1
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
2
|
Ellenbroek BD, Kahler JP, Evers SR, Pomplun SJ. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202401704. [PMID: 38456368 DOI: 10.1002/anie.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
DNA and RNA play pivotal roles in life processes by storing and transferring genetic information, modulating gene expression, and contributing to essential cellular machinery such as ribosomes. Dysregulation and mutations in nucleic acid-related processes are implicated in numerous diseases. Despite the critical impact on health of nucleic acid mutations or dysregulation, therapeutic compounds addressing these biomolecules remain limited. Peptides have emerged as a promising class of molecules for biomedical research, offering potential solutions for challenging drug targets. This review focuses on the use of synthetic peptides to target disease-related nucleic acids. We discuss examples of peptides targeting double-stranded DNA, including the clinical candidate Omomyc, and compounds designed for regulatory G-quadruplexes. Further, we provide insights into both library-based screenings and the rational design of peptides to target regulatory human RNA scaffolds and viral RNAs, emphasizing the potential of peptides in addressing nucleic acid-related diseases.
Collapse
Affiliation(s)
| | | | - Sophie R Evers
- Leiden University, 2333 CC, Leiden, The Netherlands
- Present address, Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
3
|
Goetz H, Stone A, Zhang R, Lai Y, Tian X. Double-edged role of resource competition in gene expression noise and control. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100050. [PMID: 35989723 PMCID: PMC9390979 DOI: 10.1002/ggn2.202100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/08/2022] [Indexed: 04/30/2023]
Abstract
Despite extensive investigation demonstrating that resource competition can significantly alter the deterministic behaviors of synthetic gene circuits, it remains unclear how resource competition contributes to the gene expression noise and how this noise can be controlled. Utilizing a two-gene circuit as a prototypical system, we uncover a surprising double-edged role of resource competition in gene expression noise: competition decreases noise through introducing a resource constraint but generates its own type of noise which we name as "resource competitive noise." Utilization of orthogonal resources enables retainment of the noise reduction conferred by resource constraint while removing the added resource competitive noise. The noise reduction effects are studied using three negative feedback types: negatively competitive regulation (NCR), local, and global controllers, each having four placement architectures in the protein biosynthesis pathway (mRNA or protein inhibition on transcription or translation). Our results show that both local and NCR controllers with mRNA-mediated inhibition are efficacious at reducing noise, with NCR controllers demonstrating a superior noise-reduction capability. We also find that combining feedback controllers with orthogonal resources can improve the local controllers. This work provides deep insights into the origin of stochasticity in gene circuits with resource competition and guidance for developing effective noise control strategies.
Collapse
Affiliation(s)
- Hanah Goetz
- School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeAZ85287USA
| | - Austin Stone
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| | - Rong Zhang
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| | - Ying‐Cheng Lai
- School of Electrical, Computer and Energy EngineeringArizona State UniversityTempeAZ85287USA
- Department of PhysicsArizona State UniversityTempeAZ85287USA
| | - Xiao‐Jun Tian
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| |
Collapse
|
4
|
Kuepper A, McLoughlin NM, Neubacher S, Yeste-Vázquez A, Collado Camps E, Nithin C, Mukherjee S, Bethge L, Bujnicki JM, Brock R, Heinrichs S, Grossmann TN. Constrained peptides mimic a viral suppressor of RNA silencing. Nucleic Acids Res 2021; 49:12622-12633. [PMID: 34871435 PMCID: PMC8682738 DOI: 10.1093/nar/gkab1149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the unique structural properties of RNA, often characterized by polar surfaces and high flexibility. In addition, the frequent lack of well-defined binding pockets complicates the development of small molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among these, peptide-derived molecules represent appealing entities as they can mimic structural features also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-based design of constrained α-helical peptides derived from the viral suppressor of RNA silencing, TAV2b, is described. We observe that the introduction of two inter-side chain crosslinks provides peptides with increased α-helicity and protease stability. One of these modified peptides (B3) shows high affinity for double-stranded RNA structures including a palindromic siRNA as well as microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry. Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering them potentially useful for the design of bioactive RNA-targeting ligands.
Collapse
Affiliation(s)
- Arne Kuepper
- Chemical Genomics Centre of the Max Planck Society, Dortmund 44227, Germany
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Dortmund 44227, Germany
| | - Niall M McLoughlin
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Estel Collado Camps
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Lucas Bethge
- Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw 02-109, Poland
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, Nijmegen 6525 GA, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 293, Bahrain
| | - Stefan Heinrichs
- University Hospital Essen, Institute for Transfusion Medicine, Essen 45147, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund 44227, Germany
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Dortmund 44227, Germany
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| |
Collapse
|
5
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
6
|
Lee HS, Postan M, Song A, Clark RJ, Bathgate RAD, Haugaard-Kedström LM, Rosengren KJ. Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Front Chem 2020; 8:87. [PMID: 32133341 PMCID: PMC7039932 DOI: 10.3389/fchem.2020.00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Relaxin-3 is a neuropeptide with important roles in metabolism, arousal, learning and memory. Its cognate receptor is the relaxin family peptide-3 (RXFP3) receptor. Relaxin-3 agonist and antagonist analogs have been shown to be able to modulate food intake in rodent models. The relaxin-3 B-chain is sufficient for receptor interactions, however, in the absence of a structural support, linear relaxin-3 B-chain analogs are rapidly degraded and thus unsuitable as drug leads. In this study, two different disulfide-stabilized scaffolds were used for grafting of important relaxin-3 B-chain residues to improve structure and stability. The use of both Veronica hederifolia Trypsin inhibitor (VhTI) and apamin grafting resulted in agonist and antagonist analogs with improved helicity. VhTI grafted peptides showed poor binding and low potency at RXFP3, on the other hand, apamin variants retained significant activity. These variants also showed improved half-life in serum from ~5 min to >6 h, and thus are promising RXFP3 specific pharmacological tools and drug leads for neuropharmacological diseases.
