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aner Mesic
- Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Ela Markocic
- Institute of Biochemistry, Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Marija Rogar
- Institute of Biochemistry, Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Robert Juvan
- Clinical Department for Abdominal Surgery, University Medical Centre Ljubljana, Ljubljana, Zaloska 2, Ljubljana, SI-1000, Slovenia
| | - Petra Hudler
- Institute of Biochemistry, Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Radovan Komel
- Institute of Biochemistry, Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Giovinazzi S, Sirleto P, Aksenova V, Morozov VM, Zori R, Reinhold WC, Ishov AM. Usp7 protects genomic stability by regulating Bub3. Oncotarget 2015; 5:3728-42. [PMID: 25003721 PMCID: PMC4116516 DOI: 10.18632/oncotarget.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
USP7 (Ubiquitin Specific processing Protease-7) is a deubiquitinase which, over the past decade emerged as a critical regulator of cellular processes. Deregulation of USP7 activity has been linked to cancer, making USP7 inhibition an appealing anti-cancer strategy. The identification of novel USP7 substrates and additional USP7-dependent cellular activities will broaden our knowledge towards potential clinical application of USP7 inhibitors. Results presented in this study uncover a novel and pivotal function of USP7 in the maintenance of genomic stability. Upon USP7 depletion we observed prolonged mitosis and mitotic abnormalities including micronuclei accumulation, lagging chromosomes and karyotype instability. Inhibition of USP7 with small molecule inhibitors stabilizes cyclin B and causes mitotic abnormalities. Our results suggest that these USP7-dependent effects are mediated by decreased levels of spindle assembly checkpoint (SAC) component Bub3, which we characterized as an interacting partner and substrate of USP7. In silico analysis across the NCI-60 panels of cell lines supports our results where lower levels of USP7 strongly correlate with genomic instability. In conclusion, we identified a novel role of USP7 as regulator of the SAC component Bub3 and genomic stability.
Collapse
Affiliation(s)
- Serena Giovinazzi
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL; University of Florida Health Cancer Center, Gainesville, FL
| | | | | | | | | | | | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL; University of Florida Health Cancer Center, Gainesville, FL
| |
Collapse
|
8
|
Silva PMA, Reis RM, Bolanos-Garcia VM, Florindo C, Tavares ÁA, Bousbaa H. Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle poles. FEBS Lett 2014; 588:3265-73. [PMID: 25064841 DOI: 10.1016/j.febslet.2014.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
A predominant mechanism of spindle assembly checkpoint (SAC) silencing is dynein-mediated transport of certain kinetochore proteins along microtubules. There are still conflicting data as to which SAC proteins are dynein cargoes. Using two ATP reduction assays, we found that the core SAC proteins Mad1, Mad2, Bub1, BubR1, and Bub3 redistributed from attached kinetochores to spindle poles, in a dynein-dependent manner. This redistribution still occurred in metaphase-arrested cells, at a time when the SAC should be satisfied and silenced. Unexpectedly, we found that a pool of Hec1 and Mis12 also relocalizes to spindle poles, suggesting KMN components as additional dynein cargoes. The potential significance of these results for SAC silencing is discussed.
Collapse
Affiliation(s)
- Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Centre for Molecular and Structural Biomedicine,CBME/IBB, University of Algarve, Faro 8005-139, Portugal
| | - Rita M Reis
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Claudia Florindo
- Centre for Molecular and Structural Biomedicine,CBME/IBB, University of Algarve, Faro 8005-139, Portugal; Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro 8005-139, Portugal
| | - Álvaro A Tavares
- Centre for Molecular and Structural Biomedicine,CBME/IBB, University of Algarve, Faro 8005-139, Portugal; Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro 8005-139, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| |
Collapse
|
9
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
10
|
Hagan RS, Manak MS, Buch HK, Meier MG, Meraldi P, Shah JV, Sorger PK. p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol Biol Cell 2011; 22:4236-46. [PMID: 21965286 PMCID: PMC3216650 DOI: 10.1091/mbc.e11-03-0216] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle assembly checkpoint links the onset of anaphase to completion of chromosome-microtubule attachment and is mediated by the binding of Mad and Bub proteins to kinetochores of unattached or maloriented chromosomes. Mad2 and BubR1 traffic between kinetochores and the cytosol, thereby transmitting a "wait anaphase" signal to the anaphase-promoting complex. It is generally assumed that this signal dissipates automatically upon kinetochore-microtubule binding, but it has been shown that under conditions of nocodazole-induced arrest p31(comet), a Mad2-binding protein, is required for mitotic progression. In this article we investigate the localization and function of p31(comet) during normal, unperturbed mitosis in human and marsupial cells. We find that, like Mad2, p31(comet) traffics on and off kinetochores and is also present in the cytosol. Cells depleted of p31(comet) arrest in metaphase with mature bipolar kinetochore-microtubule attachments, a satisfied checkpoint, and high cyclin B levels. Thus p31(comet) is required for timely mitotic exit. We propose that p31(comet) is an essential component of the machinery that silences the checkpoint during each cell cycle.
Collapse
Affiliation(s)
- Robert S Hagan
- Center for Cell Decision Processes, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Orth JD, Kohler RH, Foijer F, Sorger PK, Weissleder R, Mitchison TJ. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res 2011; 71:4608-16. [PMID: 21712408 DOI: 10.1158/0008-5472.can-11-0412] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer relies upon frequent or abnormal cell division, but how the tumor microenvironment affects mitotic processes in vivo remains unclear, largely due to the technical challenges of optical access, spatial resolution, and motion. We developed high-resolution in vivo microscopy methods to visualize mitosis in a murine xenograft model of human cancer. Using these methods, we determined whether the single-cell response to the antimitotic drug paclitaxel (Ptx) was the same in tumors as in cell culture, observed the impact of Ptx on the tumor response as a whole, and evaluated the single-cell pharmacodynamics (PD) of Ptx (by in vivo PD microscopy). Mitotic initiation was generally less frequent in tumors than in cell culture, but subsequently it proceeded normally. Ptx treatment caused spindle assembly defects and mitotic arrest, followed by slippage from mitotic arrest, multinucleation, and apoptosis. Compared with cell culture, the peak mitotic index in tumors exposed to Ptx was lower and the tumor cells survived longer after mitotic arrest, becoming multinucleated rather than dying directly from mitotic arrest. Thus, the tumor microenvironment was much less proapoptotic than cell culture. The morphologies associated with mitotic arrest were dose and time dependent, thereby providing a semiquantitative, single-cell measure of PD. Although many tumor cells did not progress through Ptx-induced mitotic arrest, tumor significantly regressed in the model. Our findings show that in vivo microscopy offers a useful tool to visualize mitosis during tumor progression, drug responses, and cell fate at the single-cell level.
Collapse
Affiliation(s)
- James D Orth
- Department of Systems Biology, Harvard Medical School, Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
12
|
Structural and functional analysis of the interaction between the nucleoporin Nup98 and the mRNA export factor Rae1. Proc Natl Acad Sci U S A 2010; 107:10406-11. [PMID: 20498086 DOI: 10.1073/pnas.1005389107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The export of mRNAs is a multistep process, involving the packaging of mRNAs into messenger ribonucleoprotein particles (mRNPs), their transport through nuclear pore complexes, and mRNP remodeling events prior to translation. Ribonucleic acid export 1 (Rae1) and Nup98 are evolutionarily conserved mRNA export factors that are targeted by the vesicular stomatitis virus matrix protein to inhibit host cell nuclear export. Here, we present the crystal structure of human Rae1 in complex with the Gle2-binding sequence (GLEBS) of Nup98 at 1.65 A resolution. Rae1 forms a seven-bladed beta-propeller with several extensive surface loops. The Nup98 GLEBS motif forms an approximately 50-A-long hairpin that binds with its C-terminal arm to an essentially invariant hydrophobic surface that extends over the entire top face of the Rae1 beta-propeller. The C-terminal arm of the GLEBS hairpin is necessary and sufficient for Rae1 binding, and we identify a tandem glutamate element in this arm as critical for complex formation. The Rae1*Nup98(GLEBS) surface features an additional conserved patch with a positive electrostatic potential, and we demonstrate that the complex possesses single-stranded RNA-binding capability. Together, these data suggest that the Rae1*Nup98 complex directly binds to the mRNP at several stages of the mRNA export pathway.
