1
|
Jia X, Zhang Y, Wang T, Fu Y. Highly Efficient Method for Intracellular Delivery of Proteins Mediated by Cholera Toxin-Induced Protein Internalization. Mol Pharm 2021; 18:4067-4078. [PMID: 34672633 DOI: 10.1021/acs.molpharmaceut.1c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delivery of functional proteins into cells may help us understand how specific protein influences cell behavior as well as treat diseases caused by protein deficiency or loss-of-function mutations. However, protein cannot enter cells by diffusion. In this work, a novel cell biology tool for delivering recombinant proteins into mammalian cells was developed. We hijacked the intracellular transport routes used by the cholera toxin and took advantage of recent development on split intein that is compatible with denatured conditions and shows an exceptional splicing activity to deliver a protein of interest into mammalian cells. Here, we used green fluorescent protein and apoptin as proofs-of-concept. The results demonstrate that the cholera toxin B subunit alone could deliver other recombinant proteins into cells through either covalent conjugation or noncovalent interaction. Our method offers more than 10-fold better delivery efficiency than the tat cell-penetrating peptide and is selective for ganglioside-rich cells. This study adds a useful tool to the receptor-mediated intracellular targeting toolkit and opens possibility for the selective delivery of therapeutic proteins into ganglioside-rich cells.
Collapse
Affiliation(s)
- Xiaofan Jia
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Fu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
2
|
Fischer A, Montal M. Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. Toxicon 2013; 75:101-7. [PMID: 23396042 PMCID: PMC3797153 DOI: 10.1016/j.toxicon.2013.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 11/23/2022]
Abstract
Clostridium botulinum neurotoxin (BoNT) is a multi-domain protein made up of the approximately 100 kDa heavy chain (HC) and the approximately 50 kDa light chain (LC). The HC can be further subdivided into two halves: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). We have investigated the minimal requirements for channel activity and LC translocation. We utilize a cellular protection assay and a single channel/single molecule LC translocation assay to characterize in real time the channel and chaperone activities of BoNT/A truncation constructs in Neuro 2A cells. The unstructured, elongated belt region of the TD is demonstrated to be dispensable for channel activity, although may be required for productive LC translocation. We show that the RBD is not necessary for channel activity or LC translocation, however it dictates the pH threshold of channel insertion into the membrane. These findings indicate that each domain functions as a chaperone for the others in addition to their individual functions, working in concert to achieve productive intoxication.
Collapse
Affiliation(s)
| | - Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0366, USA
| |
Collapse
|
3
|
Romaniuk SI, Kolybo DV, Komisarenko SV. Recombinant diphtheria toxin derivatives: Perspectives of application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:639-52. [DOI: 10.1134/s106816201206012x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Vogelbaum MA. Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J Neurooncol 2007; 83:97-109. [PMID: 17203397 DOI: 10.1007/s11060-006-9308-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
In 2003 the Cleveland Clinic Brain Tumor Institute sponsored a symposium to mark the progress being made in what was then a new approach to treating brain tumors - convection enhanced delivery (CED) [Vogelbaum MA (2005) J NeuroOncol 73(1):57-69]. A second symposium was held in February, 2006, to review new accomplishments and identify promising avenues of research in this evolving but still novel therapy. Among the general subjects covered by a host of international experts in their respective fields were advances in CED technology, new clinical applications of the technology, advances in CED-related imaging procedures, reviews of current or proposed trials, new drugs and the status of projects moving from lab to clinical practice. Specific subjects included the design of new catheters, the development of mathematic models for planning, novel therapeutics for CED treatment of stroke, spinal cord degenerative disease and epilepsy, liposome-based agents administered via CED, ultra-sound driven CED, monitoring the in vivo effects of intratumoral paclitaxel and other topics. Each speaker's presentation has been abstracted along with relevant references.