Collapse
Affiliation(s)
- Han Siean Lee
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Postan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Angela Song
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J Clark
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ross A D Bathgate
- Florey Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Linda M Haugaard-Kedström
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - K Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Hussey BJ, McMillen DR. Programmable T7-based synthetic transcription factors. Nucleic Acids Res 2019; 46:9842-9854. [PMID: 30169636 PMCID: PMC6182181 DOI: 10.1093/nar/gky785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
Despite recent progress on synthetic transcription factor generation in eukaryotes, there remains a need for high-activity bacterial versions of these systems. In synthetic biology applications, it is useful for transcription factors to have two key features: they should be orthogonal (influencing only their own targets, with minimal off-target effects), and programmable (able to be directed to a wide range of user-specified transcriptional start sites). The RNA polymerase of the bacteriophage T7 has a number of appealing properties for synthetic biological designs: it can produce high transcription rates; it is a compact, single-subunit polymerase that has been functionally expressed in a variety of organisms; and its viral origin reduces the connection between its activity and that of its host's transcriptional machinery. We have created a system where a T7 RNA polymerase is recruited to transcriptional start sites by DNA binding proteins, either directly or bridged through protein–protein interactions, yielding a modular and programmable system for strong transcriptional activation of multiple orthogonal synthetic transcription factor variants in Escherichia coli. To our knowledge this is the first exogenous, programmable activator system in bacteria.
Collapse
Affiliation(s)
- Brendan J Hussey
- Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Impact Centre, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - David R McMillen
- Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Cell and Systems Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Impact Centre, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
8
|
Dai Y, Peralta AN, Wynn JE, Sherpa C, Li H, Verma A, Le Grice SFJ, Santos WL. Molecular recognition of a branched peptide with HIV-1 Rev Response Element (RRE) RNA. Bioorg Med Chem 2019; 27:1759-1765. [PMID: 30879859 PMCID: PMC6476629 DOI: 10.1016/j.bmc.2019.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/27/2023]
Abstract
Interaction of HIV-1 rev response element (RRE) RNA with its cognate protein, Rev, is critical for HIV-1 replication. Understanding the mode of interaction between RRE RNA and ligands at the binding site can facilitate RNA molecular recognition as well as provide a strategy for developing anti-HIV therapeutics. Our approach utilizes branched peptides as a scaffold for multivalent binding to RRE IIB (high affinity rev binding site) with incorporation of unnatural amino acids to increase affinity via non-canonical interactions with the RNA. Previous high throughput screening of a 46,656-member library revealed several hits that bound RRE IIB RNA in the sub-micromolar range. In particular, the lead compound, 4B3, displayed a Kd value of 410 nM and demonstrated selectivity towards RRE. A ribonuclease protection assay revealed that 4B3 binds to the stem-loop structure of RRE IIB RNA, which was confirmed by SHAPE analysis with 234 nt long NL4-3 RRE RNA. Our studies further indicated interaction of 4B3 with both primary and secondary Rev binding sites.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ashley N Peralta
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Chringma Sherpa
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, United States
| | - Hao Li
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Astha Verma
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
9
|
Arachchige D, Holub JM. Synthesis and Biological Activity of Scyllatoxin-Based BH3 Domain Mimetics Containing Two Disulfide Linkages. Protein J 2018; 37:428-443. [PMID: 30128635 DOI: 10.1007/s10930-018-9791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The B cell lymphoma 2 (BCL2) proteins are a family of evolutionarily related proteins that act as positive or negative regulators of the intrinsic apoptosis pathway. Overexpression of anti-apoptotic BCL2 proteins in cells is associated with apoptotic resistance, which can result in cancerous phenotypes and pathogenic cell survival. Consequently, anti-apoptotic BCL2 proteins have attracted considerable interest as therapeutic targets. We recently reported the development of a novel class of synthetic protein based on scyllatoxin (ScTx) designed to mimic the helical BH3 interaction domain of the pro-apoptotic BCL2 protein Bax. These studies showed that the number and position of native disulfide linkages contained within the ScTx-Bax structure significantly influences the ability for these constructs to target anti-apoptotic BCL2 proteins in vitro. The goal of the present study is to investigate the contribution of two disulfide linkages in the folding and biological activity of ScTx-Bax proteins. Here, we report the full chemical synthesis of three ScTx-Bax sequence variants, each presenting two native disulfide linkages at different positions within the folded structure. It was observed that two disulfide linkages were sufficient to fold ScTx-Bax proteins into native-like architectures reminiscent of wild-type ScTx. Furthermore, we show that select (bis)disulfide ScTx-Bax variants can target Bcl-2 (proper) in vitro and that the position of the disulfide bonds significantly influences binding affinity. Despite exhibiting only modest binding to Bcl-2, the successful synthesis of ScTx-Bax proteins containing two disulfide linkages represents a viable route to ScTx-based BH3 domain mimetics that preserve native-like conformations. Finally, structural models of ScTx-Bax proteins in complex with Bcl-2 indicate that these helical mimetics bind in similar configurations as wild-type Bax BH3 domains. Taken together, these results suggest that ScTx-Bax proteins may serve as potent lead compounds that expand the repertoire of "druggable" protein-protein interactions.
