1
|
Decombe A, Peersen O, Sutto-Ortiz P, Chamontin C, Piorkowski G, Canard B, Nisole S, Decroly E. Internal RNA 2'-O-methylation on the HIV-1 genome impairs reverse transcription. Nucleic Acids Res 2024; 52:1359-1373. [PMID: 38015463 PMCID: PMC10853786 DOI: 10.1093/nar/gkad1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Viral RNA genomes are modified by epitranscriptomic marks, including 2'-O-methylation that is added by cellular or viral methyltransferases. 2'-O-Methylation modulates RNA structure, function and discrimination between self- and non-self-RNA by innate immune sensors such as RIG-I-like receptors. This is illustrated by human immunodeficiency virus type-1 (HIV-1) that decorates its RNA genome through hijacking the cellular FTSJ3 2'-O-methyltransferase, thereby limiting immune sensing and interferon production. However, the impact of such an RNA modification during viral genome replication is poorly understood. Here we show by performing endogenous reverse transcription on methylated or hypomethylated HIV-1 particles, that 2'-O-methylation negatively affects HIV-1 reverse transcriptase activity. Biochemical assays confirm that RNA 2'-O-methylation impedes reverse transcriptase activity, especially at low dNTP concentrations reflecting those in quiescent cells, by reducing nucleotide incorporation efficiency and impairing translocation. Mutagenesis highlights K70 as a critical amino acid for the reverse transcriptase to bypass 2'-O-methylation. Hence, the observed antiviral effect due to viral RNA 2'-O-methylation antagonizes the FTSJ3-mediated proviral effects, suggesting the fine-tuning of RNA methylation during viral replication.
Collapse
Affiliation(s)
- Alice Decombe
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille 13288, France
| | - Olve Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Priscila Sutto-Ortiz
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille 13288, France
| | - Célia Chamontin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier 34090, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), 13005 Marseille, France
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille 13288, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier 34090, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille 13288, France
| |
Collapse
|
2
|
Baldwin ET, van Eeuwen T, Hoyos D, Zalevsky A, Tchesnokov EP, Sánchez R, Miller BD, Di Stefano LH, Ruiz FX, Hancock M, Işik E, Mendez-Dorantes C, Walpole T, Nichols C, Wan P, Riento K, Halls-Kass R, Augustin M, Lammens A, Jestel A, Upla P, Xibinaku K, Congreve S, Hennink M, Rogala KB, Schneider AM, Fairman JE, Christensen SM, Desrosiers B, Bisacchi GS, Saunders OL, Hafeez N, Miao W, Kapeller R, Zaller DM, Sali A, Weichenrieder O, Burns KH, Götte M, Rout MP, Arnold E, Greenbaum BD, Romero DL, LaCava J, Taylor MS. Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature 2024; 626:194-206. [PMID: 38096902 PMCID: PMC10830420 DOI: 10.1038/s41586-023-06947-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.
Collapse
Affiliation(s)
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Bryant D Miller
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Matthew Hancock
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Esin Işik
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Carlos Mendez-Dorantes
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Thomas Walpole
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Charles Nichols
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Paul Wan
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Kirsi Riento
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Rowan Halls-Kass
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | | | - Alfred Lammens
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Anja Jestel
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Paula Upla
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kera Xibinaku
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna M Schneider
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Weichenrieder
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Kathleen H Burns
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands.
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Cilento ME, Wen X, Reeve AB, Ukah OB, Snyder AA, Carrillo CM, Smith CP, Edwards K, Wahoski CC, Kitzler DR, Kodama EN, Mitsuya H, Parniak MA, Tedbury PR, Sarafianos SG. HIV-1 Resistance to Islatravir/Tenofovir Combination Therapy in Wild-Type or NRTI-Resistant Strains of Diverse HIV-1 Subtypes. Viruses 2023; 15:1990. [PMID: 37896768 PMCID: PMC10612037 DOI: 10.3390/v15101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Tenofovir disoproxil fumarate (TDF) and islatravir (ISL, 4'-ethynyl-2-fluoro-2'-deoxyadensine, or MK-8591) are highly potent nucleoside reverse transcriptase inhibitors. Resistance to TDF and ISL is conferred by K65R and M184V, respectively. Furthermore, K65R and M184V increase sensitivity to ISL and TDF, respectively. Therefore, these two nucleoside analogs have opposing resistance profiles and could present a high genetic barrier to resistance. To explore resistance to TDF and ISL in combination, we performed passaging experiments with HIV-1 WT, K65R, or M184V in the presence of ISL and TDF. We identified K65R, M184V, and S68G/N mutations. The mutant most resistant to ISL was S68N/M184V, yet it remained susceptible to TDF. To further confirm our cellular findings, we implemented an endogenous reverse transcriptase assay to verify in vitro potency. To better understand the impact of these resistance mutations in the context of global infection, we determined potency of ISL and TDF against HIV subtypes A, B, C, D, and circulating recombinant forms (CRF) 01_AE and 02_AG with and without resistance mutations. In all isolates studied, we found K65R imparted hypersensitivity to ISL whereas M184V conferred resistance. We demonstrated that the S68G polymorphism can enhance fitness of drug-resistant mutants in some genetic backgrounds. Collectively, the data suggest that the opposing resistance profiles of ISL and TDF suggest that a combination of the two drugs could be a promising drug regimen for the treatment of patients infected with any HIV-1 subtype, including those who have failed 3TC/FTC-based therapies.
Collapse
Affiliation(s)
- Maria E. Cilento
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Aaron B. Reeve
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Obiaara B. Ukah
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alexa A. Snyder
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ciro M. Carrillo
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cole P. Smith
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kristin Edwards
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia C. Wahoski
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Deborah R. Kitzler
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eiichi N. Kodama
- Division of Infectious Disease, International Institute of Disaster Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health & Medicine Research Institute, Tokyo 162-8655, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Michael A. Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Lan S, Neilsen G, Slack RL, Cantara WA, Castaner AE, Lorson ZC, Lulkin N, Zhang H, Lee J, Cilento ME, Tedbury PR, Sarafianos SG. Nirmatrelvir Resistance in SARS-CoV-2 Omicron_BA.1 and WA1 Replicons and Escape Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522389. [PMID: 36656782 PMCID: PMC9844013 DOI: 10.1101/2022.12.31.522389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The antiviral component of Paxlovid, nirmatrelvir (NIR), forms a covalent bond with Cys145 of SARS-CoV-2 nsp5. To explore NIR resistance we designed mutations to impair binding of NIR over substrate. Using 12 Omicron (BA.1) and WA.1 SARS-CoV-2 replicons, cell-based complementation and enzymatic assays, we showed that in both strains, E166V imparted high NIR resistance (∼55-fold), with major decrease in WA1 replicon fitness (∼20-fold), but not BA.1 (∼2-fold). WA1 replicon fitness was restored by L50F. These differences may contribute to a potentially lower barrier to resistance in Omicron than WA1. E166V is rare in untreated patients, albeit more prevalent in paxlovid-treated EPIC-HR clinical trial patients. Importantly, NIR-resistant replicons with E166V or E166V/L50F remained susceptible to a) the flexible GC376, and b) PF-00835231, which forms additional interactions. Molecular dynamics simulations show steric clashes between the rigid and bulky NIR t-butyl and β-branched V166 distancing the NIR warhead from its Cys145 target. In contrast, GC376, through "wiggling and jiggling" accommodates V166 and still covalently binds Cys145. PF-00835231 uses its strategically positioned methoxy-indole to form a β-sheet and overcome E166V. Drug design based on strategic flexibility and main chain-targeting may help develop second-generation nsp5-targeting antivirals efficient against NIR-resistant viruses.
Collapse
|
5
|
Pashkov EA, Pak AV, Pashkov EP, Bykov AS, Budanova EV, Poddubikov AV, Svitich OA, Zverev VV. [The prospects for the use of drugs based on the phenomenon of RNA interference against HIV infection]. Vopr Virusol 2022; 67:278-289. [PMID: 36097709 DOI: 10.36233/0507-4088-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The human immunodeficiency virus (HIV) is currently one of the most pressing global health problems. Since its discovery in 1978, HIV has claimed the lives of more than 35 million people, and the number of people infected today reaches 37 million. In the absence of highly active antiretroviral therapy (HAART), HIV infection is characterized by a steady decrease in the number of CD4+ T-lymphocytes, but its manifestations can affect the central nervous, cardiovascular, digestive, endocrine and genitourinary systems. At the same time, complications induced by representatives of pathogenic and opportunistic microflora, which can lead to the development of bacterial, fungal and viral concomitant infections, are of particular danger. It should be borne in mind that an important problem is the emergence of viruses resistant to standard therapy, as well as the toxicity of the drugs themselves for the body. In the context of this review, of particular interest is the assessment of the prospects for the creation and clinical use of drugs based on small interfering RNAs aimed at suppressing the reproduction of HIV, taking into account the experience of similar studies conducted earlier. RNA interference is a cascade of regulatory reactions in eukaryotic cells, which results in the degradation of foreign messenger RNA. The development of drugs based on the mechanism of RNA interference will overcome the problem of viral resistance. Along with this, this technology makes it possible to quickly respond to outbreaks of new viral diseases.