Collapse
Affiliation(s)
- Michael A Vogelbaum
- Brain Tumor Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
5
|
Antignani A, Youle RJ. The cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF), can deliver Bcl-XL as an extracellular fusion protein to protect cells from apoptosis and retain differentiation induction. J Biol Chem 2007; 282:11246-54. [PMID: 17311927 DOI: 10.1074/jbc.m609824200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcl-XL, a member of the Bcl-2 protein family, is able to suppress cell death induced by diverse stimuli in many cell types, including hematopoietic cells. Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that promotes the proliferation and maturation of neutrophils, eosinophils, and macrophages from bone marrow progenitors. We fused GM-CSF to Bcl-XL and examined the capacity of this chimera to bind human cells through the GM-CSF receptor and prevent apoptosis. We found that the chimeric protein increased the proliferation of human monocytes in culture from 24 h until at least 72 h. In the presence of different apoptotic agents, GM-CSF-Bcl-XL protected cells from induced cell death and promoted proliferation, whereas GM-CSF alone was completely inhibited. In the presence of cytarabine, GM-CSF-Bcl-XL was able also to promote the differentiation of the CD34+ myeloid precursor whereas Lfn-Bcl-XL, lacking the GM-CSF domain-stimulated cell proliferation and not differentiation. We conclude that recombinant GM-CSF-Bcl-XL binds the GM-CSF receptor on human monocyte/macrophage cells and bone marrow progenitors inducing differentiation and allowing Bcl-XL entry into cells where it blocks cell death and allows amplified cell proliferation. This fully human fusion protein has potential to prevent monocytopenia and represents a new strategy for engineering anti-apoptotic therapeutics.
Collapse
Affiliation(s)
- Antonella Antignani
- Biochemistry Section, Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
6
|
Dietz GPH, Bähr M. Synthesis of cell-penetrating peptides and their application in neurobiology. Methods Mol Biol 2007; 399:181-198. [PMID: 18309933 DOI: 10.1007/978-1-59745-504-6_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Short basic amino acid sequences, often called cell-penetrating peptides (CPPs), allow the delivery of proteins and other molecules into cells and across the blood-brain barrier (BBB). Although the ability of basic proteins to facilitate such trafficking is known for a long time, only the application of genetic methods and overexpression of fusion proteins in Escherichia coli has lead to a wide application of CPP in many research areas, including signal transduction, cancer, angiogenesis, apoptosis, bone development, cardioprotection, cell cycle, neurobiology, and many others. For the neuroscientist, CPPs are particularly attractive, as a number of articles in the last 5 years have reported their use for neuronal rescue in a number of models for neurodegenerative diseases in vitro and in vivo in rats, mice, or gerbils. Here, we give a detailed description of the protein purification methodology and applications in neuroscience.
Collapse
|
7
|
Chauhan A, Tikoo A, Kapur AK, Singh M. The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release 2006; 117:148-62. [PMID: 17196289 PMCID: PMC1859861 DOI: 10.1016/j.jconrel.2006.10.031] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 10/20/2006] [Indexed: 01/08/2023]
Abstract
Protein transduction with cell penetrating peptides over the past several years has been shown to be an effective way of delivering proteins in vitro and now several reports have also shown valuable in vivo applications in correcting disease states. An impressive bioinspired phenomenon of crossing biological barriers came from HIV transactivator Tat protein. Specifically, the protein transduction domain of HIV Tat has been shown to be a potent pleiotropic peptide in protein delivery. Various approaches such as molecular modeling, arginine guanidinium head group structural strategy, multimerization of PTD sequence and phage display system have been applied for taming of the PTD. This has resulted in identification of PTD variants which are efficient in cell membrane penetration and cytoplasmic delivery. In spite of these state of the art technologies, the dilemma of low protein transduction efficiency and target specific delivery of PTD fusion proteins remains unsolved. Moreover, some misconceptions about PTD of Tat in the literature require considerations. We have assembled critical information on secretory, plasma membrane penetration and transcellular properties of Tat and PTD using molecular analysis and available experimental evidences.