Collapse
Affiliation(s)
- Danushka Arachchige
- Department of Chemistry and Biochemistry, Ohio University, Biochemistry Research Facility 108, 350 W. State St., Athens, OH, 45701, USA
| | - Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Biochemistry Research Facility 108, 350 W. State St., Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
10
|
Holub JM. Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Dev Res 2017; 78:268-282. [PMID: 28799168 DOI: 10.1002/ddr.21408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
Preclinical Research Miniature proteins are a class of oligopeptide characterized by their short sequence lengths and ability to adopt well-folded, three-dimensional structures. Because of their biomimetic nature and synthetic tractability, miniature proteins have been used to study a range of biochemical processes including fast protein folding, signal transduction, catalysis and molecular transport. Recently, miniature proteins have been gaining traction as potential therapeutic agents because their small size and ability to fold into defined tertiary structures facilitates their development as protein-based drugs. This research overview discusses emerging developments involving the use of miniature proteins as scaffolds to design novel therapeutics for the treatment and study of human disease. Specifically, this review will explore strategies to: (i) stabilize miniature protein tertiary structure; (ii) optimize biomolecular recognition by grafting functional epitopes onto miniature protein scaffolds; and (iii) enhance cytosolic delivery of miniature proteins through the use of cationic motifs that facilitate endosomal escape. These objectives are discussed not only to address challenges in developing effective miniature protein-based drugs, but also to highlight the tremendous potential miniature proteins hold for combating and understanding human disease. Drug Dev Res 78 : 268-282, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
11
|
Gamma Radiation-Induced Damage in the Zinc Finger of the Transcription Factor IIIA. Bioinorg Chem Appl 2016; 2016:1642064. [PMID: 27803644 PMCID: PMC5075647 DOI: 10.1155/2016/1642064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/18/2016] [Indexed: 11/24/2022] Open
Abstract
A zinc finger motif is an element of proteins that can specifically recognize and bind to DNA. Because they contain multiple cysteine residues, zinc finger motifs possess redox properties. Ionizing radiation generates a variety of free radicals in organisms. Zinc finger motifs, therefore, may be a target of ionizing radiation. The effect of gamma radiation on the zinc finger motifs in transcription factor IIIA (TFIIIA), a zinc finger protein, was investigated. TFIIIA was exposed to different gamma doses from 60Co sources. The dose rates were 0.20 Gy/min and 800 Gy/h, respectively. The binding capacity of zinc finger motifs in TFIIIA was determined using an electrophoretic mobility shift assay. We found that 1000 Gy of gamma radiation impaired the function of the zinc finger motifs in TFIIIA. The sites of radiation-induced damage in the zinc finger were the thiol groups of cysteine residues and zinc (II) ions. The thiol groups were oxidized to form disulfide bonds and the zinc (II) ions were indicated to be reduced to zinc atoms. These results indicate that the zinc finger motif is a target domain for gamma radiation, which may decrease 5S rRNA expression via impairment of the zinc finger motifs in TFIIIA.
Collapse
|
12
|
Fang X, Wang J, O’Carroll IP, Mitchell M, Zuo X, Wang Y, Yu P, Liu Y, Rausch JW, Dyba MA, Kjems J, Schwieters CD, Seifert S, Winans RE, Watts NR, Stahl SJ, Wingfield PT, Byrd RA, Le Grice SF, Rein A, Wang YX. An unusual topological structure of the HIV-1 Rev response element. Cell 2013; 155:594-605. [PMID: 24243017 PMCID: PMC3918456 DOI: 10.1016/j.cell.2013.10.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/22/2013] [Accepted: 10/07/2013] [Indexed: 01/15/2023]
Abstract
Nuclear export of unspliced and singly spliced viral mRNA is a critical step in the HIV life cycle. The structural basis by which the virus selects its own mRNA among more abundant host cellular RNAs for export has been a mystery for more than 25 years. Here, we describe an unusual topological structure that the virus uses to recognize its own mRNA. The viral Rev response element (RRE) adopts an "A"-like structure in which the two legs constitute two tracks of binding sites for the viral Rev protein and position the two primary known Rev-binding sites ~55 Å apart, matching the distance between the two RNA-binding motifs in the Rev dimer. Both the legs of the "A" and the separation between them are required for optimal RRE function. This structure accounts for the specificity of Rev for the RRE and thus the specific recognition of the viral RNA.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Base Sequence
- Binding Sites
- Cell Nucleus/metabolism
- HEK293 Cells
- HIV-1/chemistry
- HIV-1/genetics
- Humans
- Molecular Sequence Data
- Nuclear Pore/metabolism
- Nucleic Acid Conformation
- RNA Folding
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Scattering, Small Angle
- X-Ray Diffraction
- rev Gene Products, Human Immunodeficiency Virus/chemistry
- rev Gene Products, Human Immunodeficiency Virus/genetics
- rev Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Xianyang Fang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jinbu Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ina P. O’Carroll
- Retroviral Assembly Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Michelle Mitchell
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yi Wang
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Structural Biophysics Laboratory, SAIC-Frederick, Frederick, MD 21702, USA
| | - Yu Liu
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Marzena A. Dyba
- Structural Biophysics Laboratory, SAIC-Frederick, Frederick, MD 21702, USA
| | - Jørgen Kjems
- Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Charles D. Schwieters
- Division of Computational Bioscience, Center for Informational Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Randall E. Winans