Collapse
Affiliation(s)
- E A Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - A V Pak
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E P Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A S Bykov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E V Budanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A V Poddubikov
- Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - O A Svitich
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - V V Zverev
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| |
Collapse
|
6
|
Cryo-EM structures of wild-type and E138K/M184I mutant HIV-1 RT/DNA complexed with inhibitors doravirine and rilpivirine. Proc Natl Acad Sci U S A 2022; 119:e2203660119. [PMID: 35858448 PMCID: PMC9335299 DOI: 10.1073/pnas.2203660119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The enzyme reverse transcriptase (RT) is a key antiviral target, and nonnucleoside RT inhibitors (NNRTIs) are among the frequently used components of antiretroviral therapy for treating HIV-1 infection. The emergence of drug-resistant mutations continues to pose a challenge in HIV treatment. The RT mutations M184I and E138K emerge in patients receiving rilpivirine. We obtained the structural snapshots of rilpivirine, doravirine, and nevirapine inhibited wild-type and M184I/E138K RT/DNA polymerase complexes by cryo-electron microscopy. Key structural changes observed in the rilpivirine- and doravirine-bound structures have implications for understanding NNRTI drug resistance. Additionally, the cryo-EM structure determination strategy outlined in this study can be adapted to aid drug design targeting smaller and flexible proteins. Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme’s relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)–bound RT/double-stranded DNA (dsDNA), RT/RNA–DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3′-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.
Collapse
|
7
|
Baldwin ET, Götte M, Tchesnokov EP, Arnold E, Hagel M, Nichols C, Dossang P, Lamers M, Wan P, Steinbacher S, Romero DL. Human endogenous retrovirus-K (HERV-K) reverse transcriptase (RT) structure and biochemistry reveals remarkable similarities to HIV-1 RT and opportunities for HERV-K-specific inhibition. Proc Natl Acad Sci U S A 2022; 119:e2200260119. [PMID: 35771941 PMCID: PMC9271190 DOI: 10.1073/pnas.2200260119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.
Collapse
Affiliation(s)
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854
| | | | - Charles Nichols
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Pam Dossang
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Marieke Lamers
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
- DomainEx, Chesterford Research Park, Saffron Walden CB10 1XL United Kingdom
| | - Paul Wan
- Charles River Laboratory, Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | | | | |
Collapse
|
8
|
Insights into HIV-1 Reverse Transcriptase (RT) Inhibition and Drug Resistance from Thirty Years of Structural Studies. Viruses 2022; 14:v14051027. [PMID: 35632767 PMCID: PMC9148108 DOI: 10.3390/v14051027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The enzyme reverse transcriptase (RT) plays a central role in the life cycle of human immunodeficiency virus (HIV), and RT has been an important drug target. Elucidations of the RT structures trapping and detailing the enzyme at various functional and conformational states by X-ray crystallography have been instrumental for understanding RT activities, inhibition, and drug resistance. The structures have contributed to anti-HIV drug development. Currently, two classes of RT inhibitors are in clinical use. These are nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, the error-prone viral replication generates variants that frequently develop resistance to the available drugs, thus warranting a continued effort to seek more effective treatment options. RT also provides multiple additional potential druggable sites. Recently, the use of single-particle cryogenic electron microscopy (cryo-EM) enabled obtaining structures of NNRTI-inhibited HIV-1 RT/dsRNA initiation and RT/dsDNA elongation complexes that were unsuccessful by X-ray crystallography. The cryo-EM platform for the structural study of RT has been established to aid drug design. In this article, we review the roles of structural biology in understanding and targeting HIV RT in the past three decades and the recent structural insights of RT, using cryo-EM.
Collapse
|
9
|
Schinazi RF, Patel D, Ehteshami M. The best backbone for HIV prevention, treatment, and elimination: Emtricitabine+tenofovir. Antivir Ther 2022; 27:13596535211067599. [PMID: 35491570 DOI: 10.1177/13596535211067599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advent of antiretroviral combination therapy has significantly impacted the HIV/AIDS epidemic. No longer a death sentence, HIV infection can be controlled and suppressed using cocktail therapies that contain two or more small molecule drugs. This review aims to highlight the discovery, development, and impact of one such molecule, namely, emtricitabine (FTC, emtriva), which is one of the most successful drugs in the fight against HIV/AIDS and has been taken by over 94% of individuals infected with HIV in the USA. We also pay tribute to Dr. John C. Martin, former CEO and Chairman of Gilead Sciences, who unexpectedly passed away in 2021. A true visionary, he was instrumental in delivering FTC, as part of combination therapy with TDF (tenofovir, viread) to the global stage. As the fight to eradicate HIV marches on, we honor Dr. Martin's legacy of collaboration, achievement, and hope.
Collapse
Affiliation(s)
- Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, 1371Emory University School of Medicine and Children Healthcare of Atlanta, Atlanta, GA, USA
| | - Dharmeshkumar Patel
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, 1371Emory University School of Medicine and Children Healthcare of Atlanta, Atlanta, GA, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, 1371Emory University School of Medicine and Children Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
10
|
Ruiz FX, Hoang A, Dilmore CR, DeStefano JJ, Arnold E. Structural basis of HIV inhibition by L-nucleosides: opportunities for drug development and repurposing. Drug Discov Today 2022; 27:1832-1846. [PMID: 35218925 DOI: 10.1016/j.drudis.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Infection with HIV can cripple the immune system and lead to AIDS. Hepatitis B virus (HBV) is a hepadnavirus that causes human liver diseases. Both pathogens are major public health problems affecting millions of people worldwide. The polymerases from both viruses are the most common drug target for viral inhibition, sharing common architecture at their active sites. The L-nucleoside drugs emtricitabine and lamivudine are widely used HIV reverse transcriptase (RT) and HBV polymerase (Pol) inhibitors. Nevertheless, structural details of their binding to RT(Pol)/nucleic acid remained unknown until recently. Here, we discuss the implications of these structures, alongside related complexes with L-dNTPs, for the development of novel L-nucleos(t)ide drugs, and prospects for repurposing them.
Collapse
Affiliation(s)
- Francesc X Ruiz
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Anthony Hoang
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher R Dilmore
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Boyer PL, Rehm CA, Sneller MC, Mican J, Caplan MR, Dewar R, Ferris AL, Clark P, Johnson A, Maldarelli F, Hughes SH. A Combination of Amino Acid Mutations Leads to Resistance to Multiple Nucleoside Analogs in Reverse Transcriptases from HIV-1 Subtypes B and C. Antimicrob Agents Chemother 2022; 66:e0150021. [PMID: 34723625 PMCID: PMC8765311 DOI: 10.1128/aac.01500-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to anti-HIV drugs has been a problem from the beginning of antiviral drug treatments. The recent expansion of combination antiretroviral therapy worldwide has led to an increase in resistance to antiretrovirals; understanding the mechanisms of resistance is increasingly important. In this study, we analyzed reverse transcriptase (RT) variants based on sequences derived from an individual who had low-level rebound viremia while undergoing therapy with abacavir, azidothymidine (AZT) (zidovudine), and (-)-l-2',3'-dideoxy-3'-thiacytidine (3TC) (lamivudine). The RT had mutations at positions 64, 67, 70, 184, and 219 and a threonine insertion after amino acid 69 in RT. The virus remained partially susceptible to the nucleoside RT inhibitor (NRTI) regimen. We show how these mutations affect the ability of NRTIs to inhibit DNA synthesis by RT. The presence of the inserted threonine reduced the susceptibility of the RT mutant to inhibition by tenofovir.