Collapse
Affiliation(s)
- Ashok Chauhan
- Department of Neurology, Richard Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, 509 Pathology, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
Over the last 15 years, many publications described the use of peptide sequences that have been dubbed cell penetrating peptides (CPP), Trojan Horse peptides, protein transduction domains, or membrane-translocating sequences. These mostly positively charged domains bring attached cargo across biological membranes. One of the reasons for the interest in CPP is their potential as delivery tools to enhance the pharmacodynamics of drugs otherwise poorly bioavailable. In particular, the neuroscientist aiming to deliver a protein or other compound into the brain for analytical or therapeutic reasons is faced with the challenge that few drugs cross the blood-brain barrier. CPP are valuable tools to overcome the plasma membrane or the blood-brain barrier in basic research, and in relevant models of neural disease, and will hopefully help to increase the precious few treatments or even cures for people with diseases of the brain and nervous system. Here, we review applications in neuroscience and recent insights into the mechanism of CPP-mediated trafficking.
Collapse
Affiliation(s)
- Gunnar P H Dietz
- Neurologische Universitätsklinik, Waldweg 33, 37073 Göttingen, Germany.
| | | |
Collapse
|
9
|
Soane L, Fiskum G. Inhibition of mitochondrial neural cell death pathways by protein transduction of Bcl-2 family proteins. J Bioenerg Biomembr 2005; 37:179-90. [PMID: 16167175 PMCID: PMC2570496 DOI: 10.1007/s10863-005-6590-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bcl-2 and other closely related members of the Bcl-2 family of proteins inhibit the death of neurons and many other cells in response to a wide variety of pathogenic stimuli. Bcl-2 inhibition of apoptosis is mediated by its binding to pro-apoptotic proteins, e.g., Bax and tBid, inhibition of their oligomerization, and thus inhibition of mitochondrial outer membrane pore formation, through which other pro-apoptotic proteins, e.g., cytochrome c, are released to the cytosol. Bcl-2 also exhibits an indirect antioxidant activity caused by a sub-toxic elevation of mitochondrial production of reactive oxygen species and a compensatory increase in expression of antioxidant gene products. While classic approaches to cytoprotection based on Bcl-2 family gene delivery have significant limitations, cellular protein transduction represents a new and exciting approach utilizing peptides and proteins as drugs with intracellular targets. The mechanism by which proteins with transduction domains are taken up by cells and delivered to their targets is controversial but usually involves endocytosis. The effectiveness of transduced proteins may therefore be limited by their release from endosomes into the cytosol.
Collapse
Affiliation(s)
- Lucian Soane
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Gary Fiskum
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
10
|
Cryan SA. Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS JOURNAL 2005; 7:E20-41. [PMID: 16146340 PMCID: PMC2751494 DOI: 10.1208/aapsj070104] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With greater interest in delivery of protein and peptide-based drugs to the lungs for topical and systemic activity, a range of new devices and formulations are being investigated. While a great deal of recent research has focused on the development of novel devices, attention must now be paid to the formulation of these macromolecular drugs. The emphasis in this review will be on targeting of protein/peptide drugs by inhalation using carriers and ligands.
Collapse
Affiliation(s)
- Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
11
|
Bade S, Rummel A, Reisinger C, Karnath T, Ahnert-Hilger G, Bigalke H, Binz T. Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 2005; 91:1461-72. [PMID: 15584922 DOI: 10.1111/j.1471-4159.2004.02844.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multi-domain bacterial protein toxins are being explored as potential carriers for targeted delivery of biomolecules. Previous approaches employing isolated receptor binding subunits disallow entry into the cytosol. Strategies in which catalytic domains are replaced with cargo molecules are presumably inefficient due to co-operation of domains during the endosomal translocation step. Here, we characterize a novel transport vehicle in which cargo proteins are attached to the amino terminus of the full-length botulinum neurotoxin type D (BoNT/D). The intrinsic enzymatic activity of the neurotoxin allowed quantification of the efficacy of cargo delivery to the cytosol. Dihydrofolate reductase and BoNT type A (BoNT/A) light chain (LC) were efficiently conveyed into the cytosol, whereas attachment of firefly luciferase or green fluorescent protein drastically reduced the toxicity. Luciferase and BoNT/A LC retained their catalytic activity as evidenced by luciferin conversion or SNAP-25 hydrolysis in the cytosol of synaptosomes, respectively. Conformationally stabilized dihydrofolate reductase as cargo considerably decreased the toxicity indicative for the requirement of partial unfolding of cargo protein and catalytic domain as prerequisite for efficient translocation across the endosomal membrane. Thus, enzymatically inactive clostridial neurotoxins may serve as effective, safe carriers for delivering proteins in functionally active form to the cytosol of neurones.