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Norman R. Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen J. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T. Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - R. Andrew Byrd
- Macromolecular NMR Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stuart F.J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alan Rein
- Retroviral Assembly Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Mart RJ, Wysoczański P, Kneissl S, Ricci A, Brancale A, Allemann RK. Design of Photocontrolled RNA-Binding Peptidomimetics. Chembiochem 2012; 13:515-9. [DOI: 10.1002/cbic.201100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Indexed: 01/01/2023]
|
14
|
Horiya S, Inaba M, Koh CS, Uehara H, Masui N, Mizuguchi M, Ishibashi M, Matsufuji S, Harada K. Replacement of the λ boxB RNA-N peptide with heterologous RNA-peptide interactions relaxes the strict spatial requirements for the formation of a transcription anti-termination complex. Mol Microbiol 2009; 74:85-97. [DOI: 10.1111/j.1365-2958.2009.06852.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Mishra SH, Spring AM, Germann MW. Thermodynamic profiling of HIV RREIIB RNA-zinc finger interactions. J Mol Biol 2009; 393:369-82. [PMID: 19646998 DOI: 10.1016/j.jmb.2009.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022]
Abstract
The interactions between the HIV Rev-responsive element (RRE) RNA and the HIV regulatory protein Rev, are crucial for the HIV life-cycle. Earlier, we showed that single C(2)H(2) zinc fingers (znfs) have the same binding site as the Rev peptide and exhibit nanomolar affinity. In this study, the specific role of amino acid side chains and molecular processes involved with complex formation were investigated by perturbation of the binding energetics via changes in temperature, pH, buffers, and salt concentrations, as well as znf and RNA mutations, by isothermal titration calorimetry. Interestingly, despite the large cationic charge on the znfs, the number of interactions with the RNA phosphate backbone was lower than intuitively expected. The presence of binding induced protonation was established by ITC and localized by NMR to a histidine on the znf beta-sheet. The DeltaC(p) of znf-RNA binding was observed to be substantially negative and could not be accounted for by conventional solvent-accessible surface area models. An alternative model, based on the extent of hydrogen bond changes as a result of differences in ligand-induced water displacement at the binding site, provided reasonable explanation of the trends in DeltaC(p), as well as DeltaH and DeltaS. Our studies show that incorporation of favorable interactions at the solvent-excluded binding interface can be used to alleviate the unfavorable enthalpic penalties of displacing water molecules from the hydrated RNA surface.
Collapse
Affiliation(s)
- Subrata H Mishra
- Departments of Chemistry and Biology, Georgia State University, Atlanta, 30303, USA
| | | | | |
Collapse
|
16
|
Chen Y, Mandic J, Varani G. Cell-free selection of RNA-binding proteins using in vitro compartmentalization. Nucleic Acids Res 2008; 36:e128. [PMID: 18790803 PMCID: PMC2577342 DOI: 10.1093/nar/gkn559] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins (RBPs) perform many essential functions in the post-transcriptional control of gene expression. If we were able to engineer RBPs with new specificity, it would also become possible to develop new tools to control and investigate gene expression pathways. Molecular evolution methods such as phage display have been introduced to achieve this goal, but the large interface between these proteins and RNA relative to the size of library that can be constructed limits the efficacy of this method. In order to increase the diversity of libraries used for selection of RBPs, we applied the emulsion-based in vitro compartmentalization (IVC) method to select RBPs with defined specificity. A new approach was developed to link genotype and phenotype by fusing the target RBP to zinc finger proteins (ZFPs) that bind to a cognate DNA sequence inserted upstream of the promoter. The expressed fusion protein (ZFP–RBP) binds to its encoding DNA with high affinity via the ZFP target-binding site. After breaking the emulsion, the RBP can be selected based on its affinity for a biotinylated RNA bait. We demonstrate the effectiveness of this method that should enable the selection of RBPs with new specificity or improved affinity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and Department of Biochemistry, University of Washington, Seattle WA, USA
| | | | | |
Collapse
|
17
|
Abstract
Puf proteins bind RNA sequence specifically and regulate translation and stability of target mRNAs. A "code" for RNA recognition has been deduced from crystal structures of the Puf protein, human Pumilio1, where each of eight repeats binds an RNA base via a combination of three side chains at conserved positions. Here, we report the creation of seven soluble mutant proteins with predictably altered sequence specificity, including one that binds tightly to adenosine-uracil-rich element RNA. These data show that Pumilio1 can be used as a scaffold to engineer RNA-binding proteins with designed sequence specificity.
Collapse
Affiliation(s)
- Cheom-Gil Cheong
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Traci M. Tanaka Hall
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Mills NL, Daugherty MD, Frankel AD, Guy RK. An alpha-helical peptidomimetic inhibitor of the HIV-1 Rev-RRE interaction. J Am Chem Soc 2006; 128:3496-7. [PMID: 16536504 PMCID: PMC2566309 DOI: 10.1021/ja0582051] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between the HIV-1 Rev protein and the Rev-Responsive Element (RRE) RNA is an attractive target for anti-viral therapy. We have designed alpha-helical peptidomimetics of Rev-like peptides using side chain-side chain macrolactam formation between positions i and i+4. One peptidomimetic having an appropriate location, orientation, and length of the macrolactam exhibited both significant helical character and specific RRE binding. This molecule displays 2-fold greater RNA specificity than the wild-type Rev peptide and more than 20-fold greater specificity than an uncyclized control peptide. Thus, specific, high affinity recognition of the RRE is feasible utilizing a small, relatively rigid peptidomimetic scaffold.