Collapse
Affiliation(s)
- Paul L. Boyer
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Catherine A. Rehm
- Clinical Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael C. Sneller
- Clinical and Molecular Retrovirology Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - JoAnn Mican
- Clinical Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Margaret R. Caplan
- Division of Infectious Disease, Department of Medicine, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Robin Dewar
- Division of Infectious Disease, Department of Medicine, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Andrea L. Ferris
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Patrick Clark
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Johnson
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Frank Maldarelli
- Clinical Retrovirology Section, National Cancer Institute, Frederick, Maryland, USA
| | - Stephen H. Hughes
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
12
|
Aher UP, Srivastava D, Singh GP, S JB. Synthetic strategies toward 1,3-oxathiolane nucleoside analogues. Beilstein J Org Chem 2021; 17:2680-2715. [PMID: 34804240 PMCID: PMC8576827 DOI: 10.3762/bjoc.17.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022] Open
Abstract
Sugar-modified nucleosides have gained considerable attention in the scientific community, either for use as molecular probes or as therapeutic agents. When the methylene group of the ribose ring is replaced with a sulfur atom at the 3’-position, these compounds have proved to be structurally potent nucleoside analogues, and the best example is BCH-189. The majority of methods traditionally involves the chemical modification of nucleoside structures. It requires the creation of artificial sugars, which is accompanied by coupling nucleobases via N-glycosylation. However, over the last three decades, efforts were made for the synthesis of 1,3-oxathiolane nucleosides by selective N-glycosylation of carbohydrate precursors at C-1, and this approach has emerged as a strong alternative that allows simple modification. This review aims to provide a comprehensive overview on the reported methods in the literature to access 1,3-oxathiolane nucleosides. The first focus of this review is the construction of the 1,3-oxathiolane ring from different starting materials. The second focus involves the coupling of the 1,3-oxathiolane ring with different nucleobases in a way that only one isomer is produced in a stereoselective manner via N-glycosylation. An emphasis has been placed on the C–N-glycosidic bond constructed during the formation of the nucleoside analogue. The third focus is on the separation of enantiomers of 1,3-oxathiolane nucleosides via resolution methods. The chemical as well as enzymatic procedures are reviewed and segregated in this review for effective synthesis of 1,3-oxathiolane nucleoside analogues.
Collapse
Affiliation(s)
- Umesh P Aher
- Chemical Research Department, Lupin Research Park, Lupin Limited, 46A/47A, Village Nande, Taluka Mulshi, Pune-412115, Maharashtra, India
| | - Dhananjai Srivastava
- Chemical Research Department, Lupin Research Park, Lupin Limited, 46A/47A, Village Nande, Taluka Mulshi, Pune-412115, Maharashtra, India
| | - Girij P Singh
- Chemical Research Department, Lupin Research Park, Lupin Limited, 46A/47A, Village Nande, Taluka Mulshi, Pune-412115, Maharashtra, India
| | - Jayashree B S
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
13
|
Development of Human Immunodeficiency Virus Type 1 Resistance to 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA) Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor Resistant-Strains. Antimicrob Agents Chemother 2021; 65:e0116721. [PMID: 34516245 DOI: 10.1128/aac.01167-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.
Collapse
|
14
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
15
|
Gong S, Kirmizialtin S, Chang A, Mayfield JE, Zhang YJ, Johnson KA. Kinetic and thermodynamic analysis defines roles for two metal ions in DNA polymerase specificity and catalysis. J Biol Chem 2020; 296:100184. [PMID: 33310704 PMCID: PMC7948414 DOI: 10.1074/jbc.ra120.016489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 11/06/2022] Open
Abstract
Magnesium ions play a critical role in catalysis by many enzymes and contribute to the fidelity of DNA polymerases through a two-metal ion mechanism. However, specificity is a kinetic phenomenon and the roles of Mg2+ ions in each step in the catalysis have not been resolved. We first examined the roles of Mg2+ by kinetic analysis of single nucleotide incorporation catalyzed by HIV reverse transcriptase. We show that Mg.dNTP binding induces an enzyme conformational change at a rate that is independent of free Mg2+ concentration. Subsequently, the second Mg2+ binds to the closed state of the enzyme-DNA-Mg.dNTP complex (Kd = 3.7 mM) to facilitate catalysis. Weak binding of the catalytic Mg2+ contributes to fidelity by sampling the correctly aligned substrate without perturbing the equilibrium for nucleotide binding at physiological Mg2+ concentrations. An increase of the Mg2+ concentration from 0.25 to 10 mM increases nucleotide specificity (kcat/Km) 12-fold largely by increasing the rate of the chemistry relative to the rate of nucleotide release. Mg2+ binds very weakly (Kd ≤ 37 mM) to the open state of the enzyme. Analysis of published crystal structures showed that HIV reverse transcriptase binds only two metal ions prior to incorporation of a correct base pair. Molecular dynamics simulations support the two-metal ion mechanism and the kinetic data indicating weak binding of the catalytic Mg2+. Molecular dynamics simulations also revealed the importance of the divalent cation cloud surrounding exposed phosphates on the DNA. These results enlighten the roles of the two metal ions in the specificity of DNA polymerases.
Collapse
Affiliation(s)
- Shanzhong Gong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adrienne Chang
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Joshua E Mayfield
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
16
|
vonRanke NL, Ribeiro MMJ, Miceli LA, de Souza NP, Abrahim-Vieira BA, Castro HC, Teixeira VL, Rodrigues CR, Souza AMT. Structure-activity relationship, molecular docking, and molecular dynamic studies of diterpenes from marine natural products with anti-HIV activity. J Biomol Struct Dyn 2020; 40:3185-3195. [PMID: 33183161 DOI: 10.1080/07391102.2020.1845977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV-1 infection is a global epidemic whose treatment is limited majorly by viral resistance and adverse effects. Natural products from algae have been studied for many years, including antiviral, being an alternative to anti-HIV drug design. Since the isolation of natural products can be a hurdle, molecular modeling is an important tool to study these compounds. Herein, structure-activity relationship, molecular docking, and molecular dynamic studies were performed to direct the studies of ten marine natural products with anti-HIV activity. In the structure-activity relationship, descriptors were identified associating the anti-HIV activity of five diterpenes with possible action on the reverse transcriptase allosteric site. These diterpenes were evaluated by molecular docking, and it was identified that only dolabelladienetriol interacted in the allosteric site. Molecular dynamics suggested that the dolabelladienetriol might interfere with the viral RNA binding to HIV-1 RT by inducing a conformational change of the enzyme. Also, in silico ADMET simulations predicts that the dolabelladienetriol present a high potential to be successfully developed as a drug. Thus, applying in silico approaches was possible to suggest potential anti-HIV compounds derived from marine natural products.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N L vonRanke
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M M J Ribeiro
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L A Miceli
- Laboratory of Antibiotics, Biochemistry, Education and Molecular Modeling (LABiEMol), Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - N P de Souza
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B A Abrahim-Vieira
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H C Castro
- Laboratory of Antibiotics, Biochemistry, Education and Molecular Modeling (LABiEMol), Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - V L Teixeira
- Center for Biological Sciences and Health (CCBS), Rectory, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - C R Rodrigues
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A M T Souza
- Laboratory of Molecular Modeling and QSAR (ModMolQSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Peixoto RT, Nogueira LFS, de Oliveira SA, Souza VD, Felipo BSL. Study of HIV Resistance Mutations Against Antiretrovirals using Bioinformatics Tools. Curr HIV Res 2020; 17:343-349. [PMID: 31629397 DOI: 10.2174/1570162x17666191019114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antiretroviral drugs to HIV-1 (ARV) are divided into classes: Nucleotide Reverse Transcriptase Inhibitors (NRTIs); Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs); Protease Inhibitors (PIs); Integrase Inhibitors (INIs); fusion inhibitors and entry Inhibitors. The occurrence of mutations developing resistance to antiretroviral drugs used in HIV treatment take place in a considerable proportion and has accumulated over its long period of therapy. OBJECTIVE This study aimed to identify resistance mutations to antiretrovirals used in the treatment of HIV-1 in strains isolated from Brazilian territory deposited at Genbank, as well as to relate to the clinical significance and mechanism of action. METHODS Elucidation of these mutations was by comparative method of peptide sequence resulting from genes encoding therapeutic targets in HIV antiretroviral therapy (ART) of the strains with a reference sequence through bioinformatic genetic information manipulation techniques. RESULTS Of the 399 sequences analyzed, 121 (30.3%) had some type of mutations associated with resistance to some class of antiretroviral drug. Resistance to NNRTIs was the most prevalent, detected in 77 (63.6%) of the 121 mutated sequences, compared to NRTIs and PIs, whose resistance was detected in 60 (49.6%) and 21 (17.3%), respectively, and to INIs, only 1 (0.8%) sample showed associated resistance mutation. CONCLUSION Resistance to HIV ARV was detected at a considerable rate of 30.3%, showing some concerns about the percentage of viral strains that escape the established therapeutic regimen and that circulate currently in Brazil. The non-use of NNRTIs in Brazil is justified by the emergence of resistance mutations. The low prevalence of mutations against INIs is because drugs in this class have a high genetic barrier.