Collapse
|
13
|
Pagliuca C, Draviam VM, Marco E, Sorger PK, De Wulf P. Roles for the conserved spc105p/kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint. PLoS One 2009; 4:e7640. [PMID: 19893618 PMCID: PMC2764089 DOI: 10.1371/journal.pone.0007640] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 10/07/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain approximately 70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores. PRINCIPAL FINDINGS We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells. CONCLUSIONS/SIGNIFICANCE Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes.
Collapse
Affiliation(s)
- Cinzia Pagliuca
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Viji M. Draviam
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Eugenio Marco
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter K. Sorger
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter De Wulf
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Caillaud MC, Paganelli L, Lecomte P, Deslandes L, Quentin M, Pecrix Y, Le Bris M, Marfaing N, Abad P, Favery B. Spindle assembly checkpoint protein dynamics reveal conserved and unsuspected roles in plant cell division. PLoS One 2009; 4:e6757. [PMID: 19710914 PMCID: PMC2728542 DOI: 10.1371/journal.pone.0006757] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/27/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In eukaryotes, the spindle assembly checkpoint (SAC) ensures that chromosomes undergoing mitosis do not segregate until they are properly attached to the microtubules of the spindle. METHODOLOGY/PRINCIPAL FINDINGS We investigated the mechanism underlying this surveillance mechanism in plants, by characterising the orthogolous SAC proteins BUBR1, BUB3 and MAD2 from Arabidopsis. We showed that the cell cycle-regulated BUBR1, BUB3.1 and MAD2 proteins interacted physically with each other. Furthermore, BUBR1 and MAD2 interacted specifically at chromocenters. Following SAC activation by global defects in spindle assembly, these three interacting partners localised to unattached kinetochores. In addition, in cases of 'wait anaphase', plant SAC proteins were associated with both kinetochores and kinetochore microtubules. Unexpectedly, BUB3.1 was also found in the phragmoplast midline during the final step of cell division in plants. CONCLUSIONS/SIGNIFICANCE We conclude that plant BUBR1, BUB3.1 and MAD2 proteins may have the SAC protein functions conserved from yeast to humans. The association of BUB3.1 with both unattached kinetochore and phragmoplast suggests that in plant, BUB3.1 may have other roles beyond the spindle assembly checkpoint itself. Finally, this study of the SAC dynamics pinpoints uncharacterised roles of this surveillance mechanism in plant cell division.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Laetitia Paganelli
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Philippe Lecomte
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Laurent Deslandes
- Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2594, Castanet-Tolosan, France
| | - Michaël Quentin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Yann Pecrix
- Institut Méditerranéen d'Ecologie et de Paléoécologie IMEP, Unité Mixte de Recherche- Centre National de la Recherche Scientifique –Institut de Recherche pour le Développement 6116, Université Paul Cézanne, Marseille, France
| | - Manuel Le Bris
- Institut Méditerranéen d'Ecologie et de Paléoécologie IMEP, Unité Mixte de Recherche- Centre National de la Recherche Scientifique –Institut de Recherche pour le Développement 6116, Université Paul Cézanne, Marseille, France
| | - Nicolas Marfaing
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Pierre Abad
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Bruno Favery
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- * E-mail:
| |
Collapse
|
15
|
Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A 2008; 105:13333-8. [PMID: 18757749 DOI: 10.1073/pnas.0801870105] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantitative analysis of tandem-affinity purified cross-linked (x) protein complexes (QTAX) is a powerful technique for the identification of protein interactions, including weak and/or transient components. Here, we apply a QTAX-based tag-team mass spectrometry strategy coupled with protein network analysis to acquire a comprehensive and detailed assessment of the protein interaction network of the yeast 26S proteasome. We have determined that the proteasome network is composed of at least 471 proteins, significantly more than the total number of proteins identified by previous reports using proteasome subunits as baits. Validation of the selected proteasome-interacting proteins by reverse copurification and immunoblotting experiments with and without cross-linking, further demonstrates the power of the QTAX strategy for capturing protein interactions of all natures. In addition, >80% of the identified interactions have been confirmed by existing data using protein network analysis. Moreover, evidence obtained through network analysis links the proteasome to protein complexes associated with diverse cellular functions. This work presents the most complete analysis of the proteasome interaction network to date, providing an inclusive set of physical interaction data consistent with physiological roles for the proteasome that have been suggested primarily through genetic analyses. Moreover, the methodology described here is a general proteomic tool for the comprehensive study of protein interaction networks.
Collapse
|
16
|
Reddy DMR, Aspatwar A, Dholakia BB, Gupta VS. Evolutionary analysis of WD40 super family proteins involved in spindle checkpoint and RNA export: molecular evolution of spindle checkpoint. Bioinformation 2008; 2:461-8. [PMID: 18841243 PMCID: PMC2561167 DOI: 10.6026/97320630002461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 07/20/2008] [Indexed: 11/23/2022] Open
Abstract
The spindle checkpoint delays sister chromatid separation until all chromosomes have undergone bipolar spindle attachment. Previous studies have revealed BUB3, as an essential spindle checkpoint protein and its extensive sequence similarity with Rae1 (Gle2), a highly conserved member of WD40 repeat protein family throughout their length which was first shown to be involved in mRNA export. However, the recent discovery of Rae1 as an essential mitotic checkpoint protein, based on the studies from mouse and drosophila, has renewed the interest in its function during cell division. Study of evolution of proteins involved in checkpoint might throw light on evolution of eukaryotic cell cycle regulation. Here we report the evolutionary relationships between these two WD40 repeat family proteins. Amino acid sequences of BUB3 and Rae1 homologs were retrieved from various databases and phylogenetic analysis was performed with the MEGA program. Multiple sequence alignments of these two protein homologues with the ClustalX software revealed specific amino acid signatures corresponding to the protein function and also few amino acids, which are conserved in BUB3 and Rae1 indicating some common overlapping function. Data indicated a common ancestral origin of these two important proteins and further suggest that, BUB3 mediated cell cycle checkpoint might have evolved with compartmentalization of genetic material into the nucleus in eukaryotes.