Collapse
Affiliation(s)
- Steffen Bade
- Institute für Biochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Dietz GPH, Bähr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci 2005; 27:85-131. [PMID: 15485768 DOI: 10.1016/j.mcn.2004.03.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 01/12/2023] Open
Abstract
In recent years, vast amounts of data on the mechanisms of neural de- and regeneration have accumulated. However, only in disproportionally few cases has this led to efficient therapies for human patients. Part of the problem is to deliver cell death-averting genes or gene products across the blood-brain barrier (BBB) and cellular membranes. The discovery of Antennapedia (Antp)-mediated transduction of heterologous proteins into cells in 1992 and other "Trojan horse peptides" raised hopes that often-frustrating attempts to deliver proteins would now be history. The demonstration that proteins fused to the Tat protein transduction domain (PTD) are capable of crossing the BBB may revolutionize molecular research and neurobiological therapy. However, it was only recently that PTD-mediated delivery of proteins with therapeutic potential has been achieved in models of neural degeneration in nerve trauma and ischemia. Several groups have published the first positive results using protein transduction domains for the delivery of therapeutic proteins in relevant animal models of human neurological disorders. Here, we give an extensive review of peptide-mediated protein transduction from its early beginnings to new advances, discuss their application, with particular focus on a critical evaluation of the limitations of the method, as well as alternative approaches. Besides applications in neurobiology, a large number of reports using PTD in other systems are included as well. Because each protein requires an individual purification scheme that yields sufficient quantities of soluble, transducible material, the neurobiologist will benefit from the experiences of other researchers in the growing field of protein transduction.
Collapse
|
13
|
Ye D, Xu D, Singer AU, Juliano RL. Evaluation of strategies for the intracellular delivery of proteins. Pharm Res 2002; 19:1302-9. [PMID: 12403066 DOI: 10.1023/a:1020346607764] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The intracellular delivery of functionally active protein represents an important emerging strategy for laboratory investigation and therapeutic applications. Although a number of promising approaches for protein delivery have been developed, thus far there has been no attempt to compare the merits of the various deliver technologies. This issue is addressed in the current study. METHODS In this study we utilize a sensitive luciferase reporter gene assay to provide unambiguous and quantitative evaluation of several strategies for the intracellular delivery of a biologically active protein comprised of the Gal4 DNA binding domain and the VP16 transactivating domain. RESULTS Both a cationic lipid supramolecular complex and a poly meric complex were able to effectively deliver the chimeric transcription factor to cultured cells. In addition, protein chimeras containing the Tat cell penetrating peptide, but not those containing the VP22 peptide, were somewhat effective in delivery. CONCLUSIONS Both supramolecular protein-carrier complexes and protein chimeras with certain cell penetrating peptides can support intracellular delivery of proteins. In the cell culture setting the supramolecular complexes are more effective, but their large size may present problems for in vivo applications.
Collapse
Affiliation(s)
- Dongjiu Ye
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 27599-7365, USA
| | | | | | | |
Collapse
|
14
|
Liu XH, Collier RJ, Youle RJ. Inhibition of axotomy-induced neuronal apoptosis by extracellular delivery of a Bcl-XL fusion protein. J Biol Chem 2001; 276:46326-32. [PMID: 11574549 DOI: 10.1074/jbc.m108930200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bcl-2 and Bcl-XL prevent neuronal apoptosis during development, neurodegenerative disease, and trauma. To test a new anti-apoptosis strategy for neuroprotection, we engineered nontoxic components of anthrax toxin into a Bcl-XL delivery system. Delivery of Bcl-XL by this system prevented apoptosis of cultured rat cerebellar granule cells and macrophages, and the prevention depended on both the Bcl-XL and the anthrax toxin receptor binding/translocation moieties. Furthermore, neuronal death in vivo in a retinal ganglion cell model of axotomy-induced apoptosis was inhibited by administration of this fusion protein. Thus, Bcl-XL protein can be delivered into cells from the medium or interstitial space, offering a new way to block apoptosis upstream of many caspases and the mitochondria dysfunction phase of apoptosis.