Collapse
|
19
|
Mishra SH, Shelley CM, Barrow DJ, Darby MK, Germann MW. Solution structures and characterization of human immunodeficiency virus Rev responsive element IIB RNA targeting zinc finger proteins. Biopolymers 2006; 83:352-64. [PMID: 16826557 DOI: 10.1002/bip.20565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Rev responsive element (RRE), a part of unspliced human immunodeficiency virus (HIV) RNA, serves a crucial role in the production of infectious HIV virions. The viral protein Rev binds to RRE and facilitates transport of mRNA to the cytoplasm. Inhibition of the Rev-RRE interaction disrupts the viral life cycle. Using a phage display protocol, dual zinc finger proteins (ZNFs) were generated that bind specifically to RREIIB at the high affinity Rev binding site. These proteins were further shortened and simplified, and they still retained their RNA binding affinity. The solution structures of ZNF29 and a mutant, ZNF29G29R, have been determined by nuclear magnetic resonance (NMR) spectroscopy. Both proteins form C(2)H(2)-type zinc fingers with essentially identical structures. RNA protein interactions were evaluated quantitatively by isothermal titration calorimetry, which revealed dissociation constants (K(d)'s) in the nanomolar range. The interaction with the RNA is dependent upon the zinc finger structure; in the presence of EDTA, RNA binding is abolished. For both proteins, RNA binding is mediated by the alpha-helical portion of the zinc fingers and target the bulge region of RREIIB-TR. However, ZNF29G29R exhibits significantly stronger binding to the RNA target than ZNF29; this illustrates that the binding of the zinc finger scaffold is amenable to further improvements.
Collapse
Affiliation(s)
- Subrata H Mishra
- Department of Chemistry, Georgia State University, Atlanta, 30303, USA
| | | | | | | | | |
Collapse
|
20
|
Franklin SJ, Welch† JT. THE HELIX-TURN-HELIX AS A SCAFFOLD FOR CHIMERIC NUCLEASE DESIGN. COMMENT INORG CHEM 2005. [DOI: 10.1080/02603590500201188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Sato SI, Fukuda M, Hagihara M, Tanabe Y, Ohkubo K, Morii T. Stepwise molding of a highly selective ribonucleopeptide receptor. J Am Chem Soc 2005; 127:30-1. [PMID: 15631433 DOI: 10.1021/ja0445589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural characteristics of RNA-peptide (RNP) complexes are suitable for molding of a ligand-binding pocket of the RNP complex in a stepwise manner. The first step involves molding of the RNA subunit by in vitro selection of an RNP pool originating from an RNA library and the peptide, as previously reported for the construction of an ATP-binding RNP complex from an RRE RNA-Rev peptide complex. The second step involves selection from an RNP library consisting of Rev peptides with randomized amino acid residues and the RNA subunit selected in the first molding. The ATP-binding pocket produced by sequential molding of RNA and peptide subunits shows higher affinity to ATP and a distinct specificity for ATP versus dATP as compared to the ATP-binding RNP receptor in which only the RNA subunit has been molded. The second step selection from the peptide-based RNP library allows expansion of the ATP recognition surface, consisting of both RNA and peptide subunits, to enhance the affinity and selectivity to discriminate ATP against dATP. Our approach of stepwise molding offers the advantage of increasing the diversity of the RNP library by utilizing characteristics of different biopolymers. The ribonucleopeptide-based, multi-subunit approach is also extendable to other biomacromolecular assemblies, which may yield artificial receptors and enzymes with increased specificity and more diverse chemical activities.
Collapse
|
22
|
Guo X, Carroll JWN, Macdonald MR, Goff SP, Gao G. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol 2004; 78:12781-7. [PMID: 15542630 PMCID: PMC525010 DOI: 10.1128/jvi.78.23.12781-12787.2004] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zinc finger antiviral protein (ZAP) is a recently isolated host antiviral factor. It specifically inhibits the replication of Moloney murine leukemia virus (MLV) and Sindbis virus (SIN) by preventing the accumulation of viral RNA in the cytoplasm. For this report, we mapped the viral sequences that are sensitive to ZAP inhibition. The viral sequences were cloned into a luciferase reporter and analyzed for the ability to mediate ZAP-dependent destabilization of the reporter. The sensitive sequence in MLV was mapped to the 3' long terminal repeat; the sensitive sequences in SIN were mapped to multiple fragments. The fragment of SIN that displayed the highest destabilizing activity was further analyzed by deletion mutagenesis for the minimal sequence that retained the activity. This led to the identification of a fragment of 653 nucleotides. Any further deletion of this fragment resulted in significantly lower activity. We provide evidence that ZAP directly binds to the active but not the inactive fragments. The CCCH zinc finger motifs of ZAP play important roles in RNA binding and antiviral activity. Disruption of the second and fourth zinc fingers abolished ZAP's activity, whereas disruption of the first and third fingers just slightly lowered its activity.