Collapse
Affiliation(s)
| | - Ashok Aspatwar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | - Bhushan Bhalchandra Dholakia
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | - Vidya Shrikant Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
17
|
McAinsh AD, Meraldi P, Draviam VM, Toso A, Sorger PK. The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO J 2006; 25:4033-49. [PMID: 16932742 PMCID: PMC1560365 DOI: 10.1038/sj.emboj.7601293] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/27/2006] [Indexed: 12/20/2022] Open
Abstract
Kinetochores (KTs) assemble on centromeric DNA, bi-orient paired sister chromatids on spindle microtubules (MTs) and control cell-cycle progression via the spindle assembly checkpoint. Genetic and biochemical studies in budding yeast have established that three 'linker' complexes, MIND, COMA and NDC80, play essential but distinct roles in KT assembly and chromosome segregation. To determine whether similar linker activities are present at human KTs, we have compared the functions of Nnf1R and Mcm21R, recently identified MIND and COMA subunits, and Nuf2R, a well-characterized NDC80 subunit. We find that the three proteins bind to KTs independent of each other and with distinct cell-cycle profiles. MT-KT attachment is aberrant in Nnf1R- and Mcm21R-depleted cells, whereas it is lost in the absence of Nuf2R. Defective attachments in Nnf1R-depleted cells prevent chromosome congression, whereas those in Mcm21R-depleted cells interfere with spindle assembly. All three human KT proteins are necessary for correct binding of spindle checkpoint proteins to KTs. The differing functions and KT-binding properties of Nnf1R, Mcm21R and Nuf2R suggest that, like their yeast counterparts, the proteins act independent of each other in KT assembly, but that their combined activities are required for checkpoint signaling.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Department of Biology, MIT, Cambridge, MA, USA
- Chromosome Segregation Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey, UK
- These authors contributed equally to this work
- Chromosome Segregation Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK. Tel.: +44 1883 722306; Fax: +44 1883 714375; E-mails:
| | - Patrick Meraldi
- Department of Biology, MIT, Cambridge, MA, USA
- Institute of Biochemistry, ETH-Zurich, Zurich, Switzerland
- These authors contributed equally to this work
- Chromosome Segregation Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK. Tel.: +44 1883 722306; Fax: +44 1883 714375; E-mail:
| | - Viji M Draviam
- Department of Biology, MIT, Cambridge, MA, USA
- These authors contributed equally to this work
| | - Alberto Toso
- Institute of Biochemistry, ETH-Zurich, Zurich, Switzerland
- Molecular Life Science, PhD Program, Zurich, Switzerland
| | | |
Collapse
|
18
|
Bergstralh DT, Ting JPY. Microtubule stabilizing agents: Their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev 2006; 32:166-79. [PMID: 16527420 DOI: 10.1016/j.ctrv.2006.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/28/2022]
Abstract
Microtubule stabilization by chemotherapy is a powerful weapon in the war against cancer. Disruption of the mitotic spindle activates a number of signaling pathways, with consequences that may protect the cell or lead to its death via apoptosis. Taxol, the first microtubule stabilizing drug to be identified, has been utilized successfully in the treatment of solid tumors for two decades. Several features, however, make this drug less than ideal, and the search for next generation stabilizing drugs with increased efficacy has been intense and fruitful. Microtubule stabilizing agents (MSAs), including the taxanes, the epothilones, discodermolide, laulimalide, and eleutherobin, form an important and expanding family of chemotherapeutic agents. A strong understanding of their molecular signaling consequences is essential to their value, particularly in regard to their potential for combinatorial chemotherapy - the use of multiple agents to enhance the efficacy of cancer treatment. Here we present a critical review of research on the signaling mechanisms induced by MSAs, their relevance to apoptosis, and their potential for exploitation by combinatorial therapy.
Collapse
Affiliation(s)
- Daniel T Bergstralh
- Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, Campus Box #7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
19
|
Hanson CA, Miller JR. Non-traditional roles for the Adenomatous Polyposis Coli (APC) tumor suppressor protein. Gene 2005; 361:1-12. [PMID: 16185824 DOI: 10.1016/j.gene.2005.07.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/23/2005] [Accepted: 07/25/2005] [Indexed: 11/21/2022]
Abstract
The Adenomatous Polyposis Coli (APC) tumor suppressor is a multifunctional protein that is mutated in a majority of colon cancers. The role of APC as an antagonist of the Wnt signaling pathway is well known and it is widely accepted that inappropriate activation of this pathway through loss of APC function contributes to the progression of colon cancers. However, a body of evidence is growing to support the idea that APC plays non-traditional functions outside of the Wnt pathway with roles in cell migration, adhesion, chromosome segregation, spindle assembly, apoptosis, and neuronal differentiation. This review highlights the research into alternate functions for APC beyond its role in Wnt signaling and discusses the possible contributions for these non-traditional functions of APC in tumor formation.
Collapse
Affiliation(s)
- Caroline A Hanson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
20
|
Burds AA, Lutum AS, Sorger PK. Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci U S A 2005; 102:11296-301. [PMID: 16055552 PMCID: PMC1182134 DOI: 10.1073/pnas.0505053102] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Indexed: 12/21/2022] Open
Abstract
Cancer cells exhibit high levels of chromosome instability (CIN), and considerable interest surrounds the possibility that inactivation of the spindle checkpoint is involved. However, homozygous disruption of Mad and Bub checkpoint genes in metazoans causes cell death rather than CIN. We now report the isolation and characterization of blastocysts and two independent mouse embryonic fibroblast lines carrying deletions in Mad2 and p53. These cells lack a functional spindle checkpoint, undergo anaphase prematurely, and exhibit an extraordinarily high level of CIN. We conclude that the mitotic checkpoint is not essential for viability per se and that a CIN phenotype can be established in culture through the inactivation of both the Mad2- and p53-dependent checkpoint pathways.
Collapse
Affiliation(s)
- Aurora A Burds
- Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
21
|
Lopes CS, Sampaio P, Williams B, Goldberg M, Sunkel CE. The Drosophila Bub3 protein is required for the mitotic checkpoint and for normal accumulation of cyclins during G2 and early stages of mitosis. J Cell Sci 2005; 118:187-98. [PMID: 15615783 DOI: 10.1242/jcs.01602] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mitosis, a checkpoint mechanism delays metaphase-anaphase transition in the presence of unattached and/or unaligned chromosomes. This delay is achieved through inhibition of the anaphase promoting complex/cyclosome (APC/C) preventing sister chromatid separation and cyclin degradation. In the present study, we show that Bub3 is an essential protein required during normal mitotic progression to prevent premature sister chromatid separation, missegreation and aneuploidy. We also found that Bub3 is required during G2 and early stages of mitosis to promote normal mitotic entry. We show that loss of Bub3 function by mutation or RNAi depletion causes cells to progress slowly through prophase, a delay that appears to result from a failure to accumulate mitotic cyclins A and B. Defective accumulation of mitotic cyclins results from inappropriate APC/C activity, as mutations in the gene encoding the APC/C subunit cdc27 partially rescue this phenotype. Furthermore, analysis of mitotic progression in cells carrying mutations for cdc27 and bub3 suggest the existence of differentially activated APC/C complexes. Altogether, our data support the hypothesis that the mitotic checkpoint protein Bub3 is also required to regulate entry and progression through early stages of mitosis.
Collapse
Affiliation(s)
- Carla S Lopes
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
22
|
Meraldi P, Sorger PK. A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO J 2005; 24:1621-33. [PMID: 15933723 PMCID: PMC1142573 DOI: 10.1038/sj.emboj.7600641] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 03/04/2005] [Indexed: 11/09/2022] Open
Abstract
The spindle checkpoint ensures faithful chromosome segregation by linking the onset of anaphase to the establishment of bipolar kinetochore-microtubule attachment. The checkpoint is mediated by a signal transduction system comprised of conserved Mad, Bub and other proteins. In this study, we use live-cell imaging coupled with RNA interference to investigate the functions of human Bub1. We find that Bub1 is essential for checkpoint control and for correct chromosome congression. Bub1 depletion leads to the accumulation of misaligned chromatids in which both sister kinetochores are linked to microtubules in an abnormal fashion, a phenotype that is unique among Mad and Bub depletions. Bub1 is similar to the Aurora B/Ipl1p kinase in having roles in both the checkpoint and microtubule binding. However, human Bub1 and Aurora B are recruited to kinetochores independently of each other and have an additive effect when depleted simultaneously. Thus, Bub1 and Aurora B appear to function in parallel pathways that promote formation of stable bipolar kinetochore-microtubule attachments.