Collapse
Affiliation(s)
- X H Liu
- Biochemistry Section, Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Y Lazebnik
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
16
|
Abstract
Patients with chemotherapy-resistant acute myeloid leukaemia are rarely cured by non-allogeneic transplant therapies. Multiple new investigational agents have become available for treatment of these patients and there are few tools to permit rational drug and clinical trial selection. In this review, we describe the chemical and biological properties of some of these agents and some of their initial clinical activity to date. The selected agents react with either cell surface molecules or signal pathway intermediates and include antibody and antibody conjugates to CD33 and CD45, a fusion protein directed to the granulocyte-macrophage colony-stimulating factor receptor, an anti-sense oligonucleotide to Bcl2, a farnesyl transferase inhibitor, and a protein kinase C agonist/inhibitor. The challenge for the next decade will be how to select patients for particular molecularly targeted therapeutics and how to combine these agents.
Collapse
Affiliation(s)
- A E Frankel
- Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
17
|
Abstract
Pathogenic bacteria and higher eukaryotes have spent a long time together, leading to a precise understanding of one another's way of functioning. Through rapid evolution, bacteria have engineered increasingly sophisticated weapons to hit exactly where it hurts, interfering with fundamental host functions. However, toxins are not only useful to the bacteria - they have also become an essential asset for life scientists, who can now use them as toolkits to explore cellular processes.
Collapse
Affiliation(s)
- G Schiavo
- Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
18
|
Courageot MP. Viroses humaines et apoptose. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-4204(01)80006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Frankel AE, Sievers EL, Scheinberg DA. Cell surface receptor-targeted therapy of acute myeloid leukemia: a review. Cancer Biother Radiopharm 2000; 15:459-76. [PMID: 11155818 DOI: 10.1089/cbr.2000.15.459] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Combination chemotherapy produces remissions in patients with acute myeloid leukemia (AML). However, the majority of patients ultimately relapse and die with cytotoxic drug resistant blasts. Novel agents which circumvent resistance are needed. One such class are AML-cell surface targeted proteins. These genetically engineered polypeptides are hybrid molecules composed of two moieties--a haptophore which triggers AML cell binding and a toxophore which kills the cell. The haptophore or ligand portion consists of a monoclonal antibody or antibody fragment or a cytokine. These peptides react with cell surface receptors or antigens on AML cells. The haptophore is genetically or chemically linked to the toxophore. The toxophore may consist of an antibody Fc domain which triggers antibody-dependent cell cytotoxicity, a DNA-damaging cytotoxic drug, a radionuclide or a protein synthesis-inactivating peptide toxin. The toxophore may provide a cell death signal that overcomes standard resistance phenotypes. Further, the targeting provided by the haptophore may reduce normal tissue toxicities. This review describes some of the properties of the cell surface molecular targets, the reactive haptophores and toxophores and how these functional peptides have been optimally combined to kill leukemic blasts in patients with AML.
Collapse
MESH Headings
- Acute Disease
- Aminoglycosides
- Animals
- Anti-Bacterial Agents/therapeutic use
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Antineoplastic Agents/therapeutic use
- Cell Death/immunology
- Clinical Trials as Topic
- Gemtuzumab
- Humans
- Hybridomas/immunology
- Hybridomas/metabolism
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Immunotoxins/therapeutic use
- Iodine Radioisotopes/therapeutic use
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Leukocyte Common Antigens/immunology
- Ligands
- Mice
- Neoplastic Stem Cells/pathology
- Radioimmunotherapy/methods
- Sialic Acid Binding Ig-like Lectin 3
Collapse
Affiliation(s)
- A E Frankel
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Drive, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|