Collapse
Affiliation(s)
- Xuemin Guo
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China.
| | | | | | | | | |
Collapse
|
23
|
Pflum MKH. Grafting miniature DNA binding proteins. CHEMISTRY & BIOLOGY 2004; 11:3-4. [PMID: 15112983 DOI: 10.1016/j.chembiol.2004.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Miniature proteins serve as leads for biological and medicinal applications by positioning all amino acids necessary for biomolecular recognition on a compact protein structure. Protein grafting was recently used to create miniature helical proteins with high DNA binding affinity and specificity.
Collapse
Affiliation(s)
- Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
24
|
Abstract
Studies of RNA-binding peptides, and recent combinatorial library experiments in particular, have demonstrated that diverse peptide sequences and structures can be used to recognize specific RNA sites. The identification of large numbers of sequences capable of binding to a particular site has provided extensive phylogenetic information used to deduce basic principles of recognition. The high frequency at which RNA-binding peptides are found in large sequence libraries suggests plausible routes to evolve sequence-specific binders, facilitating the design of new binding molecules and perhaps reflecting characteristics of natural evolution.
Collapse
Affiliation(s)
- Chandreyee Das
- Department of Biochemistry and Biophysics, 600 16th Street University of California, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
25
|
Kovacic RT, Welch JT, Franklin SJ. Sequence-selective DNA cleavage by a chimeric metallopeptide. J Am Chem Soc 2003; 125:6656-62. [PMID: 12769574 DOI: 10.1021/ja0210998] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chimeric metallopeptide derived from the sequences of two structurally superimposable motifs was designed as an artificial nuclease. Both DNA recognition and nuclease activity have been incorporated into a small peptide sequence. P3W, a 33-mer peptide comprising helices alpha2 and alpha3 from the engrailed homeodomain and the consensus EF-hand Ca-binding loop binds one equivalent of lanthanides or calcium and folds upon metal binding. The conditional formation constants (in the presence of 50 mM Tris) of P3W for Eu(III) (K(a) = (2.1 +/- 0.1) x 10(5) M(-1)) and Ce(IV) (K(a) = (2.6 +/- 0.1) x 10(5) M(-1)) are typical of isolated EF-hand peptides. Circular dichroism studies show that 1:1 CeP3W is 26% alpha-helical and EuP3W is up to 40% alpha-helical in the presence of excess metal. The predicted helicity of the folded peptide based on helix length and end effects is about 50%, showing the metallopeptides are significantly folded. EuP3W has considerably more secondary structure than our previously reported chimeras (Welch, J. T.; Sirish, M.; Lindstrom, K. M.; Franklin, S. J. Inorg. Chem. 2001, 40, 1982-1984). Eu(III)P3W and Ce(IV)P3W nick supercoiled DNA at pH 6.9, although EuP3W is more active at pH 8. CeP3W cleaves linearized, duplex DNA as well as supercoiled plasmid. The cleavage of a 5'-(32)P-labeled 121-mer DNA fragment was followed by polyacrylamide gel electrophoresis. The cleavage products are 3'-OPO(3) termini exclusively, suggesting a regioselective or multistep mechanism. In contrast, uncomplexed Ce(IV) and Eu(III) ions produce both 3'-OPO(3) and 3'-OH, and no evidence of 4'-oxidative cleavage termini with either metal. The complementary 3'-(32)P-labeled oligonucleotide experiment also showed both 5'-OPO(3) and 5'-OH termini were produced by the free ions, whereas CeP3W produces only 5'-OPO(3) termini. In addition to apparent regioselectivity, the metallopeptides cut DNA with modest sequence discrimination, which suggests that the HTH motif binds DNA as a folded domain and thus cleaves selected sequences. The de novo artificial nuclease LnP3W represents the first small, underivatized peptide that is both active as a nuclease and sequence selective.
Collapse
Affiliation(s)
- Roger T Kovacic
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
26
|
Welch JT, Kearney WR, Franklin SJ. Lanthanide-binding helix-turn-helix peptides: solution structure of a designed metallonuclease. Proc Natl Acad Sci U S A 2003; 100:3725-30. [PMID: 12644701 PMCID: PMC152989 DOI: 10.1073/pnas.0536562100] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A designed lanthanide-binding chimeric peptide based on the strikingly similar geometries of the EF-hand and helix-turn-helix (HTH) motifs was investigated by NMR and CD spectroscopy and found to retain the same overall solution structure of the parental motifs. CD spectroscopy showed that the 33-mer peptide P3W folds on binding lanthanides, with an increase in alpha-helicity from 20% in the absence of metal to 38% and 35% in the presence of excess Eu(III) and La(III) ions, respectively. The conditional binding affinities of P3W for La(III) (5.9 +/- 0.3 microM) and for Eu(III) (6.2 +/- 0.3 microM) (pH 7.8, 5 mM Tris) were determined by tryptophan fluorescence titration. The La(III) complex of peptide P3, which differs from P3W by only one Trp-to-His substitution, has much less signal dispersion in the proton NMR spectra than LaP3W, indicating that the Trp residue is a critical hydrophobic anchor for maintaining a well-folded helix-turn-helix structure. A chemical-shift index analysis indicates the metallopeptide has a helix-loop-helix secondary structure. A structure calculated by using nuclear Overhauser effect and other NMR constraints reveals that P3W not only has a tightly folded metal-binding loop but also retains the alpha-alpha corner supersecondary structure of the parental motifs. Although the solution structure is undefined at both the N and C termini, the NMR structure confirms the successful incorporation of a metal-binding loop into a HTH sequence.