Collapse
Affiliation(s)
- Patrick Meraldi
- Department of Biology and Biological Engineering, MIT, Cambridge, MA, USA
| | - Peter K Sorger
- Department of Biology and Biological Engineering, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Building 68-365, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA. Tel.: +1 617 252 1648/253 1000; Fax: +1 617 253 4880; E-mail:
| |
Collapse
|
23
|
Maiato H, Sampaio P, Sunkel CE. Microtubule-associated proteins and their essential roles during mitosis. ACTA ACUST UNITED AC 2005; 241:53-153. [PMID: 15548419 DOI: 10.1016/s0074-7696(04)41002-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microtubules play essential roles during mitosis, including chromosome capture, congression, and segregation. In addition, microtubules are also required for successful cytokinesis. At the heart of these processes is the ability of microtubules to do work, a property that derives from their intrinsic dynamic behavior. However, if microtubule dynamics were not properly regulated, it is certain that microtubules alone could not accomplish any of these tasks. In vivo, the regulation of microtubule dynamics is the responsibility of microtubule-associated proteins. Among these, we can distinguish several classes according to their function: (1) promotion and stabilization of microtubule polymerization, (2) destabilization or severance of microtubules, (3) functioning as linkers between various structures, or (4) motility-related functions. Here we discuss how the various properties of microtubule-associated proteins can be used to assemble an efficient mitotic apparatus capable of ensuring the bona fide transmission of the genetic information in animal cells.
Collapse
Affiliation(s)
- Hélder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
24
|
Stear JH, Roth MB. The Caenorhabditis elegans kinetochore reorganizes at prometaphase and in response to checkpoint stimuli. Mol Biol Cell 2004; 15:5187-96. [PMID: 15371539 PMCID: PMC524797 DOI: 10.1091/mbc.e04-06-0486] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies of the kinetochore in mammalian systems have demonstrated that this structure undergoes reorganizations after microtubule attachment or in response to activation of the spindle checkpoint. Here, we show that the Caenorhabditis elegans kinetochore displays analogous rearrangements at prometaphase, when microtubule/chromosome interactions are being established, and after exposure to checkpoint stimuli such as nocodazole or anoxia. These reorganizations are characterized by a dissociation of several kinetochore proteins, including HCP-1/CeCENP-F, HIM-10/CeNuf2, SAN-1/CeMad3, and CeBUB-1, from the centromere. We further demonstrate that at metaphase, despite having dissociated from the centromere, these reorganized kinetochore proteins maintain their associations with the metaphase plate. After checkpoint activation, these proteins are detectable as large "flares" that project out laterally from the metaphase plate. Disrupting these gene products via RNA interference results in sensitivity to checkpoint stimuli, as well as defects in the organization of chromosomes at metaphase. These phenotypes suggest that these proteins, and by extension their reorganization during mitosis, are important for mediating the checkpoint response as well as directing the assembly of the metaphase plate.
Collapse
Affiliation(s)
- Jeffrey H Stear
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
25
|
Meraldi P, Draviam VM, Sorger PK. Timing and checkpoints in the regulation of mitotic progression. Dev Cell 2004; 7:45-60. [PMID: 15239953 DOI: 10.1016/j.devcel.2004.06.006] [Citation(s) in RCA: 376] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 01/15/2004] [Accepted: 05/12/2004] [Indexed: 11/25/2022]
Abstract
Accurate chromosome segregation relies on the precise regulation of mitotic progression. Regulation involves control over the timing of mitosis and a spindle assembly checkpoint that links anaphase onset to the completion of chromosome-microtubule attachment. In this paper, we combine live-cell imaging of HeLa cells and protein depletion by RNA interference to examine the functions of the Mad, Bub, and kinetochore proteins in mitotic timing and checkpoint control. We show that the depletion of any one of these proteins abolishes the mitotic arrest provoked by depolymerizing microtubules or blocking chromosome-microtubule attachment with RNAi. However, the normal progress of mitosis is accelerated only when Mad2 or BubR1, but not other Mad and Bub proteins, are inactivated. Moreover, whereas checkpoint control requires kinetochores, the regulation of mitotic timing by Mad2 and BubR1 is kinetochore-independent in fashion. We propose that cytosolic Mad2-BubR1 is essential to restrain anaphase onset early in mitosis when kinetochores are still assembling.
Collapse
Affiliation(s)
- Patrick Meraldi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
26
|
Vigneron S, Prieto S, Bernis C, Labbé JC, Castro A, Lorca T. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 2004; 15:4584-96. [PMID: 15269280 PMCID: PMC519151 DOI: 10.1091/mbc.e04-01-0051] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle checkpoint prevents anaphase onset until all the chromosomes have successfully attached to the spindle microtubules. The mechanisms by which unattached kinetochores trigger and transmit a primary signal are poorly understood, although it seems to be dependent at least in part, on the kinetochore localization of the different checkpoint components. By using protein immunodepletion and mRNA translation in Xenopus egg extracts, we have studied the hierarchic sequence and the interdependent network that governs protein recruitment at the kinetochore in the spindle checkpoint pathway. Our results show that the first regulatory step of this cascade is defined by Aurora B/INCENP complex. Aurora B/INCENP controls the activation of a second regulatory level by inducing at the kinetochore the localization of Mps1, Bub1, Bub3, and CENP-E. This localization, in turn, promotes the recruitment to the kinetochore of Mad1/Mad2, Cdc20, and the anaphase promoting complex (APC). Unlike Aurora B/INCENP, Mps1, Bub1, and CENP-E, the downstream checkpoint protein Mad1 does not regulate the kinetochore localization of either Cdc20 or APC. Similarly, Cdc20 and APC do not require each other to be localized at these chromosome structures. Thus, at the last step of the spindle checkpoint cascade, Mad1/Mad2, Cdc20, and APC are recruited at the kinetochores independently from each other.
Collapse
Affiliation(s)
- Suzanne Vigneron
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique Formation de Recherche en Evolution 2593, 34293 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
27
|
Logarinho E, Bousbaa H, Dias JM, Lopes C, Amorim I, Antunes-Martins A, Sunkel CE. Different spindle checkpoint proteins monitor microtubule attachment and tension at kinetochores in Drosophila cells. J Cell Sci 2004; 117:1757-71. [PMID: 15075237 DOI: 10.1242/jcs.01033] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The spindle assembly checkpoint detects errors in kinetochore attachment to the spindle including insufficient microtubule occupancy and absence of tension across bi-oriented kinetochore pairs. Here, we analyse how the kinetochore localization of the Drosophila spindle checkpoint proteins Bub1, Mad2, Bub3 and BubR1, behave in response to alterations in microtubule binding or tension. To analyse the behaviour in the absence of tension, we treated S2 cells with low doses of taxol to disrupt microtubule dynamics and tension, but not kinetochore-microtubule occupancy. Under these conditions, we found that Mad2 and Bub1 do not accumulate at metaphase kinetochores whereas BubR1 does. Consistently, in mono-oriented chromosomes, both kinetochores accumulate BubR1 whereas Bub1 and Mad2 only localize at the unattached kinetochore. To study the effect of tension we analysed the kinetochore localization of spindle checkpoint proteins in relation to tension-sensitive kinetochore phosphorylation recognised by the 3F3/2 antibody. Using detergent-extracted S2 cells as a system in which kinetochore phosphorylation can be easily manipulated, we observed that BubR1 and Bub3 accumulation at kinetochores is dependent on the presence of phosphorylated 3F3/2 epitopes. However, Bub1 and Mad2 localize at kinetochores regardless of the 3F3/2 phosphorylation state. Altogether, our results suggest that spindle checkpoint proteins sense distinct aspects of kinetochore interaction with the spindle, with Mad2 and Bub1 monitoring microtubule occupancy while BubR1 and Bub3 monitor tension across attached kinetochores.