Collapse
Affiliation(s)
- Roca Tárcio Peixoto
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil
| | - Lima Felipe Souza Nogueira
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil
| | - Santos Alcione de Oliveira
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil
| | - Vieira Deusilene Souza
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil
| | - Botelho-Souza Luan Felipo
- Faculdades Integradas Aparicio Carvalho-FIMCA, School of Biomedicine, Research Group on Health Sciences, Porto Velho, Brazil.,Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia-FIOCRUZ-RO, Porto Velho, Brazil.,Universidade Federal de Rondônia - UNIR, Porto Velho, Brazil.,National Institutes of Science and Technology - CNPq- INCT-EpiAmO, Porto Velho, Brazil
| |
Collapse
|
18
|
Giacomelli A, Pezzati L, Rusconi S. The crosstalk between antiretrovirals pharmacology and HIV drug resistance. Expert Rev Clin Pharmacol 2020; 13:739-760. [PMID: 32538221 DOI: 10.1080/17512433.2020.1782737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The clinical development of antiretroviral drugs has been followed by a rapid and concomitant development of HIV drug resistance. The development and spread of HIV drug resistance is due on the one hand to the within-host intrinsic HIV evolutionary rate and on the other to the wide use of low genetic barrier antiretrovirals. AREAS COVERED We searched PubMed and Embase on 31 January 2020, for studies reporting antiretroviral resistance and pharmacology. In this review, we assessed the molecular target and mechanism of drug resistance development of the different antiretroviral classes focusing on the currently approved antiretroviral drugs. Then, we assessed the main pharmacokinetic/pharmacodynamic of the antiretrovirals. Finally, we retraced the history of antiretroviral treatment and its interconnection with antiretroviral worldwide resistance development both in , and middle-income countries in the perspective of 90-90-90 World Health Organization target. EXPERT OPINION Drug resistance development is an invariably evolutionary driven phenomenon, which challenge the 90-90-90 target. In high-income countries, the antiretroviral drug resistance seems to be stable since the last decade. On the contrary, multi-intervention strategies comprehensive of broad availability of high genetic barrier regimens should be implemented in resource-limited setting to curb the rise of drug resistance.
Collapse
Affiliation(s)
- Andrea Giacomelli
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| | - Laura Pezzati
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| | - Stefano Rusconi
- III Infectious Disease Unit, ASST-FBF-Sacco , Milan, Italy.,Department of Biomedical and Clinical Sciences DIBIC L. Sacco, University of Milan , Milan, Italy
| |
Collapse
|
19
|
Structural features in common of HBV and HIV-1 resistance against chirally-distinct nucleoside analogues entecavir and lamivudine. Sci Rep 2020; 10:3021. [PMID: 32080249 PMCID: PMC7033138 DOI: 10.1038/s41598-020-59775-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major public health problem that affects millions of people worldwide. Nucleoside analogue reverse transcriptase (RT) inhibitors, such as entecavir (ETV) and lamivudine (3TC), serve as crucial anti-HBV drugs. However, structural studies of HBV RT have been hampered due to its unexpectedly poor solubility. Here, we show that human immunodeficiency virus type-1 (HIV-1) with HBV-associated amino acid substitutions Y115F/F116Y/Q151M in its RT (HIVY115F/F116Y/Q151M) is highly susceptible to ETV and 3TC. Additionally, we experimentally simulated previously reported ETV/3TC resistance for HBV using HIVY115F/F116Y/Q151M with F160M/M184V (L180M/M204V in HBV RT) substituted. We determined crystal structures for HIV-1 RTY115F/F116Y/Q151M:DNA complexed with 3TC-triphosphate (3TC-TP)/ETV-triphosphate (ETV-TP)/dCTP/dGTP. These structures revealed an atypically tight binding conformation of 3TC-TP, where the Met184 side-chain is pushed away by the oxathiolane of 3TC-TP and exocyclic methylene of ETV-TP. Structural analysis of RTY115F/F116Y/Q151M/F160M/M184V:DNA:3TC-TP also demonstrated that the loosely bound 3TC-TP is misaligned at the active site to prevent a steric clash with the side chain γ-methyl of Val184. These findings shed light on the common structural mechanism of HBV and HIV-1 resistance to 3TC and ETV and should aid in the design of new agents to overcome drug resistance to 3TC and ETV.
Collapse
|
20
|
Impact of Suboptimal APOBEC3G Neutralization on the Emergence of HIV Drug Resistance in Humanized Mice. J Virol 2020; 94:JVI.01543-19. [PMID: 31801862 DOI: 10.1128/jvi.01543-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
HIV diversification facilitates immune escape and complicates antiretroviral therapy. In this study, we take advantage of a humanized-mouse model to probe the contribution of APOBEC3 mutagenesis to viral evolution. Humanized mice were infected with isogenic HIV molecular clones (HIV-WT, HIV-45G, and HIV-ΔSLQ) that differ in their abilities to counteract APOBEC3G (A3G). Infected mice remained naive or were treated with the reverse transcriptase (RT) inhibitor lamivudine (3TC). Viremia, emergence of drug-resistant variants, and quasispecies diversification in the plasma compartment were determined throughout infection. While both HIV-WT and HIV-45G achieved robust infection, over time, HIV-45G replication was significantly reduced compared to that of HIV-WT in the absence of 3TC treatment. In contrast, treatment responses differed significantly between HIV-45G- and HIV-WT-infected mice. Antiretroviral treatment failed in 91% of HIV-45G-infected mice, while only 36% of HIV-WT-infected mice displayed a similar negative outcome. Emergence of 3TC-resistant variants and nucleotide diversity were determined by analyzing 155,462 single HIV reverse transcriptase gene (RT) and 6,985 vif sequences from 33 mice. Prior to treatment, variants with genotypic 3TC resistance (RT-M184I/V) were detected at low levels in over a third of all the animals. Upon treatment, the composition of the plasma quasispecies rapidly changed, leading to a majority of circulating viral variants encoding RT-184I. Interestingly, increased viral diversity prior to treatment initiation correlated with higher plasma viremia in HIV-45G-infected animals, but not in HIV-WT-infected animals. Taken together, HIV variants with suboptimal anti-A3G activity were attenuated in the absence of selection but displayed a fitness advantage in the presence of antiretroviral treatment.IMPORTANCE Both viral (e.g., RT) and host (e.g., A3G) factors can contribute to HIV sequence diversity. This study shows that suboptimal anti-A3G activity shapes viral fitness and drives viral evolution in the plasma compartment in humanized mice.
Collapse
|
21
|
Hung M, Tokarsky EJ, Lagpacan L, Zhang L, Suo Z, Lansdon EB. Elucidating molecular interactions of L-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance. Commun Biol 2019; 2:469. [PMID: 31872074 PMCID: PMC6910994 DOI: 10.1038/s42003-019-0706-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023] Open
Abstract
Emtricitabine (FTC) and lamivudine (3TC), containing an oxathiolane ring with unnatural (-)-stereochemistry, are widely used nucleoside reverse transcriptase inhibitors (NRTIs) in anti-HIV therapy. Treatment with FTC or 3TC primarily selects for the HIV-1 RT M184V/I resistance mutations. Here we provide a comprehensive kinetic and structural basis for inhibiting HIV-1 RT by (-)-FTC-TP and (-)-3TC-TP and drug resistance by M184V. (-)-FTC-TP and (-)-3TC-TP have higher binding affinities (1/Kd) for wild-type RT but slower incorporation rates than dCTP. HIV-1 RT ternary crystal structures with (-)-FTC-TP and (-)-3TC-TP corroborate kinetic results demonstrating that their oxathiolane sulfur orients toward the DNA primer 3'-terminus and their triphosphate exists in two different binding conformations. M184V RT displays greater (>200-fold) Kd for the L-nucleotides and moderately higher (>9-fold) Kd for the D-isomers compared to dCTP. The M184V RT structure illustrates how the mutation repositions the oxathiolane of (-)-FTC-TP and shifts its triphosphate into a non-productive conformation.
Collapse
Affiliation(s)
- Magdeleine Hung
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA
| | - E. John Tokarsky
- The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA
| | - Leanna Lagpacan
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA
| | - Lijun Zhang
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA
| | - Zucai Suo
- The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Eric B. Lansdon
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA
| |
Collapse
|
22
|
Collier DA, Monit C, Gupta RK. The Impact of HIV-1 Drug Escape on the Global Treatment Landscape. Cell Host Microbe 2019; 26:48-60. [PMID: 31295424 DOI: 10.1016/j.chom.2019.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rising prevalence of HIV drug resistance (HIVDR) could threaten gains made in combating the HIV epidemic and compromise the 90-90-90 target proposed by United Nations Programme on HIV/AIDS (UNAIDS) to have achieved virological suppression in 90% of all persons receiving antiretroviral therapy (ART) by the year 2020. HIVDR has implications for the persistence of HIV, the selection of current and future ART drug regimens, and strategies of vaccine and cure development. Focusing on drug classes that are in clinical use, this Review critically summarizes what is known about the mechanisms the virus utilizes to escape drug control. Armed with this knowledge, strategies to limit the expansion of HIVDR are proposed.
Collapse
Affiliation(s)
- D A Collier
- Division of Infection and Immunity, University College London, London, UK
| | - C Monit
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Ruiz FX, Hoang A, Das K, Arnold E. Structural Basis of HIV-1 Inhibition by Nucleotide-Competing Reverse Transcriptase Inhibitor INDOPY-1. J Med Chem 2019; 62:9996-10002. [PMID: 31603676 DOI: 10.1021/acs.jmedchem.9b01289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
HIV-1 reverse transcriptase (RT) is an essential enzyme, targeting half of approved anti-AIDS drugs. While nucleoside RT inhibitors (NRTIs) are DNA chain terminators, the nucleotide-competing RT inhibitor (NcRTI) INDOPY-1 blocks dNTP binding to RT. Lack of structural information hindered INDOPY-1 improvement. Here we report the HIV-1 RT/DNA/INDOPY-1 crystal structure, revealing a unique mode of inhibitor binding at the polymerase active site without involving catalytic metal ions. The structure may enable new strategies for developing NcRTIs.