Collapse
Affiliation(s)
- Joel T Welch
- Department of Chemistry and College of Medicine NMR Facility, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
27
|
Reynolds L, Ullman C, Moore M, Isalan M, West MJ, Clapham P, Klug A, Choo Y. Repression of the HIV-1 5' LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci U S A 2003; 100:1615-20. [PMID: 12574502 PMCID: PMC149881 DOI: 10.1073/pnas.252770699] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc finger domains are small DNA-binding modules that can be engineered to bind desired target sequences. Functional transcription factors can be made from these DNA-binding modules, by fusion with an appropriate effector domain. In this study, eight three-zinc-finger proteins (ZFPs) that bound HIV-1 sequences in vitro were engineered into transcription repressors by linking them to the Krüppel-associated box (KRAB) repressor domain (KOX1). One protein, ZFP HIVB-KOX, which bound to a 9-bp region overlapping two Sp1 sites, was found to repress a Tat-activated 5' LTR cellular HIV-reporter assay to almost basal levels. A related six-finger protein, HIVBA'-KOX, was made to target all three Sp1 sites in the 5' LTR promoter and efficiently inhibited both basal and Tat-activated transcription in unstimulated and mitogen-stimulated T cells. In contrast, a combination of two unlinked three-finger ZFPs, HIVA'-KOX and HIVB-KOX, which bind over the same region of DNA, resulted in less effective repression. Finally, HIVBA'-KOX was tested for its capacity to block viral replication in a cellular infection assay using the HIV-1 HXB2 strain. This ZFP was found to inhibit HIV-1 replication by 75% compared with control constructs, thus demonstrating the potential of this approach for antiviral therapy.
Collapse
Affiliation(s)
- Lindsey Reynolds
- Gendaq Ltd., Sangamo Biosciences, Inc., 1-3 Burtonhole Lane, Mill Hill, London NW7 1AD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Peled-Zehavi H, Horiya S, Das C, Harada K, Frankel AD. Selection of RRE RNA binding peptides using a kanamycin antitermination assay. RNA (NEW YORK, N.Y.) 2003; 9:252-61. [PMID: 12554868 PMCID: PMC1370391 DOI: 10.1261/rna.2152303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Accepted: 10/29/2002] [Indexed: 05/20/2023]
Abstract
The arginine-rich domains of several RNA-binding proteins have been shown to bind their cognate RNAs with high affinities and specificities as isolated peptides, adopting different conformations within different complexes. The sequence simplicity and structural diversity of the arginine-rich motif has made it a good framework for constructing combinatorial libraries and identifying novel RNA-binding peptides, including those targeted to the HIV Rev response element (RRE). Here we describe a modified transcription antitermination reporter assay engineered with kanamycin resistance that enables larger in vivo screens (approximately 10(9) sequences) than previously possible. We show that the assay detects only specific RNA-protein complexes, and that binders are enriched at least 300-fold per round of selection. We screened a large peptide library in which amino acids with charged, polar, and small side chains were randomly distributed within a polyarginine framework and identified a set of high affinity RRE-binding peptides. Most contain glutamine at one particular peptide position, and the best peptides display significantly higher antitermination activities than Rev or other previously described high-affinity RRE-binding peptides. The kanamycin antitermination (KAN) assay should be useful for screening relatively large libraries and thereby facilitate identification of novel RNA binders.
Collapse
Affiliation(s)
- Hadas Peled-Zehavi
- Department of Biochemistry and Biophysics, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA
| | | | | | | | | |
Collapse
|
29
|
Morii T, Hagihara M, Sato SI, Makino K. In vitro selection of ATP-binding receptors using a ribonucleopeptide complex. J Am Chem Soc 2002; 124:4617-22. [PMID: 11971709 DOI: 10.1021/ja016569x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recently described three-dimensional structure of the ribosome provides a sense of remarkable diversity of RNA-protein complexes. We have designed a new class of scaffold for artificial receptors, in which a short peptide and RNA with a randomized nucleotide region form a stable and specific complex. The randomized nucleotide region was placed next to the HIV-1 Rev response element to enable the formation of "ribonucleopeptide" pools in the presence of the Rev peptide. In vitro selection of RNA oligonucleotides from the randomized pool afforded a ribonucleopeptide receptor specific for ATP. The ATP-binding ribonucleopeptide did not share the known consensus nucleotide sequence for ATP aptamers and completely lost its ATP-binding ability in the absence of the Rev peptide. The ATP-binding activity of the ribonucleopeptide was increased by a substitution of the N-terminal amino acid of the Rev peptide. These results demonstrate directly that the peptide is incorporated in the functional structure of RNA and suggest that amino acids outside the RNA-binding region of the peptide modulate the ATP-binding of ribonucleopeptide. Our approach would provide an alternative strategy for the design of "tailor-made" ribonucleopeptide receptors and enzymes.