Collapse
Affiliation(s)
- Elsa Logarinho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
28
|
Lou Y, Yao J, Zereshki A, Dou Z, Ahmed K, Wang H, Hu J, Wang Y, Yao X. NEK2A interacts with MAD1 and possibly functions as a novel integrator of the spindle checkpoint signaling. J Biol Chem 2004; 279:20049-57. [PMID: 14978040 DOI: 10.1074/jbc.m314205200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromosome segregation in mitosis is orchestrated by protein kinase signaling cascades. A biochemical cascade named spindle checkpoint ensures the spatial and temporal order of chromosome segregation during mitosis. Here we report that spindle checkpoint protein MAD1 interacts with NEK2A, a human orthologue of the Aspergillus nidulans NIMA kinase. MAD1 interacts with NEK2A in vitro and in vivo via a leucine zipper-containing domain located at the C terminus of MAD1. Like MAD1, NEK2A is localized to HeLa cell kinetochore of mitotic cells. Elimination of NEK2A by small interfering RNA does not arrest cells in mitosis but causes aberrant premature chromosome segregation. NEK2A is required for MAD2 but not MAD1, BUB1, and HEC1 to associate with kinetochores. These NEK2A-eliminated or -suppressed cells display a chromosome bridge phenotype with sister chromatid inter-connected. Moreover, loss of NEK2A impairs mitotic checkpoint signaling in response to spindle damage by nocodazole, which affected mitotic escape and led to generation of cells with multiple nuclei. Our data demonstrate that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. We hypothesize that NEK2A links MAD2 molecular dynamics to spindle checkpoint signaling.
Collapse
Affiliation(s)
- Yang Lou
- School of Life Sciences, University of Science & Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Kinetochores are multiprotein complexes that assemble on centromeric DNA and mediate the attachment and movement of chromosomes along the microtubules (MTs) of the mitotic spindle. This review focuses on the simplest eukaryotic centromeres and kinetochores, those found in the budding yeast Saccharomyces cerevisiae. Research on kinetochore function and chromosome segregation is focused on four questions of general significance: what specifies the location of centromeres? What are the protein components of kinetochores, and how do they assemble a MT attachment site? How do MT attachments generate force? How do cells sense the state of attachment via the spindle assembly checkpoint?
Collapse
Affiliation(s)
- Andrew D McAinsh
- Department of Biology, and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
30
|
Green RA, Kaplan KB. Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. ACTA ACUST UNITED AC 2004; 163:949-61. [PMID: 14662741 PMCID: PMC2173599 DOI: 10.1083/jcb.200307070] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The attachment of microtubule plus ends to kinetochores and to the cell cortex is essential for the fidelity of chromosome segregation. Here, we characterize the causes underlying the high rates of chromosome instability (CIN+) observed in colorectal tumor cells. We show that CIN+ tumor cells exhibit inefficient microtubule plus-end attachments during mitosis, accompanied by impairment of chromosome alignment in metaphase. The mitotic abnormalities associated with CIN+ tumor cells correlated with status of adenomatous polyposis coli (APC). Importantly, we have shown that a single truncating mutation in APC, similar to mutations found in tumor cells, acts dominantly to interfere with microtubule plus-end attachments and to cause a dramatic increase in mitotic abnormalities. We propose that APC functions to modulate microtubule plus-end attachments during mitosis, and that a single mutant APC allele predisposes cells to increased mitotic abnormalities, which may contribute to tumor progression.
Collapse
Affiliation(s)
- Rebecca A Green
- Section of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
31
|
Cotsiki M, Lock RL, Cheng Y, Williams GL, Zhao J, Perera D, Freire R, Entwistle A, Golemis EA, Roberts TM, Jat PS, Gjoerup OV. Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci U S A 2004; 101:947-52. [PMID: 14732683 PMCID: PMC327122 DOI: 10.1073/pnas.0308006100] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitotic spindle checkpoint protein Bub1 has been found to be mutated at low frequency in certain human cancers characterized by aneuploidy. Simian virus 40 large T antigen efficiently immortalizes rodent cells and occasionally transforms them to tumorigenicity. T antigen can also cause genomic instability, inducing chromosomal aberrations and aneuploidy. Here, we report an interaction between Bub1 and T antigen. T antigen coimmunoprecipitates with endogenous Bub1 and Bub3, another component of the spindle checkpoint complex. Genetic analysis demonstrates that the interaction of T antigen with Bub1 is not required for immortalization but is closely correlated with transformation. T antigen induces an override of the spindle checkpoint dependent on Bub1 binding. This interaction with proteins of the spindle checkpoint machinery suggests another role for T antigen and provides insight into its ability to cause chromosomal aberrations, aneuploidy, and transformation.
Collapse
Affiliation(s)
- Marina Cotsiki
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, Courtauld Building, 91 Riding House Street, London W1W 7BS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kerscher O, Crotti LB, Basrai MA. Recognizing chromosomes in trouble: association of the spindle checkpoint protein Bub3p with altered kinetochores and a unique defective centromere. Mol Cell Biol 2003; 23:6406-18. [PMID: 12944469 PMCID: PMC193694 DOI: 10.1128/mcb.23.18.6406-6418.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spindle checkpoint proteins monitor the interaction of the spindle apparatus with the kinetochores, halting anaphase even if the microtubule attachment of only a single chromosome is altered. In this study, we show that Bub3p of Saccharomyces cerevisiae, an evolutionarily conserved spindle checkpoint protein, exhibits distinct interactions with an altered or defective kinetochore(s). We show for the first time that green fluorescent protein-tagged S. cerevisiae Bub3p (Bub3-GFP) exhibits not only a diffuse nuclear localization pattern but also forms distinct nuclear foci in unperturbed growing and G(2)/M-arrested cells. As Bub3-GFP foci overlap only a subset of kinetochores, we tested a model in which alterations or defects in kinetochore or spindle integrity lead to the distinct enrichment of Bub3p at these structures. In support of our model, kinetochore-associated Bub3-GFP is enriched upon activation of the spindle checkpoint due to nocodazole-induced spindle disassembly, overexpression of the checkpoint kinase Mps1p, or the presence of a defective centromere (CEN). Most importantly, using a novel approach with the chromatin immunoprecipitation (ChIP) technique and genetically engineered defective CEN [CF/CEN6(Delta31)], we determined that Bub3-GFP can associate with a single defective kinetochore. Our studies represent the first comprehensive molecular analysis of spindle checkpoint protein function in the context of a wild-type or defective kinetochore(s) by use of live-cell imaging and the ChIP technique in S. cerevisiae.
Collapse
Affiliation(s)
- Oliver Kerscher
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 8901 Wisconsin Avenue, Bethesda, MD 20889-5101, USA
| | | | | |
Collapse
|
33
|
Dobles M, Sorger PK. Mitotic checkpoints, genetic instability, and cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:361-8. [PMID: 12760051 DOI: 10.1101/sqb.2000.65.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M Dobles
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
34
|
Abstract
Spindle microtubules interact with mitotic chromosomes, binding to their kinetochores to generate forces that are important for accurate chromosome segregation. Motor enzymes localized both at kinetochores and spindle poles help to form the biologically significant attachments between spindle fibers and their cargo, but microtubule-associated proteins without motor activity contribute to these junctions in important ways. This review examines the molecules necessary for chromosome-microtubule interaction in a range of well-studied organisms, using biological diversity to identify the factors that are essential for organized chromosome movement. We conclude that microtubule dynamics and the proteins that control them are likely to be more important for mitosis than the current enthusiasm for motor enzymes would suggest.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.
| | | | | |
Collapse
|
35
|
Allman R, Errington RJ, Smith PJ. Delayed expression of apoptosis in human lymphoma cells undergoing low-dose taxol-induced mitotic stress. Br J Cancer 2003; 88:1649-58. [PMID: 12771935 PMCID: PMC2377125 DOI: 10.1038/sj.bjc.6600905] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The links between low-dose range taxol-induced mitotic arrest and the subsequent engagement of apoptosis are important for identifying the routes to therapeutic action. Here we have investigated the timing of cell-cycle perturbation and cell death responses following continuous exposure to clinically relevant drug concentrations (1-20 nM). Following 8 h of exposure to taxol, the cell line DoHH2 (p53 wild type) exhibited mitotic arrest and engagement of apoptosis, whereas the cell line SU-DHL-4 (p53 mutant) breached cell-cycle arrest with progression to an abnormal cycle and a 24 h delay in the engagement of apoptosis. Imaging showed equivalent dysfunction of mitotic spindles in both cell lines. The results of kinetic analyses indicated that although cell death may occur at different stages of progression through mitosis and subsequent cell cycles, the overall kinetics of cell death relate to the rate of arrival at a critical event window in the cell cycle. We propose a simple model of low-dose taxol-induced cell death for cycling populations in which mitotic stress acts as a primary trigger for apoptosis with equivalent but potentially delayed outcomes. This view provides a rationale for the clinical effectiveness of this agent, independent of the initial capacity of the tumour cell to engage apoptosis due, for example, to mutant p53 expression. The results provide a perspective for the design of combination regimens that include low-dose taxol and a component that may disturb mitotic delivery.