Collapse
Affiliation(s)
| | | | - Kalyan Das
- Rega Institute for Medical Research , 3000 Leuven , Belgium.,Department of Microbiology, Immunology and Transplantation , KU Leuven , 3000 Leuven , Belgium
| | | |
Collapse
|
24
|
4'-Ethynyl-2-fluoro-2'-deoxyadenosine, MK-8591: a novel HIV-1 reverse transcriptase translocation inhibitor. Curr Opin HIV AIDS 2019; 13:294-299. [PMID: 29697468 DOI: 10.1097/coh.0000000000000467] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside reverse transcriptase inhibitor (NRTI) with a novel mechanism of action, unique structure, and amongst NRTIs, unparalleled anti-HIV-1 activity. We will summarize its structure and function, antiviral activity, resistance profile, and potential as an antiretroviral for use in the treatment and preexposure prophylaxis of HIV-1 infection. RECENT FINDINGS EFdA is active against wild-type (EC50 as low as 50 pmol/l) and most highly NRTI-resistant viruses. The active metabolite, EFdA-triphosphate, has been shown to have a prolonged intracellular half-life in human and rhesus (Rh) blood cells. As a result, single drug doses tested in simian immunodeficiency virus mac251-infected Rh macaques and HIV-1-infected individuals exhibited robust antiviral activity of 7-10 days duration. Preclinical studies of EFdA as preexposure prophylaxis in the Rh macaque/simian/human immunodeficiency virus low-dose intrarectal challenge model have shown complete protection when given in clinically relevant doses. SUMMARY EFdA is a novel antiretroviral with activity against both wild-type and NRTI-resistant viruses. As a result of the prolonged intracellular half-life of its active moiety, it is amenable to flexibility in dosing of at least daily to weekly and perhaps longer.
Collapse
|
25
|
Alpha-carboxynucleoside phosphonates: direct-acting inhibitors of viral DNA polymerases. Future Med Chem 2019; 11:137-154. [PMID: 30648904 DOI: 10.4155/fmc-2018-0324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acyclic nucleoside phosphonates represent a well-defined class of clinically used nucleoside analogs. All acyclic nucleoside phosphonates need intracellular phosphorylation before they can bind viral DNA polymerases. Recently, a novel class of alpha-carboxynucleoside phosphonates have been designed to mimic the natural 2'-deoxynucleotide 5'-triphosphate substrates of DNA polymerases. They contain a carboxyl group in the phosphonate moiety linked to the nucleobase through a cyclic or acyclic bridge. Alpha-carboxynucleoside phosphonates act as viral DNA polymerase inhibitors without any prior requirement of metabolic conversion. Selective inhibitory activity against retroviral reverse transcriptase and herpesvirus DNA polymerases have been demonstrated. These compounds have a unique mechanism of inhibition of viral DNA polymerases, and provide possibilities for further modifications to optimize and fine tune their antiviral DNA polymerase spectrum.
Collapse
|
26
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
27
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
28
|
Pouga L, Santoro MM, Charpentier C, Di Carlo D, Romeo I, Artese A, Alcaro S, Antinori A, Wirden M, Perno CF, Ambrosio FA, Calvez V, Descamps D, Marcelin AG, Ceccherini-Silberstein F, Lambert-Niclot S. New resistance mutations to nucleoside reverse transcriptase inhibitors at codon 184 of HIV-1 reverse transcriptase (M184L and M184T). Chem Biol Drug Des 2018; 93:50-59. [PMID: 30103267 DOI: 10.1111/cbdd.13378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/04/2018] [Accepted: 08/04/2018] [Indexed: 11/28/2022]
Abstract
Mutations at HIV-1 reverse transcriptase (RT) codon 184 such as M184V confer resistance to two nucleos(t)ide RT inhibitors (NRTI), lamivudine (3TC) and emtricitabine (FTC). The prevalence of mutations at HIV-1 RT codon 184 was evaluated using three independent RT sequence databases from treatment-experienced (TE) and treatment-naïve (TN) individuals. Data were collected retrospectively from three centers: one in Italy and two in France between 1997 and 2016. In order to highlight the role of these mutations in conferring drug resistance, structural and thermodynamic analyses were conducted by means of computational approaches. Among 32,440 RT sequences isolated from TE and 12,365 isolated from TN patients, the prevalence of HIV-1 RT codon 184 substitutions in each group was 31.21% and 0.72%, respectively. The mutations M184L and M184T have been observed only in TE patients. In all cases but four, M184L and M184T mutations were present during NRTI treatment. Molecular recognition studies on M184L and M184T structures showed both FTC and 3TC thermodynamic profiles unfavorable in comparison with the wild-type sequence, corroborated by molecular dynamic simulations (MDS). In this study, we highlighted two new resistance mutations in vivo for NRTI resistance. The low frequency of this pathway can be related to high impairment of replicative capacity mediated by these mutations.
Collapse
Affiliation(s)
- Lydia Pouga
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| | - Maria Mercedes Santoro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Charlotte Charpentier
- IAME, UMR 1137-Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France.,Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Domenico Di Carlo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Isabella Romeo
- Department of Health Sciences, University "Magna Grӕcia" of Catanzaro, Catanzaro, Italy
| | - Anna Artese
- Department of Health Sciences, University "Magna Grӕcia" of Catanzaro, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, University "Magna Grӕcia" of Catanzaro, Catanzaro, Italy
| | - Andrea Antinori
- Infectious Diseases Division, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Marc Wirden
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| | - Carlo Federico Perno
- Antiretroviral Drugs Monitoring Unit, National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | | | - Vincent Calvez
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| | - Diane Descamps
- IAME, UMR 1137-Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France.,Laboratoire de Virologie, AP-HP, Hôpital Bichat, Paris, France
| | - Anne-Geneviève Marcelin
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Sidonie Lambert-Niclot
- UPMC Univ Paris 06-UMR_S 1136, Pierre Louis Institute of Epidemiology and Public Health, Sorbonne Universités, Paris, France.,Laboratoire de Virologie, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
29
|
Yang Y, Kang D, Nguyen LA, Smithline ZB, Pannecouque C, Zhan P, Liu X, Steitz TA. Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2- d]pyrimidine non-nucleoside inhibitors. eLife 2018; 7:e36340. [PMID: 30044217 PMCID: PMC6080946 DOI: 10.7554/elife.36340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022] Open
Abstract
Rapid generation of drug-resistant mutations in HIV-1 reverse transcriptase (RT), a prime target for anti-HIV therapy, poses a major impediment to effective anti-HIV treatment. Our previous efforts have led to the development of two novel non-nucleoside reverse transcriptase inhibitors (NNRTIs) with piperidine-substituted thiophene[3,2-d]pyrimidine scaffolds, compounds K-5a2 and 25a, which demonstrate highly potent anti-HIV-1 activities and improved resistance profiles compared with etravirine and rilpivirine, respectively. Here, we have determined the crystal structures of HIV-1 wild-type (WT) RT and seven RT variants bearing prevalent drug-resistant mutations in complex with K-5a2 or 25a at ~2 Å resolution. These high-resolution structures illustrate the molecular details of the extensive hydrophobic interactions and the network of main chain hydrogen bonds formed between the NNRTIs and the RT inhibitor-binding pocket, and provide valuable insights into the favorable structural features that can be employed for designing NNRTIs that are broadly active against drug-resistant HIV-1 variants.
Collapse
Affiliation(s)
- Yang Yang
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Laura A Nguyen
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | - Zachary B Smithline
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical SciencesShandong UniversityJinanChina
| | - Thomas A Steitz
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States
- Howard Hughes Medical InstituteYale UniversityNew HavenUnited States
- Department of ChemistryYale UniversityNew HavenUnited States
| |
Collapse
|
30
|
Abstract
INTRODUCTION There are 36.7 million people living with HIV with 20.9 million having access to antiretroviral therapy (ART). Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) remain the 'backbone' of ART. However, the currently available nine NRTIs and five non-nucleoside reverse transcriptase inhibitors (NNRTIs) have significant side effects and resistance profiles. Areas covered: We summarize the mechanisms of resistance and other limitations of the existing NRTIs/NNRTIs. GS-9131, MK-8591, Elsulfavirine and Doravirine are four new agents that are furthest along in development. Expert opinion: ART development has evolved with several new promising agents. Longer-acting agents, like MK-8591 are extremely attractive to enhance drug adherence and patient satisfaction. Doravirine offers an NNRTI effective against common mutations that has fewer side effects, limitations on dosing and drug interactions. GS-9131 is very potent and active against a variety of NRTI mutants but it is too early in its development to understand its full risks and benefits. Finally, Elsulfavirine has a long half-life and preliminary data suggests fewer side effects than the most commonly used NNRTI, efavirenz. Each of these new agents shows promise and potential to improve ART in the future. The newer generation of reverse transcriptase inhibitors have longer half-lives, more favorable adverse effect profiles, and fewer drug interactions.