Collapse
Affiliation(s)
- Takashi Morii
- Institute of Advanced Energy, Kyoto University, and PRESTO, Japan Science and Technology Corporation, Uji, Kyoto 611-0011, Japan.
| | | | | | | |
Collapse
|
30
|
Abstract
Cys2His2 zinc finger proteins offer a stable and versatile framework for the design of proteins that recognize desired target sites on double-stranded DNA. Individual fingers from these proteins have a simple beta beta alpha structure that folds around a central zinc ion, and tandem sets of fingers can contact neighboring subsites of 3-4 base pairs along the major groove of the DNA. Although there is no simple, general code for zinc finger-DNA recognition, selection strategies have been developed that allow these proteins to be targeted to almost any desired site on double-stranded DNA. The affinity and specificity of these new proteins can also be improved by linking more fingers together or by designing proteins that bind as dimers and thus recognize an extended site. These new proteins can then be modified by adding other domains--for activation or repression of transcription, for DNA cleavage, or for other activities. Such designer transcription factors and other new proteins will have important applications in biomedical research and in gene therapy.
Collapse
Affiliation(s)
- C O Pabo
- Department of Biology, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
31
|
Abstract
Zinc finger proteins with high affinity for human immunodeficiency virus Rev responsive element stem loop IIB (RRE-IIB) were previously isolated from a phage display zinc finger library. Zinc fingers from one of these proteins, RR1, were expressed individually and assayed for RRE-IIB affinity. The C-terminal zinc finger retained much of the binding affinity of the two-finger parent and was disrupted by mutations predicted to narrow the RRE-IIB major groove and which disrupt Rev binding. In contrast, the N-terminal zinc finger has a calculated affinity at least 1000-fold lower. Despite the high affinity and specificity of RR1 for RRE-IIB, binding affinity for a 234-nucleotide human immunodeficiency virus Rev responsive element (RRE234) was significantly lower. Therefore, zinc finger proteins that bind specifically to RRE234 were constructed using an in vitro selection and recombination approach. These zinc fingers bound RRE234 with subnanomolar dissociation constants and bound the isolated RRE-IIB stem loop with an affinity 2 orders of magnitude lower but similar to the affinity of an arginine-rich peptide derived from Rev. These data show that single C2H2 zinc fingers can bind RNA specifically and suggest that their binding to stem loop IIB is similar to that of Rev peptide. However, binding to RRE234 is either different from stem loop IIB binding or the tertiary structure of stem loop IIB is changed within the Rev responsive element.
Collapse
Affiliation(s)
- W J Friesen
- Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
32
|
Abstract
The arginine-rich RNA-binding domain of bovine immunodeficiency virus (BIV) Tat adopts a beta-hairpin conformation upon binding to the major groove of BIV TAR. Based on its NMR structure, we modeled dimeric arrangements in which two adjacent TAR sites might be recognized with high affinity by a dimeric peptide. Some dimeric RNAs efficiently bound two unlinked BIV Tat peptides in vitro, but could not bind even one monomeric peptide in vivo, as monitored by transcriptional activation of human immunodeficiency virus long terminal repeat reporters. Results with additional reporters suggest that extending the RNA helix in the dimeric arrangements inhibits peptide binding by decreasing major groove accessibility. In contrast, a dimeric peptide efficiently bound an optimally arranged dimeric TAR in vivo, and bound with an affinity at least 10-fold higher than the monomeric peptide in vitro. Mutating specific nucleotides in each RNA 'half-site' or specific amino acids in each beta-hairpin of the dimeric peptide substantially decreased binding affinity, providing evidence for the modeled dimer-dimer interaction. These studies provide a starting point for identifying dimeric RNA-protein interactions with even higher binding affinities and specificities.
Collapse
Affiliation(s)
| | | | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-0448, USA
Corresponding author e-mail:
| |
Collapse
|
33
|
Tortorici MA, Ghiringhelli PD, Lozano ME, Albariño CG, Romanowski V. Zinc-binding properties of Junín virus nucleocapsid protein. J Gen Virol 2001; 82:121-128. [PMID: 11125165 DOI: 10.1099/0022-1317-82-1-121] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The arenavirus nucleocapsid protein (N) is a highly basic 63 kDa protein with a dual function during the virus life-cycle. First, it is involved in essential steps of genome replication, promoting the synthesis of the full-length antigenomic copy of S RNA, and second it associates with the genomic RNA to form the nucleocapsid. We have expressed the N protein of Junín virus in E. coli and shown that it binds zinc in vitro. This property is in agreement with the presence in the carboxy-terminal region of the N protein of the CX(2)HX(23)CX(4)C sequence, which resembles a classical zinc-finger motif. The specificity for zinc binding was demonstrated by competition with other divalent metal ions. The ability of the predicted motif to bind zinc was established by analysis of a series of N mutants, including truncated variants and amino acid substitutions. In addition, alternative zinc-binding sites were found.
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Instituto de Bioquímica y Biología Molecular, Depto de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina1
| | - P Daniel Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Peña 180, 1876 Bernal, Buenos Aires, Argentina2
| | - Mario E Lozano
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Peña 180, 1876 Bernal, Buenos Aires, Argentina2
| | - César G Albariño
- Instituto de Bioquímica y Biología Molecular, Depto de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina1
| | - Víctor Romanowski
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Peña 180, 1876 Bernal, Buenos Aires, Argentina2
- Instituto de Bioquímica y Biología Molecular, Depto de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900 La Plata, Buenos Aires, Argentina1
| |
Collapse
|
34
|
Abstract
The structures of several peptide-RNA complexes have been reported in the past year, underscoring the diverse nature of RNA structure and protein interactions. In general, specific peptide conformations are stabilized by the surrounding RNA framework; this is strikingly similar to how peptides are stabilized upon interaction with proteins.
Collapse
Affiliation(s)
- A D Frankel
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143-0448, USA. . edu
| |
Collapse
|