Collapse
Affiliation(s)
- R Allman
- Cancer Research Wales Laboratories, Velindre NHS Trust, Whitchurch, Cardiff CF14 2TL, Wales, UK.
| | | | | |
Collapse
|
36
|
Williams BC, Li Z, Liu S, Williams EV, Leung G, Yen TJ, Goldberg ML. Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions. Mol Biol Cell 2003; 14:1379-91. [PMID: 12686595 PMCID: PMC153108 DOI: 10.1091/mbc.e02-09-0624] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Zeste-White 10 (ZW10) and Rough Deal (ROD) proteins are part of a complex necessary for accurate chromosome segregation. This complex recruits cytoplasmic dynein to the kinetochore and participates in the spindle checkpoint. We used immunoaffinity chromatography and mass spectroscopy to identify the Drosophila proteins in this complex. We found that the complex contains an additional protein we name Zwilch. Zwilch localizes to kinetochores and kinetochore microtubules in a manner identical to ZW10 and ROD. We have also isolated a zwilch mutant, which exhibits the same mitotic phenotypes associated with zw10 and rod mutations: lagging chromosomes at anaphase and precocious sister chromatid separation upon activation of the spindle checkpoint. Zwilch's role within the context of this complex is evolutionarily conserved. The human Zwilch protein (hZwilch) coimmunoprecipitates with hZW10 and hROD from HeLa cell extracts and localizes to the kinetochores at prometaphase. Finally, we discuss immunoaffinity chromatography results that suggest the existence of a weak interaction between the ZW10/ROD/Zwilch complex and the kinesin-like kinetochore component CENP-meta.
Collapse
Affiliation(s)
- Byron C Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Campbell L, Hardwick KG. Analysis of Bub3 spindle checkpoint function in Xenopus egg extracts. J Cell Sci 2003; 116:617-28. [PMID: 12538762 DOI: 10.1242/jcs.00255] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spindle checkpoint delays the onset of anaphase if there are any defects in the interactions between spindle microtubules and kinetochores. This checkpoint has been reconstituted in vitro in Xenopus egg extracts, and here we use antibodies to Xenopus Bub3 (XBub3) to show that this protein is required for both the activation and the maintenance of a spindle checkpoint arrest in egg extracts. We detect two forms of XBub3 in egg extracts and find both to be complexed with the XBub1 and XBubR1 kinases. Only one form of XBub3 is apparent in Xenopus tissue culture (XTC) cells, and localisation studies reveal that, unlike the Mad proteins, which are concentrated at the nuclear periphery, XBub3 is diffusely localised throughout the nucleus during interphase. During early prophase it is recruited to kinetochores, where it remains until chromosomes align at the metaphase plate. We discuss the mechanism by which our alpha-XBub3 antibodies interfere with the checkpoint and possible roles for XBub3 in the spindle checkpoint pathway.
Collapse
Affiliation(s)
- Leigh Campbell
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, Scotland, EH9 3JR, UK.
| | | |
Collapse
|
38
|
Babu JR, Jeganathan KB, Baker DJ, Wu X, Kang-Decker N, van Deursen JM. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 2003; 160:341-53. [PMID: 12551952 PMCID: PMC2172680 DOI: 10.1083/jcb.200211048] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The WD-repeat proteins Rae1 and Bub3 show extensive sequence homology, indicative of functional similarity. However, previous studies have suggested that Rae1 is involved in the mRNA export pathway and Bub3 in the mitotic checkpoint. To determine the in vivo roles of Rae1 and Bub3 in mammals, we generated knockout mice that have these genes deleted individually or in combination. Here we show that haplo-insufficiency of either Rae1 or Bub3 results in a similar phenotype involving mitotic checkpoint defects and chromosome missegregation. We also show that overexpression of Rae1 can correct for Rae1 haplo-insufficiency and, surprisingly, Bub3 haplo-insufficiency. Rae1-null and Bub3-null mice are embryonic lethal, although cells from these mice did not have a detectable defect in nuclear export of mRNA. Unlike null mice, compound haplo-insufficient Rae1/Bub3 mice are viable. However, cells from these mice exhibit much greater rates of premature sister chromatid separation and chromosome missegregation than single haplo-insufficient cells. Finally, we show that mice with mitotic checkpoint defects are more susceptible to dimethylbenzanthrene-induced tumorigenesis than wild-type mice. Thus, our data demonstrate a novel function for Rae1 and characterize Rae1 and Bub3 as related proteins with essential, overlapping, and cooperating roles in the mitotic checkpoint.
Collapse
Affiliation(s)
- J Ramesh Babu
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
39
|
Baek WK, Park JW, Lim JH, Suh SI, Suh MH, Gabrielson E, Kwon TK. Molecular cloning and characterization of the human budding uninhibited by benomyl (BUB3) promoter. Gene 2003; 295:117-23. [PMID: 12242018 DOI: 10.1016/s0378-1119(02)00827-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, cDNA corresponding to the human homologue of the BUB3 (budding uninhibited by benomyl) mitotic checkpoint protein has been identified and cloned. Previous studies from our laboratory and others have found this gene to localize to 10q26, a region that is frequently altered in various human cancers. We describe here a series of studies designed to understand the genomic structure of BUB3, particularly as it relates to regulation of gene expression. The human BUB3 gene has seven exons and six introns, and spans a genomic region of over 16 kb. The four WD repeat sequences in this gene are localized to exons 2, 4, and 6, and there is a major transcriptional start site located 554 nucleotides upstream of the ATG translation initiator codon. The promoter region lacks a TATA box but contains potential binding sites for the transcriptional factors including SP1, E2F, c-Myc, C/EBP and NFkappaB. To analyse the regulatory mechanisms controlling hBUB3 gene expression, we characterized the 5'-flanking region from nucleotide -1.3 to +0.58 kb by cloning various potions of this region in front of a luciferase reporter sequence. These experiments indicate that this region 5' region contains distinctive positive and negative regulatory elements.
Collapse
Affiliation(s)
- Won-Ki Baek
- Department of Microbiology, School of Medicine, Keimyung University, 194 DongSan-Dong Jung-Gu, Taegu 700-712, South Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Gao S, Scott RE. P2P-R protein overexpression restricts mitotic progression at prometaphase and promotes mitotic apoptosis. J Cell Physiol 2002; 193:199-207. [PMID: 12384997 DOI: 10.1002/jcp.10163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitotic cells show a tenfold increase in immunoreactive P2P-R protein. During mitosis, the distribution of P2P-R protein also changes from a primary nucleolar localization in interphase cells to the periphery of chromosome in mitotic cells. These findings suggest that P2P-R might serve a functional role in mitosis. To test this possibility, human Saos2 cells were stably transfected with P2P-R DNA constructs and the biological effects of P2P-R overexpression were evaluated. Overexpression of near full-length P2P-R was found to have paradoxical effects on the relationship between proliferation and mitosis in the nine Saos2 cell clones that were studied. A significant repression in the population doubling rates was observed in all nine clones even though a significant increase in the frequency of easily detached cells with a mitotic morphology was apparent. Flow cytometric analysis confirmed that greater than two thirds of the cells with a mitotic morphology had a 4n DNA content. Confocal microscopy further established that 85% of the mitotic cell population had prometaphase characteristics suggesting that P2P-R overexpression restricts mitotic progression at prometaphase. Many cells with a mitotic morphology also showed signs of apoptosis with prominent cell surface blebs. Confocal microscopy confirmed that 25-40% of such mitotic cells were apoptotic with chromosomal abnormalities and cell surface blebbing. In association with mitotic apoptosis, P2P-R protein appears to dissociate from the periphery of chromosomes and localize in the cytoplasm and in cell surface blebs. The presence of P2P-R in cell surface blebs was confirmed by analysis of highly enriched populations of apoptotic cell surface blebs wherein Western blotting documented the presence of 250 kDa P2P-R. These results therefore suggest that P2P-R overexpression promotes both prometaphase arrest in mitosis and mitotic apoptosis.