Collapse
Affiliation(s)
- Mohammad A Rai
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Sam Pannek
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| | - Carl J Fichtenbaum
- a Department of Internal Medicine , University of Cincinnati Medical Center , Cincinnati , OH , USA
| |
Collapse
|
31
|
Tarasova O, Poroikov V, Veselovsky A. Molecular Docking Studies of HIV-1 Resistance to Reverse Transcriptase Inhibitors: Mini-Review. Molecules 2018; 23:molecules23051233. [PMID: 29883406 PMCID: PMC6100360 DOI: 10.3390/molecules23051233] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Currently, millions of people are living with human immunodeficiency virus type 1 (HIV-1), which causes acquired immunodeficiency syndrome. However, the spread of the HIV-1 resistance to antiviral agents is the major problem in the antiretroviral therapy and medical management of HIV-infected patients. HIV-1 reverse transcriptase (RT) is one of the key viral targets for HIV-1 inhibition. Therefore, the studies on the combatting the HIV resistance that occurs due to the structural changes in RT, are in great demand. This work aims to provide an overview of the state-of-the-art molecular docking approaches applied to the studies of the HIV-1 resistance, associated with RT structure changes. We have reviewed recent studies using molecular docking with mutant forms of RT. The work discusses the modifications of molecular docking, which have been developed to find the novel molecules active against resistance mutants of RT and/or recombinant strains of HIV-1. The perspectives of the existing algorithms of molecular docking to the studies on molecular mechanisms of resistance and selection of the correct binding poses for the reverse transcriptase inhibitors are discussed.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia.
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia.
| | - Alexander Veselovsky
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya st., Moscow 119121, Russia.
| |
Collapse
|
32
|
Tarasova O, Poroikov V. HIV Resistance Prediction to Reverse Transcriptase Inhibitors: Focus on Open Data. Molecules 2018; 23:E956. [PMID: 29671808 PMCID: PMC6017644 DOI: 10.3390/molecules23040956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022] Open
Abstract
Research and development of new antiretroviral agents are in great demand due to issues with safety and efficacy of the antiretroviral drugs. HIV reverse transcriptase (RT) is an important target for HIV treatment. RT inhibitors targeting early stages of the virus-host interaction are of great interest for researchers. There are a lot of clinical and biochemical data on relationships between the occurring of the single point mutations and their combinations in the pol gene of HIV and resistance of the particular variants of HIV to nucleoside and non-nucleoside reverse transcriptase inhibitors. The experimental data stored in the databases of HIV sequences can be used for development of methods that are able to predict HIV resistance based on amino acid or nucleotide sequences. The data on HIV sequences resistance can be further used for (1) development of new antiretroviral agents with high potential for HIV inhibition and elimination and (2) optimization of antiretroviral therapy. In our communication, we focus on the data on the RT sequences and HIV resistance, which are available on the Internet. The experimental methods, which are applied to produce the data on HIV-1 resistance, the known data on their concordance, are also discussed.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya st., Moscow 119121, Russia.
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, 10 building 8, Pogodinskaya st., Moscow 119121, Russia.
| |
Collapse
|
33
|
Malik O, Khamis H, Rudnizky S, Kaplan A. The mechano-chemistry of a monomeric reverse transcriptase. Nucleic Acids Res 2018; 45:12954-12962. [PMID: 29165701 PMCID: PMC5728418 DOI: 10.1093/nar/gkx1168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/08/2017] [Indexed: 01/28/2023] Open
Abstract
Retroviral reverse transcriptase catalyses the synthesis of an integration-competent dsDNA molecule, using as a substrate the viral RNA. Using optical tweezers, we follow the Murine Leukemia Virus reverse transcriptase as it performs strand-displacement polymerization on a template under mechanical force. Our results indicate that reverse transcriptase functions as a Brownian ratchet, with dNTP binding as the rectifying reaction of the ratchet. We also found that reverse transcriptase is a relatively passive enzyme, able to polymerize on structured templates by exploiting their thermal breathing. Finally, our results indicate that the enzyme enters the recently characterized backtracking state from the pre-translocation complex.
Collapse
Affiliation(s)
- Omri Malik
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hadeel Khamis
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Faculty of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
34
|
Atis M, Johnson KA, Elber R. Pyrophosphate Release in the Protein HIV Reverse Transcriptase. J Phys Chem B 2017; 121:9557-9565. [PMID: 28926712 DOI: 10.1021/acs.jpcb.7b08320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enzymatic reactions usually occur in several steps: a step of substrate binding to the surface of the protein, a step of protein reorganization around the substrate and conduction of a chemical reaction, and a step of product release. The release of inorganic phosphate-PPi-from the matrix of the protein HIV reverse transcriptase is investigated computationally. Atomically detailed simulations with explicit solvent are analyzed to obtain the free energy profile, mean first passage time, and detailed molecular mechanisms of PPi escape. A challenge for the computations is of time scales. The experimental time scale of the process of interest is in milliseconds, and straightforward molecular dynamics simulations are in sub-microseconds. To overcome the time scale gap, we use the algorithm of Milestoning along a reaction coordinate to compute the overall free energy profile and rate. The methods of locally enhanced sampling and steered molecular dynamics determine plausible reaction coordinates. The observed molecular mechanism couples the transfer of the PPi to positively charged lysine side chains that are found on the exit pathway and to an exiting magnesium ion. In accord with experimental findings, the release rate is comparable to the chemical step, allowing for variations in substrate (DNA or RNA template) in which the release becomes rate determining.
Collapse
Affiliation(s)
- Murat Atis
- Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Kenneth A Johnson
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Ron Elber
- Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States.,Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
35
|
Structural Insights into HIV Reverse Transcriptase Mutations Q151M and Q151M Complex That Confer Multinucleoside Drug Resistance. Antimicrob Agents Chemother 2017; 61:AAC.00224-17. [PMID: 28396546 DOI: 10.1128/aac.00224-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) is targeted by multiple drugs. RT mutations that confer resistance to nucleoside RT inhibitors (NRTIs) emerge during clinical use. Q151M and four associated mutations, A62V, V75I, F77L, and F116Y, were detected in patients failing therapies with dideoxynucleosides (didanosine [ddI], zalcitabine [ddC]) and/or zidovudine (AZT). The cluster of the five mutations is referred to as the Q151M complex (Q151Mc), and an RT or virus containing Q151Mc exhibits resistance to multiple NRTIs. To understand the structural basis for Q151M and Q151Mc resistance, we systematically determined the crystal structures of the wild-type RT/double-stranded DNA (dsDNA)/dATP (complex I), wild-type RT/dsDNA/ddATP (complex II), Q151M RT/dsDNA/dATP (complex III), Q151Mc RT/dsDNA/dATP (complex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes. The structures revealed that the deoxyribose rings of dATP and ddATP have 3'-endo and 3'-exo conformations, respectively. The single mutation Q151M introduces conformational perturbation at the deoxynucleoside triphosphate (dNTP)-binding pocket, and the mutated pocket may exist in multiple conformations. The compensatory set of mutations in Q151Mc, particularly F116Y, restricts the side chain flexibility of M151 and helps restore the DNA polymerization efficiency of the enzyme. The altered dNTP-binding pocket in Q151Mc RT has the Q151-R72 hydrogen bond removed and has a switched conformation for the key conserved residue R72 compared to that in wild-type RT. On the basis of a modeled structure of hepatitis B virus (HBV) polymerase, the residues R72, Y116, M151, and M184 in Q151Mc HIV-1 RT are conserved in wild-type HBV polymerase as residues R41, Y89, M171, and M204, respectively; functionally, both Q151Mc HIV-1 and wild-type HBV are resistant to dideoxynucleoside analogs.
Collapse
|
36
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2016; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
37
|
Li A, Gong S, Johnson KA. Rate-limiting Pyrophosphate Release by HIV Reverse Transcriptase Improves Fidelity. J Biol Chem 2016; 291:26554-26565. [PMID: 27777304 DOI: 10.1074/jbc.m116.753152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Indexed: 11/06/2022] Open
Abstract
Previous measurements of the rates of polymerization and pyrophosphate release with DNA templates showed that pyrophosphate (PPi) dissociation was fast after nucleotide incorporation so that it did not contribute to enzyme specificity (kcat/Km). Here, kinetic parameters governing nucleotide incorporation and PPi release were determined using an RNA template. Compared with a DNA template of the same sequence, the rate of chemistry increased by up to 10-fold (250 versus 24 s-1), whereas the rate of PPi release decreased to approximately 58 s-1 so that PPi release became the rate-limiting step. During processive nucleotide incorporation, the first nucleotide (TTP) was incorporated at a fast rate (152 s-1), whereas the rates of incorporation of remaining nucleotides (CGTCG) were much slower with an average rate of 24 s-1, suggesting that sequential incorporation events were limited by the relatively slow PPi release step. The accompanying paper shows that slow PPi release allows polymerization and RNase H to occur at comparable rates. Although PPi release is the rate-determining step, it is not the specificity-determining step for correct incorporation based on our current estimates of the rate of reversal of the chemistry step (3 s-1). In contrast, during misincorporation, PPi release became extremely slow, which we estimated to be ∼0.002 s-1 These studies establish the mechanistic basis for DNA polymerase fidelity during reverse transcription and provide a free energy profile. We correct previous underestimates of discrimination by including the slow PPi release step. Our current estimate of 2.4 × 106 is >20-fold greater than estimated previously.
Collapse
Affiliation(s)
- An Li
- From the University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| | - Shanzhong Gong
- From the University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| | - Kenneth A Johnson
- From the University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| |
Collapse
|
38
|
Bethell RC, Lie YS, Parkin NT. In Vitro Activity of SPD754, a New Deoxycytidine Nucleoside Reverse Transcriptase Inhibitor (NRTI), against 215 HIV-1 Isolates Resistant to Other NRTIs. ACTA ACUST UNITED AC 2016; 16:295-302. [PMID: 16245645 DOI: 10.1177/095632020501600502] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SPD754 (also known as AVX-754) is a deoxycytidine analogue nucleoside reverse transcriptase inhibitor (NRTI) with antiretroviral activity against HIV-1 and HIV-2 in vitro and against recombinant viruses containing thymidine analogue mutations (TAMs). In order to better establish the activity of SPD754 against HIV-1 containing TAMs, twelve panels of up to twenty clinical isolates with defined TAM combinations were selected from the ViroLogic database. Phenotypic viral susceptibility to SPD754 and five other NRTIs was tested using the PhenoSense HIV assay and expressed as median fold-change compared with a reference strain. In total, 215 isolates were selected, representing four TAM patterns in both pathways by which TAMs accumulate clinically. The presence of five TAMs in the 41, 215 pathway, at codons 41, 67, 210, 215, and 219 of reverse transcriptase (RT), produced a median 1.8-fold reduction in SPD754 susceptibility, compared with fold reductions to zidovudine, lamivudine, abacavir, didanosine and tenofovir of 438, 4.8, 4.5, 1.4 and 3.6, respectively. Five TAMs in the 67, 70, 219 pathway (at codons 41, 67, 70, 215 and 219) reduced SPD754 susceptibility by a median 1.3-fold, compared with fold reductions for the aforementioned NRTIs of 108, 3.2, 3.0, 1.3 and 2.5, respectively. M184V addition reduced SPD754 susceptibility by 1.8-fold in the presence or absence of TAMs. SPD754 retains a substantial proportion of its antiviral activity against HIV-1 containing multiple TAMs, with or without the M184V mutation. These data suggest that SPD754 is a promising new NRTI for the treatment of NRTI-experienced HIV-infected patients.
Collapse
|
39
|
Sharma PL, Nurpeisov V, Schinazi RF. Retrovirus Reverse Transcriptases Containing a Modified YXDD Motif. ACTA ACUST UNITED AC 2016; 16:169-82. [PMID: 16004080 DOI: 10.1177/095632020501600303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The YXDD motif, where X is a variable amino acid, is highly conserved among various viral RNA-dependent DNA polymerases. Mutations in the YXDD motif can abolish enzymatic activity, alter the processivity and fidelity of enzymes and decrease virus infectivity. This review provides a summary of the significant documented studies on the YXDD motif of HIV-1, simian immunodeficiency virus, feline immunodeficiency virus and murine leukaemia virus and the impact of mutation that this motif has had on viral pathogenesis and drug treatment.
Collapse
Affiliation(s)
- Prem L Sharma
- Laboratory of Biochemical Pharmacology and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
40
|
Yanvarev DV, Korovina AN, Usanov NN, Khomich OA, Vepsäläinen J, Puljula E, Kukhanova MK, Kochetkov SN. Methylene bisphosphonates as the inhibitors of HIV RT phosphorolytic activity. Biochimie 2016; 127:153-62. [PMID: 27230835 DOI: 10.1016/j.biochi.2016.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Abstract
The structure-function analysis of 36 methylenebisphosphonates (BPs) as inhibitors of the phosphorolytic activity of native and drug-resistant forms of HIV-1 reverse transcriptase (RT) was performed. It was shown that with the increase of the inhibitory potential of BPs towards the phosphorolytic activity raises their ability to inhibit the RT-catalyzed DNA elongation. Herein, we report the impact of the thymidine analog mutations (TAM) on the activity of bisphosphonates, as well as some structural features of the BPs, allowing them to maintain the inhibitory activity on the enzyme resistant to nucleoside analog therapy. We estimated the Mg(2+)-coordinating group structure, the linker and the aromatic pharmacophore influence on the inhibitory potential of the BPs. Based on the 31 BPs SAR, several BPs with improved inhibitory properties were designed and synthesized.
Collapse
Affiliation(s)
- D V Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia.
| | - A N Korovina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| | - N N Usanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| | - O A Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| | - J Vepsäläinen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - E Puljula
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - M K Kukhanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| | - S N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| |
Collapse
|
41
|
Kankanala J, Kirby KA, Liu F, Miller L, Nagy E, Wilson DJ, Parniak MA, Sarafianos SG, Wang Z. Design, Synthesis, and Biological Evaluations of Hydroxypyridonecarboxylic Acids as Inhibitors of HIV Reverse Transcriptase Associated RNase H. J Med Chem 2016; 59:5051-62. [PMID: 27094954 DOI: 10.1021/acs.jmedchem.6b00465] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Targeting the clinically unvalidated reverse transcriptase (RT) associated ribonuclease H (RNase H) for human immunodeficiency virus (HIV) drug discovery generally entails chemotypes capable of chelating two divalent metal ions in the RNase H active site. The hydroxypyridonecarboxylic acid scaffold has been implicated in inhibiting homologous HIV integrase (IN) and influenza endonuclease via metal chelation. We report herein the design, synthesis, and biological evaluations of a novel variant of the hydroxypyridonecarboxylic acid scaffold featuring a crucial N-1 benzyl or biarylmethyl moiety. Biochemical studies show that most analogues consistently inhibited HIV RT-associated RNase H in the low micromolar range in the absence of significant inhibition of RT polymerase or IN. One compound showed reasonable cell-based antiviral activity (EC50 = 10 μM). Docking and crystallographic studies corroborate favorable binding to the active site of HIV RNase H, providing a basis for the design of more potent analogues.
Collapse
Affiliation(s)
- Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karen A Kirby
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center , Columbia, Missouri 65211, United States
| | - Feng Liu
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Lena Miller
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States
| | - Eva Nagy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15219, United States
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center , Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
43
|
Smith SJ, Pauly GT, Akram A, Melody K, Rai G, Maloney DJ, Ambrose Z, Thomas CJ, Schneider JT, Hughes SH. Rilpivirine analogs potently inhibit drug-resistant HIV-1 mutants. Retrovirology 2016; 13:11. [PMID: 26880034 PMCID: PMC4754833 DOI: 10.1186/s12977-016-0244-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are a class of antiretroviral compounds that bind in an allosteric binding pocket in HIV-1 RT, located about 10 Å from the polymerase active site. Binding of an NNRTI causes structural changes that perturb the alignment of the primer terminus and polymerase active site, preventing viral DNA synthesis. Rilpivirine (RPV) is the most recent NNRTI approved by the FDA, but like all other HIV-1 drugs, suboptimal treatment can lead to the development of resistance. To generate better compounds that could be added to the current HIV-1 drug armamentarium, we have developed several RPV analogs to combat viral variants that are resistant to the available NNRTIs. Results Using a single-round infection assay, we identified several RPV analogs that potently inhibited a broad panel of NNRTI resistant mutants. Additionally, we determined that several resistant mutants selected by either RPV or Doravirine (DOR) caused only a small increase in susceptibility to the most promising RPV analogs. Conclusions The antiviral data suggested that there are RPV analogs that could be candidates for further development as NNRTIs, and one of the most promising compounds was modeled in the NNRTI binding pocket. This model can be used to explain why this compound is broadly effective against the panel of NNRTI resistance mutants. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0244-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven J Smith
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Gary T Pauly
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Aamir Akram
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Kevin Melody
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Zandrea Ambrose
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA. .,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Craig J Thomas
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Drive, Bethesda, MD, 3370, USA.
| | - Joel T Schneider
- Chemical Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | - Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
44
|
John J, Kim Y, Bennett N, Das K, Liekens S, Naesens L, Arnold E, Maguire AR, Götte M, Dehaen W, Balzarini J. Pronounced Inhibition Shift from HIV Reverse Transcriptase to Herpetic DNA Polymerases by Increasing the Flexibility of α-Carboxy Nucleoside Phosphonates. J Med Chem 2015; 58:8110-27. [PMID: 26450273 DOI: 10.1021/acs.jmedchem.5b01180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpha-carboxynucleoside phosphonates (α-CNPs) are novel viral DNA polymerase inhibitors that do not need metabolic conversion for enzyme inhibition. The prototype contains a cyclopentyl linker between nucleobase and α-carboxyphosphonate and preferentially (50- to 100-fold) inhibits HIV-1 RT compared with herpetic DNA polymerases. A synthesis methodology involving three steps has been developed for the synthesis of a series of novel α-CNPs, including a Rh(II)-catalyzed O-H insertion that connects the carboxyphosphonate group to a linker moiety and an attachment of a nucleobase to the other end of the linker by a Mitsunobu reaction followed by final deprotection. Replacing the cyclopentyl moiety in the prototype α-CNPs by a more flexible entity results in a selectivity shift of ∼ 100-fold in favor of the herpetic DNA polymerases when compared to selectivity for HIV-1 RT. The nature of the kinetic interaction of the acyclic α-CNPs against the herpetic DNA polymerases differs from the nature of the nucleobase-specific kinetic interaction of the cyclopentyl α-CNPs against HIV RT.