Collapse
Affiliation(s)
- Sizhi Gao
- Department of Pathology, University of Tennessee Health Science Center, Memphis TN 38163, Tennessee, USA
| | | |
Collapse
|
41
|
Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 2002; 3:731-41. [PMID: 12360190 DOI: 10.1038/nrm929] [Citation(s) in RCA: 407] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome segregation is a complex and astonishingly accurate process whose inner working is beginning to be understood at the molecular level. The spindle checkpoint plays a key role in ensuring the fidelity of this process. It monitors the interactions between chromosomes and microtubules, and delays mitotic progression to allow extra time to correct defects. Here, we review and integrate findings on the dynamics of checkpoint proteins at kinetochores with structural information about signalling complexes.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.
| | | |
Collapse
|
42
|
Abstract
Faithful transmission of chromosomes during mitosis is ensured by the spindle assembly checkpoint. This molecular safeguard examines whether prerequisites for chromosome segregation have been satisfied and thereby determines whether to execute or to delay chromosome segregation. Only when all the chromosomes are attached by kinetochore microtubules from two opposite spindle poles and proper tension is placed on the paired kinetochores does anaphase take place, allowing the physical splitting of sister chromatids. Recent studies have provided novel insights into the molecular mechanisms through which the spindle assembly checkpoint is regulated by both the attachment of chromosomes to kinetochore microtubules and the tension exerted on kinetochores.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
43
|
Warren CD, Brady DM, Johnston RC, Hanna JS, Hardwick KG, Spencer FA. Distinct chromosome segregation roles for spindle checkpoint proteins. Mol Biol Cell 2002; 13:3029-41. [PMID: 12221113 PMCID: PMC124140 DOI: 10.1091/mbc.e02-04-0203] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage.
Collapse
Affiliation(s)
- Cheryl D Warren
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
44
|
Saxena A, Saffery R, Wong LH, Kalitsis P, Choo KHA. Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly(ADP-ribose) polymerase-1 protein and are poly(ADP-ribosyl)ated. J Biol Chem 2002; 277:26921-6. [PMID: 12011073 DOI: 10.1074/jbc.m200620200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is activated by DNA strand breaks during cellular genotoxic stress response and catalyzes poly(ADP-ribosyl)ation of acceptor proteins. These acceptor proteins include those involved in modulation of chromatin structure, DNA synthesis, DNA repair, transcription, and cell cycle control. Thus, PARP-1 is believed to play a pivotal role in maintaining genome integrity through modulation of protein-protein and protein-DNA interactions. We previously described the association of PARP-1 with normal mammalian centromeres and human neocentromeres by affinity purification and immunofluorescence. Here we investigated the interaction of this protein with, and poly(ADP-ribosyl)ation of, three constitutive centromere proteins, Cenpa, Cenpb, and Cenpc, and a spindle checkpoint protein, Bub3. Immunoprecipitation and Western blot analyses demonstrate that Cenpa, Cenpb, and Bub3, but not Cenpc, interacted with PARP-1, and are poly(ADP-ribosyl)ated following induction of DNA damage. The results suggest a role of PARP-1 in centromere assembly/disassembly and checkpoint control. Demonstration of PARP-1-binding and poly(ADP-ribosyl)ation in three of the four proteins tested further suggests that many more centromere proteins may behave similarly and implicates PARP-1 as an important regulator of diverse centromere function.
Collapse
Affiliation(s)
- Alka Saxena
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Rd., Parkville 3052, Australia
| | | | | | | | | |
Collapse
|
45
|
Blajeski AL, Phan VA, Kottke TJ, Kaufmann SH. G(1) and G(2) cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest 2002; 110:91-9. [PMID: 12093892 PMCID: PMC151025 DOI: 10.1172/jci13275] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microtubule-depolymerizing agents are widely used to synchronize cells, screen for mitotic checkpoint defects, and treat cancer. The present study evaluated the effects of these agents on normal and malignant human breast cell lines. After treatment with 1 microM nocodazole, seven of ten breast cancer lines (type A cells) arrested in mitosis, whereas the other three (type B cells) did not. Similar effects were observed with 100 nM vincristine or colchicine. Among five normal mammary epithelial isolates, four exhibited type A behavior and one exhibited type B behavior. Further experiments revealed that the type B cells exhibited a biphasic dose-response curve, with mitotic arrest at low drug concentrations (100 nM nocodazole or 6 nM vincristine) that failed to depolymerize microtubules and a p53-independent p21(waf1/cip1)-associated G(1) and G(2) arrest at higher concentrations (1 microM nocodazole or 100 nM vincristine) that depolymerized microtubules. Collectively, these observations provide evidence for coupling of premitotic cell-cycle progression to microtubule integrity in some breast cancer cell lines (representing a possible "microtubule integrity checkpoint") and suggest a potential explanation for the recently reported failure of some cancer cell lines to undergo nocodazole-induced mitotic arrest despite intact mitotic checkpoint proteins.
Collapse
Affiliation(s)
- April L Blajeski
- Department of Molecular Pharmacology and Experimental Therapeutics, Tumor Biology Program, Mayo Graduate School, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
46
|
Abruzzi KC, Magendantz M, Solomon F. An alpha-tubulin mutant demonstrates distinguishable functions among the spindle assembly checkpoint genes in Saccharomyces cerevisiae. Genetics 2002; 161:983-94. [PMID: 12136005 PMCID: PMC1462169 DOI: 10.1093/genetics/161.3.983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cells expressing a mutant allele of alpha-tubulin, tub1-729, are cold sensitive and arrest as large-budded cells with microtubule defects. The cold sensitivity of tub1-729 is suppressed by extra copies of a subset of the mitotic checkpoint genes BUB1, BUB3, and MPS1, but not MAD1, MAD2, and MAD3. This suppression by checkpoint genes does not depend upon their role in the MAD2-dependent spindle assembly checkpoint. In addition, BUB1 requires an intact kinase domain as well as Bub3p to suppress tub1-729. The data suggest that tub1-729 cells are defective in microtubule-kinetochore attachments and that the products of specific checkpoint genes can act either directly or indirectly to affect these attachments.