Collapse
Affiliation(s)
| | | | - Nicholas Bennett
- Department of Medical Microbiology and Immunology, University of Alberta , 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08901, United States
| | | | | | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08901, United States
| | - Anita R Maguire
- Department of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork , Cork, Ireland
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta , 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
| | | | | |
Collapse
|
45
|
Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations. Cell Biochem Biophys 2015; 74:35-48. [DOI: 10.1007/s12013-015-0709-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Kirmizialtin S, Johnson KA, Elber R. Enzyme Selectivity of HIV Reverse Transcriptase: Conformations, Ligands, and Free Energy Partition. J Phys Chem B 2015. [PMID: 26225641 DOI: 10.1021/acs.jpcb.5b05467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomically detailed simulations of HIV RT are performed to investigate the contributions of the conformational transition to the overall rate and specificity of enzyme catalysis. A number of different scenarios are considered within Milestoning theory to provide a more complete picture of the process of opening and closing the enzyme. We consider the open to closed transition in the absence of and with the correct and incorrect substrates. We also consider the free energy profile and the kinetics of the conformational change after the chemistry step in which a new base was added to the DNA, but the DNA was not yet displaced. We partition the free energy along the reaction coordinate and analyze the importance of different protein domains. Strikingly, significant influence on the free energy profile is detected for amino acids far from the active site. The overall long-range impact is about 50 percent of the total. We also illustrate that the overall rate is not necessarily determined by the highest free energy barrier along the reaction path (with respect to the free enzyme and substrate) and that the specificity is not necessarily determined by the same reaction step that determines the rate.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Chemistry Program, New York University at Abu Dhabi , PO Box 129188, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
47
|
Koumbi L. Current and future antiviral drug therapies of hepatitis B chronic infection. World J Hepatol 2015; 7:1030-1040. [PMID: 26052392 PMCID: PMC4450180 DOI: 10.4254/wjh.v7.i8.1030] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/12/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Despite significant improvement in the management of chronic hepatitis B virus (HBV) it remains a public health problem, affecting more than 350 million people worldwide. The natural course of the infection is dynamic and involves a complex interplay between the virus and the host’s immune system. Currently the approved therapeutic regimens include pegylated-interferon (IFN)-α and monotherapy with five nucleos(t)ide analogues (NAs). Both antiviral treatments are not capable to eliminate the virus and do not establish long-term control of infection after treatment withdrawal. IFN therapy is of finite duration and associates with low response rates, liver decompensating and numerous side effects. NAs are well-tolerated therapies but have a high risk of drug resistance development that limits their prolonged use. The imperative for the development of new approaches for the treatment of chronic HBV infection is a challenging issue that cannot be over-sided. Research efforts are focusing on the identification and evaluation of various viral replication inhibitors that target viral replication and a number of immunomodulators that aim to restore the HBV specific immune hyporesponsiveness without inducing liver damage. This review brings together our current knowledge on the available treatment and discusses potential therapeutic approaches in the battle against chronic HBV infection.
Collapse
|
48
|
Alpha-carboxy nucleoside phosphonates as universal nucleoside triphosphate mimics. Proc Natl Acad Sci U S A 2015; 112:3475-80. [PMID: 25733891 DOI: 10.1073/pnas.1420233112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polymerases have a structurally highly conserved negatively charged amino acid motif that is strictly required for Mg(2+) cation-dependent catalytic incorporation of (d)NTP nucleotides into nucleic acids. Based on these characteristics, a nucleoside monophosphonate scaffold, α-carboxy nucleoside phosphonate (α-CNP), was designed that is recognized by a variety of polymerases. Kinetic, biochemical, and crystallographic studies with HIV-1 reverse transcriptase revealed that α-CNPs mimic the dNTP binding through a carboxylate oxygen, two phosphonate oxygens, and base-pairing with the template. In particular, the carboxyl oxygen of the α-CNP acts as the potential equivalent of the α-phosphate oxygen of dNTPs and two oxygens of the phosphonate group of the α-CNP chelate Mg(2+), mimicking the chelation by the β- and γ-phosphate oxygens of dNTPs. α-CNPs (i) do not require metabolic activation (phosphorylation), (ii) bind directly to the substrate-binding site, (iii) chelate one of the two active site Mg(2+) ions, and (iv) reversibly inhibit the polymerase catalytic activity without being incorporated into nucleic acids. In addition, α-CNPs were also found to selectively interact with regulatory (i.e., allosteric) Mg(2+)-dNTP-binding sites of nucleos(t)ide-metabolizing enzymes susceptible to metabolic regulation. α-CNPs represent an entirely novel and broad technological platform for the development of specific substrate active- or regulatory-site inhibitors with therapeutic potential.
Collapse
|
49
|
Bhakat S, Martin AJM, Soliman MES. An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine. MOLECULAR BIOSYSTEMS 2015; 10:2215-28. [PMID: 24931725 DOI: 10.1039/c4mb00253a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of different drug resistant strains of HIV-1 reverse transcriptase (HIV RT) remains of prime interest in relation to viral pathogenesis as well as drug development. Amongst those mutations, M184V was found to cause a complete loss of ligand fitness. In this study, we report the first account of the molecular impact of M184V mutation on HIV RT resistance to 3TC (lamivudine) using an integrated computational approach. This involved molecular dynamics simulation, binding free energy analysis, principle component analysis (PCA) and residue interaction networks (RINs). Results clearly confirmed that M184V mutation leads to steric conflict between 3TC and the beta branched side chain of valine, decreases the ligand (3TC) binding affinity by ∼7 kcal mol(-1) when compared to the wild type, changes the overall conformational landscape of the protein and distorts the native enzyme residue-residue interaction network. The comprehensive molecular insight gained from this study should be of great importance in understanding drug resistance against HIV RT as well as assisting in the design of novel reverse transcriptase inhibitors with high ligand efficacy on resistant strains.
Collapse
Affiliation(s)
- Soumendranath Bhakat
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa.
| | | | | |
Collapse
|
50
|
Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity. Proc Natl Acad Sci U S A 2014; 111:17462-7. [PMID: 25422422 DOI: 10.1073/pnas.1405981111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many antiviral and anticancer drugs are nucleoside analogs that target polymerases and cause DNA chain termination. Interestingly, ganciclovir (GCV), the first line of therapy for human cytomegalovirus (HCMV) infections, induces chain termination despite containing the equivalent of a 3'-hydroxyl group. Certain HCMV GCV resistance (GCV(r)) mutations, including ones associated with treatment failures, result in substitutions in the 3'-5' exonuclease (Exo) domain of the catalytic subunit of the viral DNA polymerase (Pol). To investigate how these mutations confer resistance, we overexpressed and purified wild-type (WT) HCMV Pol and three GCV(r) Exo mutants. Kinetic studies provided little support for resistance being due to effects on Pol binding or incorporation of GCV-triphosphate. The mutants were defective for Exo activity on all primer templates tested, including those with primers terminating with GCV, arguing against the mutations increasing excision of the incorporated drug. However, although the WT enzyme terminated DNA synthesis after incorporation of GCV-triphosphate and an additional nucleotide (N+1), the Exo mutants could efficiently synthesize DNA to the end of such primer templates. Notably, the Exo activity of WT Pol rapidly and efficiently degraded N+2 primer templates to N+1 products that were not further degraded. On N+1 primer templates, WT Pol, much more than the Exo mutants, converted the incoming deoxynucleoside triphosphate to its monophosphate, indicative of rapid addition and removal of incorporated nucleotides ("idling"). These results explain how GCV induces chain termination and elucidate a previously unidentified mechanism of antiviral drug resistance.
Collapse
|