Collapse
Affiliation(s)
- Katharine C Abruzzi
- Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
47
|
Hwang HS, Song K. IBD2 encodes a novel component of the Bub2p-dependent spindle checkpoint in the budding yeast Saccharomyces cerevisiae. Genetics 2002; 161:595-609. [PMID: 12072457 PMCID: PMC1462124 DOI: 10.1093/genetics/161.2.595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During mitosis, genomic integrity is maintained by the proper coordination of mitotic events through the spindle checkpoint. The bifurcated spindle checkpoint blocks cell cycle progression at metaphase by monitoring unattached kinetochores and inhibits mitotic exit in response to the incorrect orientation of the mitotic spindle. Bfa1p is a spindle checkpoint regulator of budding yeast in the Bub2p checkpoint pathway for proper mitotic exit. We have isolated a novel Bfa1p interacting protein named Ibd2p in the budding yeast Saccharomyces cerevisiae. We found that IBD2 (Inhibition of Bud Division 2) is not an essential gene but its deletion mutant proceeded through the cell cycle in the presence of microtubule-destabilizing drugs, thereby inducing a sharp decrease in viability. In addition, overexpression of Mps1p caused partial mitotic arrest in ibd2Delta as well as in bub2Delta, suggesting that IBD2 encodes a novel component of the spindle checkpoint downstream of MPS1. Overexpression of Ibd2p induced mitotic arrest with increased levels of Clb2p in wild type and mad2Delta, but not in deletion mutants of BUB2 and BFA1. Pds1p was also stabilized by the overexpression of Ibd2p in wild-type cells. The mitotic arrest defects observed in ibd2Delta in the presence of nocodazole were restored by additional copies of BUB2, BFA1, and CDC5, whereas an extra copy of IBD2 could not rescue the mitotic arrest defects of bub2Delta and bfa1Delta. The mitotic arrest defects of ibd2Delta were not recovered by MAD2, or vice versa. Analysis of the double mutant combinations ibd2Deltamad2Delta, ibd2Deltabub2Delta, and ibd2Deltadyn1Delta showed that IBD2 belongs to the BUB2 epistasis group. Taken together, these data demonstrate that IBD2 encodes a novel component of the BUB2-dependent spindle checkpoint pathway that functions upstream of BUB2 and BFA1.
Collapse
Affiliation(s)
- Hyung-Seo Hwang
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
48
|
Millband DN, Hardwick KG. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol Cell Biol 2002; 22:2728-42. [PMID: 11909965 PMCID: PMC133725 DOI: 10.1128/mcb.22.8.2728-2742.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle checkpoint delays the metaphase-to-anaphase transition in response to spindle and kinetochore defects. Genetic screens in budding yeast identified the Mad and Bub proteins as key components of this conserved regulatory pathway. Here we present the fission yeast homologue of Mad3p. Cells devoid of mad3(+) are unable to arrest their cell cycle in the presence of microtubule defects. Mad3p coimmunoprecipitates Bub3p, Mad2p, and the spindle checkpoint effector Slp1/Cdc20p. We demonstrate that Mad3p function is required for the overexpression of Mad2p to result in a metaphase arrest. Mad1p, Bub1p, and Bub3p are not required for this arrest. Thus, Mad3p appears to have a crucial role in transducing the inhibitory "wait anaphase" signal to the anaphase-promoting complex (APC). Mad3-green fluorescent protein (GFP) is recruited to unattached kinetochores early in mitosis and accumulates there upon prolonged checkpoint activation. For the first time, we have systematically studied the dependency of Mad3/BubR1 protein recruitment to kinetochores. We find Mad3-GFP kinetochore localization to be dependent upon Bub1p, Bub3p, and the Mph1p kinase, but not upon Mad1p or Mad2p. We discuss the implications of these findings in the context of our current understanding of spindle checkpoint function.
Collapse
Affiliation(s)
- David N Millband
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, Scotland EH9 3JR, United Kingdom
| | | |
Collapse
|
49
|
Cimini D, Fioravanti D, Salmon ED, Degrassi F. Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells. J Cell Sci 2002; 115:507-15. [PMID: 11861758 DOI: 10.1242/jcs.115.3.507] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defects in chromosome segregation play a critical role in producing genomic instability and aneuploidy, which are associated with congenital diseases and carcinogenesis. We recently provided evidence from immunofluorescence and electron microscopy studies that merotelic kinetochore orientation is a major mechanism for lagging chromosomes during mitosis in PtK1 cells. Here we investigate whether human primary fibroblasts exhibit similar errors in chromosome segregation and if at least part of lagging chromosomes may arise in cells entering anaphase in the presence of mono-oriented chromosomes. By using in situ hybridization with alphoid probes to chromosome 7 and 11 we showed that loss of a single sister is much more frequent than loss of both sisters from the same chromosome in anatelophases from human primary fibroblasts released from a nocodazole-induced mitotic arrest, as predicted from merotelic orientation of single kinetochores. Furthermore, the lagging of pairs of separated sisters was higher than expected from random chance indicating that merotelic orientation of one sister may promote merotelic orientation of the other. Kinetochores of lagging chromosomes in anaphase human cells were found to be devoid of the mitotic checkpoint phosphoepitopes recognized by the 3F3/2 antibody, suggesting that they attached kinetochore microtubules prior to anaphase onset. Live cell imaging of H2B histone-GFP-transfected cells showed that cells with mono-oriented chromosomes never enter anaphase and that lagging chromosomes appear during anaphase after chromosome alignment occurs during metaphase. Thus, our results demonstrate that the mitotic checkpoint efficiently prevents the possible aneuploid burden due to mono-oriented chromosomes and that merotelic kinetochore orientation is a major limitation for accurate chromosome segregation and a potentially important mechanism of aneuploidy in human cells.
Collapse
MESH Headings
- Cells, Cultured
- Chromosome Segregation
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/metabolism
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/metabolism
- Fibroblasts
- Humans
- In Situ Hybridization, Fluorescence
- Kinetochores/metabolism
- Lung/cytology
- Mitosis/drug effects
- Mitosis/genetics
- Nocodazole/pharmacology
Collapse
Affiliation(s)
- Daniela Cimini
- Center for Evolutionary Genetics CNR, c/o Department of Genetics and Molecular Biology, University La Sapienza, Via degli Apuli 4, 00185 Rome, Italy
| | | | | | | |
Collapse
|
50
|
LIU LEYUAN, VO AMY, LIU GUOQIN, MCKEEHAN WALLACEL. Novel complex integrating mitochondria and the microtubular cytoskeleton with chromosome remodeling and tumor suppressor RASSF1 deduced by in silico homology analysis, interaction cloning in yeast, and colocalization in cultured cells. In Vitro Cell Dev Biol Anim 2002; 38:582-94. [PMID: 12762840 PMCID: PMC3225227 DOI: 10.1290/1543-706x(2002)38<582:ncimat>2.0.co;2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Availability of the complete sequence of the human genome and sequence homology analysis has accelerated new protein discovery and clues to protein function. Protein-protein interaction cloning suggests multisubunit complexes and pathways. Here, we combine these molecular approaches with cultured cell colocalization analysis to suggest a novel complex and a pathway that integrate the mitochondrial location and the microtubular cytoskeleton with chromosome remodeling, apoptosis, and tumor suppression based on a novel leucine-rich pentatricopeptide repeat-motif-containing protein (LRPPRC) that copurified with the fibroblast growth factor receptor complex. One round of interaction cloning and sequence homology analysis defined a primary LRPPRC complex with novel subunits cat eye syndrome chromosome region candidate 2 (CECR2), ubiquitously expressed transcript (UXT), and chromosome 19 open reading frames 5 (C19ORF5) but still of unknown function. Immuno, deoxyribonucleic acid (DNA), and green fluorescent protein (GFP) tag colocalization analyses revealed that LRPPRC appears in both cytosol and nuclei of cultured cells, colocalizes with mitochondria and beta-tubulin rather than with alpha-actin in the cytosol of interphase cells, and exhibits phase-dependent organization around separating chromosomes in mitotic cells. GFP-tagged CECR2B was strictly nuclear and colocalized with condensed DNA in apoptotic cells. GFP-tagged UXT and GFP-tagged C19ORF5 appeared in both cytosol and nuclei and colocalized with LRPPRC and beta-tubulin. Cells exhibiting nuclear C19ORF5 were apoptotic. Screening for interactive substrates with the primary LRPPRC substrates in the human liver complementary DNA library revealed that CECR2B interacted with chromatin-associated TFIID-associated protein TAFII30 and ribonucleic acid splicing factor SRP40, UXT bridged to CBP/p300-binding factor CITED2 and kinetochore-associated factor BUB3, and C19ORF5 complexed with mitochondria-associated NADH dehydrogenase I and cytochrome c oxidase I. C19ORF5 also interacted with RASSF1, providing a bridge to apoptosis and tumor suppression.
Collapse
|